7 research outputs found

    Trademark image retrieval by local features

    Get PDF
    The challenge of abstract trademark image retrieval as a test of machine vision algorithms has attracted considerable research interest in the past decade. Current operational trademark retrieval systems involve manual annotation of the images (the current ‘gold standard’). Accordingly, current systems require a substantial amount of time and labour to access, and are therefore expensive to operate. This thesis focuses on the development of algorithms that mimic aspects of human visual perception in order to retrieve similar abstract trademark images automatically. A significant category of trademark images are typically highly stylised, comprising a collection of distinctive graphical elements that often include geometric shapes. Therefore, in order to compare the similarity of such images the principal aim of this research has been to develop a method for solving the partial matching and shape perception problem. There are few useful techniques for partial shape matching in the context of trademark retrieval, because those existing techniques tend not to support multicomponent retrieval. When this work was initiated most trademark image retrieval systems represented images by means of global features, which are not suited to solving the partial matching problem. Instead, the author has investigated the use of local image features as a means to finding similarities between trademark images that only partially match in terms of their subcomponents. During the course of this work, it has been established that the Harris and Chabat detectors could potentially perform sufficiently well to serve as the basis for local feature extraction in trademark image retrieval. Early findings in this investigation indicated that the well established SIFT (Scale Invariant Feature Transform) local features, based on the Harris detector, could potentially serve as an adequate underlying local representation for matching trademark images. There are few researchers who have used mechanisms based on human perception for trademark image retrieval, implying that the shape representations utilised in the past to solve this problem do not necessarily reflect the shapes contained in these image, as characterised by human perception. In response, a ii practical approach to trademark image retrieval by perceptual grouping has been developed based on defining meta-features that are calculated from the spatial configurations of SIFT local image features. This new technique measures certain visual properties of the appearance of images containing multiple graphical elements and supports perceptual grouping by exploiting the non-accidental properties of their configuration. Our validation experiments indicated that we were indeed able to capture and quantify the differences in the global arrangement of sub-components evident when comparing stylised images in terms of their visual appearance properties. Such visual appearance properties, measured using 17 of the proposed metafeatures, include relative sub-component proximity, similarity, rotation and symmetry. Similar work on meta-features, based on the above Gestalt proximity, similarity, and simplicity groupings of local features, had not been reported in the current computer vision literature at the time of undertaking this work. We decided to adopted relevance feedback to allow the visual appearance properties of relevant and non-relevant images returned in response to a query to be determined by example. Since limited training data is available when constructing a relevance classifier by means of user supplied relevance feedback, the intrinsically non-parametric machine learning algorithm ID3 (Iterative Dichotomiser 3) was selected to construct decision trees by means of dynamic rule induction. We believe that the above approach to capturing high-level visual concepts, encoded by means of meta-features specified by example through relevance feedback and decision tree classification, to support flexible trademark image retrieval and to be wholly novel. The retrieval performance the above system was compared with two other state-of-the-art image trademark retrieval systems: Artisan developed by Eakins (Eakins et al., 1998) and a system developed by Jiang (Jiang et al., 2006). Using relevance feedback, our system achieves higher average normalised precision than either of the systems developed by Eakins’ or Jiang. However, while our trademark image query and database set is based on an image dataset used by Eakins, we employed different numbers of images. It was not possible to access to the same query set and image database used in the evaluation of Jiang’s trademark iii image retrieval system evaluation. Despite these differences in evaluation methodology, our approach would appear to have the potential to improve retrieval effectiveness

    Combining Disparate Information for Machine Learning.

    Full text link
    This thesis considers information fusion for four different types of machine learning problems: anomaly detection, information retrieval, collaborative filtering and structure learning for time series, and focuses on a common theme -- the benefit to combining disparate information resulting in improved algorithm performance. In this dissertation, several new algorithms and applications to real-world datasets are presented. In Chapter II, a novel approach called Pareto Depth Analysis (PDA) is proposed for combining different dissimilarity metrics for anomaly detection. PDA is applied to video-based anomaly detection of pedestrian trajectories. Following a similar idea, in Chapter III we propose to use a similar Pareto Front method for a multiple-query information retrieval problem when different queries represent different semantic concepts. Pareto Front information retrieval is applied to multiple query image retrieval. In Chapter IV, we extend a recently proposed collaborative retrieval approach to incorporate complementary social network information, an approach we call Social Collaborative Retrieval (SCR). SCR is applied to a music recommendation system that combines both user history and friendship network information to improve recall and weighted recall performance. In Chapter V, we propose a framework that combines time series data at different time scales and offsets for more accurate estimation of multiple precision matrices. We propose a general fused graphical lasso approach to jointly estimate these precision matrices. The framework is applied to modeling financial time series data.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108878/1/coolmark_1.pd

    Interactive video retrieval using implicit user feedback.

    Get PDF
    PhDIn the recent years, the rapid development of digital technologies and the low cost of recording media have led to a great increase in the availability of multimedia content worldwide. This availability places the demand for the development of advanced search engines. Traditionally, manual annotation of video was one of the usual practices to support retrieval. However, the vast amounts of multimedia content make such practices very expensive in terms of human effort. At the same time, the availability of low cost wearable sensors delivers a plethora of user-machine interaction data. Therefore, there is an important challenge of exploiting implicit user feedback (such as user navigation patterns and eye movements) during interactive multimedia retrieval sessions with a view to improving video search engines. In this thesis, we focus on automatically annotating video content by exploiting aggregated implicit feedback of past users expressed as click-through data and gaze movements. Towards this goal, we have conducted interactive video retrieval experiments, in order to collect click-through and eye movement data in not strictly controlled environments. First, we generate semantic relations between the multimedia items by proposing a graph representation of aggregated past interaction data and exploit them to generate recommendations, as well as to improve content-based search. Then, we investigate the role of user gaze movements in interactive video retrieval and propose a methodology for inferring user interest by employing support vector machines and gaze movement-based features. Finally, we propose an automatic video annotation framework, which combines query clustering into topics by constructing gaze movement-driven random forests and temporally enhanced dominant sets, as well as video shot classification for predicting the relevance of viewed items with respect to a topic. The results show that exploiting heterogeneous implicit feedback from past users is of added value for future users of interactive video retrieval systems

    Instance-Based Relevance Feedback for Image Retrieval

    No full text
    High retrieval precision in content-based image retrieval can be attained by adopting relevance feedback mechanisms. These mechanisms require that the user judges the quality of the results of the query by marking all the retrieved images as being either relevant or not. Then, the search engine exploits this information to adapt the search to better meet user’s needs. At present, the vast majority of proposed relevance feedback mechanisms are formulated in terms of search model that has to be optimized. Such an optimization involves the modification of some search parameters so that the nearest neighbor of the query vector contains the largest number of relevant images. In this paper, a different approach to relevance feedback is proposed. After the user provides the first feedback, following retrievals are not based on knn search, but on the computation of a relevance score for each image of the database. This score is computed as a function of two distances, namely the distance from the nearest non-relevant image and the distance from the nearest relevant one. Images are then ranked according to this score and the top k images are displayed. Reported results on three image data sets show that the proposed mechanism outperforms other state-of-the-art relevance feedback mechanisms
    corecore