6 research outputs found

    Instance reduction for one-class classification

    Get PDF
    Instance reduction techniques are data preprocessing methods originally developed to enhance the nearest neighbor rule for standard classification. They reduce the training data by selecting or generating representative examples of a given problem. These algorithms have been designed and widely analyzed in multi-class problems providing very competitive results. However, this issue was rarely addressed in the context of one-class classification. In this specific domain a reduction of the training set may not only decrease the classification time and classifier’s complexity, but also allows us to handle internal noisy data and simplify the data description boundary. We propose two methods for achieving this goal. The first one is a flexible framework that adjusts any instance reduction method to one-class scenario by introduction of meaningful artificial outliers. The second one is a novel modification of evolutionary instance reduction technique that is based on differential evolution and uses consistency measure for model evaluation in filter or wrapper modes. It is a powerful native one-class solution that does not require an access to counterexamples. Both of the proposed algorithms can be applied to any type of one-class classifier. On the basis of extensive computational experiments, we show that the proposed methods are highly efficient techniques to reduce the complexity and improve the classification performance in one-class scenarios

    Revisiting Data Complexity Metrics Based on Morphology for Overlap and Imbalance: Snapshot, New Overlap Number of Balls Metrics and Singular Problems Prospect

    Full text link
    Data Science and Machine Learning have become fundamental assets for companies and research institutions alike. As one of its fields, supervised classification allows for class prediction of new samples, learning from given training data. However, some properties can cause datasets to be problematic to classify. In order to evaluate a dataset a priori, data complexity metrics have been used extensively. They provide information regarding different intrinsic characteristics of the data, which serve to evaluate classifier compatibility and a course of action that improves performance. However, most complexity metrics focus on just one characteristic of the data, which can be insufficient to properly evaluate the dataset towards the classifiers' performance. In fact, class overlap, a very detrimental feature for the classification process (especially when imbalance among class labels is also present) is hard to assess. This research work focuses on revisiting complexity metrics based on data morphology. In accordance to their nature, the premise is that they provide both good estimates for class overlap, and great correlations with the classification performance. For that purpose, a novel family of metrics have been developed. Being based on ball coverage by classes, they are named after Overlap Number of Balls. Finally, some prospects for the adaptation of the former family of metrics to singular (more complex) problems are discussed.Comment: 23 pages, 9 figures, preprin

    Cost-Quality Trade-Offs in One-Class Active Learning

    Get PDF
    Active learning is a paradigm to involve users in a machine learning process. The core idea of active learning is to ask a user to annotate a specific observation to improve the classification performance. One important application of active learning is detecting outliers, i.e., unusual observations that deviate from the regular ones in a data set. Applying active learning for outlier detection in practice requires to design a system that consists of several components: the data, the classifier that discerns between inliers and outliers, the query strategy that selects the observations for feedback collection, and an oracle, e.g., the human expert that annotates the queries. Each of these components and their interplay influences the classification quality. Naturally, there are cost budgets limiting certain parts of the system, e.g., the number of queries one can ask a human. Thus, to configure efficient active learning systems, one must decide on several trade-offs between costs and quality. The existing literature on active learning systems does not provide an overview nor a formal description of the cost-quality trade-offs of active learning. All this makes the configuration of efficient active learning systems in practice difficult. In this thesis, we study different cost-quality trade-offs that are pivotal for configuring an active learning system for outlier detection. We first provide an overview of the costs of an active learning system. Then, we analyze three important trade-offs and propose ways to model and quantify them. In our first contribution, we study how one can reduce classification training costs by training only on a sample of the data set. We formalize the sampling trade-off between classifier training costs and resulting quality as an optimization problem and propose an efficient algorithm to solve it. Compared to the existing sampling methods in literature, our approach guarantees that a classifier trained on our sample makes the same predictions as if trained on the complete data set. We can therefore reduce the classification training costs without a loss of classification quality. In our second contribution, we investigate how selecting multiple queries allows trading off costs against quality. So-called batch queries reduce classifier training costs because the system only updates the classifier once for each batch. But the annotation of a batch may give redundant information, which reduces the achievable quality with a fixed query budget. We are the first to consider batch queries for outlier detection, a generalization of the more common case to query sequentially. We formalize batch active learning and propose several strategies to construct batches by modeling the expected utility of a batch. In our third contribution, we propose query synthesis for outlier detection. Query synthesis allows to artificially generate queries at any point in the data space without being restricted by a pool of query candidates. We propose a framework to efficiently synthesize queries and develop a novel query strategy to improve the generalization of a classifier beyond a biased data set with active learning. For all contributions, we derive recommendations for the cost-quality trade-offs from formal investigations and empirical studies to facilitate the configuration of robust and efficient active learning systems for outlier detection
    corecore