13,029 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Ergodic Randomized Algorithms and Dynamics over Networks

    Full text link
    Algorithms and dynamics over networks often involve randomization, and randomization may result in oscillating dynamics which fail to converge in a deterministic sense. In this paper, we observe this undesired feature in three applications, in which the dynamics is the randomized asynchronous counterpart of a well-behaved synchronous one. These three applications are network localization, PageRank computation, and opinion dynamics. Motivated by their formal similarity, we show the following general fact, under the assumptions of independence across time and linearities of the updates: if the expected dynamics is stable and converges to the same limit of the original synchronous dynamics, then the oscillations are ergodic and the desired limit can be locally recovered via time-averaging.Comment: 11 pages; submitted for publication. revised version with fixed technical flaw and updated reference

    Fixed-time Distributed Optimization under Time-Varying Communication Topology

    Full text link
    This paper presents a method to solve distributed optimization problem within a fixed time over a time-varying communication topology. Each agent in the network can access its private objective function, while exchange of local information is permitted between the neighbors. This study investigates first nonlinear protocol for achieving distributed optimization for time-varying communication topology within a fixed time independent of the initial conditions. For the case when the global objective function is strictly convex, a second-order Hessian based approach is developed for achieving fixed-time convergence. In the special case of strongly convex global objective function, it is shown that the requirement to transmit Hessians can be relaxed and an equivalent first-order method is developed for achieving fixed-time convergence to global optimum. Results are further extended to the case where the underlying team objective function, possibly non-convex, satisfies only the Polyak-\L ojasiewicz (PL) inequality, which is a relaxation of strong convexity.Comment: 25 page

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text
    • …
    corecore