1,008,728 research outputs found
The orienting mouse: An input device with attitude
This paper presents a modified computer mouse, the Orienting Mouse, which delivers orientation as an additional dimension of input; when the mouse is moved on a flat surface it reports, in addition to the conventional x, y translation, angular rotation of the device in the x, y plane.
The orienting mouse preserves important properties of the standard mouse; all measurements are relative and movement is tracked only while the mouse is on its flat surface. If the user lets go of the mouse, leaving it on the surface, its position and orientation do not change until it is touched again. Picking the mouse up and putting it down in a different orientation leaves the angle and position unchanged.
While the concept of sensing mouse rotation is not new, our work focuses on movement and navigation in 3D, rather than on precision positioning tasks. We describe a number of sample applications developed to test its effectiveness in this context. Specific features exploited and described include (i) an algorithm for calculating the mouse angle which cancels drift between the two sensors, and (ii) the use of angular gearing which avoids unnatural and uncomfortable hand positions when moving through large angles; informal user testing validates this idea
3DTouch: A wearable 3D input device with an optical sensor and a 9-DOF inertial measurement unit
We present 3DTouch, a novel 3D wearable input device worn on the fingertip
for 3D manipulation tasks. 3DTouch is designed to fill the missing gap of a 3D
input device that is self-contained, mobile, and universally working across
various 3D platforms. This paper presents a low-cost solution to designing and
implementing such a device. Our approach relies on relative positioning
technique using an optical laser sensor and a 9-DOF inertial measurement unit.
3DTouch is self-contained, and designed to universally work on various 3D
platforms. The device employs touch input for the benefits of passive haptic
feedback, and movement stability. On the other hand, with touch interaction,
3DTouch is conceptually less fatiguing to use over many hours than 3D spatial
input devices. We propose a set of 3D interaction techniques including
selection, translation, and rotation using 3DTouch. An evaluation also
demonstrates the device's tracking accuracy of 1.10 mm and 2.33 degrees for
subtle touch interaction in 3D space. Modular solutions like 3DTouch opens up a
whole new design space for interaction techniques to further develop on.Comment: 8 pages, 7 figure
Solid-state data interpretation system - A concept
Device, serving as substitute for cathode ray tubes, applies to computer input-output devices such as microfilm readers, data displays, and optical scanners. Each device operates at speed of modern computer
A Framework for Mouse Emulation that Uses a Minimally Invasive Tongue Palate Control Device utilizing Resistopalatography
The ability to interface fluently with a robust Human Input Device is a major challenge facing patients with severe levels of disability. This paper describes a new method of computer interaction utilizing Force Sensitive Resistor Array Technology, embedded into an Intra-Oral device (Resistopalatography), to emulate a USB Human Interface Device using standard Drivers. The system is based around the patient using their tongue to manipulate these sensors in order to give a position and force measurement; these can then be analyzed to generate the necessary metrics to control a mouse for computer input
Do-It-Yourself Single Camera 3D Pointer Input Device
We present a new algorithm for single camera 3D reconstruction, or 3D input
for human-computer interfaces, based on precise tracking of an elongated
object, such as a pen, having a pattern of colored bands. To configure the
system, the user provides no more than one labelled image of a handmade
pointer, measurements of its colored bands, and the camera's pinhole projection
matrix. Other systems are of much higher cost and complexity, requiring
combinations of multiple cameras, stereocameras, and pointers with sensors and
lights. Instead of relying on information from multiple devices, we examine our
single view more closely, integrating geometric and appearance constraints to
robustly track the pointer in the presence of occlusion and distractor objects.
By probing objects of known geometry with the pointer, we demonstrate
acceptable accuracy of 3D localization.Comment: 8 pages, 6 figures, 2018 15th Conference on Computer and Robot Visio
Mixed-mode impedance and reflection coefficient of two-port devices
From the point of view of mixed-mode scattering parameters, Smm, a two-port device can be excited using different driving conditions. Each condition leads to a particular set of input reflection and input impedance coefficient definitions that should be carefully applied depending on the type of excitation and symmetry of the two-port device. Therefore, the aim of this paper is to explain the general analytic procedure for the evaluation of such reflection and impedance coefficients in terms of mixed-mode scattering parameters. Moreover, the driving of a two-port device as a one-port device is explained as a particular case of a two-port mixed-mode excitation using a given set of mixed-mode loads. The theory is applied to the evaluation of the quality factor, Q, of symmetrical and non- symmetrical inductors.Ministerio de Innovación y Ciencia TEC2010-14825/MIC, TEC2010-21484Junta de Andalucía TIC-253
Design of A Low Power Low Voltage CMOS Opamp
In this paper a CMOS operational amplifier is presented which operates at 2V
power supply and 1microA input bias current at 0.8 micron technology using non
conventional mode of operation of MOS transistors and whose input is depended
on bias current. The unique behaviour of the MOS transistors in subthreshold
region not only allows a designer to work at low input bias current but also at
low voltage. While operating the device at weak inversion results low power
dissipation but dynamic range is degraded. Optimum balance between power
dissipation and dynamic range results when the MOS transistors are operated at
moderate inversion. Power is again minimised by the application of input
dependant bias current using feedback loops in the input transistors of the
differential pair with two current substractors. In comparison with the
reported low power low voltage opamps at 0.8 micron technology, this opamp has
very low standby power consumption with a high driving capability and operates
at low voltage. The opamp is fairly small (0.0084 mm 2) and slew rate is more
than other low power low voltage opamps reported at 0.8 um technology [1,2].
Vittoz at al [3] reported that slew rate can be improved by adaptive biasing
technique and power dissipation can be reduced by operating the device in weak
inversion. Though lower power dissipation is achieved the area required by the
circuit is very large and speed is too small. So, operating the device in
moderate inversion is a good solution. Also operating the device in
subthreshold region not only allows lower power dissipation but also a lower
voltage operation is achieved.Comment: 8 Pages, VLSICS Journa
- …
