

Working Paper Series
ISSN 1177-777X

THE ORIENTING MOUSE:
AN INPUT DEVICE WITH

ATTITUDE

Mark Apperley and Bill Rogers

Working Paper: 08/2013
November 2013

© 2013 Mark Apperley and Bill Rogers
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29201886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Orienting Mouse: An Input Device with Attitude

Mark Apperley
The University of Waikato
Hamilton, New Zealand

Tel: 64-7-856 2889
m.apperley@waikato.ac.nz

Bill Rogers
The University of Waikato
Hamilton, New Zealand

Tel: 64-7-856 2889
b.rogers@waikato.ac.nz

ABSTRACT
This paper presents a modified computer mouse, the Ori-
enting Mouse, which delivers orientation as an additional
dimension of input; when the mouse is moved on a flat
surface it reports, in addition to the conventional x, y
translation, angular rotation of the device in the x, y
plane.

The orienting mouse preserves important properties of the
standard mouse; all measurements are relative and
movement is tracked only while the mouse is on its flat
surface. If the user lets go of the mouse, leaving it on the
surface, its position and orientation do not change until it
is touched again. Picking the mouse up and putting it
down in a different orientation leaves the angle and posi-
tion unchanged.

While the concept of sensing mouse rotation is not new,
our work focuses on movement and navigation in 3D,
rather than on precision positioning tasks. We describe a
number of sample applications developed to test its effec-
tiveness in this context. Specific features exploited and
described include (i) an algorithm for calculating the
mouse angle which cancels drift between the two sensors,
and (ii) the use of angular gearing which avoids unnatural
and uncomfortable hand positions when moving through
large angles; informal user testing validates this idea.

ACM Classification: H.5.2 [Information interfaces
and presentation]: User Interfaces–Input Devices and
Strategies, Graphical user interfaces. I.3.3.1 [Computer
Graphics] Hardware Architecture–Input Devices. I.3.6
[Computing Methodologies]: Methodology and Tech-
niques–Interaction Techniques.

General terms: Human Factors, Design

Keywords: Mouse, Multi-Sensor Mouse, Navigation

1. INTRODUCTION
Invented by Engelbart in the 1960s [4, 5], the mouse has
been the primary device for communicating position in-
formation to computers since its appearance as an integral
part of the first mass-market graphical user interface [10].
Early mice used mechanical rollers. Since then accuracy
and reliability have been improved by using optical sen-
sors. The number of buttons varies, but the most common
configurations have one, two or three. The first button
provides the fundamental ‘attention’ input – triggering
software actions and distinguishing deliberate drag opera-
tions from navigation movement. Where a second button
is included it most often serves to activate a context
menu. There is no standard functionality for third but-
tons; where present they are used for a variety of applica-
tion dependent operations. The final common addition is
the scroll wheel (often integrated with third button func-
tionality). This is widely used for vertical scrolling and
scaling operations. Additional buttons have been incorpo-
rated in some mice [3], but usually don’t have fixed func-
tion. They are typically programmed on individual pref-
erence for fast access to common functions in particular
applications – eg: weapon or defense access in computer
games.

In this paper we focus on the spatial movement capabili-
ties of mice. A basic mouse offers two spatial dimensions
of movement, left/right and back/forth on a desk surface,
commonly translating to left/right and up/down on the
computer screen. So, aside from the various 3D mouse
device extensions, most mice offer three buttons and three
movement degrees of freedom, two directly mapping spa-
tial movement, one (the scroll wheel) more artificial.
Interestingly, the cursor driven by the mouse on the
screen is most often an arrow – yet no orientation is im-
plied by the mouse.

Standard characteristics of mice include:

 the position they specify is retained when they are
not moved;

 they allow rapid movement and also slow precise
motion;

 they operate on a flat surface where the hand can be
braced which is good for precision (if not for the
health and safety of the human forearm); and

 they can be operated with the fingers (precise) or by
movements of the whole arm (rapid).

Our innovation is the addition of a second optical sensor
approximately 5cm from the primary sensor. Tracking
movement with the two sensors allows us to detect rota-
tion in addition to left/right or back/forward motion. This
extends motion detection to three degrees of freedom
(four, counting the scroll wheel).

The new motion has similar affordances to the linear mo-
tion detection. The mouse stays where it is once posi-
tioned, and the angle is preserved if the mouse is station-
ary. If the orientation is inconvenient the mouse can be
lifted off the desk surface and repositioned without alter-
ing the sensed angle. The most obvious use of the addi-
tional freedom is to allow control of orientation. One
inspiration for the development of the device was the dif-
ficulty found in navigating in a 3D environment, where
movement and viewing directions were locked as one.
The orienting mouse potentially removes this constraint,
in a very natural way, with movement specified by mouse
position, and viewing direction by mouse orientation. A
similar advantage can be seen in a First Person Shooter
game environment, where it becomes possible to aim by
rotating the mouse while shifting left or right by moving
the mouse. We have built a number of software demon-
strations to show ways of using the mouse, some of which
map the new freedom into other ‘in-world’ actions.

2. BACKGROUND
Perhaps not surprisingly the idea of using two sensors to
allow a mouse to detect orientation is not new. Earlier
literature, however, is scattered, with variations in termi-
nology and in motivation, which perhaps explains why
the technology is not well known or widely used.

An early description of a dual sensor mouse [8] was based
on mechanical (rotating ball) technology. Although moti-

vated to support rotation in drawing, no such applications
are directly described. The authors did introduce the no-
tion of angular gearing, with different modifier keys of-
fering different magnification factors.

Logitech's Dual Optical MouseMan [9] used a second
sensor to improve accuracy and robustness to poor mous-
ing surfaces, and the second sensor was not exploited to
provide rotational information. The Yawing Mouse [1] is
specifically designed to provide this additional degree of
freedom. Usability studies were carried out to assess its
potential for a variety of 3D positioning tasks, but these
were not focused on specific application domains. Evalua-
tion of the concept is taken further with the TwistMouse
[7]. Here it was found that for the given tasks, a scroll-
wheel mouse performed better than the TwistMouse, but
the evaluation was based strongly on the notion of posi-
tioning objects in space, rather than viewing and navi-
gating through space. There was also some concern that
the basic mouse used was not comparable to contempo-
rary commercial products in its standard mode.

The TwistMouse study [7] did make use of a 2:1 angular
magnification, as had been proposed earlier [5]. It is sug-
gested that more careful application of this feature will
reduce the need for concern about form factor in these
devices, which others have suggested [1, 6]. If the mouse
need be rotated only by ~ ±20° to achieve any desired
action, then the familiar and conventional mouse form
factors can be retained.

3. HARDWARE IMPLEMENTATION
Our prototype is built from a pair of Microsoft optical
mice. When the cover and electronics are removed, the
base of the mouse is as shown in Figure 3. Note the cir-
cular area in the middle on which the lens assembly sits,

Figure 1: Top and bottom views of the prototype
Orienting Mouse showing dual optical sensor.

Figure 2: Movement freedoms of the Orienting
Mouse.

and that the rear of the internal framing which supports
the circuit board is at (or close to) 45° to the longitudinal
axis of the mouse.

If the rear part of the base is cut away, the middle part of
another base can be inserted with the ‘back’ edges of the
framing glued together as shown in Figure 4, with
relatively minimal overall extension of the mouse
‘package’Figure 4: . This provides a robust base with
room for two optical assemblies, longitudinally aligned to
within a degree or two, and with both mounted correctly
in the sense of having the same geometric relationships
between table surface, optical system, sensor and circuit
board as an unmodified mouse (with the exception that
the second assembly faces backwards – however this can
be corrected in the software).

Having the sensors aligned and retaining the correct ge-
ometry for the optical components gives a good chance of
the two sensors providing similar sensitivity and tracking
behaviour. The orienting mouse prototype is completed
by reinstalling the full electronic and button system for
the front sensor, and that part of the electronics responsi-
ble for tracking for the rear sensor (Figure 5). Two inde-
pendent USB connections are retained – so that, from the
computer’s viewpoint, an orienting mouse appears as two

independent mice. While one (the front sensor) has full
functionality, the other (the rear sensor) lacks buttons or a
scroll wheel, and sends only movement data to the com-
puter.

4. DRIVER SOFTWARE
Ideally an orienting mouse would connect to a computer
as a single device, via a single USB cable for example,
and would have appropriate device driver software to
interpret the combined data from the two sensors. As
explained above we were able to develop prototype hard-
ware very quickly by combining two existing mice. The
disadvantage of this approach is that our device connects
to a computer using two USB cables, as two independent
mice. To provide maximum flexibility in developing
sample application software, in particular to get access to
a familiar graphics environment, we wanted our system to
work with the Microsoft Windows 7 operating system.
Windows 7 does not natively support multiple mouse
interaction: multiple mice can be attached, but their input
is pooled to drive a single mouse cursor.

A number of methods for retrieving separate input from
multiple mice on Microsoft Windows operating systems
are reported in the literature. CPNMouse [2] is widely
cited, and was used by [7] in the TwistMouse project. It
permits multiple mice driving independent cursors. That
is not quite the need of our application, but as it gives
access to separate data streams from each mouse, it could
have been adapted to meet our needs. Unfortunately, it
does not work with Windows 7.

We tried two other approaches (that probably share the
same underlying input mechanism). The first was a pro-
ject called Microsoft Multipoint which provided library
support for multiple mouse pointers in WPF (Windows
Presentation Foundation – an XML based user interface
system). This worked nicely, and was used for our first
prototype. The second method, which gave more flexibil-
ity, in that it could be used with a wider range of applica-
tion software, was to access Window’s Low-Level Mouse
interface. This is quite simple to use and provided the

Figure 3: Base of a standard MS Optical Mouse
(front at left).

Figure 4: A second detector frame glued onto the
rear of the first mouse.

Figure 5: Orienting mouse circuit board assembly.

interface required. It allows a user-mode process to inter-
cept mouse messages further back in the operating system
processing sequence than usual, where the messages are
complete with an identification code for the mouse. We
built an interface layer which processes low level messag-
es, combines and interpretes our dual sensor input, and
presents an event based interface to the application soft-
ware. This interface allowed application development
with a 3D graphics environment and GDI (the Windows
desktop GUI system).

In building the interface there were two problems to be
addressed. The first was identifying the two ‘mice’ con-
stituting our ‘orienting mouse’. The second was convert-
ing the dual sensor input into position/orientation infor-
mation in a robust manner.

4.1 Mouse Identification
When the prototype orienting mouse is plugged in to a
laptop, three separate mice are registered in the human
interface device configuration – the two parts of the ori-
enting mouse and the laptop touchpad. Sometimes during
development there is a fourth mouse; an ordinary mouse
for general use. Low level mouse messages carry an
identification tag (a small integer), however the tags are
not stable. The values assigned depend on the order of
plugging in, the history of restarting, etc. The problem
then, is to obtain a mapping from device tags to front and
rear sensors of the orienting mouse. For the purposes of
experimentation we decided that it would an acceptable
and flexible solution to re-identify the sensors each time a
test application launched. The method we chose was to
require a special mouse gesture by the user on application
launch; our sample applications prompt for the gesture.
The user is required to move the orienting mouse and
click its left button. The software simply takes the first
two mice it sees moving to be the parts of the orienting
mouse. The one that delivers the mouse down message
from the user’s click must be the front part of the device,
simply because the rear part has no mouse button. Once
identification is established, it is assumed that it doesn’t
change while the application is running. Clearly, custom
hardware and device driver software could avoid the need
for the gesture, however with our applications the gesture
has a very similar user feel to a ‘click to start’ require-
ment and did not cause difficulty for users.

4.2 Calculating Orientation
Converting double sensor readings to orientation angle
proved a challenge for a number of reasons, not the least
of which was inconsistency in mouse position data. We
discovered that position data was less accurate than antic-
ipated, or rather less complete. A simple experiment
shows this effect. If the orienting mouse is moved with-
out rotation using ordinary Windows 7 software, the two
sensor inputs should be added. Holding two mice side by
side and moving them together gives this result. Howev-

er, the two sensors on the orienting mouse prototype face
in opposite directions in both the x and y dimensions.
This can be simulated by holding two independent mice
with one rotated by 180 degrees. In this situation we
might expect movements to cancel each other. Sliding the
mouse pair should lead to no cursor movement unless
mouse speeds were set differently, in which case the ob-
served movement should be proportional to the difference
in mouse speeds. In fact with a pair of conventional mice
or with the orienting mouse (whose two devices are set to
the same speed) we observe a good deal of jitter and not a
small amount of substantive movement. A likely inter-
pretation is that the optical mouse movement measure-
ment is conservative. Possibly it only reports movement
when a clear observation of movement occurs from its
sensor, dropping ambiguous cases. This would result in
loss of movement events. In normal mouse use that might
not be noticeable; we move a mouse in the appropriate
direction until the cursor arrives at the required destina-
tion. If it gets there a little too slowly, we probably don’t
notice. When the display depends on the difference of
integrated sensor readings, we see jitter, which is much
more noticeable. If only translation were involved we
might learn to deal with jitter, but when we are trying to
calculate angle the result is amplified. Working with the
difference of two differences (angle from each of x and y
differences) resulted in quite unstable angle estimates. A
partial solution was to use a mouse mat to improve track-
ing. That helped considerably, although it did not elimi-
nate the dropouts. We were left with the need to find a
robust way of calculating angles. Our first approach had
been to track the two sensors independently and calculate
an angle from the coordinate difference. As the positions
of the two sensors can drift, the distance between sensors
(which is not large) changes significantly and this has a
major impact on the angle calculation.

The system we finally used for tracking involves two co-
ordinate systems. The first, ‘Sensor Location’, just
measures the positions of the sensors. The second ‘Piv-
ot/Angle’ has a single location for the active mouse posi-
tion and stores the angle separately. Converting between
these systems on every update allows us to keep sensor
distance constant and gives reliable angle measurements.

The Pivot/Angle system is the primary representation and
is the one that is made available to application software.
It has three values: mouse_x, mouse_y and physi-
cal_angle. Each is stored as a float to avoid aliasing ef-
fects from frequent small updates. The x axis represents
left/right movement of the mouse from the users’ frame of
reference and translates to left/right on the screen; y is
taken to be the user’s near/far which translates to up/down
on the screen. The physical_angle value measures the
deviation clockwise from ahead (or vertical on screen) for
a line passing through the long axis of the mouse. With a
normal mouse, because all movement is relative, there is
no reason to think about the point on a mouse that corre-
sponds to its location. However, with the orienting

mouse, it is necessary to think about the pivot point. It
makes a noticeable difference if the mouse pivots about
its base or about its tip. Accordingly, mouse_x and
mouse_y are set to represent the location of the pivot
point on the mouse. In the sample applications this is
configurable, but has been set to be the midpoint between
the sensors for trials. The algorithm for position update is
as follows.

There are two static parameters (see Figure 6). Sen-
sor_separation is the distance between sensors in micels1;
it is set to 800 in the experimental software. The second
is lambda, which sets the notional pivot point as a linearly
interpolated point between front and rear sensors, 0 corre-
sponding to the front sensor and 1 to the rear. Values less
than 0 or greater than 1 can be used if needed. Experi-
mentally, it is set to 0.5, corresponding roughly to the
centre of the user’s palm, given typical hand position.

Figure 6: Pivot/Angle coordinate system

Position updates (Figure 7) are driven by arrival of raw
mouse offsets. These are usually small values (< 10
micels) and are in the frames of reference of the sensors.
In practice there is some additional detail caused by the
fact that screen y coordinates number from top to bottom
of the screen, and measurements on the bottom sensor are
sign reversed. Omitting those details for clarity, the algo-
rithm for applying an update is as follows: where  is
physical_angle; mx, my, fx, fy, rx, and ry are the locations of
the mouse pivot point, the front sensor and the rear sen-
sor; s is the sensor separation; fΔx, fΔy, rΔx, and rΔy are the
sensor offsets.

1 A micel is defined as the physical movement required of the mouse to

produce a unit change in its measured coordinate.

Figure 7: Sensor Location Coordinate System showing
offsets for a position update on the front sensor.

Convert Pivot/Angle to Sensor Location
 fx = mx -  s cos 
 fy = my -  s sin 
 rx = mx + (1 – ) s cos 
 ry = my + (1 – ) s sin 

Update sensor locations by sensor offsets
 fx = fx + fΔx cos  + fΔy sin
 fy = fy – fΔx sin  + fΔy cos
 rx = rx + rΔx cos  + rΔy sin
 ry = ry + rΔx sin  + rΔy cos

Convert Sensor Location back to Pivot/Angle
 mx = (1 - ) fx +  rx
 my = (1 - ) fy +  ry
  = atan2(fx – rx, fy – ry)

This approach is robust against sensor offsets not being
consistent. Of course, it won’t give the correct result if
one sensor drops data, but some rotation will still be de-
tected. Rotation will occur at about half the expected rate,
and there will be a small amount of translation. The result
seems acceptable. There is progress towards the user’s
goal angle, so further movement is likely to reach the
goal. The erroneous translation is quite small, and is
probably interpreted as failing to rotate about the exact
pivot point. The mouse is a large device and the correct
pivot point is not intuitively obvious anyway. Most im-
portantly, with the given algorithm, subsequent movement
will give rotation consistent with the sensor separation.
There is no long term drift in rotation behavior, only the
kind of small irregularity in movement and rotation speed
with which users must already be familiar.

The way in which raw mouse input is delivered to the
update algorithm remains a potential a problem. Updates
from each sensor are independent, and usually occur in
interleaved messages. This might be expected to give a

y axis

sensor_
separation

x axis

(mouse_x, mouse_y)

physical_angle

lambda
* separation

y axis

x axis

(front_x, front_y)

(rear_x, rear_y)

front sensor Δy

front sensor Δx

flittering kind of effect to cursor update. We did experi-
ment a little with smoothing updates over time, but as
individual updates are usually small this turned out to be
unnecessary. It is likely that the screen update frequency
is low enough to provide this kind of filtering for free.

5. MOUSE ANGLE AMPLIFICATION
As pointed out by [6] there is a problem with using a
rounded rectangle shaped mouse. Small angular changes
can easily be accommodated by a user, but rotating the
mouse by more than about 30 degrees is very uncomfort-
able. The use of relative angles permits the user to lift the
mouse and straighten it, allowing further rotation. How-
ever, as with mouse translation, it is not convenient to be
required to do this very often. Mouse translation algo-
rithms often include speed variation systems to allow a
user to move large distances without requiring too much
desk space or having to repeatedly pick up and reposition
the mouse. Whilst such ideas probably have validity with
the orienting mouse, we opted instead to amplify angular
rotation by a fixed amount. In the experimental software
this is controlled by a constant ‘angle gearing’ which is
set to 4, allowing reasonably comfortable rotation of ±120
degrees (Note that in [7] a factor of 2 is used). There is a
need for much study here. In some applications, the idea
of relative angle is good. In others, having at least a
roughly absolute angle is preferable. In the Brick-Out
game we devised (see later), the user needs to keep the
mouse mostly pointing straight ahead, and occasionally
turn it to the left or right. In particular, it is useful to be
able to return to a (straight ahead) home position with
little effort. On the other hand, in our Street View™ ap-
plication and our 3D game application (see later), the user
turns to a particular angle, stays there for some time, and
may then shift to another angle. There is no fixed sense
of ‘home’ angle to which they regularly return, although a
given angle may serve as ‘home’ for a short time. The
best strategy here is to lift the mouse off the surface and
reset it to a temporary home if holding it at a particular
angle becomes uncomfortable. Other application varia-
tions to consider include the accuracy required for angle
position and the size of movements required. It is certain-
ly possible that some acceleration effect might be useful,
as might an automatic return to a home angle. Further
work with particular applications is needed.

6. EXPERIMENTAL APPLICATIONS
We have built four applications using the orienting
mouse. Previous work with similar devices has focused
on manipulation interfaces, particularly in modeling and
drawing. Our motivation was a little different. We began
by addressing a problem in 3D navigation. Consider the
interface typically provided in a first person immersive
3D game.

In such a game the user must move about in the play area.
Movements may be over a surface, thus in two dimen-

sions, or in a flying game may be in 3D. These games
typically use the two dimensions of standard mouse trans-
lation to control their view direction. Dragging left/right
yaws the player’s view. Dragging up/down allows them
to look up and down. Separate controls (usually W and S
keys on the keyboard) control movement forward or
backward in the current direction of view. The two di-
mensions of mouse translation thus control movement
direction in either 2 or 3 dimensional spaces. It comes at
a price however. Any action the user may wish to per-
form is generally applied to whatever is directly in front
of them. Guns fire in the direction of view. 3D games
usually offer their players a limited field of view (in the
range 45 to 100 degrees). Navigating an obstacle, for
example, involves turning away from the object, moving
forward, then turning back to see what progress has been
made. The process may be repeated several times until
satisfactory positioning is achieved. Standard games offer
one extension to movement in mitigation of the naviga-
tion problem – strafing controls. Typically the A and D
keys allow movement left and right in a direction perpen-
dicular to the direction of view. In a combat situation this
allows a player to keep directing fire at an opponent
whilst moving from side to side. Even in this situation
however, the direction of view still doubles as controlling
the direction of action.

Our hypothesis is that the orienting mouse allows inde-
pendent control of movement and direction of view. In
the case of a first person game, mouse translation can
control movement and orientation can control view. If
translation directly causes movement, there is a problem
in that the amount of movement is limited unless the user
is willing to pick the mouse up and reposition it. If mouse
translation instead controls speed of movement then un-
limited motion is possible, while looking around (and
shooting if that is required) in any independently chosen
direction.

Another situation in which direction of view and motion
may be in conflict is Google’s Street View™.As imple-
mented, Street View™ uses click and drag gestures to
determine direction of view, and icons on the street to
control movement. Moving along a street, looking for a
house or shop can involve a sequence of actions similar to
the game player trying to move behind an object. Turn to
look for movement icons, turn back to look for target, …
repeat (possibly with overshoot) until the required view-
ing point and orientation is achieved. This also seemed to
be a good application for the orienting mouse, allowing
independent movement and view.

The applications we have built partially test these ideas.
After an initial application in WPF (which simply allows
a user to move an arrow about on a plane and fire bullets
in their direction of view) established that we could
properly operate the orienting mouse hardware, we built
three more functional applications.

The first application is a first person 3D scene in which
the player can move and look/shoot independently as de-
scribed above. A target, the four layered object in the
centre of the screen shot (Figure 8) glides about, changing
direction at random, in a maze of solid items. The play-
er’s task is to shoot the target with slowly moving bullets.
It is useful for the player to keep the target in view and be
ready to fire if an opportunity arises, but also necessary to
move to find places with a good line of fire.

We found that the orienting mouse works reasonably well
in this environment. Our implementation gives direct
control of movement, so it is necessary to lift the mouse
off the ground from time to time to achieve extended
movement. It is also necessary to lift the mouse to relieve
uncomfortable orientation. An interesting further devel-
opment in this context would be to experiment with ve-
locity rather than position control, which would avoid the
excessive mouse movement.

Figure 8: First person shooter with Orienting Mouse.

The second application used the orienting mouse to con-
trol Google’s Street View (via the API they supply). In
this application (Figure 9), mouse angle directly drives
view orientation, whilst translation controls jumps be-
tween panorama settings. Performance is an issue – the
new control mechanism would be better suited to more
rapid update. Nevertheless the system achieves its prima-
ry objective. It is possible to navigate independently of
choosing view angle. This makes it possible usually to
maintain context more easily during movement. Further
work possible in this system might be to animate the view
angle during transitions between view points, in order to
further stabilize the area being viewed.

Figure 9: Google Street View™ under control of Orienting
Mouse.

The third application was a two dimensional game – a
variant of Brick-Out. In this game a user controls a pad-
dle at the bottom of the screen. A ball bounces off the
sides and top of the screen. The user must use the paddle
to prevent the ball going off the bottom of the screen. If
the ball hits one of the bricks at the top of the screen the
brick is removed. The goal of the game is to remove all
the bricks. This game has been implemented many times
and with many variations (obstacles, different kinds of
bricks, power-ups, etc). All implementations the authors
have played have a common problem; it is very difficult
to control the direction with which the ball bounces off
the bat. Usually the direction of bounce depends on the
point of impact with the bat, but there isn’t sufficient var-
iation possible to generate a good range of bounce angles.
Again and again the ball follows common paths around
the screen. There can even be bricks placed in such a way
that no bounce will ever reach them. Using the orienting
mouse to directly control the angle of the bat (permitting a
wide and finely controllable range of angles) seemed to
be an interesting variant of the game. Our variant (see
Figure 10) also allowed the user to move the bat around
the screen, rather than just across the bottom. Too much
freedom of movement would make the game too easy, so
we added the feature that the bat became invisible when
moved higher than one third of the height of the screen.
This produced an interesting game. From the player’s
perspective, the annoying behavior in which bounce pat-
terns have limited variation was eliminated, without trivi-
alizing game play.

Figure 10: Brick-Out play, modified to show bounce.

Orienting Brick-Out was informally tested with members
of the public.

7. INFORMAL USABILITY TEST
The Brick-Out application was put on display as part of
the Computer Science exhibit on a University Open Day
and visitors were encouraged to try playing. Some just
worked from instructions on the table. Others were en-
couraged by staff on the stand, who explained briefly
what to do. The software recorded mouse movement and
game outcome in game play sessions. Visitors on the day
were high school students and their parents, and probably
most of those who tried to play were students although no
explicit demographic data was recorded. The recordings
cover roughly 70 games. Some recordings are ambiguous
in that a visitor may have tried moving the mouse, but not
made a serious attempt to play. By observing playback of
visitor games with a duration over 10 seconds, we see that
80% of plays showed good control of mouse position and
orientation. The remaining 20% showed a variety of is-
sues. Some lost control because they moved the bat for-
ward to where it became invisible; some tried to move the
bat to hit the ball rather than let it bounce. These issues
are more a result of usability issues with the game, than
with the device. No more than 5% seemed to have any
serious issue with operating the orienting mouse. There
was no formal questionnaire, but staff talked briefly with
many of the players. Most found the device interesting
and enjoyed their experience. No-one expressed surprise
or uncertainty about the angle amplification. Whilst the
evidence is not definitive, our observations provide posi-
tive support for the usability of the orienting mouse, con-
sistent with observations reported by other studies of like
devices.

8. CONCLUSIONS
We have described the implementation of an orienting
mouse, one which provides conventional x-y position
information, but in addition, rotation about the vertical
axis. While this concept has been discovered to be not
new, our motivation, and applications, we believe are
better suited to the attributes of this mouse architecture.
Whereas in other reported trials of similar devices, appli-
cations and usability tests have focused on positioning
tasks which require precision coordination between posi-
tion and angle, our motivation, and our sample applica-
tions, have focused on movement and navigation – con-
trolling one aspect of movement with the x-y information,
and another with the rotation information. This does not
require precise coordination between the two aspects of
the mouse movement, and appears to avoid some of the
issues discovered with earlier studies [7]. On reflection, it
does seem obvious that rotating the mouse is a gesture
which will not necessarily occur around its predefined
pivot point, so is thus highly likely to also trigger some
translation, less than ideal for positioning tasks.
A further contribution of our work has been the algorithm
for determining the pivot/angle data, which avoids drift
and gross errors. We also utilized a higher angle gearing
than others, which works well with the continuous gesture
associated with movement and navigation control.

9. REFERENCES
[1] Rodrigo Almeida and Pierre Cubaud. 2006. Supporting 3D

window manipulation with a yawing mouse. In Proceed-
ings of the 4th Nordic conference on Human-computer in-
teraction: changing roles (NordiCHI '06), Anders Mørch,
Konrad Morgan, Tone Bratteteig, Gautam Ghosh, and Dag
Svanaes (Eds.). ACM, New York, NY, USA, 477-480.

[2] CPNMouse: Multiple Mice in Windows
 http://www.xmarks.com/site/cpnmouse.sourceforge.net

[3] Digital Trends. 2013: Razer Naga review.
 http://www.digitaltrends.com/computer-mice-

reviews/razer-naga-review/

[4] Englebart, Doug (1968): Demonstration (on-line).
 http://sloan.stanford.edu/MouseSite/1968Demo.html

[5] English, W.K.; Engelbart, Douglas C.; Berman, M.L. 1967.
Display-Selection Techniques for Text Manipulation. Hu-
man Factors in Electronics, IEEE Transactions on , HFE-
8, 1, 5-15.

[6] Daniel Fallman, Anneli Mikaelsson, and Björn Yttergren.
2007. The design of a computer mouse providing three de-
grees of freedom. In Proceedings of the 12th international
conference on Human-computer interaction: interaction
platforms and techniques (HCI'07), Julie A. Jacko (Ed.).
Springer-Verlag, Berlin, Heidelberg, 53-62.

[7] Hannagan, J. & Regenbrecht, H. 2008. TwistMouse for
Simultaneous Translation and Rotation. Technical Report.
HCI group. Information Science Department. University of
Otago, Dunedin, New Zealand.

[8] I. Scott MacKenzie, R. William Soukoreff, and Chris Pal.
1997. A two-ball mouse affords three degrees of freedom.
In CHI '97 Extended Abstracts on Human Factors in Com-
puting Systems (CHI EA '97). ACM, New York, NY, USA,
303-304.

[9] Macworld (2001): Logitech introduces Mouseman Dual
Optical.
http://www.macworld.com/article/1019382/logitech.html

[10] Vectronics. 2013. The evolution of the Apple mouse.
 http://vectronicsappleworld.com/macintosh/mouse.html

