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Abstract—From the point of view of mixed-mode scattering
parameters, Smm, a two-port device can be excited using different
driving conditions. Each condition leads to a particular set of input
reflection and input impedance coefficient definitions that should be
carefully applied depending on the type of excitation and symmetry
of the two-port device. Therefore, the aim of this paper is to explain
the general analytic procedure for the evaluation of such reflection and
impedance coefficients in terms of mixed-mode scattering parameters.
Moreover, the driving of a two-port device as a one-port device is
explained as a particular case of a two-port mixed-mode excitation
using a given set of mixed-mode loads. The theory is applied to
the evaluation of the quality factor, Q, of symmetrical and non-
symmetrical inductors.

1. INTRODUCTION

Currently, most of the RFICs are designed to work in differential
configuration due to noise immunity. In fact, the majority of the
receiver chipsets available in today’s market, as well as some of the
components that conform them, are fully differential [1, 2]. Obviously,
it implies that the figures of merit of these devices are better expressed
in terms of mixed-mode scattering parameters (Smm), which were
first introduced by Bockelman and Eisenstadt [3, 4]. In spite of their
widespread use in RFIC design, there is still some misunderstanding
about how the differential (common)-mode input impedance Zd (Zc)
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must be calculated in terms of Smm when a two-port is seen as
a one-port device. Thus, it is usually found that the differential
reflection coefficient Γd of a two-port device is assumed to be Sdd [5–
8]. Therefore, the differential input impedance is calculated using the
following bilineal impedance transformation

Zdd = 2Z0
1 + Sdd

1− Sdd
(1)

where 2Z0 is the differential surge impedance. Certainly, Zdd in (1)
coincides with the differential term of the mixed-mode Z-parameter
matrix of a two-port device; however, as it has been previously
mentioned in [9] and [10], a close look to (1) reveals that such
expression only matches with Zd (i.e., Zd = Zdd) for fully symmetrical
two-port devices. For non-symmetrical devices and taking into account
the definition of Sdd, (1) neglects any conversion to a reflected common-
mode power wave. Then, special care must be taken when using (1)
as an equivalent expression to Zd. For instance, the evaluation of the
quality factor Q using the next definition

Q =
Im {Zdd}
Re {Zdd} (2)

should be only applied to symmetrical topologies. For non-symmetrical
inductors, e.g., spiral inductors, (2) wrongly estimates Q, due to
the fact that the component boundary conditions are wrongly set,
thus the common-mode conversion is completely dismissed. A similar
misunderstanding can be pointed out when Zcc is directly related to
Zc; in this case, any conversion to differential-mode is not considered.

To avoid the former problem, [10] and [11] transform the
description of the two-port device from S-parameters to Z-parameters.
Then, a floating current or voltage source is applied between the
input ports of the device, instead of normalized power waves. These
boundary conditions lead to a different input impedance definition
which can be transformed back to S-parameters. Besides, an equivalent
solution is found in [12] and [13] by means of applying the same floating
signal sources to the two-port, but such boundary conditions are
straightly expressed in terms of S-parameters, instead of transforming
to Z-parameters. In both cases, the input impedance found shows
the non-symmetrical response of the device. However, up to the
author’s knowledge no procedure expressing Γd (Γc) or Zd (Zc) in terms
of Smm has been yet proposed. Even more, all previous cases must be
understood as particular cases of a general expression based on the
definitions of mixed-mode scattering parameters and loads.

Within this framework, the rest of this paper is devoted to
extend the theory of mixed-mode scattering parameters not only to
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symmetrical devices, but to non-symmetrical or actual devices. For
this reason, in Section 2, a general expression of Γd (Γc) will be
obtained which resembles the well-known expressions of Γin (Γout)
for a single-ended two-port device. Such definitions will allow to
obtain Zd (Zc) in terms of Smm. In Section 3, it is shown that
former particular cases of the driving of a two-port device are reduced
to the application of a short, open and matched mixed-mode load
conditions on the general expression of Γd (Γc). As a practical case
in Section 4, an adequate definition of Q will be obtained, by means
of Zd, that allows the direct comparison between symmetrical and
non-symmetrical inductors. Finally, the conclusions of this work are
presented in Section 5.

2. INPUT REFLECTION COEFFICIENT OF A
TWO-PORT DEVICE

When attempting to calculate Γd (Γc), it is useful to keep in mind
the definition of the input(output) reflection coefficient Γin (Γout) of
a two-port device. As it can be seen in Fig. 1, Γin is defined as the
quotient between the incident power wave a1 and the reflected power
wave b1 at the input port P1, when a load ZL has been connected to
the output port. Besides, Γout is the reflection coefficient towards the
output port P2, when a source impedance ZS has been connected to the
input port [14, 15]. Due to the fact that there is a linear transformation
between S and Smm, i.e., S = M−1SmmM [16], the two-port network in
Fig. 1 can be represented as a two-port device where the input port and
the output port have been substituted by a differential and common-
mode ports. At this point, Γd (Γc) can be correctly defined by analogy
to Γin (Γout). Consequently, Γd (Γc) is the input reflection coefficient
of a two-port device when exciting with a differential (common)-mode
power wave meanwhile the two-port device is loaded with a common
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Figure 1. Input reflection coefficient of a two-port device in standard
S-parameters.
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(differential)-mode load.

2.1. Differential-mode Input Reflection Coefficient, Γd

Figure 2 shows how a differential power wave ad is launched towards a
two port device meanwhile a common-mode impedance Zc

L is connected
to the common-mode port. Smm relates the incident and reflected
differential and common-mode power waves by(

bd

bc

)
=

(
Sdd Sdc

Scd Scc

)(
ad

ac

)
. (3)

In this case, the two-port scatters back two power waves bd and bc.
The common-mode reflected wave bc reaches the common-mode load
Zc

L, which reflects a common-mode wave ac. Thereby, it can be written
the following relation

ac = Γc
Lbc (4)

where Γc
L is the reflection coefficient associated with Zc

L. Replacing (4)
in (3) and after some algebra, Γd is expressed as follows

Γd =
Sdd − |S|Γc

L

1− SccΓc
L

. (5)

Notice that, whenever a two-port is completely symmetric and
balanced (i.e., S11 = S22 and S12 = S21, which lead to Sdc = Scd = 0
and |S| = SddScc), Γd is equal to Sdd irrespective of the connected load
Zc

L. In this case, as it has been previously mentioned, Zd matches Zdd.
It is also interesting to rewrite (4) as a function of the incident

power wave a1 and a2 at each port referred to the common ground.
From [3], ad(c) and bd(c) read as

ad(c) =
1√
2

(a1 ∓ a2)

bd(c) =
1√
2

(b1 ∓ b2)
(6)

ZL

acad

bd bc

SmmPd Pc
c

 
dΓ

Figure 2. Differential-mode reflection coefficient of a two-port device
in mixed-mode S-parameters.
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where the upper and lower signs hold for the differential and common-
mode, respectively. Substituting (6) in (4), the following relation is
obtained

a1 = −a2 +
√

2Γc
Lbc. (7)

Note that even though a differential power wave ad is launched through
the two-port device, a1 equals −a2 only in two cases: 1) Γc

L = 0, i.e.,
the common-mode load is a matched load; 2) bc = 0, i.e., the two-port
is purely balanced. For the remaining cases, a1 differs from −a2 due
to the fact that a common-mode power wave ac is scattered back by
the common-mode load.

Keeping in mind the existing linear transformation between S and
Smm parameters, notice the duality of (5) when it is compared with the
Γin (Γout) expression of the single-ended analysis of a two-port device

Γin =
S11 − |S|ΓL

1− S22ΓL

Γout =
S22 − |S|ΓS

1− S11ΓS
.

(8)

By means of this comparison, one realizes that, as in the single-ended
case, three standard loads can be defined: a matched load (Γc

L = 0),
an open-circuit (Γc

L = 1) and a short-circuit (Γc
L = −1). Notice that,

each of these cases results in a different boundary condition when
substituting Γc

L = 0, 1, −1 in (4) as it will be analyzed in Section 3.

2.2. Common-mode Input Reflection Coefficient, Γc

Whenever a common-mode power wave ac is launched towards a two-
port device, as it can be seen in Fig. 3, two power waves, bd and bc

are scattered back. Now, bd reaches the differential load, Zd
L, which

reflects a differential-mode normalized power wave ad. The relationship
established between ad and bd through Zd

L is

ad

bd

Smm
Pd Pc

a c

bc

ZL

d

 
cΓ

Figure 3. Common-mode reflection coefficient of a two-port device in
mixed-mode S-parameters.
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ad = Γd
Lbd (9)

wherein Γd
L is the reflection coefficient of the differential-mode load. A

dual expression of (5) can be written when substituting (9) in (3),

Γc =
Scc − |S|Γd

L

1− SddΓd
L

. (10)

Notice that, when the two-port is symmetric and balanced (i.e.,
Sdc = Scd = 0 and |S| = SddScc), Γc equals Scc irrespective of the
connected load. As it has been previously mentioned, only in this case
Zc matches Zcc.

By replacing (6) in (9), a1 relates to a2 as follows

a1 = a2 +
√

2Γd
Lbd. (11)

Therefore, even when a common-mode power wave ac is launched
through the two-port device, a1 equals a2 only in two cases: 1) Γd

L = 0,
i.e., the differential-mode load is a matched load; or 2) bd = 0, i.e., the
two port is ideally balanced. Otherwise, a1 differs from a2. This is due
to the fact that a differential-mode power wave ad is reflected back by
the differential-mode load.

Equation (10) represents the dual case of (5). Therefore, three
differential mixed-mode load conditions can be defined by means of
Γd

L = 0, 1, −1.

3. MIXED-MODE DRIVING CONDITIONS

Three driving conditions can be defined which lead to different
boundary conditions for a two-port device and different expressions
of Γd (Γc). In order to explore these driving conditions, it is very
illustrative to think about the theoretical realization of a true mixed-
mode VNA as the one in Fig. 4. Notice that, in contrast to the two-port
device in Fig. 3, the device represented in Fig. 4 is a physical realization
where the two input ports and the existing common-ground can be
associated to either a single-ended or a mixed-mode representation.
Actually, the physical realization of a pure-mode VNA (PMVNA)
is rather difficult and, even though some works have been conduced
toward its consecution [17, 18], current multi-port VNAs implement
Bockelman’s formulation to display Smm. In fact, a commercial
PMVNA is not yet available.

It is also important to notice that the DUT is normally connected
to the PMVNA by means of a pair of coupled transmission lines
and a ground reference which allows the propagation of differential
and common-mode power waves. However, as it has been previously
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Figure 4. Pure-mode vector network analyzer.

demonstrated in [3], if the even and odd-mode characteristic impedance
are chosen to be equal, such reference coupled lines can be considered
uncoupled transmission lines. Even more, as it is also mention, there
is not restriction for the length of the reference lines, thus zero length
transmission lines can be defined and (6) still holds on.

3.1. Matched Load Γd(c)
L =0

Whenever a power wave is launched from the Vs generator in Fig. 4, a
switchable 0◦/180◦ hybrid generates either a differential ad or common-
mode ac power waves. These incident waves can be measured by setting
accordingly the 0◦/180◦ input at the incident wave hybrid. When
the selected power wave reaches the DUT, the incident power wave is
scattered back, as well as an opposite mode wave is generated due to
the asymmetry of the two-port device. Both modes can be measured by
setting the switchable 0◦/180◦ reflected wave hybrid. It is important
to notice that whenever one mode is selected, the opposite mode is
connected to its surge impedance 2Z0 or Z0/2 through each hybrid,
thus non scattered wave from the loads is allowed. This assumption is
similar to connect Z0 at the opposite port with respect to the one that
is being measured when the measure of S11 or S22 is done by means
of a classical VNA. Assuming the condition that the incoming wave is
ad, and keeping in mind that Γc

L = 0, from (5) Γd reads as

Γd = Sdd. (12)

In this case, from (4) ac is equal to zero. Thus, a1 equals −a2. Only
when the reflected power wave is absorbed in the common-mode load,
the normalized power waves ingoing into the two-port device are equal
in magnitude and opposite sign, thus they are pure differential signals.
Besides, whenever it is assumed that a1 = −a2, this condition always
leads to Γd = Sdd, even though ac differs actually from zero in an actual
measurement setup. Then, it is not surprising that, when attempting
to calculate Γd by means of a 0◦/180◦ hybrid or an equivalent device
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which supposedly generates the boundary condition a1 = −a2, Γd is
misunderstood as Sdd and any common-mode conversion is directly
dismissed.

In order to calculate Zd, the bilineal transformation (1) is valid
and Zd is equal to Zdd.

Likewise, if ac is launched by the power generator Vs, and Γd
L = 0

is selected at the hybrids, from (10) Γc reads as

Γc = Scc. (13)

From (9) ad is equal to zero, thus a1 equals a2. Therefore, if the
boundary condition a1 = a2 is assumed, it directly leads to obtain that
Γc = Scc, although ad could actually differ from zero. Then, when Γc is
calculated by means of a device which supposedly generates a1 = a2,
Γc is misunderstood as Scc and any differential-mode conversion is
dismissed. In this case, Zc can be calculated by means of the bilineal
transformation

Zc =
Z0

2
1 + Scc

1− Scc
(14)

where Z0/2 is the surge impedance for the common-mode.
Although the normal operation of a PMVNA is the one previously

described, the ports Σ and ∆ at the hybrids, where the differential or
common-mode load are connected, can be left open or shorted. In these
cases, a scattered wave is allowed and Γd(c)

L equals 1 or −1 respectively.

3.2. Γd when Γc
L=1

Replacing Γc
L = 1 in (5), Γd results as follows

Γd =
Sdd − |S|
1− Scc

. (15)

As it has been previously mention, if the device is symmetric (i.e.,
Scd = Sdc = 0 and |S| = SddScc), Γd equals Sdd. It is also interesting
to notice that if the device is also floating, as the balanced antenna
discussed in [10, 19] (i.e., Scc = 1 and |S| = Sdd), Γd calculated by
means of (15) results in an indetermination. This result was previously
mentioned in [20], but now by using (5) the indetermination is naturally
solved and Γd results in Sdd.

Once Γd has been obtained, Zd can be easily calculated by means
of the bilineal transformation

Zd = 2Z0
1 + Γd

1− Γd
. (16)

However, it is also very illustrative to obtain Zd by using circuit
theory, i.e., writing the voltage and current signals at each port in
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terms of mixed-mode S-parameters. Proceeding in this way, both Smm

and circuit theory are shown to be mathematically equivalent and,
additionally, the goodness of the bilineal impedance transformation is
highlighted.

Thus, when Γc
L = 1, (7) can be rewritten as

a1 = −a2 +
√

2bc. (17)

As it has been previously mentioned, a1 differs from a2 except when
the two port is purely symmetric. Otherwise, replacing bc by (6) and
by means of the following expressions [3]

Vi =
√

Z0 (ai + bi)

Ii =
1√
Z0

(ai − bi) ,
(18)

(17) can be written as I1 = −I2. It means that the normalized power
waves can be replaced by a floating current source as it is shown in
Fig. 5 and the result is equivalent to (15). Consistently, the condition
I1 = −I2 implies that there is no common-mode current flowing into
the device; thus, from the point of view of the common-mode, it can
be seen as an open load, i.e., Γc

L = 1.
In order to calculate Zd, both currents can be expressed in terms

of S-parameters as follows

I1 =
1√
Z0

(a1 − b1) =
1√
Z0

[(1− S11) a1 − S12a2]

I2 =
1√
Z0

(a2 − b2) =
1√
Z0

[−S21a1 + (1− S22) a2] .
(19)

Thus, a2 can be written in terms of a1:

a2 = −a1 (−1 + S11 + S21)
−1 + S22 + S12

= −a1
Scc + Scd − 1
Scc − Scd − 1

. (20)

Note that for a symmetric and reciprocal two-port device (i.e., Sdc =
Scd = 0), (20) results in a2 = −a1. Otherwise, the ingoing waves
are different at each port, and such difference depends on Scc and Scd

which convey a common-mode conversion. Now, by means of (20), the
voltage and currents at each node of the DUT can be rewritten as a
function of a1 as

Vi =
√

Z0 a1

{
±Sdd − Scc + 1− |S|

1− Scc + Scd
+

2Scd

1− Scc + Scd

}
(21)

I1 = −I2 =
1√
Z0

a1
Sdd − Scc − 2Scd + 1− |S|

1− Scc + Scd
(22)
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where in (21) the upper and lower signs hold for port 1 and port 2,
respectively. As a matter of fact, only when the two-port device is
symmetric, (21) results in V1 = −V2.

From (21) and (22), Vd = V1 − V2 and Id = I1 = −I2 can be
calculated and, since Zd is Vd/Id, it reads as follows

Zd = Z0

(
1 + Sdd + Sdc

1− Sdd − Scd
+

(1 + Sdd − Sdc) (1− Scc − Scd)
(1− Sdd − Scd) (1− Scc + Scd)

)
. (23)

Likewise Γd, in some cases, (23) can lead to an indetermination if it is
directly developed. In order to avoid such indetermination, Zd can be
naturally split into two cases: 1) the two-port is ideally symmetric,
which means that the second term in (23) can be simplified since
Scd = Sdc = 0; 2) otherwise (even when designing the device as a
differential component). Therefore, Zd is expressed as follows

Zd =





2Z0
1 + Sdd

1− Sdd
if Sdc = Scd = 0

2Z0
Sdd − Scc + 1− |S|
1 + |S| − Sdd − Scc

Otherwise
. (24)

As it was expected, Zd matches Zdd only when the two-port is
symmetric. It can be seen that, the same result is obtained by applying
the bilineal transformation (16) to (15). Therefore, the former theory
is consistent with circuit theory.

3.3. Γc when Γd
L=1

Replacing Γd
L = 1 in (10), Γc results as follows

Γc =
Scc − |S|
1− Sdd

. (25)

Also in this case, when the device is purely balanced and floating (i.e.,
Sdd = 1 and |S| = Scc), (25) results in an indetermination. This
indetermination is naturally solved by using (10) and Γc results in Scc.
If the device is simply symmetric and non-mode conversion is allowed,
(i.e., Sdc = Scd = 0), Γc results in Scc.

Moreover, when Γd
L = 1 and (18) are inserted in (11), it is obtained

that I1 = I2. Then, the normalized power waves can be replaced by
two equivalent current sources connected at both ports as it is shown
in Fig. 5. This equivalent driving condition is also consistent if one
realizes that no differential current is allowed, thus from the point of
view of the differential-mode, this boundary condition is seen as an
open circuit.
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In order to calculate Zc, (25) is substituted in the following bilineal
transformation

Zc =
Z0

2
1 + Γc

1− Γc
. (26)

Therefore the common-mode impedance Zc when Γd
L = 1 results

Zc =





Z0

2
1 + Scc

1− Scc
if Sdc = Scd = 0

Z0

2
Sdd − Scc − 1 + |S|
Sdd + Scc − 1− |S| Otherwise

. (27)

As expected, only in the case when the two-port is symmetric Zc

matches with Zcc.

3.4. Γd when Γc
L = −1

When Γc
L = −1, Γd is given by

Γd =
Sdd + |S|
1 + Scc

. (28)

Again, if the device is purely symmetric (i.e., Sdc = Scd = 0 and
|S| = SddScc), Γd results in Sdd as expected. It is also interesting to
write (7) when Γc

L = −1,

a1 = −a2 −
√

2bc. (29)

As it has been previously mentioned, a1 differs from −a2 except when
the two port is purely symmetric. Otherwise, replacing bc by (6) and
by means of (18), V1 = −V2. Again, the power waves sources can
be replaced by single-ended voltage sources as it is shown in Fig. 5.
Notice from Fig. 5 that the common-mode node between the differential
voltage sources is shorted, thus Γc

L = −1.
Thus, Zd can be calculated replacing (28) in the impedance

P2Sstd

Z0Z0

Vd

2
P1

Vd

2
P1 P2Sstd

in 
Vd Vd

P1 P2Sstd

in 
Id

I1=   I2 V1=   V2
a1=   a2

Equivalent

driving

method

S
cc

1

SS
dd

SS
dd

S
cc

1

+

+
S

dd

 
c

L

 
d

1  

b.c.

Expression

Γ

Γ

Γ Γ

_

_  _  _  

1 0
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Γ
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Figure 5. Two-port mixed-mode driving topologies.

transformation (16),

Zd =





2Z0
1 + Sdd

1− Sdd
if Sdc = Scd = 0

2Z0
Sdd + Scc + 1 + |S|
1− |S| − Sdd + Scc

Otherwise
. (30)

3.5. Γc when Γd
L= −1

Replacing Γd
L = −1 in (10), Γc reads as

Γc =
Scc + |S|
1 + Sdd

. (31)

Likewise in the previous cases, when the device is symmetric (i.e.,
Sdc = Sdc = 0 and |S| = SddScc), Γc results in Scc. Once more,
rewriting (11) when Γd

L = −1,

a1 = a2 −
√

2bd. (32)

As it has been previously mentioned, a1 differs from a2 except when the
two port is purely symmetric. Otherwise, replacing bd by (6) and by
means of (18), V1 = V2. In this case, the power waves can be replaced
by a voltage source connected to both ports as in Fig. 5. Therefore,
any differential voltage source has been shorted; it implies that from
the point of view of the differential-mode, Γd

L equals −1.
A new expression for Zc can be calculated replacing (31) in (26),

Zc =





Z0

2
1 + Scc

1− Scc
if Sdc = Scd = 0

Z0

2
Sdd + Scc + 1 + |S|
1− |S|+ Sdd − Scc

Otherwise
. (33)

At this point, a set of different expressions for Γd (Γc) and
Zd (Zc) have been obtained through driving a two-port device with
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different standard mixed-mode loads. As it has been previously shown,
these expressions can be applied to non-symmetrical two-port devices.
However, it is important to notice that each of these expressions are
only valid for a specific boundary conditions which are summarized in
Fig. 5.

4. PRACTICAL CASE

An integrated inductor can be considered as a two-port device similar
to the one on Fig. 2. Thus, the former theory can be applied to the
evaluation of the quality factor, Q, of inductors. Q is defined as a
ratio of the stored reactive energy over the energy loss evaluated in one
cycle. However, this definition is quite subtle because the stored energy
is actually dependent on the shape of electromagnetic fields around
the component. These fields are related to the geometry, including
layout elements nearby; but, most important, to the way in which the
inductor is excited in [21–23]. Noticing the benefit of exciting inductors
differentially, Rabjohn introduced the use of symmetrical shapes in
the implementation of fully differential RFICs substituting traditional
spiral ones [24, 25]. Thus, for any inductor, Q is given by

Q =
Im {Zd}
Re {Zd} , (34)

where, as demonstrated previously, for an ideal symmetric inductor
Zd results in Zdd. However, even though a symmetrical shape is used
in their implementation, symmetry is not always guaranteed. Indeed,
cross-bridges sections or layout asymmetries at the surrounding area
of an inductor can break the symmetry of its own electromagnetic
fields. Furthermore, there is still many situations in which spiral
inductors can be preferred over symmetrical ones, e.g., when one of the
terminal of the inductor is grounded, or when area reduction prevails
over symmetry [26, 27]. For these cases, the choice between symmetric
and spiral topologies is currently set through the comparison of the Q
factor when driving the device differentially. Thereby, it is important
to find the correct definition of Q for both topologies, i.e., it must be
avoided that any inductor shape benefits itself from the definition of
the Q factor. To proceed with, the previously developed theory and
concepts provide a correct framework for such comparison.

Figure 6 shows two inductors using different topologies, symmetric
and spiral, that have been synthesized using layout optimization
techniques [28] for a given application in the frequency range of
2.45GHz using a 0.35µm CMOS technology. Their geometrical
characteristics are summarized in Table 1. Notice that both geometries
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Figure 6. Symmetric and spiral optimazed inductors layout.

Table 1. Geometrical characteristics of both inductors.

Number of turns 5

Inner diameter [µm] 54

Spacing between turns [µm] 2.5

Width of the first turn (inner turn) [µm] 7.8

Width of the second turn [µm] 8.6

Width of the third turn [µm] 11.1

Width of the fourth turn [µm] 16.8

Width of the fifth turn (outer turn) [µm] 30

are quite similar, thus a similar Q factor behavior should be expected.
Both layouts have been simulated with MoMemtum, a planar solver
from Agilent Technologies, obtaining the two-port single-ended S-
parameter matrix over a frequency range beyond the Self Resonance
Frequency (SRF). The obtained S-parameters are later mathematically
converted to mixed-mode S-parameters matrix description [6].

When exciting symmetric inductors differentially, non reflected
common-mode power wave exist which means that the response of the
component is independent of the common-mode load Γc

L, as it has been
previously demonstrated. Then, Zd equals Zdd and (2) and (34) are
equivalent. Fig. 7 shows a plot of the Q factor value for the previous
given symmetrical inductor when loaded with Γc

L = 0, 1 and -1. As
expected, all the cases give the same Q factor behavior.

On the contrary, the differential excitation of a spiral inductor
allows the existence of a common-mode reflected power wave.
Therefore, the response of the device is dependent on the value of the
common-mode load Γc

L. Using the same common-mode load conditions
as in the previous symmetrical case (i.e., open, short and match), Fig. 8
shows the behavior of Q for the non-symmetric inductor. It is worth



Progress In Electromagnetics Research, Vol. 130, 2012 425

Qd_ope n

Qd_s hor t

Qdd_5 0

2 4 6 8 10 12 14 16 180  0

-4

-2

0

2

4

6

8

-6

10

Q

Qd_ope n

Qd_s hor t

Qdd_5 0

Q when  Z  ope nL

c

Q when  Z  shor tL

c

Q when  Z  ma tchL

c

Qd_ope n

Qd_s hor t

Qdd_5 0

2 4 6 10 12 14 16 18

-4

-2

0

2

4

6

8

-6

10
Qd_ope n

Qd_s hor t

Qdd_5 0

Q when  Z L
c

Q when  Z L
c

Q when  Z  L
c

open

short

match

Frequency (GHz)
2

Figure 7. Quality factor vs. frequency for a symmetric inductor
using (34) when Zc

L = Z0/2 (match), open, short.
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Figure 8. Quality factor vs. frequency for an asymmetric inductor
using (34) when Zc

L = Z0/2 (match), open, short.

noting that differences larger than a 10% can be obtained depending
on the boundary condition, i.e., the value of Q can be boosted just
because of the definition of Q itself. Therefore, once an inductor is
chosen, the main issue is to identify the correct boundary conditions
which lead to the adequate value of Q.
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5. CONCLUSIONS

The theory of mixed-mode scattering parameters has been extended
not only to symmetrical devices, but to non-symmetrical or actual
devices, finding a general expression for Γd (Γc) that resembles the well-
known expressions of Γin (Γout) for a single-ended two-port device. It
has also been shown that the former particular cases of the driving
of a two-port device are reduced to the application of a short, open
and matched mixed-mode load conditions on the general expression
of Γd (Γc). Moreover, such definitions allow to obtain Zd (Zc) in
terms of Smm. An analytic connection between scattering-parameters
description in both versions, through the use of S-parameters and Smm,
and lumped elements description has naturally been used toward the
consecution of these expressions. As a practical case, the Q value
for symmetrical and non-symmetrical inductors has been obtained
using the definition of Zd, illustrating the differences when considering
different boundary conditions.
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