17 research outputs found

    Remotely Sensed Image Inpainting With MNLTV Model

    Get PDF
    Image processing is an significant component of modern technologies as it provides the perfection in pictorial information for human interpretation and processing of image data for storage, transmission and representation. In remotely sensed images because of poor atmospheric condition and sensor malfunction (Instrument error such as SLC-OFF failure on may13,2003 the scan line corrector (SLC)of LANDSAT7 Enhanced Thematic Mapper Plus(ETM+)sensor failed permanently causing around 20% of pixel not scanned which become called dead pixels)there is usually great deal of missing information which reduce utilization rate. Remotely sensed images often suffer from strip noise ,random dead pixels. The techniques to recover good image from contaminated one are called image destriping for strips and image inpainting for dead pixels, therefore reconstruction of filling dead pixels and removing uninteresting object is an important issue in remotely sensed images. In past decades ,missing information reconstruction of remote sensing data has become an active research field and large number of algorithms have been developed. This paper presented to solve image destriping , image inpainting and removal of uninteresting object based on multichannel nonlocal total variation. In this algorithm we consider nonlocal method which has superior performance in dealing with textured images.To optimize variation model a Bregmanized-operator-splitting algorithm is employed. Furthermore proposed inpainting algorithm is used for text removal, scratch removal ,pepper and salt noise removal ,object removal etc. The proposed inpainting algorithm was tested on simulated data

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various ℓ1,p\ell_{1,p} matrix norms with p≥1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods

    Non-local tensor completion for multitemporal remotely sensed images inpainting

    Get PDF
    Remotely sensed images may contain some missing areas because of poor weather conditions and sensor failure. Information of those areas may play an important role in the interpretation of multitemporal remotely sensed data. The paper aims at reconstructing the missing information by a non-local low-rank tensor completion method (NL-LRTC). First, nonlocal correlations in the spatial domain are taken into account by searching and grouping similar image patches in a large search window. Then low-rankness of the identified 4-order tensor groups is promoted to consider their correlations in spatial, spectral, and temporal domains, while reconstructing the underlying patterns. Experimental results on simulated and real data demonstrate that the proposed method is effective both qualitatively and quantitatively. In addition, the proposed method is computationally efficient compared to other patch based methods such as the recent proposed PM-MTGSR method

    A Coordinate Descent Method for Total Variation Minimization

    Get PDF
    Total variation (TV) is a well-known image model with extensive applications in various images and vision tasks, for example, denoising, deblurring, superresolution, inpainting, and compressed sensing. In this paper, we systematically study the coordinate descent (CoD) method for solving general total variation (TV) minimization problems. Based on multidirectional gradients representation, the proposed CoD method provides a unified solution for both anisotropic and isotropic TV-based denoising (CoDenoise). With sequential sweeping and small random perturbations, CoDenoise is efficient in denoising and empirically converges to optimal solution. Moreover, CoDenoise also delivers new perspective on understanding recursive weighted median filtering. By incorporating with the Augmented Lagrangian Method (ALM), CoD was further extended to TV-based image deblurring (ALMCD). The results on denoising and deblurring validate the efficiency and effectiveness of the CoD-based methods

    Structure tensor total variation

    Get PDF
    This is the final version of the article. Available from Society for Industrial and Applied Mathematics via the DOI in this record.We introduce a novel generic energy functional that we employ to solve inverse imaging problems within a variational framework. The proposed regularization family, termed as structure tensor total variation (STV), penalizes the eigenvalues of the structure tensor and is suitable for both grayscale and vector-valued images. It generalizes several existing variational penalties, including the total variation seminorm and vectorial extensions of it. Meanwhile, thanks to the structure tensor’s ability to capture first-order information around a local neighborhood, the STV functionals can provide more robust measures of image variation. Further, we prove that the STV regularizers are convex while they also satisfy several invariance properties w.r.t. image transformations. These properties qualify them as ideal candidates for imaging applications. In addition, for the discrete version of the STV functionals we derive an equivalent definition that is based on the patch-based Jacobian operator, a novel linear operator which extends the Jacobian matrix. This alternative definition allow us to derive a dual problem formulation. The duality of the problem paves the way for employing robust tools from convex optimization and enables us to design an efficient and parallelizable optimization algorithm. Finally, we present extensive experiments on various inverse imaging problems, where we compare our regularizers with other competing regularization approaches. Our results are shown to be systematically superior, both quantitatively and visually

    Mathematical Approaches for Image Enhancement Problems

    Get PDF
    This thesis develops novel techniques that can solve some image enhancement problems using theoretically and technically proven and very useful mathematical tools to image processing such as wavelet transforms, partial differential equations, and variational models. Three subtopics are mainly covered. First, color image denoising framework is introduced to achieve high quality denoising results by considering correlations between color components while existing denoising approaches can be plugged in flexibly. Second, a new and efficient framework for image contrast and color enhancement in the compressed wavelet domain is proposed. The proposed approach is capable of enhancing both global and local contrast and brightness as well as preserving color consistency. The framework does not require inverse transform for image enhancement since linear scale factors are directly applied to both scaling and wavelet coefficients in the compressed domain, which results in high computational efficiency. Also contaminated noise in the image can be efficiently reduced by introducing wavelet shrinkage terms adaptively in different scales. The proposed method is able to enhance a wavelet-coded image computationally efficiently with high image quality and less noise or other artifact. The experimental results show that the proposed method produces encouraging results both visually and numerically compared to some existing approaches. Finally, image inpainting problem is discussed. Literature review, psychological analysis, and challenges on image inpainting problem and related topics are described. An inpainting algorithm using energy minimization and texture mapping is proposed. Mumford-Shah energy minimization model detects and preserves edges in the inpainting domain by detecting both the main structure and the detailed edges. This approach utilizes faster hierarchical level set method and guarantees convergence independent of initial conditions. The estimated segmentation results in the inpainting domain are stored in segmentation map, which is referred by a texture mapping algorithm for filling textured regions. We also propose an inpainting algorithm using wavelet transform that can expect better global structure estimation of the unknown region in addition to shape and texture properties since wavelet transforms have been used for various image analysis problems due to its nice multi-resolution properties and decoupling characteristics

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included
    corecore