8,861 research outputs found

    Virtual Representations for Cybertherapy: A Relaxation Experience for Dementia Patients

    Get PDF
    The development of serious games has enabled new challenges for the healthcare sector in psychological, cognitive and motor rehabilitation. Thanks to Virtual Reality, stimulating and interactive experiences can be reproduced in a safe and controlled environment. This chapter illustrates the experimentation conducted in the hospital setting for the non-pharmacological treatment of cognitive disorders associated with Dementia. The therapy aims to relax patients of the agitation cluster through a gaming approach through the immersion in multisensory and natural settings in which sound and visual stimuli are provided. The study is supported by a technological architecture, including the Virtual Wall system for stereoscopic wall projection and rigid body tracking

    The VESPA Project: Virtual Reality Interventions for Neurocognitive and Developmental Disorders

    Get PDF
    VESPA is a financed project supported by the Sicilian Regional Research and Development funds, and it is structured by the development, research and validation of Virtual Reality (VR) based application for the diagnosis and treatment of neurocognitive conditions. In particular, this article presents its characteristics, referred to as the first (2013-2015) and second (2021-ongoing) generations of VESPA, with particular reference to literature regarding the VR technology application and development, the VR treatment of neurocognitive conditions and prior versions of this intervention. Through a comprehensive review of the research conducted over the last 5 years, evidence has emerged supporting VESPA’s aim and scopes, highlighting how the application of VR can be considered to add value to typical rehabilitation/therapeutic paths. VESPA project generations are then presented in detail, including specific session/task battery characteristics, 2.5D, 3D and 5D typologies, system usability and architecture and pathological domain-based dynamics and features. The discussion about VESPA will highlight the current advantages along with limitations and future directions

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    Robotic Autism Rehabilitation by Wearable Brain-Computer Interface and Augmented Reality

    Get PDF
    An instrument based on the integration of Brain Computer Interface (BCI) and Augmented Reality (AR) is proposed for robotic autism rehabilitation. Flickering stimuli at fixed frequencies appear on the display of Augmented Reality (AR) glasses. When the user focuses on one of the stimuli a Steady State Visual Evoked Potentials (SSVEP) occurs on his occipital region. A single-channel electroencephalographic Brain Computer Interface detects the elicited SSVEP and sends the corresponding commands to a mobile robot. The device's high wearability (single channel and dry electrodes), and the trainingless usability are fundamental for the acceptance by Autism Spectrum Disorder (ASD) children. Effectively controlling the movements of a robot through a new channel enhances rehabilitation engagement and effectiveness. A case study at an accredited rehabilitation center on 10 healthy adult subjects highlighted an average accuracy higher than 83%. Preliminary further tests at the Department of Translational Medical Sciences of University of Naples Federico II on 3 ASD patients between 8 and 10 years old provided positive feedback on device acceptance and attentional performance

    Efficacy of Multisensory Technology in Post-Stroke Cognitive Rehabilitation: A Systematic Review

    Get PDF
    Post-stroke, in addition to sensorimotor signs and symptoms, could lead to cognitive deficits. Theories of embodiment stress the role of sensorimotor system and multisensory integration in sustaining high-order cognitive domains. Despite conventional post-stroke cognitive rehabilitation being effective, innovative technologies could overcome some limitations of standard interventions and exploit bodily information during cognitive rehabilitation. This systematic review aims to investigate whether ‘multisensory technologies’ compared to usual care treatment can be a viable alternative for cognitive rehabilitation. By applying PRISMA guidelines, we extracted data and assessed the bias of 10 studies that met the required criteria. We found that multisensory technologies were at least comparable to standard treatment but particularly effective for attention, spatial cognition, global cognition, and memory. Multisensory technologies consisted principally of virtual reality alone or combined with a motion tracking system. Multisensory technologies without motion tracking were more effective than standard procedures, whereas those with motion tracking showed balanced results for the two treatments. Limitations of the included studies regarded the population (e.g., no study on acute stroke), assessment (e.g., lack of multimodal/multisensory pre-post evaluation), and methodology (e.g., sample size, blinding bias). Recent advancements in technological development and metaverse open new opportunities to design embodied rehabilitative programs
    • …
    corecore