168,143 research outputs found

    Strategically important and vulnerable subjects: the HEFCE Advisory Groupā€™s 2010-11 report

    Get PDF

    The supply of and demand for high-level STEM skills : briefing paper

    Get PDF

    Multinational perspectives on information technology from academia and industry

    Get PDF
    As the term \u27information technology\u27 has many meanings for various stakeholders and continues to evolve, this work presents a comprehensive approach for developing curriculum guidelines for rigorous, high quality, bachelor\u27s degree programs in information technology (IT) to prepare successful graduates for a future global technological society. The aim is to address three research questions in the context of IT concerning (1) the educational frameworks relevant for academics and students of IT, (2) the pathways into IT programs, and (3) graduates\u27 preparation for meeting future technologies. The analysis of current trends comes from survey data of IT faculty members and professional IT industry leaders. With these analyses, the IT Model Curricula of CC2005, IT2008, IT2017, extensive literature review, and the multinational insights of the authors into the status of IT, this paper presents a comprehensive overview and discussion of future directions of global IT education toward 2025

    Greater Philadelphia's Knowledge Industry: Leveraging the Region's Colleges and Universities in the New Economy

    Get PDF
    This report documents Greater Philadelphia's current standing as a knowledge region, compares its performance over a series of key indicators to the largest American knowledge regions, identifies activities being undertaken around the country, and offers a set of strategic recommendations for better linking the region's knowledge assets to economic development

    The returns to higher education qualifications

    Get PDF

    Virginia Earth Science Collaborative: Developing Highly Qualified Earth Science Teachers

    Get PDF
    A collaborative of seven institutes of higher education and two non-proļ¬t organizations developed and implemented ļ¬ve earth science courses totaling eighteen credits that enabled secondary teachers to acquire an add-on earth science endorsement: Geology 1: Physical Geology (4), Geology II: Geology of Virginia (4), Oceanography (4), Astronomy (Space Science for Teachers) (3), and Meteorology (3). These courses were collaboratively developed and included rigorous academic content, research-based instructional strategies, and intense ļ¬eld experiences. The thirty-three sections offered statewide served 499 participants. Three courses were offered to strengthen the skills of earth science teachers: Teaching Eath Science Topics to Special Education Students (3), Integrating New Technologies in the Earth Sciences (3). and GeoVirginia: Creating Virtual Field Trips (non-college credit). In these six sections, seventy-four people participated. Outcomes included an increased pool of endorsed earth science teachers and teachers with coursework in the earth sciences, a website with virtual ļ¬eld trips, and a statewide network. Partners included the College of William & Mary and its Virginia Institute of Marine Sciences, George Mason University, James Madison University, Longwood University, the MathScience Innovation Center (formerly the Mathematics & Science Center), Radford University. Science Museum of Virginia, University of Virginia Southwest Center, Virginia Commonwealth University, and eighty-three school divisions

    The Boston University Photonics Center annual report 2015-2016

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2015-2016 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that this year the Centerā€™s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.9M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and cooperated in supporting National Science Foundation sponsored Sites for Research Experiences for Undergraduates and for Research Experiences for Teachers. As a community, we emphasized the theme of ā€œFrontiers in Plasmonics as Enabling Science in Photonics and Beyondā€ at our annual symposium, hosted by Bjoern Reinhard. We continued to support the National Photonics Initiative, and contributed as a cooperating site in the American Institute for Manufacturing Integrated Photonics (AIM Photonics) which began this year as a new photonics-themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Development of Less Toxic Treatment Strategies for Metastatic and Drug Resistant Breast Cancer Using Noninvasive Optical Monitoring led by Professor Darren Roblyer, continued support of our NIH-sponsored, Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and an exciting confluence of new grant awards in the area of Neurophotonics led by Professors Christopher Gabel, Timothy Gardner, Xue Han, Jerome Mertz, Siddharth Ramachandran, Jason Ritt, and John White. Neurophotonics is fast becoming a leading area of strength of the Photonics Center. The Industry/University Collaborative Research Center, which has become the centerpiece of our translational biophotonics program, continues to focus onadvancing the health care and medical device industries, and has entered its sixth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base

    The Case for Improving U.S. Computer Science Education

    Get PDF
    Despite the growing use of computers and software in every facet of our economy, not until recently has computer science education begun to gain traction in American school systems. The current focus on improving science, technology, engineering, and mathematics (STEM) education in the U.S. school system has disregarded differences within STEM fields. Indeed, the most important STEM field for a modern economy is not only one that is not represented by its own initial in "STEM" but also the field with the fewest number of high school students taking its classes and by far has the most room for improvementā€”computer science
    • ā€¦
    corecore