3,480 research outputs found

    Inner Approximations for Polynomial Matrix Inequalities and Robust Stability Regions

    Full text link

    Simple Approximations of Semialgebraic Sets and their Applications to Control

    Full text link
    Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the solution set of linear matrix inequalities or the Schur/Hurwitz stability domains. These sets often have very complicated shapes (non-convex, and even non-connected), which renders very difficult their manipulation. It is therefore of considerable importance to find simple-enough approximations of these sets, able to capture their main characteristics while maintaining a low level of complexity. For these reasons, in the past years several convex approximations, based for instance on hyperrect-angles, polytopes, or ellipsoids have been proposed. In this work, we move a step further, and propose possibly non-convex approximations , based on a small volume polynomial superlevel set of a single positive polynomial of given degree. We show how these sets can be easily approximated by minimizing the L1 norm of the polynomial over the semialgebraic set, subject to positivity constraints. Intuitively, this corresponds to the trace minimization heuristic commonly encounter in minimum volume ellipsoid problems. From a computational viewpoint, we design a hierarchy of linear matrix inequality problems to generate these approximations, and we provide theoretically rigorous convergence results, in the sense that the hierarchy of outer approximations converges in volume (or, equivalently, almost everywhere and almost uniformly) to the original set. Two main applications of the proposed approach are considered. The first one aims at reconstruction/approximation of sets from a finite number of samples. In the second one, we show how the concept of polynomial superlevel set can be used to generate samples uniformly distributed on a given semialgebraic set. The efficiency of the proposed approach is demonstrated by different numerical examples

    A hierarchy of LMI inner approximations of the set of stable polynomials

    Full text link
    Exploiting spectral properties of symmetric banded Toeplitz matrices, we describe simple sufficient conditions for positivity of a trigonometric polynomial formulated as linear matrix inequalities (LMI) in the coefficients. As an application of these results, we derive a hierarchy of convex LMI inner approximations (affine sections of the cone of positive definite matrices of size mm) of the nonconvex set of Schur stable polynomials of given degree n<mn < m. It is shown that when mm tends to infinity the hierarchy converges to a lifted LMI approximation (projection of an LMI set defined in a lifted space of dimension quadratic in nn) already studied in the technical literature

    Convex inner approximations of nonconvex semialgebraic sets applied to fixed-order controller design

    Full text link
    We describe an elementary algorithm to build convex inner approximations of nonconvex sets. Both input and output sets are basic semialgebraic sets given as lists of defining multivariate polynomials. Even though no optimality guarantees can be given (e.g. in terms of volume maximization for bounded sets), the algorithm is designed to preserve convex boundaries as much as possible, while removing regions with concave boundaries. In particular, the algorithm leaves invariant a given convex set. The algorithm is based on Gloptipoly 3, a public-domain Matlab package solving nonconvex polynomial optimization problems with the help of convex semidefinite programming (optimization over linear matrix inequalities, or LMIs). We illustrate how the algorithm can be used to design fixed-order controllers for linear systems, following a polynomial approach

    Some Applications of Polynomial Optimization in Operations Research and Real-Time Decision Making

    Full text link
    We demonstrate applications of algebraic techniques that optimize and certify polynomial inequalities to problems of interest in the operations research and transportation engineering communities. Three problems are considered: (i) wireless coverage of targeted geographical regions with guaranteed signal quality and minimum transmission power, (ii) computing real-time certificates of collision avoidance for a simple model of an unmanned vehicle (UV) navigating through a cluttered environment, and (iii) designing a nonlinear hovering controller for a quadrotor UV, which has recently been used for load transportation. On our smaller-scale applications, we apply the sum of squares (SOS) relaxation and solve the underlying problems with semidefinite programming. On the larger-scale or real-time applications, we use our recently introduced "SDSOS Optimization" techniques which result in second order cone programs. To the best of our knowledge, this is the first study of real-time applications of sum of squares techniques in optimization and control. No knowledge in dynamics and control is assumed from the reader

    Convex computation of the region of attraction of polynomial control systems

    Get PDF
    We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description
    • 

    corecore