153 research outputs found

    Acyclic edge-coloring using entropy compression

    Full text link
    An edge-coloring of a graph G is acyclic if it is a proper edge-coloring of G and every cycle contains at least three colors. We prove that every graph with maximum degree Delta has an acyclic edge-coloring with at most 4 Delta - 4 colors, improving the previous bound of 9.62 (Delta - 1). Our bound results from the analysis of a very simple randomised procedure using the so-called entropy compression method. We show that the expected running time of the procedure is O(mn Delta^2 log Delta), where n and m are the number of vertices and edges of G. Such a randomised procedure running in expected polynomial time was only known to exist in the case where at least 16 Delta colors were available. Our aim here is to make a pedagogic tutorial on how to use these ideas to analyse a broad range of graph coloring problems. As an application, also show that every graph with maximum degree Delta has a star coloring with 2 sqrt(2) Delta^{3/2} + Delta colors.Comment: 13 pages, revised versio

    A general framework for coloring problems: old results, new results, and open problems

    Get PDF
    In this survey paper we present a general framework for coloring problems that was introduced in a joint paper which the author presented at WG2003. We show how a number of different types of coloring problems, most of which have been motivated from frequency assignment, fit into this framework. We give a survey of the existing results, mainly based on and strongly biased by joint work of the author with several different groups of coauthors, include some new results, and discuss several open problems for each of the variants

    Injective colorings of graphs with low average degree

    Full text link
    Let \mad(G) denote the maximum average degree (over all subgraphs) of GG and let χi(G)\chi_i(G) denote the injective chromatic number of GG. We prove that if Δ4\Delta\geq 4 and \mad(G)<\frac{14}5, then χi(G)Δ+2\chi_i(G)\leq\Delta+2. When Δ=3\Delta=3, we show that \mad(G)<\frac{36}{13} implies χi(G)5\chi_i(G)\le 5. In contrast, we give a graph GG with Δ=3\Delta=3, \mad(G)=\frac{36}{13}, and χi(G)=6\chi_i(G)=6.Comment: 15 pages, 3 figure

    Exhaustive generation of kk-critical H\mathcal H-free graphs

    Full text link
    We describe an algorithm for generating all kk-critical H\mathcal H-free graphs, based on a method of Ho\`{a}ng et al. Using this algorithm, we prove that there are only finitely many 44-critical (P7,Ck)(P_7,C_k)-free graphs, for both k=4k=4 and k=5k=5. We also show that there are only finitely many 44-critical graphs (P8,C4)(P_8,C_4)-free graphs. For each case of these cases we also give the complete lists of critical graphs and vertex-critical graphs. These results generalize previous work by Hell and Huang, and yield certifying algorithms for the 33-colorability problem in the respective classes. Moreover, we prove that for every tt, the class of 4-critical planar PtP_t-free graphs is finite. We also determine all 27 4-critical planar (P7,C6)(P_7,C_6)-free graphs. We also prove that every P10P_{10}-free graph of girth at least five is 3-colorable, and determine the smallest 4-chromatic P12P_{12}-free graph of girth five. Moreover, we show that every P13P_{13}-free graph of girth at least six and every P16P_{16}-free graph of girth at least seven is 3-colorable. This strengthens results of Golovach et al.Comment: 17 pages, improved girth results. arXiv admin note: text overlap with arXiv:1504.0697

    Schnyder decompositions for regular plane graphs and application to drawing

    Full text link
    Schnyder woods are decompositions of simple triangulations into three edge-disjoint spanning trees crossing each other in a specific way. In this article, we define a generalization of Schnyder woods to dd-angulations (plane graphs with faces of degree dd) for all d3d\geq 3. A \emph{Schnyder decomposition} is a set of dd spanning forests crossing each other in a specific way, and such that each internal edge is part of exactly d2d-2 of the spanning forests. We show that a Schnyder decomposition exists if and only if the girth of the dd-angulation is dd. As in the case of Schnyder woods (d=3d=3), there are alternative formulations in terms of orientations ("fractional" orientations when d5d\geq 5) and in terms of corner-labellings. Moreover, the set of Schnyder decompositions on a fixed dd-angulation of girth dd is a distributive lattice. We also show that the structures dual to Schnyder decompositions (on dd-regular plane graphs of mincut dd rooted at a vertex vv^*) are decompositions into dd spanning trees rooted at vv^* such that each edge not incident to vv^* is used in opposite directions by two trees. Additionally, for even values of dd, we show that a subclass of Schnyder decompositions, which are called even, enjoy additional properties that yield a reduced formulation; in the case d=4, these correspond to well-studied structures on simple quadrangulations (2-orientations and partitions into 2 spanning trees). In the case d=4, the dual of even Schnyder decompositions yields (planar) orthogonal and straight-line drawing algorithms. For a 4-regular plane graph GG of mincut 4 with nn vertices plus a marked vertex vv, the vertices of G\vG\backslash v are placed on a (n1)×(n1)(n-1) \times (n-1) grid according to a permutation pattern, and in the orthogonal drawing each of the 2n22n-2 edges of G\vG\backslash v has exactly one bend. Embedding also the marked vertex vv is doable at the cost of two additional rows and columns and 8 additional bends for the 4 edges incident to vv. We propose a further compaction step for the drawing algorithm and show that the obtained grid-size is strongly concentrated around 25n/32×25n/3225n/32\times 25n/32 for a uniformly random instance with nn vertices
    corecore