6 research outputs found

    Synthesis for Logical Initializability of Synchronous Finite State Machines

    Get PDF
    A new method is introduced for the synthesis for logical initializability of synchronous state machines. The goal is to synthesize a gate-level implementation that is initializable when simulated by a 3-valued (0,1,X) simulator. The method builds on an existing approach of Cheng and Agrawal, which uses constrained state assignment to translate functional initializability into logical initializability. Here, a different state assignment method is proposed which, unlike the method of Cheng and Agrawal, is guaranteed safe and yet is not as conservative. Furthermore, it is demonstrated that certain new constraints on combinational logic synthesis are both necessary and sufficient to insure that the resulting gate-level circuit is 3-valued simulatable. Interestingly, these constraints are similar to those used for hazard-free synthesis of asynchronous combinational circuits. Using the above constraints, we present a complete synthesis for initializability method, targeted to both two-level and multi-level circuits

    Handshake circuits : an intermediary between communicating processes and VLSI

    Get PDF

    End-to-End Industrial Study of Retiming

    Get PDF
    Sequential circuits are combinational circuits that are separated by registers. Retiming is considered as the most promising technique for optimizing sequential circuits, that involves moving the edge-triggered registers across the combinational logic without changing the functionality. Despite significant efforts spent on sequential optimization since 1980's, there are few works discussed its performance in an end to-end design flow. The retiming algorithms were mostly evaluated at the logic level. However, it turns out that the retiming results at logic level could be significantly different than evaluating the physical level.This paper provides the findings of how retiming algorithms perform in an end-to-end industrial design flow, with seven industry designs taken from a recent 14nm microprocessor. Experiments are conducted with several complete industrial design flows. The evaluations are made at the end of the physical design flow. The experimental results show that the performance (design quality) of the retiming algorithms vary on the designs. Based these experimental results, we discover a feature that describes the retiming potentials of sequential designs. This model successfully forecast whether the given industrial designs could be significantly improved by retiming in an end-to-end design flow, regarding timing, area, and power

    Analyse de testabilité au niveau transfert de registres

    Get PDF
    Synthèse automatique et analyse de testabilité -- Les définitions de base -- Analyse de testabilité à haut niveau d'abstraction -- Analyse de testabilité et d'insertion de points de test au niveau transfert de registres -- Testability analysis and test-point insertion in RTL VHDL specifications for scan-based bist -- Implantation de l'algorithme et résultats expérimentaux
    corecore