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Abstract

A new method is introduced for the synthesis for logical initializability of synchronous

state machines. The goal is to synthesize a gate-level implementation that is initializable

when simulated by a 3-valued (0,1,X) simulator. The method builds on an existing approach

of Cheng and Agrawal, which uses constrained state assignment to translate functional ini-

tializability into logical initializability. Here, a di�erent state assignment method is proposed

which, unlike the method of Cheng and Agrawal, is guaranteed safe and yet is not as conser-

vative. Furthermore, it is demonstrated that certain new constraints on combinational logic

synthesis are both necessary and su�cient to insure that the resulting gate-level circuit is

3-valued simulatable. Interestingly, these constraints are similar to those used for hazard-free

synthesis of asynchronous combinational circuits. Using the above constraints, we present

a complete synthesis for initializability method, targeted to both two-level and multi-level

circuits.

Keywords: logic-simulation, initializability, design, state-transition-graph, �nite-state

machines, test, tradeo�s, logic synthesis.
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1 Introduction

Initializability is a property of a circuit by virtue of which the circuit can be driven to

a unique known state, irrespective of the startup state. There are several reasons why

initializability is a desirable property. Initializability is needed in order to physically reset

machines if they get out of synchronism. Furthermore, a form of initializability called logical

initializability is required for several fault simulators and non-scan automatic test pattern

generators (ATPG's) to work e�ectively. Examples of such ATPG's include STG [2] and

CONTEST [1].

The notion of initializability is tightly tied to the model used to simulate the machine.

For example, this model could be a functional simulation of an abstract state machine, a

3-valued (0,1,X) logical simulation of a gate-level circuit, or a true-value (0,1) simulation

of a gate-level circuit. True-value simulation can be prohibitively expensive since the set of

initial states of the machine is often huge. Hence, from the perspective of initializability,

since the initial state is unknown, true-value simulation is not very useful, and will not be

considered in this paper.

A �nite state machine that is initializable by a series of inputs when functionally sim-

ulated, is said to be functionally initializable. Functional simulation keeps track of all the

symbolic states the state machine can be in at any time, when subjected to a series of inputs.

This series of inputs that initializes the state machine is called its synchronizing sequence or

initialization sequence. A synchronizing sequence may be composed of a single-input vector

(single-vector synchronizing sequence) or multiple-input vectors (multi-vector synchronizing

sequence). Similarly, a gate-level circuit that is initializable under a series of inputs when

simulated by a 3-valued simulator is said to be logically initializable. Therefore, logical

initializability refers to initializability under 3-valued simulation. The di�erence between

functional and 3-valued simulation is that while the former uses sets of symbolic states to

simulate the machine, the latter works with 3-valued vectors to keep track of the possible

states of the machine. Thus, logical initializability of the gate-level circuit requires that the

underlying �nite state machine be functionally initializable. In this paper, the focus is on

synthesis for multi-vector logical initializability.

Traditionally, several di�erent approaches to initializability have been used. Each of these

assumes a model of initializability (such as single- or multi-vector) and of simulation (such

as functional or 3-valued). Further, while some methods only analyze a machine description
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to search for initialization sequences, other methods go a step further and synthesize for

initializability. For example, the method of Wehbeh and Saab [3] analyzes the gate-level

circuit to determine if it is logically initializable. On the other hand, the method of Cheng

and Agrawal [4, 5] attempts to synthesize a logically initializable gate-level circuit from a

functionally initializable �nite state machine (FSM).

It is well known that state encoding can a�ect the logical initializability of a �nite state

machine implementation [4, 5]. If the sole objective of an \optimal" state assignment is

to minimize the amount of logic, one may end up with implementations that are logically

uninitializable. That is, a logic (3-valued) simulator may not be able to initialize the gate-

level circuit even when the underlying FSM has a synchronizing sequence. Furthermore, as

is shown later, unrestrained combinational logic minimization can adversely impact logical

initializability. Therefore, any sound synthesis method for logical initializabilitymust address

two issues: state assignment and combinational logic synthesis.

1.1 Contributions of this paper

In this paper, we present a new synthesis method which provides for both (i) constrained

state assignment, and (ii) constrained combinational logic synthesis. The method is the �rst

systematic approach for synthesis-for-logical-initializability which addresses both of these

issues.

State Assignment. In previous work [4, 5], a method was proposed for state assignment

for initializability. We demonstrate that the constraints on state assignment imposed by

that method are neither necessary nor su�cient. The contribution of this paper towards

state-assignment-for-initializability is two-fold: (i) we identify where the constraints of [4, 5]

can be easily and safely relaxed, and (ii) we identify where additional constraints are needed

(irrespective of whether or not the constraints of [4, 5] were relaxed). The new set of

constraints used by our state assignment method is su�cient ; we guarantee that our method

always produces a state assignment that allows one to synthesize a logically initializable

circuit.

Combinational Logic Synthesis. In [5], it was suggested that combinational logic synthe-

sis in
uences logical initializability, and a synthesis-for-initializability method was proposed.

Here, we show that the logic synthesis technique surmised in [5] is not adequate. The contri-

bution of this work towards combinational-logic-synthesis-for-initializability is the following:
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(i) we propose both necessary and su�cient constraints on combinational logic to guarantee

logical initializability, (ii) we present a 2-level logic minimization method that incorporates

these constraints, and (iii) we characterize multi-level transformations that can be used to

synthesize initializable multi-level logic. Interestingly, these new constraints are similar to

hazard-free constraints used in the synthesis of asynchronous combinational circuits.

In summary, given a functionally initializable �nite state machine, our synthesis method

provides a complete synthesis path that produces a gate-level circuit that is guaranteed to

be logically initializable.

1.2 Organization

The paper is organized as follows. Section 2 summarizes previous work on initializability.

Section 3 reviews in detail an existing synthesis-for-initializability method that was used as

the starting point for our research. Section 4 provides a short overview of our synthesis

method. Section 5 presents details of the state assignment step of our method, and Sec-

tion 6 presents details of the combinational logic synthesis step. Finally, results on a set of

benchmark examples are presented in Section 7, and Section 8 gives conclusions.

2 Previous Work

A typical synthesis path consists of several steps (see Fig. 1). Initializability considerations

can be incorporated at various levels. The �gure is labeled to show some of the recent work

on initializability targeting di�erent levels in the synthesis path.

Test Generation
3−valued simulationPhysical resettability

State Machine Specification

State Minimization

State Assignment

Logic Synthesis

Tech Mapping

BANERJEE ET AL. [

CHENG/AGRAWAL [
CHAKRADHAR ET AL. [

RHO ET AL.

WEHBEH/SAAB

SINGH/
    NOWICK

Figure 1: Synthesis for initializability
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Banerjee et. al. [8] present a technique that targets the highest level in the synthesis path:

the top-level functional speci�cation (signal transition graph). The idea is to modify the

signal transition graph speci�cation to insure functional initializability for an asynchronous

circuit speci�cation. However, initializability is achieved only at the cost of some reduction

in concurrency.

Cheng and Agrawal [5] target the state assignment step in an attempt to produce logically

initializable circuits from functionally initializable speci�cations. This method is applicable

to synthesis of synchronous state machines.

The method of Chakradhar et. al. [7], targets the combinational logic synthesis step

for initializability. This method is essentially a search procedure for �nding initialization

sequences and concomitant don't-care assignments in order to synthesize initializable asyn-

chronous circuits.

Each of the above methods focuses on synthesis for initializability. The following methods

are analysis techniques to �nd initialization sequences given a circuit description.

Rho et. al. [6] analyze a functional description of a state machine, in the form of a state

transition graph, and identify functional initialization sequences, if any exist. This method

uses BDD's [9] and produces minimum-length initialization sequences.

Wehbeh and Saab [3] present a method which determines if a gate-level implementation

is initializable. This method is able to generate both functional and logical initialization

sequences from a given gate-level circuit.

In this paper, we present a new procedure for synthesis of initializable synchronous cir-

cuits. Our procedure takes as input a functionally initializable �nite state machine, and

produces a logically initializable gate-level circuit. We provide both (i) a state assignment

step, and (ii) a combinational logic synthesis step, both of which are shown to be critical to

logical initializability.

From among the previous work just cited, the one that comes closest to our work is that

of Cheng and Agrawal [5]. However, their method does not provide for a combinational logic

synthesis step speci�cally constrained for initializability. Moreover, the state assignment

step provided by their method is not always correct as far as initializability is concerned.

Hence, their method may not always yield initializable circuits.
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3 Background

The Cheng{Agrawal Method

This section reviews the Cheng and Agrawal state assignment method [4, 5]. Given a �nite

state machine and a synchronizing sequence, the basic approach of the method is to constrain

the state encoding step to insure logical initializability.

An example �rst shows how state encoding can a�ect logical (3-valued) initializability.

S1 S2

S3S4
1

1

0

0

0

0

1
1

Reset
State

(S1,S2,S3,S4)

0 1

0 1

0

(S1,S4) (S1,S2,S3)

(S1,S4)

(S4) (S1,S3)
1

0
(S1,S4)

1

... ...

...

Reset
State

(S1,S2)

Figure 2: Example FSM and synchronization tree.

Example 3.1. Consider the functionally initializable machine M in Fig. 2. At startup,

the machine can be in any state: S1 or S2 or S3 or S4. The term state group refers to a set

of states. Thus, the initial state group of the machine is written as (S1S2S3S4). When the

series of inputs 1 �! 0 �! 0, simply written as 100, is applied to the machine, the machine

is driven to a unique known state, S4, irrespective of the initial state. Therefore, I = 100

is called a synchronizing sequence of M . The following is the trace of state groups, or state

group sequence, that results as the input sequence 100 is applied to M :

(S1S2S3S4)
1�! (S1S2S3)

0�! (S1S4)
0�! (S4) (1)

Therefore, the machine is functionally initializable.

Associated with each state group, after state assignment, is its smallest containing cube,

or group face. Each group face is represented by a 3-valued vector. Thus, if state encoding

(S1 : 00; S2 : 01; S3 : 11; S4 : 10) were used, the group face corresponding to (S1S2) would

be 0X, the group face corresponding to (S4) would be 10, and the one corresponding to

(S1S3) would be XX. The group face sequence is the trace of group faces that results when

the series of inputs is applied. Thus, for the machine in the above example, the group face

sequence is:
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XX
1�! XX

0�! 1X
0�! 10:

Since the 3-valued simulation converges, the resulting implementation is logically initializ-

able.

2

Example 3.2. Assume the state encoding (S1 : 00; S2 : 01; S3 : 10; S4 : 11) is used for the

machine of Example 3.1. instead. In this case, the group face sequence is:

XX
1�! XX

0�! XX
0�! XX:

This sequence does not converge to a single state, therefore the circuit realized here is

logically uninitializable. 2

Example 3.2 demonstrated the impact of state assignment on logical initializability |

unconstrained state encoding can render circuits uninitializable by a 3-valued simulator, even

though the state group sequence functionally converges to a unique state. This problem is

due to the fact that a 3-valued simulator can only simulate group faces, not state groups;

there is a loss of information during 3-valued simulation.

The goal of the Cheng and Agrawal method is to produce a state assignment that allows

the sequence of group faces to \track" the sequence of state groups, and therefore insure

logical initializability. To this end, the method introduces an additional set of face-embedding

constraints into the state assignment step. Constraints are in the form of dichotomies [13, 14].

A dichotomy constraint, or simply dichotomy, is written as (X;Y ), where X and Y are

disjoint sets of states. The constraint (X;Y ) is the stipulation that the smallest containing

cubes of X and Y , after state encoding, do not intersect. This dichotomy constraint is

satis�ed by a state encoding if some state bit has the value 1 for all states in X and the

value 0 for all states in Y , or vice versa. If the cardinality of the set X is n and the cardinality

of Y is k, then the constraint (X;Y ) is called a type n!k dichotomy.

The constraints of Cheng and Agrawal are type n!1 dichotomies, also called face embed-

ding constraints. If a face embedding constraint has a left side consisting of only a singleton

state, then the constraint is called a trivial face embedding constraint. An n!1 dichotomy

of the form (Gi; sj) is introduced for every symbolic state sj not present in the state group

8



Gi in the state group sequence. That is, a symbolic state that does not belong to a state

group is forbidden from being embedded in its group face, after state encoding. This require-

ment applies to all state groups encountered when a synchronizing sequence is applied to

the machine.

Given a functional initialization sequence

G1

I1�! G2

I2�! � � � In�! Gn+1;

the Cheng-Agrawal face-embedding constraints (FEC's) can be formalized as follows:

Cheng-Agrawal FEC = f (Gi; sj) j sj 62 Gig :

Example 3.3. Given the �nite state machine of Fig. 2, and the synchronizing sequence

100 (Eqn 1), the non-trivial Cheng-Agrawal face embedding constraints are: (S1S2S3;S4);

(S1S4;S2) and (S1S4;S3). A state assignment satisfying these dichotomies is: (S1 : 000;

S2 : 010; S3 : 001; S4 : 100). Observe that the �rst state bit satis�es dichotomy (S1S2S3;S4):

the bit is 0 for S1, S2 and S3, but is 1 for S4. Similarly, the other two state bits satisfy the

remaining dichotomies. Thus, this state encoding insures that the state code for S4, 100, is

not embedded in the group face of (S1S2S3), 0XX, during the �rst time step in 3-valued

simulation: XXX
1�! 0XX. Fig. 3 shows graphically the state group sequence and the

corresponding group face sequence after 3-valued simulation. 3-valued simulation converges

to the correct value, 100: XXX
1�! 0XX

0�! X00
0�! 100:

2

4 New Synthesis-for-Initializability Method: Overview

The technique presented in this paper is a synthesis method for logical (3-valued) initializ-

ability. Given a �nite state machine and a synchronizing input sequence, our method consists

of the following two steps:

Step #1: constrained state assignment

(a) generate relaxed face embedding constraints (RFEC's)

(b) generate don't-care intersection constraints (DCIC's)
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Input=1 Input=0 Input=0

S1 S2

S3S4

S1 S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

0 01
S1

S4

S2

001
S3

Before state assignment:  state group sequence

After state assignment:  group face sequence

S1

S4

S2

S3

S1

S4

S2

S3

S1

S4

S2

S3000

010

100

Figure 3: Groups faces \track" state groups

Step #2: constrained combinational logic synthesis

In Step #1 (a), we introduce relaxed face-embedding constraints. In Step #1 (b), we enu-

merate additional constraints that allow us to guarantee that the state assignment produced

will enable logical initializability. These additional constraints, called don't-care intersection

constraints, are shown to be critical to initializability.

Step #2 is also critical to achieving logical initializability. In this step, we formulate

precise conditions on 2-level and multi-level logic to guarantee initializability, and present a

logic synthesis method that incorporates these constraints.

The next two sections present our method in detail.

5 Step #1: Constrained State Assignment

This section presents our new constrained state assignment step. Section 5.1 discusses face-

embedding constraints. First, it is shown how existing face-embedding constraints are overly

restrictive. Then, it is shown how those constraints can be relaxed, yielding our relaxed

face-embedding constraints, or RFEC's.

In Section 5.2, it is shown that face-embedding constraints, whether the original Cheng-

Agrawal variety, or our relaxed version, by themselves are insu�cient. Additional su�ciency

constraints, called don't-care intersection constraints (or DCIC's), are therefore formulated
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to guarantee initializability.

5.1 Step #1(a): Face embedding constraints

The following example illustrates how the Cheng-Agrawal constraints may be overly restric-

tive.

Example 5.1. Once again, consider the machine in Fig. 2. 100 is a synchronizing sequence

for the machine, resulting in state group sequence:

(S1S2S3S4)
1�! (S1S2S3)

0�! (S1S4)
0�! (S4)

From Example 3.3, the dichotomy constraints produced by the Cheng-Agrawal method were:

f (S1S2S3;S4); (S1S4;S2); (S1S4;S3) g
Clearly, at least 3 state bits are required to satisfy all three constraints. However, a care-

ful look at the state transition diagram of Fig. 2, shows us that, in fact, the dichotomy

(S1S2S3;S4) is unnecessary. Consider transition (S1S2S3)
0�! (S1S4). Note that state S4

also has a transition on input 0 to S4, which happens to belong to the next state-group,

(S1S4). Therefore, it is safe to let S4 be embedded in the group-face of (S1S2S3): even

though S4 is not part of the correct state group, (S1S2S3), S4 also has a transition on the

given input which drives it to the correct next state group (S1S4). We call this scenario

a safe embedding of S4 in (S1S2S3), and therefore can delete the dichotomy (S1S2S3;S4).

Thus, there is now a smaller set of dichotomy constraints to solve:

f(S1S4;S2); (S1S4;S3)g
Both of these constraints are satis�ed by the following 2-bit state assignment: (S1 : 00;

S2 : 01; S3 : 11; S4 : 10), still yielding a correct 3-valued simulation:

XX
1�! XX

0�! X0
0�! 10:

In sum, by relaxing the set of face-embedding constraints, we have produced a shorter length

state encoding (2 state bits instead of 3) that still insures logical initializability.1 2

1In this example, we use 100 as the synchronizing sequence even though 00 is a shorter synchronizing
sequence. However, the same problem can arise even starting with a minimum-length sequence.
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Safe Embeddings

We now formally characterize safe embeddings. Given a �nite state machine, M , and a

functional initialization sequence, G1

I1�! G2

I2�! � � � In�! Gn+1. That is, Gi is the ith

state group in the initialization sequence, and Ii is the input seen by Gi. Let NS(current-

state, input) be the next-state function. An embedding of state sj in the group face of state

group Gi is safe whenever the transition out of sj on the current input, NS(sj; Ii), goes to

a state in the speci�ed next-state group, Gi+1; that is, whenever NS(sj; Ii) 2 Gi+1. In this

case,

Gi
Ii�! Gi+1 =) (Gi [ fsjg) Ii�! (Gi+1 [ NS(sj; Ii))

and, therefore, as desired, (Gi [ fsjg) Ii�! Gi+1 if NS(sj; Ii) 2 Gi+1.

The embedding is safe because, even if sj is embedded within the group face of Gi, the

3-valued simulation for Gi+1 will still converge to the same value as it would if sj were not

embedded in the group face of Gi.

Relaxed Face Embedding Constraints

Using the above notion, the list of Cheng-Agrawal FEC constraints can be pruned. The

original Cheng-Agrawal face-embedding constraints (FEC's) were:

Cheng-Agrawal FEC = f (Gi; sj) j sj 62 Gig

Our new relaxed face-embedding constraints (RFEC's) are:

RFEC = f (Gi; sj) j NS(sj; Ii) 62 Gi+1g (2)

It is easy to see that the RFEC constraints are a subset of the original Cheng-Agrawal

constraints: sj 2 Gi implies NS(sj; Ii) 2 Gi+1.

5.2 Step #1(b): Don't-care Intersection Constraints

This section demonstrates that face-embedding constraints alone, whether the original Cheng-

Agrawal variety or our relaxed version, do not guarantee a state assignment that allows logical

initializability. Additional constraints, called don't-care intersection constraints, are there-

fore introduced to insure initializability. The need for don't-care intersection constraints, or
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DCIC's, arises from the fact that the assignment of binary values to don't-care, or unspeci-

�ed, next states is critical to the logical initializability of the state machine.

In what follows, it is �rst shown how don't-care (DC) assignment impacts logical initial-

izability. Then, conditions on DC assignment are formulated to insure that DC assignment

does not adversely a�ect logical initializability. It is shown how satis�ability of these con-

ditions on DC assignment is critically dependent on state assignment. Finally, state assign-

ment constraints (DCIC's) are introduced, which insure that DC assignment conditions can

be satis�ed.

Impact of DC Assignment on Logical Initializability

The following example illustrates how a careful DC assignment is critical to achieving ini-

tializability.

S1 S2

S3

1

1

0

0

0,1

FSM

Reset
State

Initialization
Vector = 1

S1

11

00

01

10
1

Unassigned state
code (DC entry)

S2

S3

S1

11

00

01

10

S3

S2

3−valued simulationSTATE ASSIGNMENT

Figure 4: The issue of assignment to don't-care entries.

Example 5.2. Consider the state machine of Fig. 4. Applying the input vector 1 function-

ally initializes the machine to the unique reset state S1. Thus, the machine has a single-vector

initialization sequence: I = 1. The corresponding state group sequence is:

(S1S2S3)
1�! (S1)

The set of face-embedding constraints, whether the original Cheng-Agrawal FEC's, or

our RFEC's, for this state group sequence is empty (the dichotomy constraints are trivial).

Fig. 4 also shows a state encoding that trivially satis�es all the face-embedding constraints

(since there are none). Two bits are used to encode the three states, (S1 : 00; S2 : 10;

S3 : 01). The fourth state code, 11, has no associated symbolic state. We call such a state

code an unassigned state code, or a non-symbolic state. There are no speci�ed next-state
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transitions for non-symbolic states; they are all don't-care (DC) next-state transitions. In

addition, there may also be symbolic states having unspeci�ed next state entries which are

also don't-care next-state transitions.

In this example, the non-symbolic state 11 has a DC next state transition on input 1. This

DC entry will eventually get assigned some value during some later stage in the synthesis

path (e.g. during combinational logic synthesis). Suppose that this latter synthesis step �lls

in this DC entry for state 11 on input 1 with the next state value 11. In this case, the

following group face sequence results from 3-valued simulation:

XX
1�! XX

.

The result is a logically uninitializable circuit. Simulation fails because the assigned next

state transition from state 11 to 11, on input 1, lies outside of the group face of the destination

state group, (S1), thus throwing initialization o� course. Therefore, if DC transitions can be

assigned arbitrary values (during logic synthesis), a non-initializable circuit may result. 2

Example 5.2 (contd.). To remedy this problem, let us now assign the DC next-state

transition of 11 on input 1, the value 00 (corresponding to S1). The following 3-valued

simulation results:

XX
1�! 00

The circuit is now initializable. In this case, initializability is achieved by assigning to the

DC next-state entry a value lying within the next group-face, 00. 2

While in this example, a DC assignment can be applied to insure initializability, we show

shortly that, given an arbitrary state assignment, this is not always the case.

Don't-Care Assignment for Initializability

In Example 5.2, we saw how sometimes initializability can be achieved by proper DC as-

signment. The key to proper DC assignment is to assign to every DC next-state entry in

the current group face, a value that lies within the next group-face. More formally, let the

machine M have the following initialization sequence:
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G1

I1�! G2

I2�! � � �Gi
Ii�! Gi+1 � � � In�! Gn+1:

Let a state s (symbolic or non-symbolic) have a don't-care next-state entry on input Ii, i.e.,

NS(s; Ii) = don't-care. Suppose the state code of s is embedded in the group face of state

group Gi. Then, assigning the next-state NS(s; Ii) of s to lie within the group face of Gi+1

will insure initializability. Such an assignment must be done for every such s and i.

Assuming StateCode(s) represents the binary state code of s, and GroupFace(G) repre-

sents the binary group face of the state group G, this condition can be written more formally

as the following tracking requirement:

8s; i StateCode(s) 2 GroupFace(Gi) ) StateCode (NS(s; Ii)) 2 GroupFace(Gi+1) (3)

This tracking requirement insures that during 3-valued simulation, GroupFace(Gi) is always

followed by GroupFace(Gi+1), thus insuring initializability. By virtue of the de�nition of a

synchronizing sequence, the �nal group face is guaranteed to be a singleton state.

Satisfying the Tracking Requirement

In essence, given an initialization input sequence, the tracking requirement of Eqn. 3 is

a su�cient condition for logical initializability. However, given an arbitrary state assign-

ment, satisfying the tracking requirement may not always be feasible. Here is an example

where using the Cheng-Agrawal constraints (or our relaxed FEC's) results in a circuit that

is uninitializable for every assignment of don't-cares. This happens because the tracking

requirement imposes con
icting next-state assignments for some s and i.

S1 S2 S3

S4 S5 S6

S7 S8 S9

00

00

00

00
00

00

01

01

01 01

11 11 11

(DC entry)

Sx= unassigned
state code 

S1

S2

S4 S5

S6

S7

S8

S9

00

00

01

01

11

11

10

10

Sx

(a)  FSM (b)  STATE ASSIGNMENT

S3

Figure 5: Example illustrating unsatis�able tracking requirement.
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Example 5.3. Consider the example of Fig. 5(a).2 Applying a synchronizing sequence

gives the following state groups:

(S1S2S3S4S5S6S7S8S9)
11�! (S1S2S3)

00�! (S7S8S9)
01�! (S4S5S6)

00�! (S3).

A state assignment that satis�es all the Cheng-Agrawal FEC constraints, or our RFEC

constraints, is shown in Fig. 5(b). Bit-vector 0111 is an unassigned state code, or non-

symbolic state, which we call Sx. Sx has as yet unassigned next state transitions.

A careful analysis follows that shows that Sx cannot be assigned any NS value for input

00 while preserving initializability. For a moment, let us ignore any transitions out of Sx. If

we now do a true-valued simulation, and collapse the result at every time step into a 3-valued

vector, we get the following simulation trace (ignoring the e�ect of transitions out of Sx and

other unassigned state codes):

XXXX
11�! 0X1X

00�! 10XX
01�! X1X1

00�! 0110:

Ideally, we would like to obtain the same result for 3-valued simulation when the e�ect

of transitions out of state Sx is included in the simulation. We begin by noting that the

state Sx is embedded in the group-faces of (S1S2S3) as well as (S4S5S6). Both the groups

have speci�ed transitions in the initialization sequence on the same input: 00. The latter

embedding mandates the NS value of Sx be set to S3 in order to meet the tracking requirement

(Eqn 3). However, the former embedding requires the NS value to be set to a state in the

column containing (S7S8S9). Since the state groups (S3) and (S7S8S9) are disjoint, these

two conditions are not simultaneously satis�able. That is, no next state DC assignment

exists, for non-symbolic state Sx on input 00, which simultaneously satis�es both tracking

requirements. Therefore, the result is always a logically uninitializable circuit.

In more detail, the embedding of Sx within (S4S5S6) mandates the next-state value of

Sx on input 00 to be set to S3. With this DC assignment, the 3-valued simulation trace is:

XXXX
11�! 0X1X

00�! XXXX
01�! XXXX

00�! XXXX:

The machine is not logically initializable. Observe that initializability gets derailed when the

second state group, (S1S2S3), sees the input 00. The group face associated with (S1S2S3)

2This state machine is incompletely-speci�ed, but our analysis also applies to completely-speci�ed
machines.
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is 0X1X. The next state group, (S7S8S9), has an associated group face, 10XX. However,

the unassigned state code, 0111 (labeled Sx), which is embedded within the group face of

(S1S2S3) has been assigned to next-state 0110 (S3) on input 00, which lies outside of next

group face, 10XX. This uninitializes all the four state bits. If, instead, Sx were assigned a

next state transition that was embedded within the third group face, 10XX, as desired, then

initialization proceeds normally at this step, but is now thrown o� course at the last time

step. For example, assuming now that NS(Sx; 00) = 1010, the following 3-valued simulation

results:

XXXX
11�! 0X1X

00�! 10XX
01�! X1X1

00�! XX10:

Thus, con
icting don't-care assignment requirements can render a design uninitializable.

2

Don't-Care Intersection Constraints to Insure Satis�ability of the Tracking Re-
quirement

Examples 5.2 and 5.3 demonstrate that don't-care assignment is critical to logical initial-

izability, and therefore it cannot be left entirely to the later steps in the synthesis path.

Example 5.2 showed that sometimes there is an assignment of don't-cares to meet the track-

ing requirement and, thus, make the circuit initializable. However, Example 5.3 showed that

sometimes, given an encoded machine, there may be no way to assign don't-cares to meet the

tracking requirement.

In this section, it is shown how the state assignment step itself can be modi�ed so that

the encoded machine always insures that a don't-care assignment is feasible, and thus allows

the tracking requirement to be satis�ed.

Once again, consider a machine with the initialization sequence:

G1

I1�! G2

I2�! � � �Gi
Ii�! Gi+1 � � �Gj

Ij�! Gj+1 � � �Gn
In�! Gn+1:

Let a state s belong to two group faces corresponding to the state groups Gi and Gj:

StateCode(s) 2 GroupFace(Gi)

StateCode(s) 2 GroupFace(Gj)
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Then the tracking requirement (Equation 3) is the following simultaneous pair of constraints:

StateCode (NS(s; Ii)) 2 GroupFace (Gi+1)

StateCode (NS(s; Ij)) 2 GroupFace (Gj+1)

The pair of constraint equations may be unsatis�able if Ii and Ij are the same inputs values.

That is, if Ii = Ij, the above conditions reduce to the following:

StateCode (NS(s; Ii)) 2 GroupFace (Gi+1) \GroupFace (Gj+1) (4)

In this case, the tracking requirement is unsatis�able precisely when GroupFace (Gi+1)

and GroupFace (Gj+1) are disjoint: there is no consistent assignment to the DC entry for

NS(s; Ii).

To insure that the tracking requirement can be met, we constrain the state assignment.

In more detail, we circumvent this problem by forcing GroupFace(Gi) and GroupFace(Gj)

to be disjoint whenever two conditions hold: (i) the inputs seen by Gi and Gj are identical

(i.e., Ii = Ij), and (ii) the next state groups Gi+1 and Gj+1 are disjoint. The idea is to insure

that if the state groups Gi+1 and Gj+1 are disjoint, then the group faces of Gi and Gj are

forced to be non-intersecting.3 In this case, no con
icting DC assignment can ever occur,

since the group faces of Gi and Gj will no longer intersect. As a result, either state groups

Gi+1 and Gj+1 intersect (hence, GroupFace(Gi+1) and GroupFace(Gj+1) will intersect), or

GroupFace(Gi) and GroupFace(Gj) will be made disjoint. In each case, Eqn. 4 is now

satis�able, without con
icting next-state DC assignments. This non-intersection constraint

between GroupFace(Gi) and GroupFace(Gj) is written as an n!k type dichotomy between

Gj and Gk: (Gj;Gk).

Example 5.3 (contd.) In the above example, we therefore add dichotomy (S1S2S3;S4S5S6)

because I2 = I4 = 00, and state groups G3 = (S7S8S9) and G5 = (S3) are disjoint. After

solving with the new dichotomy, the result is the new state encoding of Fig. 6(b). This

encoding does not su�er from the problem of con
icting tracking requirements since there is

no counterpart of Sx here: GroupFace(fS1S2S3g) and GroupFace(fS4S5S6g) are now forced

to be disjoint. Consequently, the new synthesized machine is logically initializable.

2

3Note that it will never happen that Gi+1 and Gj+1 are disjoint, but Gi and Gj have a symbolic state in
common, since in this case they must have a symbolic next-state in common.
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Figure 6: (a) bad state encoding, (b) good encoding

The constraints introduced above are called \don't{care intersection constraints" (DCIC)

and are formalized as follows:

DCIC = f(Gi;Gj) j (Ii = Ij) ^ (Gi+1 \Gj+1 = �)g (5)

5.3 Solving Initializability Constraints

Together, the relaxed face-embedding constraints (RFEC's) and the don't-care intersection

constraints (DCIC's) are su�cient to produce a state assignment that enables the synthesis

of a logically initializable machine.

The RFEC as well as DCIC constraints are dichotomy constraints. Any set of dichotomy

constraints can always be solved. For example, a one-hot code [12] which uses one state

bit for every symbolic state satis�es all dichotomies that can be de�ned over the set of

states. However, such a code is potentially expensive in terms of the amount of logic used

to synthesize the circuit. Therefore, several well known methods have been developed for

e�ciently solving a set of dichotomy constraints (e.g., Scherzo [10], Nova [11]).

6 Step #2: Combinational Logic Synthesis

Once constrained state assignment is complete, combinational logic synthesis can be per-

formed. However, combinational logic synthesis can still adversely a�ect logical initializabil-

ity. That is, even after an FSM has been state encoded in accordance with the method of

Section 5, unrestrained combinational logic minimization can render it logically uninitializ-

able.
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In [5], Cheng and Agrawal point out that combinational logic synthesis in
uences logical

initializability. They surmise that initializability can be preserved by applying single-output

logic minimization for each output, as opposed to performing multi-output logic minimiza-

tion. However, we discovered that this restriction is neither necessary nor su�cient.

In what follows, it is �rst shown how combinational logic synthesis can impact 3-valued

simulation. Then, the key result of this section is presented: a theorem that relates 3-valued

simulatability of a circuit with hazard-freedom of asynchronous circuits. In particular, it is

shown that our new constraints on logic synthesis for initializability correspond precisely to

hazard-free synthesis requirements (cf. Nowick [16], Eichelberger [15]). Finally, a multi-level

synthesis method for initializability is presented that leverages o� of existing hazard-free

synthesis methods.

6.1 How logic synthesis a�ects 3-valued simulatability

The following example illustrates how logic synthesis can a�ect logical initializability under

3-valued simulation.

Example 6.1. Let Y be the Boolean function of three variables a; b and c shown in the

K-map of Fig. 7(a). Let Y be implemented in 2-level AND{OR logic using two product

terms: Y = ab + �ac:

1 1

1

a
bc

00 01 1011

0

1

Y

abc=X11

X

1 1

1

a
bc

00 01 1011

0

1

Y

abc=X11

X

Figure 7: (a) Uninitializable, and (b) initializable implementations of Y

Suppose this gate-level implementation is simulated by a 3-valued simulator. Assume

that the primary inputs are set to abc = X11. For abc = X11, Y is functionally equal to 1,

as seen from the K-map. However, a 3-valued simulator may evaluate Y as follows:

Y = ab + �ac = a+ �a = X +X = X
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Therefore, the above implementation of Y is logically uninitializable since it is not correctly

simulatable.

The K-map of Fig. 7(b) shows an alternate implementation of Y which is logically ini-

tializable: Y = ab + bc (where the shaded region represents the added product term bc).

3-valued simulation in this case yields the correct value:

Y = ab + bc = a+ 1 = X + 1 = 1

The reason initialization succeeds in this case is that the product bc evaluates to 1 irrespective

of the value of a. Therefore, this implementation of Y is correctly simulatable for the input

combination abc = X11. Hence, this gate-level implementation is logically initializable to

Y = 1 under 3-valued simulation with the inputs held at abc = X11. 2

Thus, combinational logic synthesis is critical to insuring logical initializability. Any

synthesis method that does not incorporate initializability considerations cannot guarantee

that the resulting gate-level circuit will be initializable by a 3-valued simulator.

6.2 Simulatability and Hazard-freedom

This section states and proves a correspondence between two di�erent properties of a general

multi-level circuit: 3-valued simulatability on the one hand, and hazard-freedom on the other.

Example 6.1 showed that it is sometimes necessary to include a certain product term in

the 2-level implementation for initializability. In that example, bc was such a product term

in the implementation for Y . In the asynchronous terminology of [16], bc is called a required

cube; the stipulation that the 2-level implementation of Y must include at least one term

that covers bc is a hazard-free covering requirement.

We now point out the correspondence between 3-valued simulatability and hazard-freedom

for the synthesized circuit of Fig. 8.

In the simulatability framework, the highlighted column corresponding to abc = X11

represents indeterminacy in the values of the inputs|the value of a was unknown. In order

for Y to be simulatable to 1 for this input combination, it is required that the cube bc be

covered by some term of the cover.

Now regard the function Y as being the output of an asynchronous combinational circuit.

Also, view the input column abc = X11 as representing the input transition 011! 111 (or,

equivalently, 111! 011) which spans X11. Then, it is well known ([16, 12, 15]) that to insure
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Figure 8: Simulatability and Hazard-freedom

a glitch-free output Y|i.e., to insure that Y remains 1 throughout the input transition, free

of static hazards|it is essential that some product term in the implementation of Y cover

the cube bc.

Thus, given a 3-valued input vector I, the covering requirement for 3-valued sim-

ulatability of an implementation of Y is identical to the hazard-free covering re-

quirement to insure a hazard-free implementation of Y for an input transition

that spans I.

Thus, for the given example of Fig. 8, the following states the relation between 3-valued

simulation and the transient (asynchronous) behavior:

If the implementation of Y is not correctly simulatable to 1 over the input com-

bination X11, then all input transitions spanning X11 (i.e. 011 ! 111, and

111! 011), are hazardous for the same implementation.

This result can be generalized to an arbitrary multi-level circuit of Fig. 9 as follows.

Replace the 3-valued input vector by a corresponding input transition that spans the 3-

valued input. Then, if the the output of the circuit has a static hazard, the circuit is

non-simulatable for that 3-valued input, and vice-versa.

The rest of this section is devoted to de�ning several notions related to simulatability

(Section 6.2.1) and hazard-freedom (Section 6.2.2), and formally proving the correspondence

between the two (Section 6.2.3).

6.2.1 3-valued Simulation of a Network

De�nitions regarding 3-valued simulation follow.

De�nition 6.1. Given a 3-valued vector � 2 f0; 1; Xgn, a binary vector � 2 f0; 1gn is

covered by � i�
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Figure 9: A general multi-level circuit

�i = 0 ) �i = 0

�i = 1 ) �i = 1

2

For example, binary vector � = 110010 is covered by 3-valued vector � = 1X001X. The

following de�nes how 3-valued simulation works at the gate level for a single output gate.

De�nition 6.2 (3-valued simulation of a gate). Given a gate G corresponding to

a Boolean function f of n variables, f : f0; 1gn ! f0; 1g, and given a 3-valued input vector �,

the gate output
is simulated by

8>>><
>>>:

0 i� f(�) = 0 8 � covered by �

1 i� f(�) = 1 8 � covered by �

X i� f(�1) = 0; f(�2) = 1
for some binary vectors �1; �2 covered by �

2

Given a 3-valued input �, De�nition 6.2 can be generalized from gate simulation to cir-

cuit simulation, by a topological traversal from the inputs towards the output, applying

De�nition 6.2 once to each gate.

6.2.2 Hazard Simulation of a Network

We now discuss basics of hazards in combinational logic. We �rst review Kung's 9-valued

algebra [18] which will be needed to prove our later results.

Kung's algebra is a transition algebra that classi�es a transition on a wire into one of 9

values: f0; 1; "; #; S0; S1; D+; D�; �g. The �rst two values, 0 and 1, represent hazard-free

static 0 ! 0 and static 1 ! 1 outputs respectively. Values "; #; S0; S1; D+ and D� are

transient values and represent transitions and hazards. " and # denote hazard-free 0 ! 1
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and 1 ! 0 transitions, respectively. S0 and S1 denote hazardous static 0 ! 0 and 1 ! 1

transitions, respectively. D+ and D� represent hazardous dynamic 0 ! 1 and 1 ! 0

transitions, respectively. Finally, �, which represents a don't-care transition, will not be

needed for the remainder of this section.

An input transition, or a multiple-input change, on a set of input wires x1 : : : xn can

be described as a vector � = �1 : : : �n of corresponding values in Kung's algebra, where

�i 2 f0; 1; "; #; S0; S1; D+; D�g.
Since we are trying to relate 3-valued simulation to hazard-freedom, it is important to

give basic de�nitions for hazard-freedom. We present the classical notion of an atomic gate

in the context of hazard-freedom:

De�nition 6.3 (atomic gate). An atomic gate is a combinational logic gate that can

be modeled as an instantaneous Boolean operator followed by an arbitrary �nite delay. 2

The next proposition indicates that, for the purpose of hazard simulation, any input

combination (minterm) that might be reachable during an input transition is assumed to be

reachable.

Proposition 6.0 (reachable inputs). Let x = x1 : : : xn be a set of wires and let

� = �1 : : : �n be a corresponding input transition. Then, the set of input combinations, �,

reachable on transition � is the set of all minterms m = m1 � � �mn 2 f0; 1gn such that,

mi = 0 ) �i 2 f0g [ f"; #; S0; S1; D+; D�g
mi = 1 ) �i 2 f1g [ f"; #; S0; S1; D+; D�g

Proof. In a hazard model which assumes arbitrary gate and wire delays, worst case

behavior is assumed [12, 18]. Hence, if a minterm is reachable by some sequence of transitions

on the set of wires, x, it is assumed reachable. 2

Proposition 6.1 (hazard simulation of an atomic gate). Let G be an atomic gate

for a Boolean function f . Let there be an input transition � at the inputs. Let us denote the

set of all the inputs reachable on this transition by �. For the purpose of hazard simulation,

any input that is reachable for some combination of gate and wire delays is assumed to be

reached. Then,

(a) If f(�) = 0 8 � 2 �, the gate output stays at 0 throughout the transition, and is,

therefore, hazard-free: 0.
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(b) If f(�) = 1 8 � 2 �, the gate output stays at 1 throughout the transition, and is,

therefore, hazard-free: 1.

(c) If f(�1) = 0; f(�2) = 1 for some �1; �2 2 �, the gate output either exhibits a

monotonic transition or is hazardous for this input change

Proof. Part (a) follows directly from the de�nition of an atomic gate (De�nition 6.3)|if

at all times the inputs seen by the gate are those for which f evaluates to 0, then the gate

output must constantly stay at 0. Part (b) is proved similarly.

Part (c): while the inputs are changing, the gate sees an input for which f = 0 and another

input for which f = 1. By de�nition of an atomic gate, the instantaneous operator evaluates

to two di�erent values during the transition. Therefore, by virtue of Proposition 6.0 (reach-

able inputs), the output will produce a transient value, i.e., one of f"; #; S0; S1; D+; D�g.
2

For a given input transition, �, hazard simulation of a circuit network corresponding

to Boolean function f is performed by a topological traversal from the inputs towards the

output, applying Proposition 6.1 once to each gate.

6.2.3 Transformation: 3-valued vector �! input transition

Based on the above, there is a natural transformation of a 3-valued input vector � to a

corresponding input transition � in Kung's 9-valued algebra. For the following, assume � is

an arbitrary 3-valued vector where the ith bit is �i. A corresponding input transition � is

constructed as follows: replace each 0 in � by a 0 ! 0 transition (0), each 1 by a 1 ! 1

transition (1), and each X by any one of the transient values f"; #; S0; S1; D+; D�g. More

formally, denote this transformation by the operator � ,

� 2 �(�) =

8><
>:v

�������

vi = 0 if �i = 0
vi = 1 if �i = 1
vi 2 f"; #; S0; S1; D+; D�g if �i = X

9>=
>;

for all bits i of vector �, where � describes a set of corresponding input transitions. For

example, if � = X10X is a 3-valued input, then � =" 10 # is one such input transition,

corresponding to vector �.

We now have all the tools needed to state and prove the key theorem relating 3-valued

simulation and hazard-freedom of an arbitrary multi-level network. The proof will essentially
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consist of a topological traversal of the circuit, applying the above propositions once to every

gate.

We introduce the notation Sim
f
3�val(�) to represent the result of 3-valued simulation of

a circuit with output f for the 3-valued input vector �. Similarly, we use Sim
f
hazard(�) to

denote the result of hazard simulation of f for the 9-valued input vector �. Given these

de�nitions, the following key theorem lets us deduce the result of 3-valued simulation of a

circuit from the result of hazard simulation, and vice-versa.

Theorem 6.1. Let f be a Boolean function implemented by a gate level network of

atomic gates G, let � be any 3-valued input vector, and let � 2 �(�) be any corresponding

input transition. Then, the 3-valued and hazard simulation results for the implementation

G of the function f correspond, as follows:

Sim
f
3�val(�) = 0 () Sim

f
hazard(�) = 0

Sim
f
3�val(�) = 1 () Sim

f
hazard(�) = 1

Sim
f
3�val(�) = X () Sim

f
hazard(�) 2 f"; #; S0; S1; D+; D�g

Or, in short, Simf
hazard(�) 2 �

�
Sim

f
3�val(�)

�
.

Proof. We prove that the above correspondence holds for any gate output ` in the network

G. The proof is by induction on the \depth" of the sub-circuit in the transitive fan-in of `,

where \depth" of this sub-circuit is de�ned as the number of gates on the longest path to `

from any of the primary inputs.

Induction Base: Let depth(`) = 0. Then, ` must be one of the primary input wires, and

the result holds by virtue of the de�nition of the � operator.

Induction Hypothesis: Assume the results holds for all wires ` of depth less than k, k � 1.

Induction Step: Let wire ` be at a depth of k. Then, ` is the output of a gate with inputs

i1 : : : in. Let g represent the Boolean function corresponding to the gate. Under 3-valued

simulation, these inputs are represented by a 3-valued vector �g of length n. Each of these

inputs lies at a depth less than k. We now show that the same correspondence holds for

output ` of gate g. There are 3 cases:

(1) The function g has value 0 for all inputs covered by �g, i.e. g(�) = 0 for each binary

vector � covered by �g. Then, in 3-valued simulation, g is simulated to 0, by De�ni-

tion 6.2. Thus, Simg
3�val(�g) = 0. In hazard simulation, let the input transition seen

by the gate be denoted by �g. By the induction hypothesis, �g 2 �(�g). Then, by
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de�nition of � each transient in �g corresponds to an X in �g, each 0 in �g corresponds

to a 0 in �g, and each 1 in �g corresponds to a 1 in �g. Therefore, by Proposition 6.0,

the reachable inputs during input transition �g are all covered by �g. Therefore, by

Proposition 6.1(a), the gate output is hazard-free under input transition �g, with value

0. That is, Simg
hazard(�g) = 0.

(2) The function g has value 1 for all inputs covered by �g. By a similar line of reasoning

as above, Simg
3�val(�g) = 1 and Sim

g
hazard(�g) = 1.

(3) g(�1) = 0; g(�2) = 1 for some �1; �2 covered by �g. Then, by De�nition 6.2, Sim
g
3�val(�g) =

X. By Proposition 6.0, all those inputs that are covered by �g are reachable. Therefore,

both �1 and �2 are reachable during the input transition �g. By Proposition 6.1, �1; �2 2
�: Combining this result with Proposition 6.1(c), we conclude that Simg

hazard(�) is a

transient value, i.e., one of f"; #; S0; S1; D+; D�g.

Since these three are the only scenarios possible, the proof is complete. 2

What we have shown above is that if indeterminacy at the input (i.e., a value of X) is

translated into an input transition (i.e., " or #) then indeterminacies on wires elsewhere in

the circuit manifest themselves as transitions or hazards on those wires.

We are now ready to give a corollary to this theorem that gives a precise equivalence

between non-simulatability and existence of a static hazard. But �rst, we give precise def-

initions of \simulatability" and \non-simulatability," terms which we have thus far used

informally.

De�nition 6.4 (simulatability/non-simulatability). Let a Boolean function f be

implemented by a gate level network of atomic gates G. Let � be any 3-valued input vector

for which we wish to simulate the circuit output. Then, implementation G is said to be

simulatable for input � if and only if all of the following hold:

1. Simf
3�val(�) = 1 if f(�) = 1 for all binary inputs � covered by �.

2. Simf
3�val(�) = 0 if f(�) = 0 for all binary inputs � covered by �.

3. Simf
3�val(�) = X if f(�0) = 0 and f(�1) = 1 for some binary inputs �0; �1 covered by

�.
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G is said to be non-simulatable for input � if it is not simulatable for �. 2

It can be easily proved that there are only two situations in which G can be non-simulatable:

1. Simf
3�val(�) = X and f(�) = 1 for all � covered by �, or

2. Simf
3�val(�) = X and f(�) = 0 for all � covered by �.

That is, for a non-simulatable implementation, simulation yields the value X even though f

is either functionally equal to 0 over all inputs covered by �, or functionally equal to 1 over

all such inputs.

The following key corollary now shows that non-simulatability implies existence of a static

logic hazard transition, and vice-versa.

Corollary 6.1 (non-simulatability () static logic hazard transition). Let f

be a Boolean function implemented by a gate level network of atomic gates G, and let � be

any 3-valued input vector. If G is non-simulatable for 3-valued vector �, then G has a static

logic hazard for each input transition � 2 �(�). Conversely, if G has a static logic hazard for

some input transition � 2 �(�), then G is non-simulatable for the 3-valued vector �.

Proof. By De�nition 6.4, if G is non-simulatable for � then Sim
f
3�val(�) = X. Then,

Theorem 6.1 implies that Simf
hazard(�) 2 f"; #; S0; S1; D+; D�g. That is, Simf

hazard(�) is a

transient. However, De�nition 6.4 also implies that f is either functionally equal to 0 over all

inputs covered by �, or functionally equal to 1 over all such inputs. Therefore, Simf
hazard(�)

has to be a static logic hazard.

To prove the converse, assume G has a static logic hazard for some transition � 2 �(�).

Then, by Theorem 6.1, Simf
3�val(�) = X. However, by de�nition of a static logic hazard, f

is either functionally equal to 0 over all inputs covered by �, or functionally equal to 1 over

all such inputs. Therefore, by De�nition 6.4, G is non-simulatable for 3-valued input �. 2

6.2.4 Summary

The key result of the previous subsection was that given a 3-valued input, for simulatability,

the circuit should be static logic hazard-free for certain input transitions. Conversely, any

circuit realization that is free of static logic hazards for those input transitions, is also

logically simulatable.
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6.3 Combinational Logic Synthesis for Initializability

Corollary 6.1 provides a technique for combinational logic synthesis for initializability: (i)

identify the input transitions that span the 3-valued input vectors encountered in the group

face sequence, and (ii) synthesize a circuit that is free of static hazards for those input

transitions. We consider both 2-level and multi-level logic synthesis.

2-level: For the special case of a 2-level AND-OR implementation, the conditions for

hazard freedom have been presented in [15, 16, 12]. To eliminate static logic hazards ([12,

15]), constraints imposed on logic synthesis are of the form of required cubes. A required

cube is a cube that must be covered by some product term of the cover. Techniques for

minimization of hazard-free logic based on required cubes are well known [16, 17]. Moreover,

the input transitions are function hazard free, since the function value is all 0 (or all 1)

throughout the transition. Therefore, the constraints for static logic hazard-freedom can

always be solved [16].4

Multi-level: The duality between simulatability and hazard-freedom enables us to do

multi-level logic synthesis for simulatability as follows: (a) do 2-level hazard-free logic syn-

thesis on the appropriate input transitions that span the 3-valued vectors, and (b) use

multi-level transformations that do not introduce any static hazards (see [18]). Corollary 6.1

provides the basis for the correctness of this procedure. Alternatively, direct multi-level

hazard-free synthesis methods based on BDD's can be used [19].

7 Results

Tables 1 and 2 present the results of our synthesis-for-initializability method of Sections 5

and 6 on several synchronous state machine examples from the MCNC89 benchmark suite [20].

We compare our new method with both the Cheng-Agrawal method, and a base method.

Comparison of synthesis methods. For Cheng-Agrawal, we consider two variants.

Since the original Cheng-Agrawal method does not provide any special combinational logic

minimization step, the �rst variant we used, called CA, consisted of Cheng-Agrawal state

assignment for initializability followed by regular 2-level minimization. However, since Sec-

tion 6 of this paper demonstrated that combinational logic synthesis is critical to initializ-

4A simple proof that a solution always exists follows from the fact that a trivial cover that is the sum of
all the prime implicants will always satisfy all the static logic hazard-free covering requirements. Obviously,
this solution may be very expensive, but, in practice, when an exact hazard-free minimizer is used, the
overhead in satisfying hazard constraints is often negligible [16].

29



ability, we used a second variant that consisted of Cheng-Agrawal state assignment followed

by our combinational logic synthesis method of Section 6. We call this method CA+HF.

Finally, the BASE method we used consisted of optimal state encoding followed by \regular"

2-level combinational logic minimization; it does not consider initializability.

Results of our method were compared with BASE, CA and CA+HF using the following

two criteria: (i) e�ectiveness, and (ii) optimality. With regard to e�ectiveness (explained

later) our method outperformed the existing methods. With regard to optimality (as mea-

sured by metrics explained later), our method incurred low logic overhead in achieving

initializability.

Benchmark examples. Results for 14 state machines from the MCNC89 benchmark

suite are presented. Each machine was functionally initializable, and the same initialization

sequence was used for each synthesis method.

For each machine, the optimal state encoding constraints of [13] were �rst generated.

Then, the initializability constraints for each of the synthesis methods (except for the BASE

method which uses none) were generated. All the dichotomy constraints were then solved

to obtain a �nal state assignment.

Next, 2-level multi-output logic minimization was performed to synthesize a gate-level

circuit. The circuit was then simulated with a 3-valued simulator to verify whether or not

it was actually logically initializable for the synchronizing sequence used for its synthesis.

7.1 E�ectiveness of the synthesis methods

In Table 1 we focus on the most important property of the synthesized circuits: logical initial-

izability. We list whether or not the �nal gate-level implementation was actually initializable

by the synchronizing sequence used for synthesis, when simulated by a 3-valued simulator.

As expected, the trends show that logical initializability is generally enhanced as we move

across the table from left to right.

The BASE method fared poorest in initializability, whereas, as expected, OUR METHOD

produced the best results, since our method always guarantees initializability. All circuits

produced by OUR METHOD were logically initializable. In comparison, CA+HF cannot

guarantee initializability for two benchmarks, dk27 and dk512. The reason lies in the fact

that DCIC constraints are necessary to guarantee initializability, and CA+HF does not

use them. Therefore, as in the case of dk27 and dk512, while one particular implementation

30



Name BASE CA CA+HF OUR METHOD

dk14 � �
p p

dk15
p p p p

dk17 � �
p p

dk27 � � p p

dk512 � � p p

ex3 � �
p p

ex5 � �
p p

lion9 � �
p p

bbtas � p p p

bbara
p �

p p

beecount � �
p p

train11 � �
p p

s8 � �
p p

shiftreg
p p p p

Legend: � means synthesized circuit was uninitializable.
p

means synthesized circuit was initializable, but
not all implementations of this circuit that can
result from this method will be initializable.

p
means that all implementations of this circuit that
can result from this method are guaranteed initializable.

Table 1: Comparison of the correctness of the four synthesis methods
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produced by CA+HF may be initializable, another one may not be. Finally, a comparison of

the CA and CA+HF columns demonstrates the critical importance of our new combinational

logic synthesis step for initializability: using the same state assignment, 11 circuits in CA

were uninitializable, while all synthesized circuits were initializable using our constrained

logic synthesis method in CA+HF.

7.2 Optimality of the synthesis methods

BASE CA CA+HF OUR METHOD

No. of No. of No. of No. of No. of
Len. of n! 1 State n! 1 State n! 1 State n! 1 n! k State

Circuit No. of Sync. encoding code No. of encoding code No. of encoding code No. of encoding encoding code No. of
Name states Seq. cons. length gates cons. length gates cons. length gates cons. cons. length gates

dk14 7 2 32 5 25 35 5 25 35 5 26 35 0 5 24

dk15 4 1 9 4 17 9 4 17 9 4 17 9 0 4 17

dk17 8 3 34 4 17 26 4 17 26 4 19 28 0 4 21

dk27 7 4 19 3 8 24 4 9 24 4 9 22 1 4 9

dk512 15 4 101 6 19 113 6 19 113 6 20 113 1 6 19

ex3 10 2 31 7 18 35 7 17 35 7 18 36 0 7 19

ex5 9 2 35 7 15 40 7 16 40 7 17 39 0 7 16

lion9 9 3 22 7 8 36 8 8 36 8 10 31 0 7 10

bbtas 6 3 7 3 13 9 4 11 9 4 11 8 0 4 11

bbara 10 2 30 5 28 33 5 27 33 5 28 33 0 5 28

beecount 7 1 16 5 11 16 5 11 16 5 12 16 0 5 12

train11 11 2 42 10 10 50 11 11 50 11 12 49 0 11 12

s8 5 4 0 3 10 6 3 10 6 3 11 6 0 3 11

shiftreg 8 3 28 3 4 24 3 6 24 3 6 24 0 3 6

Table 2: Comparison of Synthesis Methods

Table 2 compares the optimality of the four synthesis methods as measured by several

parameters|(i) number of state encoding constraints, (ii) state code length, and (iii) number

of gates.

Number of state encoding constraints. The column \No. of n! 1 encoding cons."

lists the number of optimal encoding constraints plus the number of face embedding con-

straints (FEC's, or RFEC's) used for state assignment for initializability. For all of these

columns, only the number of irredundant constraints is listed; a constraint that is subsumed

by other constraints is not counted. Note that the number of dichotomy constraints is

a very rough indicator of the restrictiveness of those constraints; one more restrictive di-

chotomy may subsume several smaller dichotomies (e.g., f(abc; d)g is more restrictive than

f(ab; d); (ac; d)g).
Additionally, for OUR METHOD, the number of DCIC constraints is shown in the col-

umn \No. of n! k cons." Our method needed DCIC constraints for only two circuits, and,

moreover only one DCIC for each. We recall that DCIC constraints are critical for guarantee-

ing initializability. Thus, whereas existing methods may not always achieve initializability,

our method uses DCIC's to guarantee initializability often at very little cost.
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State code length. Code length, or the number of state bits used to encode the machine,

provides one parameter to compare optimality of the methods. As expected, the BASE

method always produced the shortest code length because it uses the least constraining

set of constraints. In all examples except one, OUR METHOD produced state encodings

that were the same length as codes produced by CA or CA+HF. In example lion9, OUR

METHOD produced a shorter encoding, using 7 state bits instead of 8. This indicates that,

while our face-embedding constraints, RFEC's, are less restrictive than the Cheng-Agrawal

face-embedding constraints, they had little impact on resulting code lengths. It is possible

that RFEC's will have a greater impact on larger examples. However, more importantly,

one should note that OUR METHOD guarantees initializability.

Gate count. The column \No. of gates" lists the number of gates used in the �nal

circuit implementation. From the table, it is clear that OUR METHOD incurs low logic

overhead over the BASE method in order to insure initializability (215 gates total used

by OUR METHOD for the 14 examples vs. 203 gates total used by BASE). A comparison

with CA and CA+HF also shows that the gate counts of circuits produced OUR METHOD

compare favorably with those of CA and CA+HF.

8 Conclusions

This paper has presented a new synthesis-for-logical-initializability method. The method

provides both a state assignment step, and a combinational logic synthesis step.

For state assignment, we introduced two sets of constraints. First, relaxed face embedding

constraints were presented. These constraints are safely relaxed versions of existing face-

embedding constraints [5]. Second, don't-care intersection constraints were introduced and

were shown to be critical for initializability.

For combinational logic synthesis, it was �rst shown that unconstrained logic minimiza-

tion can render a circuit logically uninitializable under 3-valued simulation. Next, necessary

and su�cient conditions on combinational logic for initializability were enumerated. Fi-

nally, synthesis methods to generate two-level and multi-level logic for initializability were

presented.

Combined together, given a functionally initializable speci�cation, our synthesis method

guarantees logical initializability for the resulting circuit under 3-valued simulation. Bench-

mark results show low logic overhead.
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