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Chapter 0 

Introduetion 

This thesis is about the design of digital VLSI circuits. Whereas LSI circuits 
perform basic functions such as multiplication, control, storage and digital-to­
analog conversion, VLSI circuits contain complex compositions of these basic 
functions . In many cases all data and signal processing in a professional or 
consumer system can be integrated on a few cm 2 of silicon. Examples of such 
"systems on silicon" can be found in 

• Compact Disc (CD) players, 

• Compact Disc Interactive (CDI) players, 

• Digital Compact Cassette (DCC) players, 

• Digital Audio Broadcast (DAB) receivers, 

• cellular radios and mobile telephones, 

• High-Definition TeleVision (HDTV) sets, 

• digital video recorders, 

• display processors, 

• car-navigation systems, 

• image processors, and 

• digital test and measurement systems. 

1 



2 Introduetion 

These systems generally process analog as well as digital sipnals, but the digital 
circuits dominate the surface of an IC. The memory neededj for storing interme­
diate results often covers a significant fraction of the silicon area. 

Systems on silicon tend to become more complex andl tend to increase in 
number. The increase in complexity follows from advanceinents in VLSI tech­
nology, and the rapid growth of the number of transistors i tegrated on a single 
IC. The constant reduction of the costs of integration makes integration econom­
ically attractive for an increasing number of systems. Also, .the rapid succession 
of generations of a single product increases the pressure dn design time. The 
ability to integrate systems on silicon effectively, efficiently, land quickly has thus 
become a key factor in the global competition in both consumer and professional 
electrooie products. This recognition has lead to a quest for design methods and 
tools that increase design productivity and reduce design times. 

At Philips Research a number of approaches to this goal are being investi­
gated [WD89,NvBRS88,LvMvdW*91]. One of these, viz. 'fVLSI programming 
and compilation to asynchronous circuits" forms the background of the research 
reported in this thesis. The central idea is that of viewing Vl.-SI design as a pro­
gramming activity, and thereby capitalizing on the achieveinents in computing 
science with regard to complexity bridling [Sei80,Rem81 ,vdS85,Mar89]. 

VLSI programming assumes a VLSI-programming language that provides 
the programmer with a suitable abstraction from the VLSI technology and circuit 
techniques. This abstraction allows systems on silicon to be designed by system 
(e.g. digital audio) specialists without detailed involvement of IC specialists. 
Ideally, this avoids the costly, time-consuming and error prone transfer of design 
data from system specialists to VLSI-circuit specialists. The degree of abstraction 
is constrained by the required cost and performance of the rJsulting IC. A VLSI 
programming language is thus a compromise between progra)11ming convenience 
and silicon efficiency. 

The automatic translation of VLSI programs into VLSI circuits is often called 
silicon compilation. This thesis proposes a compilation scqeme that results in 
asynchronous circuits. This relatively uncommon circuit st)de has specific ad­
vantages with regard to system modularity and IC power consumption. 

The central contribution of this thesis is that of handsh(lke circuits: an in­
termediary between VLSI programs and VLSI circuits. A handshake circuit is a 
network of asynchronous components connected by point-to-point channels along 
which components interact by means of handshake signaling; The role of an in­
termediary is generally that of separation of- more or less orthogonal -concerns. 
This introductory chapter continoes with taking stock of these concerns and ends 
with an overview of this thesis. 
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First we shall have a closer look at a particular system on silicon: a Compact 
Disc Decoder IC. This example shows the variety in interfaces, protocols and 
data types involved in system design. 

The next section examines the VLSI medium by means of the mainstream 
VLSI technology CMOS. A computation wil! be viewed in terms of voltage 
transitions on wires. Differences between synchronous and asynchronous circuits 
are explained by discussing how to deal with the phenomenon called inteJjerence. 

The final section contains a roadmap to this thesis and positions the handshake 
circuits as an intermediate form between VLSI programs and VLSI circuits. 

0.0 VLSI systems 

One of the key modules of the Compact Disc (CD) player is its chip set. Other 
key modules are: a laser-optica! piek-up, a turn table, and a user interface con­
sisting of a key-board and a display. Typically, the chip set consists of a servo 
controller, a decoder, a digital filter, a digital-to-analog converter, a DRAM, and 
a micro processor [Phi90]. There is a tendency towards single-chip solutions. 
The decoder has been selected to illustrate a number of issues relevant to VLSI 
programmmg. 

The main function of the decoder is to convert the digital signa! from the 
optica! disc into a digital (stereo) audio signa!. The block diagram of the decoder 
in Figure 0.0 has been adapted from [Phi90]. The main parts of the interface of 
the decoder are: 

• clock: crystal oscillator input ( 11.2896 MHz), 

• A: bit stream from the optica! piek-up (average bit frequency: 4.32 MHz), 

• B: disc-motor control signa!, pulse-width modulated (88.2 kHz, duty factor 
ranges from 1.6 %- 98.4 %), 

• C: interface to extemal DRAM of 16k x 4 bit (12 clock cycles fora single 
read or write access), 

• D: bit serial output of stereo samples (2 x 16 bit) with an error flag per 
sample in parallel (rate: clock/4 ~ 2.82 MHz), 

• E: subcode signa! to extemal microprocessor (bit-serial, in bursts of 10 bit 
at 2.82 MHz; one handshake per burst). 
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Figure 0.0: Simplified block diagram of the CompactDisc IDecoder SAA7310. 

The above overview indicates a variety in data rates and clock frequencies. Most 
frequencies are derived from clock by division. The incoming bit stream A, 
however, contains an implicit clock that must be recovered through frequency 
and phase detection. This doek frequency varies with the rotation speed of the 
disc. A feed back mechanism guarantees that on the average the incoming data 
rate matches the outgoing data rate. 

There is also a considerable variety of data types invol!Jed. The incoming 
data are a formated stream of bits. Frames of 32 symbols of 8 bit are extracted 
internally. The arithmetic applied to these symbols, as required for error correc­
tion, is in the Galois Field GF(28). The interfacing to the RAM requires address 
computations in natura! numbers in the range [0 .. 2 16). Aud(o samples are pairs 
of integersin the range [- 2 15 .. 2 15). A general-purpose VLSil-programming lan­
guage must be able to deal with this variety in data rates and data types. 

The behavior of VLSI programs is restricted to discrete events and discrete 
values. Conversion to and from time-continuous and/or coptinuous values re­
quires adapter circuits such as digital-to-analog converters. 
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The main submodules of the decoder are (with reference to Figure 0.0): 

• Demodulator: extracts a clean digital signa! and a clock signa! from the 
disc signa!. This digital signa! is then demodulated and converted into 
frames of 32 symbols of 8 bit, error flags and subcode information. The 
rate of the extracted clock signa! follows the rotation speed of the disc. 
This clock is local to the Demodulator. 

• Suhcoding processor: accumulates subcode words of 96 bit, performs a 
cyclic redundancy check (CRC), and sends the corrected word (80 bit) to 
an extemal microprocessor on an extemal clock. 

• RAM intelface: controts the traftic "Demodulator ---+ RAM ---+ Error cor­
rector ---+ RAM ---+ Error corrector". The extemal RAM is used for two 
distinct purposes: that of a tirst-in tirst-out queue (FIFO) to buffer the ir­
regularly produced data from disc, and that of a store for de-interleaving 
the symbol stream. 

• Motor-speed controller: controls the speed of the disc motor based on the 
degree of occupancy of the FIFO. 

• Error corrector: corrects the code words according to Cross Interleaved 
Reed-Solomon Code (CIRC) with a maximum of 2 x 2 errors per frame of 
32 symbols. 

• Interpolator!Muter: converts symbols in stereo audio samples, interpolates 
single errors and mutes in the presence of two or more successive erroneous 
samples. 

These submodules operate in parallel. lt is therefore hard to describe the behavior 
of the decoder in a traditional imperative programming language (such as Pascal, 
C or Fortran). The behavior of each submodule, however, can be conveniently 
described in such a language extended with appropriate primitives for input and 
output. 

This describes exactly the idea of Communicating Sequentia! Processes (CSP) 
as proposed by Hoare in [Hoa78], and forms the basis of the VLSI-programming 
language Tangram 0 developed at Philips Research. 

0Tangram is the name of an ancient Chinese puzzle [Eif76]. It consistsof a few, simple fonns 
(five triangles of three different si zes, one square and one parallelogram), a simple composition rule 
(forms may not overlap), and allows the construction o f a large variety of intricate and fasc inating 
shapes. This view on design also shaped our YLSI-programming language Tangram. 
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0.1 VLSI circuits 

A typical 1991 VLSI circuit is al most l cm 2 in si ze and consists of a bout I 00,000 
transistors, 100 meter wiring and 100 bonding pads. During its operation, when 
connected toa power supply, more than a 10 11 events (voltage transitions) may 
occur each second, of which often less than one percent are observable at the 
bonding pads. An event consumes about a picojoule of ener y; the power con­
sumption of a chip is usually less than one Watt. 

These rounded numbers apply to digital VLSI circuits manafactured in CMOS, 
the dominant VLSI technology of today. For state-of-the-art c~ ips the above num­
bers may be multiplied by an order of magnitude. The yearly world production 
of integrated transistors is in the order of I 0 1 S, or a bout a thousand transistors 
per world citizen per day 1

• 

Transitions 

The voltage transitions observable at the bonding pads are the only evidence of 
a computation going on inside a VLSI chip, apart from indirect evidence such 
as power consumption . We shall therefore first concentrare pn such events, in 
particular on their occurrences on wires. 

Wires are metal conductors usually conneering two or more (distant) transis­
tors. Electrically they can be regarded as capacitors to the IC substrate. Except 
for the very long wires, the metal area may be considered equipotential: differ­
ences in potenrial along the wire tend to equalize in a time period shorter than 
the switching time of a transistor 2 . For long wires and wire!'; made of material · 
with a high sheet resistance such as polysilicon this approximation is not valid. 
Then the transmission delays caused by wire resistance and the speed of light 
may no Jonger be neglected. 

A wire may be charged ("pulled up") through a path of transistors connected 
to the power-supply rail. Such a pull-up path usually consi ts of pMOS tran­
sistors, a type of transistor that conducts when its gate potenrial is low, i.e. 
connected to an uncharged wire. Similarly, wires may be discharged ("pulled 
down") by a pathof nMOS transistors connected to ground. An nMOS transistor 
conducts when its gate potential is high. Often such paths may be merged, i.e. 

1 A sim i lar type of est i mate was presenled during an invited lecture de livered by G. Moore at 
the Decennia! Caltech Conf. on VLSI, 1989. 

2For equipotential wires the image of a voltage transition propagating a long a wireis false; when 
applied with care, the metaphor (as e.g. applied in the foam-rubber wrapper principle [Udd84]) 
may be useful. 
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individual transistors or combinations of transistors may be part of more than 
one path. 

Generally, the situation in which both a pull-up path and a pull-down path 
compete in charging and discharging a wire is avoided, or at least restricted to 
a very short duration. For langer durations this form of short-circuit dissipation 
may form a considerable power drain. 

When a wire is neither pulled up nor pulled down (it "fioats"), its potential 
may not be constant due to charge leakage. A circuit is staticifit has the property 
that its wires never float. If the fioating of wires is essential for the operation of 
a circuit, the circuit is called dynamic. 

Interference 

So far, it was tacitly assumed that voltage transitiOns are complete, i.e. they 
praeeed all the way from the ground to the supply voltage or vice versa. But 
what if the (dis-)charging of a wire is interrupted? Figure 0.1 depiets two wires 
a and b and an nMOS transistor n. 

b 

vr 
a -------1 

round a 

t_, 

Figure 0.1: lnterference occurs e.g. when wire a is discharged during the dis­
charging of b. 

When wire a has a high potential, the nMOS transistor farms a conducting 
path between wire b and ground. Assume that b is being discharged through 
n, and the potential on a drops to the ground level: the discharging of b is 
interrupted. Wire bis discharged partially and its potential is somewhere between 
the ground and the supply voltage. In such a situation, the transition on a is said 
to inte1jere with the transition on b. The transistors controlled by b may or may 
not have changed their state of conductance, and may or may not be involved in 
(dis-)charging other wires, et cetera. If b is subsequently recharged, the effect of 
this "runt" pulse on other wires critically depends on sizes of currents, capacitors, 
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threshold voltages of transistors and the time interval betw en the two events. 
The runt pulse may have caused a multitude of partial or omplete transitions 
on other wires, or not. Similar complications occur when th discharging of b is 
interrupted by a short period of charging. Figure 0.2 gives e amples of a proper 
transition (monotonie and complete), a runt pulse and a non- onotonic transition. 

VT 

(a) t---+ (b) t---+ (c) t---+ 

Figure 0.2: A proper transition (a), a runt pulse (b), and a nbn-monotonic tran­
sition (c). 

There are two ways of dealing with interference: 

• Accept the possibility of interference, but insist that at specific moments 
the mess has cleared, i.e. the circuit is in a quiescent state and all wires 
are stabie at well-defined potentials. Synchronous timing disciplines are 
based on this principle: an extemally supplied clock defines the moments 
at which the circuit must be quiescent. 

• Avoid interference: guarantee that all transitions are mönotonic and com­
plete. Many asynchronous timing disciplines are based on this principle, 
self-timed and delay-insensitive being two of them. 

The overwhelming majority of today's digital VLSI circuits are synchronous. 

Proper transitions 

Our interest in asynchronous circuits justifies some elaboration on the notion of 
proper transition. A nice and effective way to capture all requirements on proper 
transitions is by means of a phase diagram as proposed in [Bro89]. The evolution 
of the voltage of a wire in time is then reeordered by a so-called trajectory in the 
space (V, dV / dt). The values of V and dV/ dt are bounded by

1 
a doughnut shape 

as in Figure 0.3. With this choice of axis orientations, changes in V result in 
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V 

J!Y 
dt 

9 

Figure 0.3: Phase and time diagramfora runt pulse foliowed by a non-monotonic 
transition. 

counter-clockwise trajectories. Lower bounds on (V, dV / dt) exclude runt pulses 
and non-monotonic transitions as illustrated in Figure 0.3. 

The thickness of the doughnut determines amongst others the margins in the 
voltage to count as logica] false or true. Within these margins runt pulses may 
occur, as illustrated in Figure 0.4. The doughnut also bounds the slope of a 
transition. This is significant, because different transistors may change their state 
of conductance at different voltage levels of the cantrolling gate. Transistors 
controlled by the same wire may then "observe" the same transition at different 
moments. Bounds on the slope of a transition therefore effectively limit these 
time differences (cf. isochronie forks in Section 7 .5). 

V 

J!Y 
dt 

Figure 0.4: Phase and time diagram for two proper transitions in succession. 
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Asynchronous circuits 

The method addressed in this thesis aims at the design of synchronous VLSI 
circuits. The key question is then how to guarantee absence o· interference. How 
to control the timing and dependencies of billions of transi ions in such a way 
that the integrity of every single transition is assured? 

The central idea is to construct the circuit from elementary circuits that in­
dicate by means of transitions on output wires that transitiops on specific input 
wires will not eau se interference3. Circuits organized according to this principle 
are said to be se/f-timed [Sei80] 

De/ay-insensitive circuits are a restricted form of self-timed circuits. A cir­
cuit is delay-insensitive if the absence of interference does not depend on any 
assumption a bout delays of these elementary circuits and wires [ vdS85]. In 
delay-insensitive circuits only point-to-point wires between elementary circuits 
are allowed, i.e. wires that conneet one output to one input. A major advantage 
of delay-insensitive circuits is their modularity : a delay-ins~nsitive composition 
of subcircuits will operate correctly, regardless of the response times of the sub­
circuits and regardless of the delays introduced by the co~necting wires. An 
appraisal of delay-insensitive circuits is given in Section 8.1. 

The constituent elementary circuits of self-timed and delay-insensitive circuits 
may be of arbitrary size, ranging from an inverter to an etnbedded self-timed 
RAM. It is attractive to have a finite set of elementary circuits from which delay­
insensitive circuits can be constructed for any specification. Such a universa! 
basis of elementary circuits has been proposed in [Ebe89]. Unfortunately , circuits 
constructed from this basis exclusively tend to be unpractically large. 

A more practical set of elementary circuits has been proposed by Mar­
tin [Mar85b]. These elementary circuits are called VLSJ operators and form 
a generalization of the traditional gates. Unfortunately, the class of delay­
insensitive circuits that can be constructed from VLSI operators is severely re­
stricted [BE90]. With the so-called isochronie fork as only concession to delay 
insensitivity [Mar90] reasonably efficient circuitscan be constructed (cf. Section 
7.5). 

3The requirement of absence of interference restricts the behavior of the environment as wel!. 
In some cases this may be too restrictive. For instance, the handling of concurrent requests for 
a single resource requires a circuit that assures mutual exclusion. Inside ~uch a mutual-exclusion 
circuit interference cannot be avoided . lt is a good idea to localize the interfering transitions inside 
e leme ntary circuits such as 'arbiters. 
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Cost and performance issues 

A 1991 CMOS transistor is less than 10 J..lm2 in area. Th is would allow for 
a packing density of over 100,000 transistors per mm2. The densest practical 
circuits are embedded memories with about 10,000 transistors per mm2. The 
average density in other VLSI circuits is a1most an order of magnitude below 
this number. The almost two orders of magnitude difference between possible 
and practical transistor density is caused by wires. A quick glance at any VLSI 
circuit layout shows that wires dominate the circuit area and therefore production 
costs. The area of an IC is still a most critica] resource: 20 % area overhead in 
a competitive market is considered a serious handicap, and 50 % area overhead 
is usually acceptable only for prototype circuits, or for small series. 

The time it takes to (dis-)charge a wire is proportional to its capacitance, 
and, for a given width, this is proportional to its length. For average wires this 
is about 1 nanosecond. For longer wires this may exceed lO nanoseconds. The 
switching time of a transistor is well below l nanosecond. Clearly, the wires 
determine the operating speed of a VLSI circuit. 

For a given power-supply voltage, the energy consumed by a single event is 
proportional to the capacitance of the wire on which it occurs. Consequently, 
the energy required for a computation depends on the number of events and the 
lengths of the wires involved. For a given set of events the wires determine 
the energy consumption of a circuit. More and more often these systems on 
silicon end up in portable products such as walkmans and notebooks. Efficient 
usage of battery power is then an important design consideration. Asynchronous 
circuits potentially consume less energy, because there is no energy used for 
clock distribution and no energy is wasted in interference. 

In summary: wires dominate concerns for cost and performance in every 
respect. The wires delermine the area, the computation time and the energy 
consumption [SM77,Sei84]. Every VLSI design method, existing or novel, must 
acknowledge this fact. 

Testing 

The VLSI fabrication process is extremely comp1icated. For moderately sized 
circuits the yield is about 50 %, i.e. 50 % of the manufactured circuits fu nction 
correctly. For complex circuits in an advanced technology the yield may well 
be below 10 %. To make things worse, for larger circuits the yield decreases 
exponentially with the circuit area. This has two important consequences: circuit 
area is a most critica! resource and there is a test problem. 
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The problem of testing is how to discriminare between~ correct circuit and 
a faulty circuit. This bears no relation with software testin . It is assumed that 
the circuit design is correct and that a possible malfunctio ing is caused by a 
defect introduced during the fabrication of the circuit. For 4dvanced production 
technologies such defects cannot be avoided: their density is about 1 per cm2 . 

The problem of testing consists of two parts: 

• bring the circuit into a state where an assumed fault akes a difference in 
the subsequent computation; 

• detect this possible difference. 

Given the exorbitant number of possible faults and circuit states on the one hand 
and the limited number of pads to control and observe the circuit behavior on 
the other hand, it is clear that the test problem is a hard orte, in every respect. 
Testing of circuits is also costly: provisions for enhancing the testability of a 
circuit and executing tests may well account for 10 to 30 % of the price of an 
IC. 

Given the complexity of testing, the user of an IC is not in a position to 
test an IC effective1y. It is the joint responsibility of the circuit designer and 
the manufacturer. A novel VLSI-circuit design method without a systematic, 
effective and affordable test method simply is not viable. 

0.2 Overview of this thesis 

Handshake circuits are intended as an intermediary between VLSI programs and 
VLSI circuits. It thus separates concerns for systematic and efficient VLSI­
programming from concerns at the VLSI-circuit level, such :as absence of inter­
ference, data encoding, initialization, and testing (cf. Figur.e 0.5). The narrow 
waist of the "hourglass" is intended to reftect the clear separation realized by 
handshake circuits. 

Handshake circuits can also be considered as a VLSI architecture. According 
to Webster's Ninth New CoJlegiate Dictionary [Mis87] one of the meanings of 
architecture is "a unifying or coherent form or structure". Handshake circuits 
unite control, storage, communication, logic and arithmetic in a single structure, 
supported by a single form of interaction: that of handshake signaling. 

An overview of this thesis is presented with reference to Figure 0.6. By 
means of a variety of examples Chapter 1 presents an informal introduetion to 
Tangram and handshake circuits. Concerns for cost and performance get special 
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Figure 0.5: Handshake circuits: a separation of VLSI programming and VLSI 
circuits concerns. 

attention, as they make VLSI programmingdifferent from (and also more difficult 
than) traditional computer programming. 

The body of this thesis is a theory for handshake circuits. The key notion 
is that of handshake process. A handshake process is a mathematica! object that 
describes a handshake-communication behavior. This handshake behavior may 
be that of the components of a handshake circuit (Chapter 2). 

A handshake circuit is a set of handshake processes that satisfy a simple 
composition rule (Chapter 3). The behavior of the handshake circuit is defined 
through parallel composition '11' of its constituent components, and is, again, a 
handshake process. In Appendix A the delay insensitivity of handshake circuits 
is related to the theory reported in the literature. 

Chapter 4 develops a calculus for handshake processes. This calculus allows 
concise descriptions of behaviors of handshake components. 

In Chapter 5 a precise definition of Tangram is given. For a subset of Tan-
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Figure 0.6: An overview of this thesis (numbers denote chapters). 

gram, which we call Core Tangram, a forma! denotation 'H' is given in terms 
of handshake processes. Here we use the calculus of Chapter 4. In Appendix B 
a link to the well-known failure semantics of CSP is established. 

Chapter 6 describes the translation of Tangram programs into handshake cir­
cuits by means of the mathematica! function ' C'. For Core 1angram it is proven 
that the behavior of the compiled handshake circuit is equivalent to that of the 
original program in a well-defined sense. 

The realization of handshake circuits in YLSI is the subject of Chapter 7. 
Duc to the variety of issues and the large number of choiceb involved we have 
not pursued completeness here. Issues such as peephole optimization, handshake 
refinement, data encoding, decompositions into YLSI-operator networks, initial­
ization and testing are discussed in varying degrees of depth and completeness. 

Chapter 8 discusses some practical experiences with YLSI programming and 
silicon compilation at Philips Research. 



Chapter 1 

Introduetion to Tangram 
and handshake circuits 

1.0 Introduetion 

This thesis pursues a programmingapproach to the design of digital VLSI circuits. 
In such an approach the VLSI-system designer constructs a program in a suitable 
high-level programming language. When he is satisfied with his program the 
designer invokes a so-called silicon compiler which translates this program into 
a VLSI-circuit layout. 

The choice of the programming language is a crucial one, for it largely 
determines the application area, the convenience of design, and the efficiency of 
the compiled circuits. A good VLSI-programming language 

0. is general purpose in that it allows the description of all digital functions; 

1. eneaurages the systematic and efficient design of programs by abstracting 
from circuit, geometry and technology details; 

2. allows the automatic translation into efficient VLSI circuits and test pat­
tems. 

Below follows a motivation for these requirements. 

0. A wide range of applications is required to justify the investment in tools 
and training. 

1. A major gain in design productivity can be expected by designing in a pow­
erful high-level language. Furthermore, system designers do not need to 
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resort to VLSI specialists. Systematic design methods I supported by math­
ematica! reasoning, are required to deal with the over helming complexity 
involved in the design of VLSI systems. 

2. Automatic translation to VLSI circuits avoids the intr duetion of errors at 
the lower abstraction levels. It also becomes attractive to design alternative 
programs and compare the translated circuits in costs nd performance. 

Any such language is of necessity a compromise bet ·een convenience of 

design and efficiency of the result. 

Traditional programming languages such as Pascal and C can be considered 
for this purpose. However, these languages were conceived for the sequentia! 
execution on a specific architecture. It is not at all clear how to benefit from the 
parallelism so abundantly available in VLSI, when the program describes a total 
order of all elementary computation steps. On the other hand, these so-called 
imperalive programming languages are successful in that they are general purpose 
and offer a good compromise between convenience of design and efficiency of 
the compiled machine code. 

In an effort to add parallelism to the traditional sequentia! programming lan­
guages, Hoare developed Communication Sequentia! Processes [Hoa78]. CSP 
soon became an important vehicle for the (theoretica!) study of concurrency in 
computing science. lt also was the basis for OCCAM [INM89] , a Janguage suit­
able for programming networks of microprocessors. The suitability of CSP-based 
languages for VLSI programming has been addressed in [Mar85a,vBRS88]. 

In terms of CSP a VLSI circuit can be described as a fixed network of 
processes connected by channels. These processes are simultaneously active and 
co-operate by synchronization and the exchange of messages along channels. The 
behavior of each processcan bedescribed in a C or Pascal-like language to which 
proper primitives for synchronization and communication have been added. 

If one considers the translation of such programs into circuits, it is attractive 
to preserve the parallelism of the program by translating ieach process into a 
subcircuit, and by translating each channel into a set of wire~. This "transparent" 
way of translating programs into circuits has the advantage that the pregrammer 
has control over the efficiency and performance of his circuits. 

Figure 1.0 depiets an example of a network of three communicating processes 
P, Q and R. The arrows indicate the directions of data transport along the 
channels. Channel a is an input to P, b is an input channel that forks to two 
processes, and e is an output channel. Channels c, d and f do not convey data: 
they are used for synchronization only. 
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Figure 1.0: Communicating Sequentia! Processes. 

One of the attractions of CSP is that it allows arbitrary numbers of processes 
of arbitrary complexity. The table below gives an impression of what can be 
realized in a single 100,000 transistor IC in terms of communicating processes. 
For a single IC the product of the degree of parallelism and the grain size (size 
of each process, measured e.g. in number of transistors) is more or less constant. 

degree of # processes # transistors example 
parallelism I process 
sequentia) I lOOk microprocessors 
coarse-grained 10 !Ok digital audio (CD) 
fine-grained 100 lk systolic arrays 

So far the notion "process" has been used rather loosely. In the sequel it 
is used to denote the set of observable communication behaviors of an object, 
irrespective of how the object is organized intemally. The behavior of a network 
of processes can also bedescribed as a single process. A program is an alternative 
way to define a process. 

This thesis uses Tangram as a VLSI programming language. Tangram has 
been developed at Philips Research. It is based on Hoare's CSP [Hoa85] and 
includes Dijkstra's guarded-command language [Dij75]. 

The translation of Tangram programs into VLSI circuits has so-called hand­
shake circuits as an intermediary. Handshake circuits are networks of elementary 
asynchronous processes that communicate according to a handshake protocol. 
These elementary processes are called handshake components. The translation 
of Tangram programs into handshake circuits requires a modest set of different 
handshake components. The translation method is highly transparent, which al­
lows the VLSI programmer to infer cost and performance of the compiled circuit 
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fairly directly from his Tangram program. 
This chapter gives an informal introduetion to Tangram by means of a series 

of small programs. For many of the programs or program fragments the corre­
sponding handshake circuits are presented. The examples have been chosen so 
as to cover most of Tangram, and to give a flavor of VLSI rogramming and the 
translation of Tangram programs into handshake circuits. 

1.1 Some simple Tangram programs 

One of the simplest Tangram programs is BUF 1 (a , b), a one-place buffer: 

(a?W & b!W)·I[.:r: var W I #[a?x; b! x lJI 

where W is an arbitrary type, e.g. boot or the integer range [0 .. 256). The opening 
pair of parenthesis contains the declarations of the extemal ports of BUF 1 (a, b). 
Port a is an input port of type W and port b is an output port of the same type. 

The segment of Tangram text following the dot define the behavior of the 
program. This behavior is described by a so-called commarzd (statement). Here 
the behavior is described by a block command, in which the local variabie x of 
type W is introduced. The brackets Ï[' and 'JI' delineate the scope of x. The 
bar 'I ' separates the local declarations from the command. 

Command #[a?x; b!x] defines an infinite repetition of input action a?x 
foliowed by output action b!.:r. Execution of command a?a: amounts to the re­
ception of an incoming value through a and the storage of that value in variabie 
x. Command b!x denotes the sending of the value of x through b. 

In summary, BUF 1 (a, b) repeatedly receives a value through a and sends that 
value through b. The variabie x is merely a container to store the incoming 
value between the two communication actions. The identity of x and its role in 
the operation of the buffer cannot be observed extemally, kince .:r is effectively 
concealed by the scope brackets. Only the extemal communications through a 

and b can be observed. If type W is the range [0 .. 1 0), a possible observation of 
BUF 1 (a, b) is: 

a:3 b:3 a:9 b:9 a:9 
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where a: v denotes the communication of value v through port a. Such a fini te 
sequence of communications is called a trace. 

A slightly more interesting program is that of two-place buffer SUF2 (a , c): 

(a?W & c!W)·j[b: chan W I (SUF,(a , b) 11 SUF,(b, c))J I 

This two-place buffer is a cascade of two instances of SUF1• The output of the 
first instanee is connected to the input of the second. Both instances operate in 
parallel, as denoted by '11 '. Cascades of in stances of SUF 1 are called "ripple 
buffers". 

- SUF1 (a , b) SUF 1 (b , c) 
a b c 

The internal communication along channel b has two aspects. Firstly, it requires 
simultaneous participation of sender and receiver. In other words, the output 
action of the Ie ft B U F 1 and the input action of the right SUF 1 form a single 
communication act ion. Secondly, a communication has the effect of the assign­
ment action xr := x l, where x l and xr are aliases for the variabie x in the left 
and right buffer instanee respectively. 

Communications along b are concealed by the scope brackets around the 
declaration of channel b. The communication behavior of SUF2 (a, c) is more 
interesting than that of SUF 1 (a , c). In addition to all the traces of the one-place 
buffer (with their output port renamed), a trace such as: 

a:3 a:9 c:3 c:9 a :O c :O 

may be observed. True to its name, the two-place buffer allows the number of 
input communications to exceed the number of output communications by two. 

A quite different program is TEE( a, b, c) : 

(a?W & b!W & c!W)·(SUF,(a,b) 11 SUF,(b, c)) 

It is a two-place buffer where the intermediate channel b is not concealed, but 
declared as an output port: 

SUF 1(a,b) SUF1(b, c) 
a c 

b 



20 Introduetion to Tangram and handshake circuits 

A communication along a channel that connects a single ender to multiple re­
ceivers is sometimes called a broadcast . A broadcast requi es simultaneous par­
ticipation of the sender and all receivers. A possible obse ation of TEE( a, b, c) 
IS: 

a:3 b:3 a:9 c:3 b:9 c:9 a:O b:O 

The external behavior of the program below is identical o that of BUFz(a, c). 
The program is named WAG(a, c) [vBRS88], because it b haves in a wagging 
fashion intemally: 

(a?W & c!W)·I[x,y: var W I a?x;#[(a?y 11 c!x ); a?x 11 c!y)]]l 
I 

Inputs are alternatingly written intovariables x and y. Similarly, the outputs are 
alternatingly read from the same variables. After the first Input WAG(a , c) may 
proceed with a second input ("buffer full'') or with an output ("buffer empty"). 
A second input must then be foliowed by an output or vice versa. Etcetera. 

WAG(a, c) is interesting, because its behavior cannot be distinguished from 
that of BUF2(a , c). Still, the compiled circuits differ considerably, as do their 
cost and performance. This will be shown in the next sections. 

1.2 Some simple handshake circuits 

This section presents the handshake circuits for the various buffer programs of 
the previous section. lts main purpose is to develop an intuitive understanding of 
the operation of handshake circuits and the way they are generated from Tangram 
programs. The forma! definition of handshake circuits is presented in Chapter 3. 
The translation method is described in depth in Chapter 6. 

Handshake circuit for BUF1 (a, b) 

Figure 1.1 shows a handshake circuit for BUF1 (a , b). lit consists of 5 hand­
shake components (depicted by circles), 5 channels (labeleÇ c, d, e, wx and rx) 
and 3 ports (labeled t>, a and b). Handshake components oommunicate through 
(handshake) ports. A channel connects one passive port (6epicted by an open 
circle) to one active port (depicted by a fat dot). The communication along 
these channels is by means of a simple two-phase handshake protocol, in which 
the active side requests for a communication and the passive side responds by 
retuming an acknowledgement. 

In the handshake circuit for BUF 1 (a, b) the active ports a and b correspond to 
the Tangram ports with these names. The passive port t> (pronounced as "go") 



Same simple handshake circuits 21 

a b 

Figure 1.1: Handshake circuit for BUF1 (a, b). 

is the activation port of the handshake circuit. The environment activates the 
buffer by a request along f>. Only in the case of a terrninating program, which 
BUF1 (a, b) is not, does the handshake circuit acknowledge termination through 
the same port. 

The handshake component labelect with a semicolon is a sequencer. Once 
activated along c it sequentially perfarms handshakes along d and e, befare it 
returns an acknowledgement along c. It implements the semicolon that sepa­
rates the input and output commands in the Tangram program. Unless explicitly 
indicated otherwise, the activation of the two active ports is counter-clockwise. 

The component labelect with a '#' implements infinite repetition and is there­
fore called a repeater. Once activated along f> it repeatedly executes handshakes 
along c, causing the repeated activation of the sequencer. The repeater never re­
turns an acknowledgement along f>. 

Component .1: is a variable. A value can be written into x by sending it 
along channel wx. The acknowledgement along wx signals completion of the 
write action. Similarly, reading the variabie starts by sending a request along rx 
(against the direction of the arrow). Component x responds by sending the most 
recently written value. 

The two components labelect with a T are so-called transferrers. A request 
along d results in an active fetch of a value along a; this value is subsequently 
passed actively along wx. The left transferrer implements a?x and the right 
transferrer implements b!x. 

Observe that the structure of the handshake circuit of BUF 1(a,b) clearly 
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reflects the syntactic structure of the Tangram program. 

Handshake circuits for BUF2(a, c) 

lt> rt> 

a 

Figure 1.2: Handshake circuit for BUF2(a, c). 

A handshake circuit for BUF2(a, c) is shown in Figure 1.2. It introduces 
three handshake components. The two concentric circles en~losing a B represent 
instances of the handshake circuit of the one-place buffer. l The two one-place 
buffers are activated along l t> and r t> at the same time by the parallel com­
ponent after a request on t>. Only when the parallel cornponent receives an 

I 

acknowledgement through bath its active ports it wil! ackndwledge through t> . 
The handshake component labeled with a bullet is a synchronizer. It im­

plements the concept of "communication and synchronization" of Tangram. If 
a request for communication arrives along bath lb and rb the message arriving 
along lb is actively output along b. A subsequent acknowledgement along b 
results in a concurrent acknowledgements along lb and an output along rb. 

The concealment of the Tangram channel b is realized by connecting a run 
component to handshake channel b. This component simply acknowledges each 
message it receives. Removing component run results in a handshake circuit for 
program TEE( a, b, c), with output ports a and b. 

By expanding the two one-place buffers in the circuit of figure 1.2 the hand­
shake circuit of Figure 1.3 is obtained. The circuit clearly r;eflects the syntactic 
structure of the original program. The applied translation rpethod is syntax di­
rected in that it closely follows the syntactic composition of the program in 
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a 

Figure 1.3: Expanded handshake circuit for BUF2(a, c). 

constructing the corresponding handshake circuit. 

Such a syntax-directed translation may incur inefficiencies where subcircuits 
are combined in a way that only depends on their syntactic relation. Such ineffi­
ciencies can be removed by replacing smal! subcircuits by equivalent but cheaper 
subcircuits. This form of substitution is known as peephole optimization. One 
form of peephole optimization can be applied to the buffer of Figure 1.3: the 
result is shown in Figure 1.4. The component labeled '•' is again a synchronizer. 

The handshake components introduced so far all implement Tangram primi­
tives. Given the relatively smal! number of such primitives, the set of handshake 
components is modest in size. By providing an "equivalent" VLSI circuit for 
each handshake component and by wiring them according to the structure of 
the handshake circuit a VLSI circuit can be obtained. The circuits for many 
handshake components are simple and fixed. For handshake components such 
as variables and transferrers the circuit structure depends on the number of bits 
required to eneode the relevant data types. 

Handshake circuits are clockless. All synchronization is explicit by means 
of handshake actions between neighboring components. The scheduling problem 
of assigning a time slot to every primitive action is thus avoided. Furthermore, 

c 
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a c 

Figure 1.4: Optimized handshake circuit for Bt)F2(a, c). 

the absence of global synchronization avoids the timing overhead of aligning 
all primitive actions to clock transitions. Clockless oper(ltion combined with 
the locality of data and control make handshake circuits potentially faster than 
synchronous circuits. 

Although the buffers are about the simplest Tangram pwgrams one can think 
of, the design of synchronous "elastic" buffers offers considerable challenges. 
In particular, the synchronization of clocked input and output actions with an 
asynchronous environment involves complex circuitry and fundamental reliability 
problems [Ano73,Sei80]. 

Handshake circuit for WAG(a , c) 

A handshake circuit for WAG(a , c) is presenred in Figure 1.5. The three com­
ponents labelect 'I ' are so-called mixers. They have in common that handshakes 
through their passive ports are passed to their active ports. 

The component connected to a behaves like a demultiplexer. A request from 
either passive port is passed along a. The incoming message is passed to the 
side of the request. 

The mixer conneeled to c passes the incoming message from one of its two 
passive input ports to the active output. The acknowledgernent along b is passed 
to the side of the last incoming message (cf. multiplexer) . 

The third mixer is a multiplexer for synchronizing handshakes only. It allows 
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the transferrer connected to its active side to be activated by either of the two 
handshake components connected to its active ports. 

These mixers make the wagging implementation of the two-place buffer more 
expensive in area than the ripple implementation. 

a c 

Figure 1.5: Optimized handshake circuit for WAG(a , c). The numbers near the 
sequencers indicate the order of activation. 

1.3 Cost-performance trade-offs 

The programs for BUFz(a, c) and WAG(a, c) inSection 1.1 are functionally iden­
tical. The corresponding handshake circuits of Figures 1.4 and 1.5, however, 
differ considerably. In general, a range of Tangram programs can be designed 
that satisfy a single functional specification. The corresponding compiled circuits 
will differ in cost and performance. The best Tangram program is then the one 
that results in the smallest compiled circuit that satisfies the specified performance 
requirements. 
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With this view on VLSI programming it is important t at for a given func-
! 

tional specitl.cation a range of Tangram programs can be co~structed, covering a 
wide part of the cast-performance spectrum. An N -place s 1ift register serves as 
a vehicle to demonstrate the idea. 

Specification 

An N-place shift register, N 2 I, is a component with an input port, a, and an 
output port, b, of the same data type, with the following be~avior: 

• communications along a and b strictly altemate, starting with an output 
along b; 

• the sequence of values along b consists of N unspecified values, foliowed 
by the sequence of input values. 

This shift register wil! be denoted by SRN(a, b). Shift registers are common 
building blocks in VLSI systems, e.g. in various types of digital filters in signai­
processing applications. The processed messages are usually called samples. 

Note that in both aspects the behavior of a shift register differs from that of 
an N -place buffer. For an N -place buffer the difference in (he number of a and 
b communications may vary in time over the range [O .. N]. Also, the sequence 
of output values is a plain copy of the input sequence. 

Implementations of shift registers wil! be compared in cost and performance. 
Cost ultimately denotes silicon area and performance refers to the sample rate, i.e. 
the number of processed samples per second. In a final comparison nine different 
VLSI programs of an 8-place 8-bit shift register wil! be compared in terms of 
transistor count and average cycle time of the corresponding VLSI circuits. The 
transistor count is a reasanabie measure for the silicon area, by which we ignore 
the variation observed in wiring area. The cycle time is the time between two 
successive inputs (or outputs) and is the inverse of the sample rate. 

A cheap realization 

The simplest realization of SR 1 (a, b) is denoted by SRA(a, b) and is defined by 
the Tangram program 

(a?W & b!W)· I[x: var W I #[b!.x; a?x]]l 

where W denotes the data type of the samples. Note that the ,repetition command 
closely resembles that of a 1-place buffer. The only difference is in the order of 
the input and output command. 
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SRM(a, b) SRN(b, c) 
a b c 

Figure 1.6: SRcM+NJ(a, c) composed of two shift registers with a smaller capacity. 

For the construction of an N -pi ace shift register a well-known cascade prop­

erty of shift registers is used (see Figure 1.6): 

l[b: chan W I SRM(a, b) 11 SRN(b, c)]l = SRuvi+NJ(a, c) 

A realization for SRN(a, b) can now be obtained by cascading N instances of 
SRA. This salution will be denoted by AN. 

Note that AN is capable of producing N outputs before doing its first input. 
Moreover, after these initia) N outputs the behavior is that of an N -place buffer. 
On closer inspection, is AN really an implementation of SRN(a, b)? 

It depends. If the environment relies on the alternation of b and a communi­
cations then definitely not. If the environment enforces this altemation, AN is an 
acceptable realization. In order to avoid forther confusion, the first requirement 
of the specification of SR N(a, b) is redefined as: the following composition must 
not deadlock: 

SRN(a, b) 11 l[x, y: var W I #[b?.:x: 11 a!y] ll 

Note that the specification is relaxed to the extent that the i th input and the i th 
output may occur concurrently. 

What can be said about the performance of AN? Afterits first output, the 
last cell in the cascade is ready to do an input: "it is vacant". This vacancy 
then propagates backwards to the input of AN and it takes N - 1 successive 
internal assignments before an input action can occur. The cycle time is therefore 
proportional to N. The time an 8-bit assignment takes will be chosen as a time 
unit. A reasanabie value for this time unit in current VLSI CMOS technologies 
is 25 nanoseconds. For an 8-place 8-bit shift register the cycle time is then 8 time 
units, or 200 nanoseconds. It depends on the performance requirements whether 
200 nanoseconds are acceptable or not. 

The cost of AN is modest. It takes only N variables, which is obviously a 
lower bound for SR N(a, b). 
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Fast realizations 

An alternative realization of SR 1(a,b) is SRB(a,b). It consits of an instanee of 
SRA and a 1-place buffer: 

(a?W & b!W)·I[x, y: var W & c: chan W I #[c!x; a? ·] 11 #[c?y; b!y)JI 

SRB resembles a traditional synchronous shift register comp sed of master-siave 
flipflops. The SRA part assumes the role of the master, th~ 1-place buffer that 
of the slave. Input and output actions may overlap in ti1e. In contrast to a 
synchronous shift register (and with SRA for that matter) SRB may start with an 
input. Shift register SRB(a, b) can be rewritten into SRC(a, b): 

(a?W & b!W) · I[x,y: var W I #[(b!y 11 a?x);y := x]]i 

SRB and SRC are very close in terms cost and performance (SRC is slightly 
cheaper, because of its simpter control structure). 

By cascading N instances of SRC we obtain a second realization of SRN(a, b). 
This realization will be denoted by eN. Because each SRC section has its own 
vacancy, the behavior of eN is markedly different from that of AN. For the 
analysis it is assumed that when the environment is ready to participate in an 
input or output action, it does so without delay. Then t~e input and output 
actions of each individual SRC occur simultaneously, and all N stages operate 
in harmony. As a result the sample rate is independent o,f N, and the cycle 
time amounts to only two time units (50 nanoseconds). The price for this nice 
performance is substantial: eN requires 2N variables, twic~ that of AN. 

Given the substantial difference in cost and performaode between AN and 
eN one may wonder if intermediale solutions exist. Indeed, by introducing one 
or more SRC cells in a sequence of SRA cells, intermediale solutions can be 
obtained of the form eK AN-K, with 0 :S K < N. The solid circles in Figure 
1.8 indicate the average cycle time and transistor counts for five shift registers 
of this kind, with K equal to 0, I, 2, 4 and 8 respectively. The cycle times were 
obtained by simulation of the compiled handshake circuits. The timing models of 
the handshake components have been calculated from the timing characteristics 
of their constituent VLSI operators. 

The realizations described so far have in common that ~he messages ripple 
through a cascade of N cells. Hence, they will be referred to as ripple shift 
registers. 
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Still faster realizations 

One may wonder whether eN is the fastest possible shift register. Equivalently, is 
two time units the minimum cycle time? By putting two shift registers in parallel, 
and by serving them altematingly, faster shift registers can be constructed (see 
Figure 1.7). Shift registers based on this structure will be referred to as wagging 

shift registers. In order to keep matters simple, N is restricted to even values. 
SRD(a, c, e) de-interleaves the incoming sequence by sending the incoming 

values altematingly along c and e: 

(a?W & c!W & e!W)·I[x,y: var W I #[(c!x 11 a?y);(e!y 11 a?x))]l 

SRE(d, j , b) interleaves the incoming sequences by receiving inputs altematingly 
along d and f: 

(d?W & f?W & b!W)·I[x ,y: var W I #[(b!x 11 d?y);(b!y 11 f?x)JJI 

SR(N/2-l)(c, d) 
c d 

a b 
--~ SRD(a, c, e) SRE(d, j, b) 

e f 
SR<N/2-l)(e, j) 

Figure 1.7: The wagging shift register. 

Both SRD and SRE have a cycle time of one unit, measured at the input and 
output respectively. Unfortunately, due to some additional overhead in control 
and data routing, the real cycle time is somewhat larger. For 8-bit messages 30 
nanoseconds is realistic. 

For the two parallel shift registers ripple implementations can be used, e.g. 
composed of SRA and SRC cells. A regular communication behavior is obtained 
by taking identical cell sequences for SR(N/2_ 1)(c, d) and SR<N/2-l)(e, j). 
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Figure 1.8: Cycle time versus transistor count for nine different 8-place 8-bit shift 
registers. Solid circles represent ripple solutions, open circles wagging solutions. 

In Figure 1.8 the compilation and simulation results for four triplets for 
SR3(c,d) and SR3(e,f) (from slow/small to fast/large): A 3, eA2, e 2A and e3. 

Due to the aforementioned overhead, e2 A is barely an impravement over eA2. 
For the same reason e3 offers no advantages over e2 A. 

Discussion 

One type of realization has not been considered: array-based solutions. Such 
an array can be mapped on a Random Access Memory (RAM). Array-based 
realizations are attractive for large N, because of the very small area/bit of 
a RAM. For smal! N, array-based solutions are less attractive due to an area 
overhead of circuitry for timing, control and addressing. 

Despite the simplicity of the specification of SRN(a , b) an interesting range of 
implementations has been realized. lf we ignore the wagging solution with cel! 
sequence e3, all implementations have different cycle times and different costs. 
Among these eight solutions there is no best solution. Depending on throughput 
requirements, each of these eight implementations may be the best, except es. 

Even totally different considerations may part of the cast/performance trade­
off, for example energy consumption. An 8-bit assignment consumes approxi-
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mately a quarter of a nanoJoule. A reasonable measure for the energy consump­
tion of a ripple buffer is then the number of moves made by a single message 
from input to output, viz. K + N. The power consumption of A8 running close to 
its maximum speed (5 Mhzsample rate) will then be approximately 10 mWatt. 
For C8 at 20 Mhz this amounts to 80 mWatt. Wagging solutions, on the other 
hand, are markedly economie in their energy consumption, because the path tra­
versed by a message is only half in Jength compared to that of ripple solutions. 
For instance, a message takes five moves to ripple through A3 . At 20 Mhz this 
results in a power consumption of 25 mWatt. Of course, more accurate esti­
mates for size, timing and power need to be provided by the silicon compiler and 
simulation tools. 

These concerns for cost and performance make VLSI programming differ­
ent from and also more difficult than conventional programming. Especially 
high-performance systems (e.g. digital video systems) may require detailed per­
formance analysis. But also for )ow-performance systems (e.g. digital audio 
systems) with critica) requirements on silicon area, balancing the performance of 
subsystems is important. 

From a VLSI-circuit perspective, these asynchronous shift registers also pro­
vide an interesting insight. AN requires one latch per section per bit whereas 
a master-siave flipflop requires two. In principle, no solution based on master­
sJave flipflops can beat AN in circuit size. Mimicking the behavior of AN with 
synchronous circuits requires complex timing/control circuitry. 

Although the sample rate of AN is Jow, the vacancy travels at maximal speed 
from output to input. With a few SRC cells, the intemal timing behavior becomes 
highly inegular. This form of inegularity is hard to capture in clocked circuits. 

In complex VLSI systems the different input and output ports often have dif­
ferent sample rates. Somelimes the samples are offered or consumed inegularly 
in time. Even if these rates are constant and identical , this need not be so for in­
tema! channels. Certain subcomputations have data-dependent processing times, 
or are invoked at irregular intervals, e.g. for handling exceptional situations. In 
such situations the absence of a clock opens new architectmal possibilities and 
trade-offs. 

1.4 More examples 

Buffers and shift registers are not very interesting from a data-processing point of 
view: the sequence of output message is basically a copy of the sequence of input 
messages. This section introduces Tangram constructs by which more interesting 
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programs can be described. Various small programs are uL d as illustrations. 
Where appropriate, the corresponding handshake circuits are given. 

An adder 

ADD(a, b, c) is a simple process that repeatedly accepts tw values of type W 
along its two inputs a and b and outputs their sum along c: 

ADD(a, b, c) = (a?W & b?W & c!W)·I[x, y: var W I #[(a?· 11 b?y); c!(x + y)JJI 

Expressions such as x + y may occur in assignments, outguts commands and 
guards (see later in this chapter). It wil! be assumed that the evaluation of an 
expression always terminates. However, if the result value does not "fit" its 
destination, the consequent behavior is not specified: the program may deadlock, 
or may proceed in some erratic way. ADD continoes properly as long as the 
value of x+ y is of type W. 

[> 

a 

c 

b 

Figure 1.9: Handshake circuit for ADD(a, b, c). 

The handshake circuit for ADD is presented in Figure ~.9. The handshake 
component labeled '+' is an adder. The expression x + j; is evaluated in a 
demand-driven fashion: 

0. a request for a sum is passed to the passive output of the adder; 



More examples 33 

I. the adder forks this request to its active inputs; 

2. the input values arrive at the inputs of the adder; 

3. their sum is output along the output. 

A simple FIR filter 

A Finite Impulse Response (FIR) filter is a process with a single input and a 
single output. The input and output communications strictly altemate, starting 
with an input. For a FIR filter of order N the output values are specified as 
follows. The value of the ith output, i 2 N, is generally a weighted sum of the 
N most recent input values. The N weights are generally referred to as the filter 
coefficients. The first N output values are left unspecified. 

A very simple FIR filter of order N can now be constructed by connecting 
ADD with a shift register: 

(a?W & b!W) · i[b: chan W I ADD(a,b, c) 11 SRJV(a,b)JI 

The ith output, i 2 N, is the sum of the ith input and the input with index 
i - N . Th is composition is depicted in Figure 1.10. Clearly, the input channel 
a is connected to both ADD and SR. In genera!, any number of receivers may 
be connected to a channel. The connected receivers must all participate in each 
communication along that channel. This is anothet example of broadcast. There 
may be at most one sender. 

SRN(a, b) ADD(a, b, c) 
a c 

b 

Figure 1.10: A simple FIR filter constructed from SR N(a, b) and ADD(a, b, c). 

A more general FIR filter program is discussed in [vBRS88], in which the 
degree of parallelism is parameterized. The program is a linear systolic array of 
N div M cells, where j\1 is a measure of the grain size of the parallelism. If 
M = N the program is sequentia! and requires a single multiplier. The other 
extreme solution is !V! = I: an array of N cells guarantees maximum throughput, 
but requires N multipliers. 
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A median filter 

A median filter repeatedly outputs the median value of th three most recent 
inputs. (Similar to the FIR filter, the sequence of output m ssages starts with a 
few unspecified values.) A Tangram program for the media filter is given by: 

(a?W & b!W). 

l[x, y, z : var W & .xy, y z, zx : var bool 
I #[ (z := y; y :=.x ; a?x 11 y z := xy) 

J I 

; x y := x ::; y 11 zx := z ::; x 
if zx = .x y _____, b! x 
0 x y=yz _____, b!y 
0 y z = z x _____, b! z 

fi 

The program segment if .. fi is a selection command [Dij75]. The if fi 
bracket pair encloses three so-called guarded commands. Guarded commands 
have the form B _____, S, where B is a Boolean expression and S a command. 
The execution of the selection command starts with the evaluation of the guards. 
If all guards are false the henceforth behavior program is left unspecifi ed. If at 
least one guard evaluates to true the command corresponding to a true guard 
is executed. If more than one guard is true, the choice which of command to 
execute is not specified. This nondeterminism can be resolved at compile time, 
or even at run time. Of course, for purposes of efficiency the programmer may 
strengthen the guards to make them non-overlapping. 

The following may help to understand the Tangram description of the median 
filter. Just prior to the execution of the selection command, the variables x, y 
and z contain the three most recent input values, in increasing age. At that point 
the three Boolean variables x y, y z and z .x have the values x ::; y, y ::; z and 
z ::; .x. The expression zx = x y is then equivalent to "x is the median value". 
The two other guards can be read similarly. 

Note that if x = y = z all three guards evaluate to true. The correspond­
ing nondeterministic selection of one of the three output commands cannot be 
observed extemally. However, the internal operation does depend on how the 
nondeterminism is resolved. 

The median filter nicely demonstrates an advantage of this form of command 
selection. The symmetry among the three guards can onl~ be captured in a 
language with explicit and overlapping guards for the thre~ altematives. The 
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reader may try for instanee an if-then-else command to replace the above selection 
command to convince himself. 

The handshake circuit for the if ti section of the median filter program is 
depicted in Figure 1.11. The write ports of the variables are left unconnected. 
After an activation along [> the selection command is executed in two phases. 

b 

Figure l.ll: Handshake circuit for the if ti section of the median filter. 

In the first phase the if component actively collects the disjunction of the 
guards. The component labeled ' I] ' passes on a request on its output to both 
its Boolean inputs; upon the reception of these Booleans their disjunction is 
transmitted along its output. Note that the guards are evaluated in parallel. 

The effect of the second phase depends on the collected disjunction of the 
guards. If this value equals false, the if component remains passive and the 
circuit deadlocks. If the vaJue equals true, as is always the case for the median 
filter, component if activates the topmost 0 component. This component 
activates the circuit corresponding to an input from which it received the value 
true. In this solution the nondeterminism is resolved in the 0 component. 

This implementation scheme works for an arbitrary number of guards. When 
the 0 components are organized according to a binary tree, the computation of 
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the disjunction of the guards and the selection of the appro 'riate cammand can 

be done in O(log N) time, where N denotes the number offuards. 
The handshake component labeled '=' is another example fa ~inary operator. 

The variables xy, yz and zx have two read ports, from w ich croncurrent read 
actions are allowed. 

The median filter is an instanee of a so-called rank-ordyr filter. After each 
input value the rank-order filter outputs the value with rank {< among the last N 
inputs (0 ~ K < N). A value has rank k among N values if_it has position k in 
the ascendingly ordered list of these N values. The median filter is a rank-order 
filter with N = 3 and K = 1. [KR89,KU91] present progtams for rank-order 
filters. Both solutions are linear systolic arrays of N cells. 

1 
Except for the two 

end cells, all cells are identical. The cells communieare with neighboring cells 
in a regular, systolic manner. 

The greatest common divisor 

Program CCD repeatedly computes and outputs the greatest common divisor of 
the two most recent inputs: 

(a?W & b?W & c! W). 

l[x, y: var W 
I #[ (a?x 11 b?y) 

ll 

do x > y ____, x := x - y 

ll y > x ____, y := y - x 
od 

; c!x 

The algorithm goes back to Euclid; this particularly elegant version is based on 
[Dij76]. The program segment do .. od is a guarded repetition, a generalization 
of the well-known while command. As long as at least one guard evaluates 
to true one of the true guards is selected and the correspcpnding cammand is 
executed. If all guards fail, the repetition cammand terminates. If one of the 
inputs equals 0 the guarded iteration will not terrninate. I 

In [Dij76] a similar algorithm is given for computing the least common mul­
tiple. The Tangram program for a sequentia! multiplier [ v BS88] also resembles 
CCD. The number of cycles required to compute the greatest common divisor 
strongly depends on the two input values. The computation time and energy are 
proportional to this number. 
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Note that the communication behavior of CCD is identical to that of ADD. 
The handshake circuits have the same external ports, viz. an activation port, two 
input ports and one output port. The fact that CCD contains an iterative algorithm 
is completely bidden for the user of the circuits. The proposed method of com­
piling Tangram programs into handshake circuits leads to a form of distributed 
controL Information is kept local, with the associated advantages of shorter wires 
and minimum timing overhead. 

Modulo-N counters 

The modulo-N counter is presented to introduce the choice command. There 
are two ways in Tangram by which the environment can inftuence the future 
course of action of a program. Firstly, the environment may select the value to 
send through an input port. The incoming value is stored in a variabie and may 
subsequently occur in the guards of a guarded command. The input value may 
thus determine the future pattem of communications and computations. 

Secondly, the environment may have the choice among a set of ports through 
which it may synchronize or communicate. The binary form of this choice is 
exemplified by the program CE (a, b, c, d) (CE is an acronym for Count Even, as 
will become clear later): 

(a & b & c & d) ·#[[c; a; a I d; b]] 

Operator ';' binds more strongly than 'I'. The environment is repeatedly of­
fered the choice between a synchronization on c or on d. These two commands 
act as guards in the choice command. For each c, process CE performs two 
synchronizations on a; for each d, it performs only one synchronization on b. 

Using the choice command, a programfora modulo-N counter will be con­
structed (N 2: 1). The program has two external synchronization ports, a and b. 

A modulo-N counter repeatedly performs N synchronizations on a foliowed by 
a single on b. Let this behavior be denoted by 

#[#N[a]; b] 

The simplest counter is a modulo-1 counter C 1: 

#[a;b] 

For even values of N the modulo-N counter can be written as 

#[#M[a; a]; b] 
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where JIJ = N div 2. By introducing a modulo-M counter this cao decomposed 

into 

l[c,d: chan I (CE(a,b,c,d) 11 #[#M[c];d])]l 

In words, the moduio-NJ counter performs NI synchronizations on c, which are 
effectively doubled by CE and passed through a. A closing d is simply passed 

by CE as b. I 
For odd values of N, N > I, a similar decomposition cao be derived, m 

which CO (a, b, c, d) extends a moduio-NI counter to a mod~io-N counter: 

(a & b & c & d) ·#[a; [ c; a I d; b ]] 

A program for the modulo-N counter cao now be constructed with the cells Cl, 
CE and CO for any value of N. This requires 2 log N + 1 cells. For instance, 

the number 11 cao be written as 1 + 2 * (I + 2 * (2 * 1 )), yielding the following 
program for an modulo-11 counter 

J[ c,d,e,j,g,h: chan 
I CO(a,b,c,d) 11 CO(c,d,e,f) 11 CE(e,j,g,h) 11 Cl(g,h) 

11 

Figure 1.12 depiets handshake circuitsforCE and CO. Note that both circuits 
consist of the same handshake components, albeit connected differently. 

The choice component (labeled '11]') implements the choice construct. After 
activation through its topmost passive port, the choice component is prepared 

to participate in a handshake through one of the other two passive ports. The 
choice between the two is made by the environment. Subsequently, the choice 
component actively handshakes on the active port opposite to the selected passive 
port, and then returns an acknowledgement along its activation channel. 

There is something special about this type of modulo-N counter: the rate of 
counting is independent of N and independent of the state of the counter. (lt is 

the head cel! that determines the rate of counting; the next cel! needs to count 
at only half the rate.) This property seems to be unique, as traditional counters 
slow down with log N. The resulting rate of counting is prdbably as fast as cao 
be. In [Kes91a] the program has been carried over to the domaio of synchronous 
circuits. Presumably, this systolic modulo-N counter cao be carried over to the 

domaio of synchronous circuits. But, would it have been invented without the 
Tangram example? 

Counting also appears to be a very useful primitive in a VLSI programming 

language. In many cases an action has to be repeated N times, where N is a 
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c a c 

d b d 

Figure 1.12: Handshake circuitsforCE (a, b, c, d) and CO (a, b, c, d). 

constant (e.g. the number of pixels in a video line, the number of samples in a 
block, or the number of bits in a word). For this reason the construct #N[S] is 
part of Tangram and means: repeat S exactly N times. The implementation of 
this construct contains a handshake circuit composed of the cells of Figure 1.12. 

This section on choice and counters ends on a less fortunate note. It turns 
out that the full implementation of the choice construct is fairly complicated. It 
was decided not to include its treatment in this thesis. 

1.5 Epilogue 

The programs and handshake circuits of this chapter give an impression of Tan­
gram and its compilation into handshake circuits. The following remarks place 
the preceding experiments in a wider perspective. 

Full Tangram 

The programs of this chapter were written in a subset of Tangram. The main 
omissions of this chapter are 

• functions and procedures; 

• the data type constructars tuple and array; 
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• operators such as tuple forming, tuple selection, type 

• explicit sharing of functions and procedures. 

With these extensions arithmetic operators such as *· 
cao be defined as Tangram functions. This also extends to 
field symbols [SvBB*91] , complex numbers, and other fo 
arithmetic. 

mod and shift 
perators on Galois­
s of less common 

The circuits corresponding to functions and procedures can be shared, pro­
vided that they are used sequentially. Sharing avoids unnec . ssary duplication of 
resources, but has an overhead in termsof (de-)multiplexink circuitry. Whether 
sharing actually saves circuitry and whether the associated penalties in delays cao 
be afforded depends on the size of the shared resource and the timing specifica­
tion. e.g. the sharing of a large multiplier is more likely to be advantageous than 
the sharing of a one-bit adder. In line with the choice for transparent compilation, 
Tangram supports explicit sharing of functions and procedu es. 

I 

OCCAM [INM89] is another CSP-based language. Essenrial differences be-
tween Tangram and OCCAM are related to differences in the implementation 
target: VLSI circuits versus Transputer networks. In particular, OCCAM does 
not support broadcast and sharing, and has limited facilities for type construction 
and operators. 

Applications 

To which extent are Tangram and handshake circuits general purpose? Neither 
Tangram nor handshake circuits contain constrocts or notions that are specific to 
eertaio application areas such as controllers or signa) proceSsors. 

Applications range from very smal! circuits (e.g. the bu'ffers of Section 1.1) 
to quite sizable circuits (e.g. a graphics processor [SvB88], or a high-throughput 
RSA encryptor [Kes91b]). 

Tangram and handshake circuits support fine-grained parallelism (as for in­
stance in systolic arrays [Rem87]), and coarse-grained paralllelism (e.g. in Com­
pact Disc subsystems [KS90,KvBB*92]). 

Many diverse applications were cited along with the programs. Other ex­
amples of programs in CSP-based notations include: a systolic block sorter 
[ v BRS88], a micro-processor [MBL *89] , and a regular-expression recognizer 
[KZ90]. 
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Handshake processes 

2.0 Introduetion 

A handshake is a means of synchronization among communicating mechanisms. 
In its simplest form it involves two mechanisms connected by a pair of so-called 
links, one for sending signals and one for receiving signals. The sending of a 
signa! and the reception of a signa! are atomie actions, and constitute the possible 
events that may occur between the mechanisms. 

A signa! sent by one mechanism is bound to arrive at the other mechanism, 
after a finite, non-zero amount of time. Hence, this form of communication is 
asynchronous; the sending and the arrival of a signa! correspond to two distinct 
events. It is assumed that a link allows at most one signa! to be on its way. 
Consequently, a signa! sent must arrive at the other end of the link before a next 
one can be sent. When the traveling time of a signa! along the link is unknown, 
the only way to know that a signa! has arrived at the other side, is to be so 
informed by the other mechanism via a communication along the other link. 

Such a causally ordered sequence of events is called a handshake. The two 
mechanisms involved play different (dual) roles in a handshake. One mechanism 
has the active role: it starts with the sending of a request and then waits for 
an acknowledgement. The other mechanisrn has the passive role: it waits for a 
request to arrive and responds by acknowledging. A handshake realizes synchro­
nization among mechanisms; it can and will occur only if both mechanisms are 
ready to participate. 

Some useful terminology is introduced next. The pair of links forms a so­
called channel; the two terminals of a channel are called ports. This study only 
considers channels with a fixed division of the passive and active roles during 

41 
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handshakes. Hence, a port is either passive or active, depen, ing on its handshake 
role. 

In a more general setting, a channel consists of two finite, non-empty sets of 
links. A handshake then consists of a request along a link of one set, acknowl­
edged by a signa! along a link from the other set. By choo~ing a particular link, 
a mechanism can convey additional information. For instance, a pair of output 
links suffices to communicate a Boolean value with each ~andshake. A mecha­
nism may be connected to several other mechanisms, by an arbitrary number of 
channels, and may therefore have multiple ports, of different activities. 

This chapter presents a formalism for mechanisms that interact exclusively 
by means of handshakes. The central notion is that of handshake process, a 
mathematica] object that can be used to specify all possible behaviors of such 
a handshake mechanism. In Chapter 3 it is shown that handshake processes 
can also be used to describe the extemal behavior of handshake circuits, i.e. of 
networks of handshake processes. In Chapter 5 the semantics of a subset of 
Tangram is expressed in terms of handshake processes. 

In the context of VLSI circuits, a mechanism may corirespond to a CMOS 
circuit, a link to a wire and a signa! to a voltage transition. The requirement that 
at most one signa] may be on its way on a single link agr€es with the required 
absence of interterenee (cf. Section 0.1). Chapter 7 discusses in more detail the 
relationship between handshake processes and VLSI circuits. 

Before we delve into the rnathematics of handshake processes we shall review 
some notational conventions used in this thesis. 

2.1 Notational conventions 

Functions 

A function f in A ----+ B has domain A and range B. Function application is 
denoted with an infix '·' as in f- x, instead of the more tradifional f(x). Operator 
'·' is right binding and it binds more strongly than all othe~ operators except for 
subscription and superscription (e.g. exponentiation). 
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Guarded selection 

An expression may have the form of a guarded selection as in: 

if Bo ----) Eo 
0 BI ----) E1 

0 BN- J ----) EN-I 
fi 

Guarded expression Bi ___, Ei consists of guard Bi and expressi011 Ei. A guard is 
a Boolean expression. The order of the alternatives is irrelevant. In the guarded 
selections of this thesis we shall see to it that at least one of the guards evaluates 
to true, and that if both Bi and Bj evaluate to true expressions Ei ànd Ej have 
the same value. For instance, the minimum of two integers, denoted by x min y 
may be defined as 

if x~ y ----) x 

0 y~x ___, y 

fi 

The notation for guarded selection strongly resembles that of guarded commands 
[DS90] ( cf. the median filter in Section 1.4 ). 

Quantified expressions 

Universa! quantification is a generalization of conjunction. lts format [DS90] is 

(V dummies : range : term) 

where 

• "dummies" stands for an unordered list of local variables whose scope is 
delineated by the parenthesis pair; 

• "range" is a predicate that delineates the domain of the dummies; and 

• "term" denotes the quantified expression. 

Similarly, existential quantification (with quantifier 3) is a generalization of dis­
junction. Quantification over an empty range yields the unit element of the 
quantifier: true for V and false for 3. When the range is evident from the context 
it is usually omitted. 
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The above format is also applied to generalizations of [ her symmetrie and 
associative binary operators. For instance, the continued u ·on of the set of sets 
A is denoted by (Ua : a E A : a). If A = 0 this expressi n yields 0, the unit 
element of set union . 

For set construction a similar format is used, viz 

{ dummies : range : term} 

For instance, the image of function f with domaio D can e written as 

{x : x ED:f·x} 

Derivations 

Let ~ be a partial order, i.e. ~ is a reflexive, antisymmetrie and transitive relation 
on some set. For convenience's sake we often abbreviate a conjunction of the 
form (E = F) !\ (F ~ G) to E = F ~ G. In particular, a proof of E ~ G may 
take the fonn (cf. [DS90]) 

E 

{ hint why E = F } 

F 

--< { hint why F ~ G } 

G 

for some judiciously chosen F . The above example naturally generalizes to a 
list of (in-)equalities. From a derivation of the fonn E ~ F ~ · · · ~ E it 
may be concluded that all related elements are equal, on aacount of transitivity 
and antisymmetry of~. Note that implication ('=>') and se~ ioclusion ('Ç') are 
examples of partial orders. An example of a derivation is given below. 

Closures 

Let (A,~) be a preordered set, i.e. ~ is a reflexive and t' ansitive relation on 
A . We shall often base a ciosure operator and a closedness predicate on such a 
preorder as follows. 
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Definition 2.0 (closure, closed) 

0. For any subsetBof A the ~-closure of B in A, denoted by B~, is defined 
by 

0 

B~ = {a : a E A 1\ (3b: b E B : a ~ b) : a} 

This ciosure is also known as the downward ciosure of B. 

I. B is called ~-closed, denoted by (~)· B, if B = B~ . 

Operator ~ is indeed a ciosure operation, since ([DP90] page 36): 

Property 2.1 

0. B Ç B~ 

1. B~ = (B~ )~ 

(extensive) 

(idempotent) 

2. B Ç C => B~ Ç C~ (order preserving) 

0 

The ciosure operation binds more strongly than any other operation. As an 
example of the proof style applied, we prove idempotence of the above ciosure 
operation. 

Proof of idempotency : 

(B~)~ 

{ definition of ~-closure } 

{a : a E A 1\ (3b: b E B~ : a ~ b) : a} 

= { definition of ~-closure } 

{a : a E A 1\ (3b : b E { c : c E A 1\ (3d : d E B : c ~ d) : c} : a ~ b) : a} 

= { calculus } 

{a : a E A 1\ (3b: b E A 1\ (3d : d E B : b ~ d) : a~ b) : a.} 

= { trading } 

{a: a E A 1\ (3b, d: b E A 1\ d E B : a~ b 1\ b ~ d) : a} 

= { ~ is reftexive and transitive } 
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{a : a E A 1\ (3d : d E B : a ::::5 d) : a} 

= { definition of ::::5-closure } 

B~ 

0 

For later use we mention without proof: 

Property 2.2 

0. 0~ = 0, hence (::::5)· 0. 

1. B~ u C~ = (B u C)~ . 

2. Hence, (::::5)· B 1\ (::::5)· C =? (::::5)· (B u C). 

0 

2.2 Handshake structures 

Ports and port structures 

A handshake through a port consists of two events: a request foliowed by an 

acknowledgement. We shall identify these events by symbols, such as r and a. A 

port consists of a set of request symbols and a set of acknowledgement symbols. 
These two symbol sets of port p must be non-empty, disjoint and finite, and wil! 

be denoted by Op and lp respectively. A handshake consists of an occurrence of 
an event from Op foliowed by an occurrence of an event of lp. A port structure 
is a set of ports, partitioned into a set of passive ports and a set of active ports. 

Definition 2.3 (port structure) 

0. A portpis a pair of disjoint, finite and non-empty sets of symbols (Op, lp). 
ap denotes the symbol set of p, viz. Op U lp . 

I. A port set P is a finite (possibly empty) set of ports. aP is the set of 
symbols of P, viz. (Up: p E P: ap). 

2. A proper port set P is port set with disjoint symbol sets: 

(V a, b : a E P 1\ b E P : a = b V a a n ab = 0) 
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0 

3. A port structure A is a pair (A0
, A•), of port sets, such that A 0 U A• is a 

proper port set. A 0 is called the passive port set of A and A• the äctive 
port set of A. Note that aA0 n aA• need not be empty. 

aA denotes thesetof symbols of A, viz. aA0 U aA•. Set aA is called the 
alphabet of A. 

4. Elements of A 0 nA • are the internal ports of port structure A, and elements 
of (A 0 

\ A•) U (A• \ A 0
) are the external portsof A. 

5. Port structures A and B are compatible if A 0 U A• U B 0 U B• is a proper 

port set. 

6. The union of compatible port structures A and B, denoted by A U B, is 
the port structure (A 0 U B 0

, A • u B•) . 

7 . The dif.ference of compatible port structures A and B, denoted by A\ B, 
is the port structure (A0 

\ B 0
, A• \ B•). 

The symbols 0 and • are used as postfix operators on port structures; they bind 
more strongly than any other operator. If p is a passive port, Op is the set of the 
input symbols of p and lp the set of output symbols of p. For active ports this 
is the other way around: 

Definition 2.4 (input and output symbols) 

Let A be a port structure and let a E A. Then 

0. ia denotes the set of input symbols of port a: 

ia= if aEA0 ~ Oa 
0 a E A• ~ la 
fi 

1. Operator i is lifted to port structures by iA = (Ua : a E A : ia) . 

2. oa denotes the set of output symbols of port a: 

oa = if a E A 0 ~ l a 
I] a E A• ~ Oa 
fi 
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3. Operator o is lifted to port structures by oA = (Ua : a E A : oa) . 

0 

Obviously, we have iAuoA = aA. If A has no intemal po s then iAnoA = 0. 
Ports may be directed as well. An input port is a port that consists of multiple 
input symbols and a single output symbol. Accordingly, an utput port is a port 
that consists of a single input symbol and multiple output s. mbols. A port that 
consists of two singleton sets will be referred to as a nonp~t port; it serves for 
mere synchronization. If both symbol sets contain more than one symbol, the port 
permits bidirectional transfer of data during each handshake; it may be referred 
to as a biput port. Bidirectional data transfer will oot recur in the sequel. 

Definition 2.5 (port definition) 

A port definition defines a port structure that consists of a single port; it may have 
one of the six forms below. Let a be a name and T be a type, i.e . a non-empty 
set of values. 

0 

0. a0
, a0 ?T and a0 !T define port structures of the form ( {p}, 0), where p is a 

single (passive) port. For the three port definitions p d.enotes ({ao}, {ai}), 
({ao} x T , {ai}), and ({ao}, {a 1 } x T) respectively. 

1. Likewise, a•, a•?T and a• !T define port structures 9f the form (0 , {p}) , 
where p is a single (active) port. For the three port definitions p denotes 
({ao}, {ai}), ({ao}, {ai} x T) , and ({ao} x T, {ai}) respectively. 

2. The name in the port definition will be used as port name. 

3. A list of port definitions separated by commas defines a port structure, 
provided that the port narnes are distinct. The port structure is obtained 
by taking the union of the port structures specified b); the individual port 
definitions. 

Note that a0 and a• define nonput ports, that a0 ?T and a•?fJ' define input ports 
and that a0 !T and a• !T define output ports. 

Example 2.6 

0. a0 ?Bool defines a port structure consisting of a single passive input port of 
type Boot, viz. the port ( { ao :fa! se , ao: true} , {ai}) . Trie input symbols are 
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0 

ao :false and ao: true and the output symbol is a1, the acknowledgement 
to an input. 

1. a0 !Bool defines a port structure consisting of a single passive output port 
of type Bool, viz. the port ({ao}, {a 1 :false,a1 :true}). The input symbol 
ao denotes a request for an output. The output symbols are a1 :false and 
a1 :true. 

The alphabet of port structure A, denoted by aA, was defined as the set of 
symbols that occur in the port definitions of port structure A. The symbols of 
an alphabet are used to denote individual communications between a mechanism 
and its environment. Finite symbol sequences are called t.t·aces. 

Definition 2.7 (trace) 

0 

0. A trace is a finite sequence of symbols. 

1. The empty LJ·ace is denoted by é. 

2. len · t denotes the length of t. 

3. The concatenation of traces s and t is obtained by juxtaposition, as in st. 

4. Trace s is called a prefix of t, denoted by s :S t , if there exists a trace u 
such that su = t . 

5. The set of all traces over alphabet B is denoted by B* . 

6. The projection of trace t on alphabet B, denoted by tI B , is defined by 

E:jB 
(at)! B 

=é 

if a i;J B 
0 a EB 
ti 

~ tiE 
~ a(tiB) 

lf A is a port structure, tI A is used as a shorthand for tI (a A) . 

Sets of traces wil! be used to characterize mechanisms. Each trace records a 
possible sequence of communication events in which a mechanism has engaged 
up to some moment in time. Prefix order is a partial order on traces. Hence, in 



50 Ha1shake processas 

accordance with Section 2.1, the prefix ciosure of trace set is denoted by B'5:, 
and the prefix closedness of trace set B by (:S;) · B. 

Given a port structure A, we consider traces over alphab t aA. A handshake 
trace is a trace in which the occurrences of 0-symbols and 1-s~mbols of each 
port strictly altemate, and in which the first symbol occurrerlce of each port is a 

I 
0-symbol. 

Definition 2.8 (handshake trace) I 
Thesetof handshaketraces with port structure A is denoted J)y AH and is defined 
as I 

{t: tE (aA)* 1\ (Va, s: a E A 1\ s::; t: 0::; len· (s!Oa) -len· (si1a)::; I): t} 

D 

Property 2.9 

0. (f/J,f!J)H={c} 

1. (:S;)· AH 

2. (A 0 ,A•)H = (A•,Ao)H 

D 

Definition 2.10 (handshake structure) 

D 

0. A handshake structure S is a pair (pS, tS), in which pS is a port structure 
and tS a set of handshake traces, i.e. tS Ç (pS)H. 

1. The prefix ciosure is extended to handshake structures by 

s'5: = (pS, (tS):;_) 

2. Similarly, a handshake structure is :S;-closed if its trace set is. 

Symbols p and t are used as operators on handshake structures. In the sequel R 
and S denote handshake structures. Also, the following shorthands are used: 
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0. p0 S = (pS)0 

1. p• S = (pS)• 

2. aS= a(pS) 

3. iS= i(pS) 

4. oS= o(pS) 

2.3 Handshake processes 

A handshake process will be defined as a handshake structure that satisfies five 
conditions. Handshake processes are used to represent the external behavior 
of a mechanism. Hence, handshake process (A, T ) has no internat ports, i.e. 
A on A • = 0 ( condition 0). Furthermore, trace set T is required to be non-empty 
( condition I). 

In addition to the absence of internat ports and the presence of at least one 
handshake trace, three more conditions wil! be imposed, relating to progress, 
insensitivity to delays, and readiness to accept further inputs. 

So far, we clearly distinguished physical objects such as mechanisms and 
events, from mathematica! objects such as processes and symbols. Following 
Hoare [Hoa85] and others, this distinction will be adhered to less strictly. When­
ever convenient, we use phrases such as "After process P has engaged in trace 
t it is ready to accept input a". 

Quiescence 

Let t be a trace of handshake process P. After engaging in t, the environment 
may be unable to obtain fmther output from P. Usually, this happens simply 
because the behavior of P does not permit P to extend t with any output symbol. 
Even if t can be extended with an output symbol, P may (nondeterministically) 
choose not to do so, and remain idle. In either case, t is called a quiescent 
trace [Mis84,Jon85]. Process P may leave quiescence after the environment has 
supplied further input. 

A handshake process wil! be represented by its quiescent traces. The set of 
all (observable) traces is then the prefix ciosure of the set of quiescent traces. 
The quiescent-trace set of a handshake process must inclttde the traces that have 
no output successors, i.e. it must include all its passive traces. 
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Definition 2.11 (passive traces) 

Let S be a handshake structure (pS may have internat ports) and let t be a trace 
of tSS. 

0. The successar set of t with respect to S, denoted by s c· (t, S), is 

{a : a E aS A ta E tSS : a} 

1. t is passive in S, denoted by pas · (t, S), when suc · (t, S) n oS = 0 . 

2. S is passive when pas· (é, S) . 

3. The passive restrietion of S, denoted by Pas· S , is the handshake structure 

(pS, { t : t E tSS A pas· (t, S) : t}) 

0 

The following property follows directly from the above definition. 

Property 2.12 

For handshake structure S we have Pas · S =Pas· s s. 
0 

For handshake process P, tP represents the set of quiescent traces. Condition 2 
in the definition of a handshake process is therefore tPas· S Ç tS. 

An alternative way to look at the notion of quiescence is suggested by the 
following property. 

Property 2.13 

Let S be a handshake structure such that tPas· S Ç tS. Then 

t E tS S = (:Ju : u E (oS)* : tu E tS) 

Or put into words, for any trace t in tSS , there is a trace u ~onsisting of output 
symbols only, such that tuis in tS. Phrased differently, a ha 'dshake processcan 
always become quiescent by producing outputs only. Sine tu is a handshake 
trace, sequence u contains at most one symbol of each port. 
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Proof We derive: 

t E tSS: 

= { suc·(t,S)ÇiSuoS} 

t E tSS: 1\ (pas· (t, S) V (::Ja : a E oS : ta E tSS: )) 

:=:} { tPas· S Ç tS; S is a handshake structure } 

t E tS V (::la : a E oS : ta E tSS: 1\ a ~ suc· (ta, S)) 

Repeating the last two steps for the remaining outputs in suc· (ta, S) completes 
the proof. 

0 

Reordering 

Let P be a handshake process and let t be a an element of tPS:. Assume that, 
after engaging in t, the environment sends signals along links a and b to P, in 
that order, and that P is ready to receive them, that is, tab is also in tPS: . 
When no assumptions are made about the delays involved, a and b may arrive 
in the opposite order. Under such circumstances it is reasonable to require that 
tba is also tPS:. Trace tba is said to re01·der trace tab [Mis84,JHJ89]. A similar 
reordering must be allowed for two output symbols of P: for outputs c and d, 
trace tde reorders ted. 

A slightly more subtie reordering is relevant when two symbols of opposite 
direction are involved, say input a and output e. Suppose tea is an element of 
tPS:. Apparently the input a was not required by Pin order to output e. When a 
had experienced less delay it would have arrived before the output of e. Hence, 
trace tae reorders tea, provided that both tae and tea are handshake traces. The 
converse, tea reorders tae, does not hold, because input a may be a prerequisite 
for output e. A formalization of reordering of handshake traces is given by means 
of a binary relation rB. where Bis a port structure (B may have internal ports). 

Definition 2.14 (reorders) 

r B is the smallest binary relation on BH with for all symbols a, b E (iB \ oB), 
all symbols e, dE (oB\ iB), and all symbols e E (iB n oB): 

0. ab rB ba 
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1. cd rE de 

2. acrE ca 

3. ae rE ea 

4. ec rE ce 

and for all handshaketraces r, s, t, u E BH: 

5. t rE t 

6. r rE s 1\ s rE t =? r rE t 

7. r rE s 1\ t rE u =? rt rE su 

provided that rt and su are handshake traces as well. 

D 

Hanf:ishake processes 

This definition is based on the reorder relation "Ç" of [JH189], with two dif­
ferences . Firstly, r is restricted to handshake traces. Seco~dly, the relation is 
extended to alphabets with common input and output symbols: Properties 3 and 
4 are derived from 0 to 2 by requiring e to assume both the role of input and 
that of output. When iE n oB = 0, relation r reduces to Ç cited above, albeit 
restricted to handshake traces. Note that s r t =? len· s = len· t . 

r B wilt usually be shortened to r when B is obvious from the context. Since 
r is a preorder on BH, yr denotes the re order ciosure of hands hake-trace set T 
and (r)· T denotes the reorder closedness of T (cf. Section 2' 1). Both operators 
are lifted to handshake structures in the obvious way. 

Property 2.15 

Let B and C be compatible port structures, let s , t E BH, and Jlet S be handshake 
structure. Then 

0. (r)· BH 

1. s r BuG t =? s rE t 

2. s r t =? sIC r tIC 

3. (r)· S =? (r) · (SIC) 

4. (r)· S =? (r)· ss. 
D 
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Property 1 is a consequence of the judicious choice of the extension of r. Property 
2 follows from 2.14. 7, and Property 3 is a corollary of 2. 

Proof of 4. Let t E tS:S: and u E (pS)H. We derive: 

t E tS:S: 1\ u r t 

= { definition of :S:-closure } 

(::Jv : v E (aS)* : tv E tS) 1\ u r t 

=? { definition of r ; calculus } 

(::Jv: v E (aS)*: tv EtS /\uv r tv) 

=? {(r)·S} 

(::Jv : v E (aS)* : uv E tS) 

= { definition of :S:-closure } 

u E tS:S: 

D 

Example 2.16 

Implication (:S:)- S =? (:S:)· sr does not hold in genera!, as shown by the following 
S. pS consistsof two passive ports, viz. a0 and b0

• By definition, iS= {a0 , bo} 
and oS= { a1, bi}. The trace set of Sis given by tS = { aobo}S. 

Obviously, we have (:S:) · S and aobo E tS. Also, with u = boao, we have 
u E sr. However, prefix bo of u is not an element of sr. 
D 

Condition 3 in the definition of a handshake process states that tP must be 
closedunder reordering. By Property 2.15.6, tPS is then reorder closedas wel!. 

Receptiveness 

A non-empty set of handshake traces that includes all its passive prefixes and 
that is closed under reordering is a good candidate for the definition of handshake 
processes. However, it tums out that certain operations on such handshake pro­
cesses, including parallel composition, are complicated in their definitions and 
usage. A useful class of handshake processes with surprisingly simple properties 
is obtained by imposing an additional requirement. 
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Definition 2.17 (input extension) 

Let B be a port structure, and let t, tu E BH. Handshake race tu is an input 
extension of t in B, denoted by tu XE t, if u E (iB \oB)* 

D 

When B is obvious from the context, XE will be shortened o x . Also x is a 
clearly a preorder. Hence, yx denotes the input-extension cl sure of handshake­
trace set T, and (x)· T denotes input-extension closedness. Both operators are 
lifted to handshake structures in the obvious way. A handsh~ke structure whose 
prefix ciosure is closed under input extension is called reá:ptive. The notion 
of receptiveness is similar to that of [Dil89,JHJ89,Jos90], albeit restricted to 
handshake traces. 

Property 2.18 

LetBand C be compatible port structures, let s, t E BH , and let S be handshake 
structure. Then: 

0. (x)· BH 

1. S XEuC t ::::} S XE t 

2. s x t ::::} sfC x tfC 

3. (x)· S ::::} (x)· (SfC) 

4. (x)· s::::} (x)· sr 

5. (:S:). s ::::} (:S:). sx 

6. (x)· ss.::::} (x)· (Pas· S)'S. 

D 

Condition 4 in the definition of a handshake process stat~s that trace set tP 
must be receptive. As a result, the only obligation to be met !Dy the environment 
is that it must adhere to the handshake protocol. 

Handshake processes 

By collecting the conditions stated so far, we obtain the complete definition of 
handshake processes: 
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Definition 2.19 (handshake process) 

A handshake process is a handshake structure (A , T) that satisfies the following 
conditions: 

(no internal ports) 

1. T -/0 (non-empty trace set) 

2. t(Pas· (A, T)) Ç T (quiescence for passive traces) 

3. (r)· T (reorder closed) 

4. (x)· T :5. (receptive) 

fl·A denotes the setof all handshake processes with port alphabet A. 

D 

Like CSP, handshake-process theory has no notion of faimess. Unlike CSP, there 
is not a notion of divergence. Consequently, the various causes for quiescence 

cannot be distinguished. In the sequel P and Q (possibly subscripted) denote 
handshake processes. Unless stated otherwise, the word process is used as a 
shorthand for handshake process. 

For a port structure A the following generic processes are defined. 

Definition 2.20 

D 

0. CHAOS· A is the least predictabie handshake process . lt can engage in a 
handshake through any port at any time, and it can become quiescent at 
any time: 

CHAOS· A= (A, AH) 

1. STOP· A never engages in a handshake communication through any of its 
ports. Nevertheless, it does not refuse any input through a passive port; it 
simply does not respond to such an input: 

STOP · A= (A, {c}x) 

2. RUN A is always wiJtingtoengage in a handshake through any of its ports: 

RUN· A= Pas · CHAOS· A 
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Note that CHAOS· (0,0) =RUN· (0,0) =STOP· (0,0) = ((0.0),{E} ). There is 
only one process with the empty port structure. More examples of handshake 

processes are presenred nex t. 

Example 2.21 

0 

0. Po is prepared to engage once in a handshake through u0
: 

I. ? 1 is pre pa red to en gage once in a handshake throug h a •: 

(u• , { ao, aoa 1}) 

2. P2 behaves like Po : it participates in a handshake through a0
, but it refuses 

to acknowledge an input through b0
: 

which equals 

(o 0 U b0
• {é,bo 

, aoa. 1, aan 1 bo, aoboo 1. boaoa 1 
,noatao,noalaobo , aoo lbono ,aoboaloo, boaoa lno}/ 

Even for such a simple behavior as P2 the number of traces becomes considerable 

(11 quiescent traces !). 

State graphs 

A clarifying representation of handshake processes of modest complexity is the 

state graph accompani ed by a port structure. A state graph is a directed graph in 

which a rcs are labe led by symbo ls of the alphabet of the process . The nodes of 

a state graph are partitioned into a se t of quiescent nodes and a se t of transtent 
nodes. 

A non-empty subse t of the nodes con tai ns the so-called start nodes; often 
there is exactly one start node. A path from a start node corresponds to the trace 
that is obtained by listing the labels of the consecutive arcs in the path. The 

empty path corresponds to the empty trace. A path ending in a quiescent node 
corresponds to a quiescent trace. Di fferent paths corresponding to the same trace 



Handshake processes 59 

must either all end in quiescent nodes or all end in transient nodes. A state graph 

is said to represent a handshake structure if the set of traces conesponding to the 

paths that end in a quiescent node equals the set of quiescent traces (provided 

that the accompanied port s tructures match as well). 

The following conventions are used when drawing state graphs: 

0. Quiescent nodes are depicted by open circles, and transient nodes by filled 

ones. 

I. A start node is enclosed by a concentric circle. 

2. To avoid clutter, a node is occasionally depicted more than once. These 

multiple occurrences are labelect with a number unique to that node. 

3. For ciarity 's sake, a ques tion mark (exclamation mark) is attached to label s 

denoting input (output) symbol s. 

4. In some regularly drawn state graphs, the labeling of the arcs is incomplete. 

Arcs forming two opposite sides of a rectangle are then assumed to have 

the same label. 

Example 2.22 

0. Process P2 of the previous example is depicted by the following state graph: 

~I :I :I :I 
I . Process P3 is prepared to engage once in a handshake through either a 0 or 

bo: 

P3 contains 19 quiescent traces as depicted by: 
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D 

Handshake processes 

ao? a1! ao? 

bo? 

bo? 

2. Process P4 is like P.1, except that the choice between the two handshakes 
is made by the process itself: 

P4 contains 2 1 quiescent traces as depicted by: 

bo? 

Trace ao is a quiescent trace. If P4 choses internally for a handshake 
through 6° , no progress is made after trace ao. Similarly, P4 may refuse 
to complete a handshake through a 0

• 

The handshake processes below occur in handshake circuit · obtained by com­
pilation of Tangram programs. Each handshake process is identified by a name 
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postfixed by a list of narnes enclosed by parentheses. From the narnes in the list 
ports are constructed by means of port definitions. The o and • postfixes hint 
at the activity of these ports. Substitution of a name by another name yields 
an equivalent process, modulo renaming of the symbols. Altematively, the pro­
cess descriptions may be regarded as function definitions with lists of narnes as 
domaio and processes as codomain. 

Example 2.23 

The handshake processes below specify the handshake components required for 
the translation of the undirected subset of Tangram. Two examples, viz. NM/X 
and NVAR describe non-receptive handshake structures. The directed handshake 
components are presented in example 4.37. The behavior of most components is 
represented by a state graph. The graphic symbol introduced for each component 
wiJl be used in handshake-circuit diagrams in later chapters. Let a, b and c be 
distinct names. 

0. STOP· (a 0
) has port structure a0

. It does not respond toa request through 
port a0

• 

ao? 
0 1>0 

1. RUN- ( a0
) has port structure a0

• It acknowledges a request through a0 and 
returns to its initia! state. 

ao? 

0 
2. CON(a0

, b•) is a connector. It has port structure a0 Ub• and each handshake 
through a0 encloses a handshake through b•. 
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3. OR · (a 0
, b• , c•) has port structure a 0 u b• u c•. Each h ndshake through a 0 

encloses either a handshake through b• or one throug c• . 

4. SEQ· (a0
, b• , c•) is a sequencer. It has port structure a? u b• u c•. A hand­

shake through a0 encloses both a handshake through b• and one through 
c• , in that order. 

b ~ c ~ 
The numbers at the ports b and c specify the order of handshakes. When 
omitted, the order is counterclockwise, starting from the passive port. 

5. DUP · (a 0
, b•) is a duplicator. lt has port structure a0 U b•. A handshake 

through a0 encloses two handshakes through b•. The state graph can be 
obtained from the state graph of the sequencer by renaming events co and 
c 1 to bo and b1 respectively. 

6. REP · (a 0
, b•) is a repeater. lt has port structure a0 U b•. A handshake 

through a0 encloses an infinite repetition of handshakes through b• . 
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bo! 

Note that the handshake through port a is never completed. 

7. PAR· ( a0
, b•, c•) has port structure a0 U b• U c•. A handshake through a0 

encloses both a handshake through b• and one through c•, in parallel. 

A 
~ 

8. N MIX· ( a0
, b0

, c•) has port structure a0 U b0 U c•. A handshake through c• 
is enclosed by a handshake through either a0 or b0

. 

Note that NMIX · (a0
, b0

, c•) is not a handshake process, because it is not 
receptive: for instance, trace ao may not be extended with bo. (NMIX 
stands for Non-receptive Mixer; cf. Section 7.2.) 
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I 
9. MIK (a0

, b0
, c•) has the same port structure as NMIK a0

, b0
, c•) and is de-

fined as (Pas·NM/X. (a0
, b0

, c•r:; x)r. Process MIK (a , b0
, c•) is receptive 

on account of Property 2.18.6. Hence, MIK (a0
, b0

, c• is a handshake pro­
cess. In environments where handshakes through a 0 d b0 never overlap, 
MIX. (a0

, b0
, c•) may be replaced by a NMIX· (a0

, b0
, •) (cf. Section 7.2). 

10. PAS · (a0
, b0

) has two passive ports, viz. a0 and b0
• t synchronizes each 

handshake through a0 with a handshake through b0
• 

0 

In [Ka186] PAS· ( a0
, b0

) was introduced as a passivator. 

11. JOIN· (a0
, b0

, c•) resembles PAS· (a0
, b0

) , but has an additional active port 
c• . A handshake through c• is enclosed by handshak es through both a 0 

and b0
. 

ao? 

alv 
~ 
0 ~ 

Note that JOIN · (a 0
, b0

, c•) and PAR · (a0
, b• , c•) only differ in their are 

labelings and in their start nodes. 

12. NV ARsoor (a0
, b0

) is a Boolean variabie with write port a0 ?Bool and read 
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D 

port b0 !Boot. In the state graph below, the symbol narnes a0 :fa/se, ao: true, 

b, :fa/se and b1 : true are abbreviated by a 1, at, b 1 and bt respectively. 

(x is used here as an instanee name of the NVAR component; the type 
of the ports is assumed to be clear from the context.) Note that the state 
diagram has two initial states. The environment may start with a read 
request. NVAR then chooses nondeterministically between the values fa/se 
and true. 

For the same reason as NMIX, NVAR is not a handshake component: it 
is not receptive. The receptive counterpart of NVAR is obtained by taking 
input-extension ciosure of VAR foliowed by the reorder ciosure and the 
passive restriction: 

Process VAR tolerates a write request during read handshake and vice versa. 

Note that all handshake processes of Example 2.23 are passive. 

Pas and after 

The passive restrietion of P, denoted Pas· P, has been defined as a handshake 
structure with port structure pP; the trace set of Pas· P contains those prefixes 
of tP that have input successors only (see Definition 2.11). Pas is clearly idem­
potent, and the passive restrietion of a handshake process cannot have an empty 
trace set. Furthermore, it preserves receptiveness (Property 2.18.6). However, 
Pas does not always preserve reorder closedness. Hence, Pas· P is in general 
not a handshake process. 
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Example 2.24 

With reference to Example 2.22: 

2. all handshake processes of Example 2.23 are fixpoints of Pas 

D 

Next we define the behavior of a handshake process a
1 
ter trace t has been 

observed. 

Definition 2.25 (after) 

Let t be a handshake trace. The handshake structure after· (t, S) is defined by: 

after· (t, S) = (pS, {u: tu EtS: u}) 

D 

Clearly, P = after· (E, P) . In genera!, however, after · (t, P) is nota handshake 
process. For instance, a trace of after· (t, P) may start with an acknowledgement 
to a request that occurred in t. For closed traces this is not a problem. A 
handshake trace is closed if every handshake started has also been completed. 

Definition 2.26 (closed trace) 

Handshaketrace t, t E AH is closed, denoted by c/osed· t if len · (tfOa) = 

len· (tfla) for all ports a E A . 

D 

Property 2.27 

If t E tP <:; and closed· t then after· (t, P) is a ·handshake pröcess. 

D 
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Example 2.28 

With reference to Examples 2.22 and 2.23: 

0 

2.4 The complete partial order (IT ·A, C) 

In this sec ti on we analyze the structure of [1 ·A, i.e. the set of all processes 
with port structure A. All processes in this section have port structure A. For 
convenience, CHAOS· A will be abbreviated to CHAOS. This section follows the 
lead of [BHR84,Hoa85]. 

Refinement order 

First we introduce an order relation Ç among handshake structures. 

Definition 2.29 (refinement) 

Let S and T be handshake structures. S refines to T, denoted by S Ç T, if 
tS;;;? tT . 

0 

Let P and Q be handshake processes. Paraphrasing Hoare ([Hoa85], page 132) 
we may say that P Ç Q now means that Q is equal to P or better in that it is 
less likely to become quiescent. Q is more predictabie than P, because if Q can 
do something undesirable, P can do it too; and if Q can become quiescent, so 
can P. CHAOS can do anything at any time, and can become quiescent at any 
time. True to its name, it is the least predictabie and controllable of all handshake 
processes; or in short the worst. Refinement Ç is clearly a partial order on [1 ·A, 
with CHAOS as least element. 

Expression P Ç Q can also be read as " P specifies Q", "Q satisfies P", 
or "Q implements P". One of the main reasons to choose a nondeterministic 
specification, is to allow the implementor to select the cheapest or otherwise most 
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attractive implementation that satisfies the specification. C nversely, nondeter­
minism in specifications permits the specificator to abstra t from many of the 
implementation details. 

Example 2.30 

0. P Ç Pas · P . 

And with reference to Example 2.22: 

2. P3 !l Pz , and Pz !l P3 . Neither Pz, nor P3 can be refined any further. 

0 

Process P is maximal under Ç if any proper subset of tP violates the con­
ditions of the definition of handshake process. With the aid of a state graph, this 
maximality can be easily checked. In terms of state graphs there are two ways 
to reduce the trace set of the process it represents. One way js to turn a quiescent 
node into a transient node. This is allowed only when at least one output are 
leaves that node (for instanee the node reachable by trace qo in P4 ). So, in the 
state graph of a maximal process all outputs must leave fr<i>m a transient node. 
The other way to reduce the trace set is to remove one or more arcs. However, 
elimination of an input are generally results in a process that violates receptive­
ness. Elimination of an output are is allowed only if its souree node is quiescent, 
or if it shares its transient souree node with another output are. (Are b1 leaving 
the node reached by trace bo in process P4 may be removed.) Of course, the 
removal of one or more arcs must also leave the process reorder closed. 

The behavior of an assembly in which process P is one of the components 
may be described as a function F from processes (with port structure pP) to 
processes. If P can be refined into Q, it is only reasonable to require that F· Q 
is at least as good as F· P. In other words, F must then be order preserving. 

Definition 2.31 (order preserving) 

Function F from handshake structures to handshake structures is order preserving 
(altematively called monotone or isotone) , if it preserves refihement ordering, i.e. 
if 

SÇT =? P.SÇF · T 

0 
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Property 2.32 

0. Let :::S be a preorder on traces. Then the :::5-ciosure on handshake structures 
is order preserving. 

1. Corollary: prefix closure, reorder ciosure and input-extension ciosure are 
order preserving. 

D 

A property of handshake processes that proves useful in the implementation 
of handshake components and handshake circuits is the following. 

Definition 2.33 (initial when closed) 

A handshake process P is initial-when-closed if for all closed traces t E tP'5. we 
have 

P Ç after· (t, P) 

D 

When a ciosed trace of such a process has been observed, we may assume that 
the process is in an initia! state. All processes of Exarnple 2.23 are initial-when­
closed. None of the processes of Example 2.22 are. 

The complete partial order 

The greatest lower bound of a set of handshake processes is obtained by taking 
the union of the respective trace sets. 

Definition 2.34 (union) 

The union of handshake structures S and T, denoted by Sn T, is defined as 
(A, tS u tT) . 

D 

Property 2.35 

If P and Q are handshake processes, then P n Q is a lso a handshake process. 

D 

In Section 2.5 we shall interpret P n Q as the nondeterrninistic composition of 
processes P and Q. The least upper bound of a set of handshake processes does 
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in general not exist in [1 ·A. If it exists, it is obtained by intersecting the trace 
sets. 

Definition 2.36 (intersection) 
I 

The intersection of handshake structures S and T, denoted hl y S UT is defined 
as (A, tS n tT) . 

0 

For a chain of processes, it will be shown that the continueel U is a process. 
I 

Definition 2.37 (chain, limit) 

0 

0. An (ascending) chain is defined as an infinite sequence (i : 0 ::=; i : Si) of 
handshake structures, such that si ç si+ l . 

1. For chain (i : 0 ::=; i : Si) the limit is defined as the the continued 
intersection of the handshake structures in the chain, viz. 

which equals 
(A, { t : (V i : 0 :::; i : t E tSi) : t}) 

Definition 2.38 (continuous) 

Let F be a function from handshake structures to handshake structures and let 
(i : 0 ::=; i : Si) be a chain of handshake structures. F is (upward) continuous if 
it satisfies: 

0 

Continuity of a function from handshake structures to any OPO is defined simi­
larly. 

Property 2.39 

0. The containment of the passive restrietion is continuous: 

(U i : 0 :::; i : tPas· Si Ç tSi) 
= (tPas· (U i : 0 :S i : Si ) Ç (U i : 0 :S i : Si )) 
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1. Let :::S be a preorder on traces. Then the :::S-closedness is continuous. 

2. Corollary: prefix closedness, reorder closedness and input-extension closed­
ness are continuous. 

Proof of 1 (i ranges over the natura) numbers). We derive: 

tE (Ui:: Si ) 

= { definition of limit } 

(Vi ::t E Si) 

= { si are closed under ::S } 

(Vi :: (Vu :u :::S t : u E Si)) 

= { calculus } 

(Vu : u :::S t : (Vi :: u E Si )) 

= { definition of limit } 

(Vu :u :::S t : u E (Ui :: Si )) 

0 

Example 2.40 

The ::S-closure is nat continuous in generaL Consider for instanee the chain (i : 

0:::; i: Si), with s i = (a0 , {j: i :::; j : (aoa,)J}). Then (Ui:: s f ) = (a0 , (a0 )H ) 

and (Ui:: Si)~ = (a0
, 0) . 

0 

The following property claims continuity for two specific preorders on traces. 

Property 2.41 

0. r -closure is continuous. 

1. x-closure is continuous. 

Proof of 0. Let (i : 0 :S i : Si) be a chain and let t be a trace of (Ui :: S[) . 
Furthermore, let Ui be the set {u : u E Si 1\ t r u : u} . Note that Ui depends on 
t. Clearly, (i : 0 :S i : Ui) is also a chain. We derive: 
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t E (Ui :: S[) 

= { definitions of r-closui-e and of limit } 

(Vi :: (3u: t r u: u E Si)) 

= { definition of ui } 

(Vi :: (::Iu ::u E Ui)) 

= { (i : 0 :::; i : Ui) is chain; I ui I is finite } 

(::Ij : j :2: 0 : (Vi : i :2: j : Ui = Uj)) 

= { (i : 0 :::; i : Ui) is chain } 

(::Iu :: (Vi : i :2: 0 : u E Si)) 

{ definition of ui } 

(::Iu: t r u: (Vi ::u E Si)) 

= { definitions of limit and of r-closure } 

tE (Ui: : Sif 

0 

Theorem 2.42 

The limit of a chain of processes is a process. 

Proof Follows from the continuity of prefix closedness, reorder closedness, 
input-extension closedness and containment of the passive restriction. 

0 

Definition 2.43 (complete partial order, CPO) 

Partial order (Z, ::5) is complete if 

0. Z contains a least element, and 

1. every chain in Z has a limit. 

0 
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Corollary 2.44 

Partial order (f1·A, Ç) is a complete partial order with CHAOS A as least element 
and (U i : 0 :::; i : Pi) as limit of ebains (i : 0 :::; i : Pi) . 

0 

Property 2.45 

For chain (i : 0 :::; i : Si) we have for all j: Pj Ç (U i : 0 :::; i : Si) . 

0 

One reason why wetook all the trouble to prove that (f1·A, Ç) is a CPO, is 
that the least fixpoint for equations of the farm P = F· P, with Fa continuous 
function, can be constructed straightforwardly within a CPO. This allows the 
definition of handshake processes by means of recursion. Recursive process 
definitions will be discussed in Chapter 4. 

2.5 N ondeterminism 

In contrast with CSP, the maximal elements of the partial order Ç are not neces­
sarily deterministic. Nondeterministic behavior may exhibit itself in two farms: 

0. a process may have the choice of doing an output or becoming quiescent; 

I . a process may choose between two outputs, where the choice for one of 
the outputs disables the other. 

This is formalized below. 

Definition 2.46 (deterministic handshake process) 

Handshake process (A, T) is deterministic if for all distinct output symbols a and 
b: 

0. ta E y -5. => t ~ T 

I. ta E y-5. 1\ tb E T -5. => tab E y-5. 

0 
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Example 2.47 

All processes presented so far are deterrninistic, except P3 and P4 in Example 
2.22 and OR-(a0

, b•, c•), MIX(a 0
, b0

, c•), NVARBoor(a0
, b0

) and VARBoor(a0
, b0

) 

in Example 2.23, and, of course, CHAOS· A . RUN· A is deterrninistic only if A 
consists exclusively of nonput ports and input ports. Note th~t NMIX. (a0

, b0
, c•) 

is deterrninistic, albeit not receptive. NV AR Boot· (a 0
, b0

) \s nondeterministic, 
because after a trace bo the variabie may reply with either bf :false or bo : true . 

0 

An interesting and useful classification of non-deterministic asynchronous 
processes has been suggested by Tom Verhoeff [Ver89], on which we base the 
following definition . 

Definition 2.48 (statie and dynamic nondeterminism) 

Nondeterrninistic process P is statically nondeterministic if it can be refined into 
a deterrninistic process, and dynamically nondeterministic otberwise. 

0 

Example 2.49 

With reference to Examples 2.22 and 2.23: 

0 

0. P4 and OR · (a 0
, b• , c•) are statically nondeterministic; the forrner can be 

refined into (for instance!) P2 and the latter to CON (a0
, b•) with c• added 

to its port structure. 

1. P3 and MIX. (a0
, b0

, c•) are dynamically nondeterminis ie, in spite of their 
maximality under Ç . 

2. Note that the statically nondeterrninistic P4 can also be refined into the 
dynamically nondeterrninistic P3 . 

Dynamically nondeterministic processes require arbiters for th~ir implementation. 
I 



Nondeterminism 75 

Nondeterministic composition 

Process PnQ ("Por Q") behaves exactly like Por like Q. The choice between 
P and Q is nondeterministic. 

Property 2.50 

D 

0. Nondeterministic composition is idempotent, order preserving, commuta­
tive, associative, distributive and continuous. 

1. PnQ ç P. 

lf a process is specified by P n Q, the implementor is free to select either P or 
Q as implementation. For order preserving F we obviously have 

F · (P n Q) Ç F · P n P. Q 

A stronger property of functions on handshake processes is [BHR84] is distribu­
tivity: 

Definition 2.51 (distributivity) 

D 

0. A function F from handshake processes to handshake processes is distribu­
tive if 

P. (P n Q) = P. P n P. Q 

1. A function of two or more arguments is called distributive if it is distributive 
in each argument separately. 

Distributive functions are clearly order preserving. Nondeterministic composition 
is distributive, since 

Pn(QnR) = (PnQ)n(P n R) 

Example 2.52 

D 

0. Let :::5 be a preorder on traces. Then the :::5 -closure on handshake structures 
is distributive. 

1. Corollary: prefix closure, reorder ciosure and input-extension ciosure are 
distributive. 
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Chapter 3 

Handshake circuits 

3.0 Introduetion 

The most interesting operation on handshake processes is parallel composition. 
Parallel composition is defined only for connectable processes. Connectability 
of handshake processes captures the idea that ports form the unit of conneetion 
(as opposed to individual port symbols), and that a passive port can only be 
connected to a single active port and vice versa. A precise definition will be 
given later. 

The communication between connectable handshake processes is asynchro­
nous: the sending of a signa! by one process and the reception of that signa! by 
another process are two distinct events. Asynchronous communication is more 
complicated than synchronous communication, because of the possible occurrence 
of interference. The concept of interterenee with respect to voltage transitions 
has been mentioned in Section 0.1. Interterenee with respect to symbols occurs 
when one process sends a symbol and the other process is not ready to receive it. 
The receptiveness of handshake processes and the imposed handshake protocol 
exclude the possibility of interterence, thus yielding a relatively simple definition 
for parallel composition. 

Another complication is, however, the possibility of divergence: an un­
bounded amount of intemal communication, which cannot be distinguished ex­
temally from deadlock. From an implementation viewpoint divergence is unde­
sirable: it forms a drain on the power source, without being productive. 

The extemal behavior of the parallel composition of connectable P and Q 
will be denoted by P 11 Q, which is again a handshake process. Both intemal and 
extemal behavior of the parallel composition of two processes will be analyzed 

77 
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in detail in Section 3.1. 
Section 3.2 introduces handshake circuits. A handsha circuit is a finite 

set of pairwise connectable handshake processes. The exttmal behavior of a 
handshake circuit is again a handshake process, and is uni ' uely defined by 11, 

due to the associativity and commutativity of 11· 

Handshake processes form a special class of so-called delay-insensitive pro­
cesses. Delay-insensitive processes and their parallel (de-~compositions have 
been studied extensively (references will be given later). So~e facts about hand­
shake processes and their compositions are stated in terms o the existing theory 
on delay-insensitivity in Appendix A, including: 

• handshake processes are delay-insensitive; 

• ports of handshake processes are independent; 

• handshake circuits are free of interference. 

3.1 Parallel composition 

First we must agree on how to specify connect1v1ty betw~en two handshake 
processes, say P and Q. A convenient way to specify conneotivity is by identity 
of ports, that is, port a of P is connected to port b of Q if a and b consist of the 
same sets of symbols. In order to exclude various forms of "part i al connee ti ons", 
we require that ports of P and Q are either identical, or have disjoint symbol 
sets: the port structures of P and Q must be compatible (cf. Definition 2.3). 
Furthermore, we exclude connections between two passive ports or two active 
ports, because this would imply the conneetion of outputs to <Dutputs. In short, P 
and Q must be connectable. This notion is defined together with the reflection 
of a port structure next. 

Definition 3.0 (connectability, reftection) 

0. Port structures A and B are connectable, denoted by ~ !Xl B, if 

(a) A and B are compatible, and 

(b) A o n B 0 = 0 and A • n B• = 0 

1. Two handshake structures are connectable if their respe<ttive port structures 

~. I 
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2. The reftection of port structures A, denoted by A, is defined by: 

D 

Connectability and reftection enjoy the following obvious properties. 

Property 3.1 

0. A l><li/J 

I.AI><lB=BI><lA 

2. aA n aB = 0 ::::} A l><l B 

3. A l><l A 

4. A =A 

D 

Example 3.2 

2. P l><l CHAOS · pP 

D 

In the sequel P and Q are connectable handshake processes. Now we are 
ready to analyze the interaction between P and Q. Let C be the set of intemal 
ports, viz. (p0 P n p•Q) U (p• P n p0 Q) , let port p E C , and let a be an element 
of ap , such that a E (iP n oQ) . Furtherrnore, let t E tP:; and u E tQ:;, and let 
this pair of traces specify the current state. 

In genera!, tIC =I u IC , because symbols sent by one process need not have 
arrived at the other process yet. Even if all sent symbols have arrived, t and u 

may differ due to reordering. Assume that event a may occur next as an output 
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of Q, i.e. trace ua E tQ~. By outputing a, process Q eithe I starts a handshake 
(if a E Op), or acknowledges a handshake (if a E lp). sicause at most one 
symbol cao be on its way in a channel, we may conclude th t urp = tfp. The 
question now is: is P ready to input a? I.e., is ta in tP~? 

The following simple reasoning shows that this is so. Sin e Q 'is a handshake 
process, trace u a must be a handshake trace, and therefore u ar p and ta r p are 
also handshake traces. With t a handshake trace, ta must be a handshake trace 
as well. Because P is receptive, it must be prepared to ex te ' d t with a. Hence, 
ta E tP~: the aaival of a at P does oot cause interterenee Similar reasoning 
holds for a E (oP n iQ), because of symmetry. Absence of ,!nterference for sets 
of processes is defined in Appendix A. 

The interaction through common ports restricts the behavior of P and Q; oot 
all traces of P cao occur in the presence of Q and vice vetsa. Let the prefix­
closed trace sets P' and Q' denote the respective restricted behaviors. The above 
reasoning suggests that P' r C = Q' r C. lt is because of this that the weave 
[ vdS85] of P and Q is useful in the definition of P 11 Q. 

Definition 3.3 (weave) 

For connectable handshake structures Rand S, wedefine the weave of Rand S, 
denoted by R w S as 

(A, {t: tE AH 1\ trpR E tR 1\ tfpS EtS: t}) 

where A = pR U pS . 

D 

The following properties will be used. Cf. [ vdS85] for many of the proofs. 

Property 3.4 

Let R, S and T be three mutually connectable handshake stri.Jctures. 

0. R w CHAOS· (0, 0) = R 

l.RwS=SwR 

2. (R w S) w T = R w (S w T) 

D 

Some properties of handshake structures are preserved with weaving. 
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Property 3.5 

Let R and S be connectable handshake structures. 

0. (:S) · R 1\ (:S) · S => ( :S) · (R w S) 

I. (r)· R 1\ (r) · S => (r)· (R w S) 

2. (x)· R 1\ (x)· S => (x)· (R w S) 

Proof 

0. cf. Property 1.17 in [vdS85]. 
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I. Let r R, r s and r RS denote r pR, r ps and r pRups respectively. We 
derive: 

t E t(R w S) 1\ s r RS t 

= { Definition 3.3 (weaving) } 

tI aR E tR 1\ tI aS E tS 1\ s r RS t 

=> { Property 2.15.2 (twice) } 

tI aR E tR 1\ sI aR r RS tI aR 1\ ti aS E tS 1\ sI aS r R S ti aS 

=> { Property 2.15.1 (twice) } 

tI aR E tR 1\ sI aR r R tI aR 1\ tI aS E tS 1\ sI aS r s tI aS 

=> { R and S are reorder closed } 

sI aR E tR 1\ sI aS E tS 

= { definition of weaving } 

sE t(R w S) 

2. Similar to I. 

0 

Property 3.6 

Let R and S be connectable handshake structures. 



I 

82 ltlandshake circuits 

1. tPas· (R w S) c t(Pas· R w Pas· S) 

Pro of 

0. cf. Property 1.18 in [ vdS85]. 

1. Similar to Property 3.5.1. 

D 

The following property of weaving wiJl be used as a lemma in Theorem 3.12. 

Property 3. 7 

Let P and Q be handshake processes. Then 

tE t(P:S w Q:S) 
=? tE t(P w Q) :S V (::Ju : u E (oP U oQ)* 1\ tu E t(F:S w Q:S) :u =I c) 

Proof LettE (pP u pQ)H. We derive: 

tE t(P:S w Q:S) 

= { definition of weaving } 

tlaP E tP:S 1\ tiaQ E tQ:S 

=? { Property 2.13 (twice) } 

(::lv ,w: v E (oP)* 1\w E (oQ)*: (tlpP)v E tP 1\ (tipQ)w E tQ) 

=? { Pand Q are receptive; Q is reorder closed } 

::lv , w : v E (oP)* 1\ w E (oQ)* 
(tvwlpP E tP 1\ tvwlpQ E tQ) 
V(tvwlpPEtP:S 1\ tvwlpQEtQ:S 1\ (v=/c V w=/c)) 

=? { u= vw; definition of weaving (twice); calculus; trading } 

tE t(P w Q):S V (::Ju: u E (oP U oQ)* 1\ tu E t(P:S w Q:S): u =I c) 

D 

I 
So far we have ignored quiescence in analyzing the padHel composition of 

two processes, by looking at the prefix closures of the trace sets only. Fortu­
nately, the weave also captures quiescence, because a para;llel composition is 
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quiescent if and only if both components are. This makes the weave an attractive 
composition operator. However, the weave of two processes is not a handshake 
process, because of its intemal ports. By concealing the intemal ports and pro­
jection of the quiescent traces of the weave on the extemal ports, we obtain a 
handshake structure that represents the extemally observable behavior of a par­
allel composition, in most cases. This form of parallel composition is known as 
blending [ vdS85]. 

Definition 3.8 (blending; external port structure) 

0 

0. The blend of handshake processes Pand Q, denoted by Pb Q, is defined 
as 

(P w Q)f e(pP u pQ) 

where e(pP U pQ is the extemal port structure, defined next. 

1. The externalport structure of port structure A, denoted by e A , is the port 
structure A \ A, which is equivalent to (A 0 

\ A •, A • \ A 0 ) ( cf. Definition 
2.3). 

Unfortunately, the blend of two handshake processes is nota handshake process 
in genera!, as shown by the following example. 

Example 3.9 

Consider the parallel composition of REP · (a0
, b•) and RUN · b0

. The former 
includes the traces c, aobo and aobob1 bo , the latter includes c , bob I and bob1 bob1. 

The handshake structure REP· (a0
, b•) w RUN· b0 contains exactly one trace, 

viz. c. Noothertrace is quiescent: after trace ao processes REP· (a0 , b•) and 
RUN b0 "play ping pong" indefinitely. Concealment of b has of course no effect 
on this trace set. However, the resulting blend ( a0

, { E}) is not a handshake 
process, because it is not receptive. Trace ao does occur, and is quiescent as far 
as the environment is concemed. If we ignore handshakes along b, we apparently 
must accept (a0

, {c, ao}) as the behavior of REP· (a0 ,b•) 11 RUN· b0
• 

0 

The occurrence of an unbounded sequence of intemal events is known as infinite 
chatter (cf. [vdS85] page 52) or infinite overtaking (cf. [Hoa85] page 80). The 
traces that lead to such a bothersome state of affairs are called divergences. 
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Definition 3.10 (divergences) 

For handshake structure (A, T) we define the divergences o (A, T), denoted by 
div· (A, T), asthetrace set 

{ t: (Vn: 0::; n: (3u: u E (A0 n A•)* 1\ tu ET: n lenl· u)): t} 

0 

Reeall that A0 n A• is the set of intemal ports of A. No e that a handshake 
structure without intemal ports cannot have divergences. Th

1 
set of divergences 

of a reorder-closed handshake structure is also closed undeir reordering, as we 
shall prove next. 

Property 3.11 

0. Let R be a prefix closed handshake structure. Then div· R Ç tR . 

1. Let R be a reorder-closed handshake structure. Then dîv· R is also reorder 
closed. 

Proof 

0. Follows immediately from the definition of div. 

1. Let R = (A, T) . We derive: 

t E tdiv· (A, T) 1\ s r t 

{ Definition 3.10 (divergences) } 

(Vn: 0::; n: (3u: u EX* 1\ tu ET: n < len· u)) '/\ s r t 

= { calculus; Definition 2.14.7 } 

(Vn : 0 ::; n : ( 3u : u E X* 1\ tu E T 1\ su r tu : n < l en· u)) 

= { T is reorder closed } 

(Vn : 0::; n : (3u : u E X* 1\ su E T: n < len· u)) 

= { definition of div } 

s E tdiv· (A, T) 

0 
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Theorem 3.12 

Let P and Q be handshake processes. Then 

Proof by mutual set inclusion. 

Case (t(P w Q) U div(P -5. w Q -5. )) "5. C t(P -5. w Q-5.). 

t E (t(P w Q) U div · (P -5. w Q -5.))"5. 

=? { prefix ciosure distributes over U; Property 3.11.0 } 

t E (t(P w Q) -5. . U t(P-5. w Q-5.) "5. ) 

= { tS Ç tS -5. ; weaving is monotonic } 

t E t(P -5. w Q -5. ) "5. 

= { Property 3.5.0 } 

tE t(P -5. w Q -5. ) 

Case t(P -5. w Q -5. ) Ç (t(P w Q) U div(P -5. w Q -5. )) "5. . 

Let trace t E t(P -5. w Q-5.) and let predicate Xn be defined as 

tE t(P w Q) -5. V (3u : u E (oP U oQ)* 1\ tu E t(P-5. w Q -5. ): n ~ len· u) 

Predicate Xo holds trivially. Using Property 3.7 it follows that (Vn : 0 ~ n : 
Xn =? Xn+I) Hence, by induction, we have (Vn: 0 ~ n: Xn) Equivalently: 

tE t(P w Q) -5. 
V (Vn : 0 ~ n : (:Ju : u E (oP U oQ)* 1\ tu E t(P -5. w Q -5. ) : n ~ len· u)) 

The second term brings us very close to the definition of div (cf. Definition 
3.10 ). However, u ranges over all outputs and not exclusively over in te mal 
symbols. Fortunately, the number of extemal outputs in u is finite, because of 
handshaking and the finite number of ports involved. Hence, as far as the second 
term is considered, t is a prefix of a divergence of p -5. w Q -5. . Q.e.d. 

D 
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Corollary 3.13 

LetPand Q be connectable handshake processes such that d "v· (P~ w Q~) = 0 . 

0. (P w Q)~ = P~ w Q~ 

1. (P b Q)~ = P~ b Q~ 

[] 

Having dealt with interference, quiescence, concealment, 1nd divergence, we 
have done all the groundwork needed for the definition of P JII Q . 

Definition 3.14 (parallel composition) 

The parallel composition of connectable handshake processes P and Q is denoted 
by P 11 Q and defined as 

(A, (t(P w Q) U div· (P~ w Q~)) I A) 

with A = e(pP U pQ) . 

D 

As a corollary to Theorem 3.12 we may conclude: 

Property 3.15 

(P 11 Q)~ = P~ b Q~ 

D 

Theorem 3.16 

The parallel composition of connectable handshake processe's P and Q, as de­
noted by P 11 Q, is a handshake process. 

Proof Since P 11 Q is clear1y a handshake structure, it rerhains to prove that 
P 11 Q satisfies the five conditions of Definition 2.19. The proof is structured 
accordingly. 

0. According to Definition 3.14 we have p(P 11 Q) = e(pP U pQ). From 
Definition 3.8.1 it can directly be seen that e(pP U pQ) has no internal 
ports. 
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1. We derive: 

true 

:::::;. { tP and tQ are non empty } 

E E tP'Sc !\ E E tQ'Sc 

:::::;. { definition of blend } 

E E t(P 'Sc b p 'Sc) 

= { Property 3.15 } 

E E t(P 11 Q)'Sc 

:::::;. { calculus } 

t(P 11 Q) =/0 

2. We derive: 

tPas· (P 11 Q) 

{ Property 2. 12 } 

tPas · (P 11 Q) 'Sc 

= { Property 3. 15 } 

tPas· (P'Sc b Q'Sc) 

c { Property 3.6.1 } 

t(Pas· p 'Sc b Pas· Q 'Sc ) 

{ Property 2.12 (twice) } 

t(Pas· P b Pas · Q) 

C { P and Q are quiescent for passive traces; property of b } 

t(P b Q) 

c { property of 11 } 

t(P 11 Q) 

Hence, P 11 Q is quiescent for passive traces. 
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3. We derive: 

true 

=} { P and Q are reorder closed } 

(r)· P 1\ (r)· Q 

=} { Properties 2.2.1 (twice) and 3.5.1 (twice) } 

(r)· (P w Q) 1\ (r)· (P~ w Q~ ) 

=} { Property 3.11.1 } 

(r)· (P w Q) 1\ (r)· div· (P~ w Q~) 

=} { Property 2.2.1 } 

(r) · ((P w Q u div· (P~ w Q~ ))fe(AP u AQ)) 

= { definition of P 11 Q } 

(r)·(P 11 Q) 

4. We derive: 

true 

=} { P and Q are receptive } 

(x)· P~ 1\ (x)· Q~ 

=} { Property 3.5.2 } 

(x)· (P~ w Q~) 

=} { Property 2.18 .3 } 

(x)· (P~ b Q~) 

= { Property 3.15 } 

(x)· (P 11 Q)~ 

D 
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Property 3.17 

0 

0. Parallel composition is commutative, associative, distributive and continu­
ous. 

1. CHAOS· (0, 0) 11 P P. 

In the remaioder of this thesis, examples involving parallel composition are 
free of infinite overtaking. Parallel composition then reduces to the conceptually 

simpler blending. 

The way two processes are connected can be pictured by means of a con­
neetion diagram. These diagrams are also a convenient means to display the 

connectivity pattem of handshake circuits (see e.g. the circuits of Section 1.2). 
In a conneetion diagram, processes are drawn as circles with their ports drawn as 

small circles attached to their periphery. Passive ports are represented by open 
circles, active ports by tilled ones. A channel is represented by a line connect­
ing exactly one passive port to one active port of two distinct processes. The 
direction of a channel is represented by an arrow indicating the direction of data 

transport (when applicable). 

Example 3.18 

The parallel compositions below refer to handshake processes of Example 2.23 . 

0. The parallel composition of two connectors connected "tail to head" is 
again a connector: 

a~c a-o-e 
l . Connecting a connector to a process has the effect of renaming the port it 

connects to: 

a~c a-0-c 
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2. A port of a handshake process can effectively be concealed by connecting 

it to a RUN component: 

a b a -0----b 

AJso: 

= 

b 

3. An active port can be turned into a passive port by conneering it to a 

passiva tor: 

= e-b 
4. A duplicator can be constructed from a sequencer and a mixer: 

c 

a -<riD--d = a ---e-d 
b 
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A duplicator can also be constructed from a PAR component and a mixer: 

(: 

a~d = a -6--d 

b 

It is interesting to campare the respective weaves. Trace a0 b0codo is a trace 

of PAR · (a0 ,b•, c•) w MIX· (b0
,C

0 , d•) but not of SEQ· (a0 ,b• .. c• ) w MIX · 
(b 0

, .o, d•). Fortrace aobodo the converse is true: it is quiescent only in 

the sequencer based duplicator. 

However, these differences in internal behavior are concealed to the exter­

nal observer. 

5. Nondeterminism is not preserved under paralle l composition: 

c 

o~d = a -o-d 

b 

6. A nother realization of CON· (a0
, d•) is suggested by: 

c 

a~d = 

b 

In Chapter 6 we shall recognize examples 0, 1, 4 and 6 as in stances of property 

6 .23 . Each of the above examples can also be viewed as a substitution or rewrite 
rule: the composition at the left-hand side of an equality may be replaced by 

the component at the right-hand side. These substitutions the refore a lso suggest 

optimizations of hands hake circuits (cf. Sec ti on 7 .1). 

0 

We conclude this section with two properties of parallel compos1t1on that 
prove useful for the initiaJization of handshake circuits (Section 7.6). 
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Property 3.19 

0 

0. The property "being passive" is preserved under parallel composition, that 

is, P 11 Q is passive if P and Q are passive. 

l. The property initial-when-closed is preserved under parallel composition. 

3.2 Handshake circuits 

Handshake circuits at last! 

Definition 3.20 (handshake circuit) 

0 

0. A handshake circuit is a finite connectable set of handshake processes. 

l. Let H be a fini te set of handshake structures. H is connectable, denotcd 
by ~H, if all handshake structures are pairwise connectable, that is: 

t?:lH = (V S, T : S E H /\ T E H /\ S =/ T : S txl T) 

In particular, the empty set and the singleton set are handshake circuits. Note that 

the required connectability excludes "broadcast" among handshake processes: 
a port may occur in the port structures of at most two processes of a given 
handshake circuit. Consistent with the terminology of Chapter I we shall refer 
to the handshake processes of a handshake circuit as its handshake components. 

Most of the operators of the previous section can be generalized to handshake 
circuits in a straightforward fashion. 

Definition 3.21 

0. The externaLport structure of handshake circuit H, denoted by eH, is the 
port structure 

e(U P : P E H : pP) 

l. fiS. = { P : P E H : p S. } 

2. W · H = ( w P : P E H : P) 
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0 

3. B· H = ( b P: P EH: P) 

4.II·H=<II P:PEH:P) 

The first definition relies on 

A t><l B 1\ B t><l C 1\ C t><l A => e(A u B) t><l C 
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The last three definitions rely on the associativity and commutativity of weaving, 
blending, and parallel composition, as well as on the existence of a null element 
CHAOS· (0, 0) for all three operators. Many of the properties of the previous 
section generalize similarly: 

Corollary 3.22 

For handshake circuit H we have: 

0. div· (W· H~) = 0 => (W · H)~ = W· (H~) 

1. div·(W·H~)=0 => II ·H=B·H 

2. eH= P< II·H) 

3. 11· H is a handshake process. 

4. <II·H)~ =II·H~ 

0 

The following properties relate to the set nature of a handshake circuit. 

Property 3.23 

0 

0. 0 is a handshake circuit. Since STOP· (0, 0) is the unit of parallel compo­
sition of handshake processes, we have 11·0 =STOP· (0, 0) . 

1. Let H and I be handshake circuits, such that t><l(H u I). Then H u I is a 
handshake circuit, and 

e(H u I) = e(eH u el) 
li·(H u l) =<II·H) 11 <II·I) 
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As a corollary to Property 3.19, we may conclude that the behavior of a 

handshake circuit constructed from passive components is, also passive. The 

same holds for the property initial-when-closed. 

Example 3.24 

0. A three-way mixer is the natura! generalization of the t o-way mixer MIX. 
A three-way mixer with a0

, b0 and C
0 as passive pJts and d• as active 

port can be realized by 

which is equivalent to 

Pictorially this can be expressed as: 

a a 

= e 

b b d 

e 

c 

An N-way mixer (N :2 2) can be realized as a tree 10f N- 1 two-way 
mixers. Although all trees exhibit the same behavior (à.e. define the same 
N -way mixer process), response times to requests through different passive 

ports may differ considerably. The degenerated case, ~ith all N-I mixers 
linked into a list, is an extreme in this respect. 

1. Similar to the N -way mixer, we may con si der N -way generalizations of 
SEQ, PAR and OR. These three handshake circuits have one passive port 
and N active ports, and can be constructed from N - I instances of the ir 
two-way counterparts. 

2. DUPN(a0
, b•) is one way to generalize the duplicator, with DUPr(a0

, b•) = 
DUP· (a0 , b•), and for N > 1: 

DUPw (a0
, b•) = DUPN- 1 · (a0

, biv _ 1) 11 DUP· (b'N_ 1, b•) 
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D 

For each handshake through a we may expect 2N handshakes through port 
b. With N = 90 and a rate of one handshake through b per nanosecond, it 
takes approximately 10 18 seconds to complete a single handshake through 
a 0

• Th is is a bout the estimated life time of the uni verse, and may present a 
slight problem for the testing of a VLSI circuit that implements this chain 
(see Section 7.7). 
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Chapter 4 

Sequentia! handshake 
processes 

4.0 Introduetion 

So far the quiescent trace set of a handshake process was specified in one of the 
following forms: by enumeration, by a predicate, by a state graph, or by parallel 
composition of other handshake processes. 

For many handshake processes neither of the above forms may be convenient. 
An example of such a process is the process that first behaves like P and then, 
"after successful terminalion of P", behaves like Q. Of course, such sequentia/ 
composition of the handshake processes P and Q requires a notion of successful 
termination of a process. A sequentia! handshake process is a handshake process 
in which that notion is incorporated. 

The aim of this chapter is to develop a model for sequentia! handshake pro­
cesses and a calculus for these processes. An important application of this calcu­
lus is the description of the handshake components required for the compilation 
of Tangram. Another application is the semantics of Tangram itself. 

4.1 Sequential handshake processes 

A sequentia! handshake process is a handshake process, of which a subset of the 
quiescent traces is designated as traces that lead to successful termination. In a 
sequentia! composition these so-called terminal traces can act as antecedents to 
traces of the subsequent sequentia! handshake process. 

97 
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Let T denote the set of quiescent traces and let U denot the set of terminal 
traces of sequentia! handshake process P. Sets T and U mJst satisfy a number 

of conditions, which will be introduced informally first. 
1
1 

For te.rminal handshake traces u, we require that for any. hanclshake trac~ v, 
trace uv IS a handshake trace as well. Therefore, we requ e that all termmal 
traces are closed. 

Traces that are both terminal and quiescent form a speeial class of traces. 
After such a trace, a non-deterministic choice is made whether to terminate suc­
cessfully or not. Hence, T n U does not need to be empty. I 

Proper i~put extensions of ~erminal trace u, and reord~rings thereof ~orm 
another special class of traces. Smce they are not closed, they jcannot be termmaL 
They are not necessarily quiescent either. We choose not to record these traces 
explicitely, but to require that (A , T U ux r) is a handshake process. 

Reordering should of course not have an effect on termination. Hence, both 
T and U must be closed under reordering. Combining the above leads to the 
following definition . 

Definition 4.0 (sequentia! handshake process) 

Let P be a triple (A , T, U) , in which A is a port structure, and T and U are 
subsets of AH . Furthermore, let V denote TU ux r . Triple P is a sequentia! 
handshake process if the following conditions are satisfied (cf. Definition 2.19): 

0. A0 nA•=0 

1. V i 0 

2. t(Pas· (A, V)) c V 

3. (r)· T 1\ (r)· U 

4. (x) · v:s and 

5. (\:Iu : u E U : closed· u) 

Trace set U is the set of terminal traces and T is the set öf quiescent traces. 
Sequentia! handshake process P may be written as (pP, tP, uP) . The set of all 
sequentia! handshake processes with port structure A is deno ed by I;· A . 

0 

Note that Conditions 0 to 4 closely mirror the corresponding conditions of the 
definition of handshake processes. For brevity's sake, the word handshake may 
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be omitted in "sequentia! handshake process". In the remaioder of this section 
P and Q denote sequentia! handshake processes. The following property shows 
their relation to (non-sequentia!) handshake processes. 

Property 4.1 

0 

0. If (A, T, U) is a sequentia! handshake process then (A, T U ux r) is a 
handshake process. 

1. Corollary: if (A, T , 0) is a sequentia! handshake process then (A, T) is a 
handshake process. 

These properties inspire the following definition. 

Definition 4.2 (permanent sequentia! process) 

0 

0. A sequentia! handshake process is permanent if its set of terminal traces is 
empty. 

1. A handshake process (A, T ) is said to con·espond to the permanent se­
quentia! process (A, T , 0), and vice versa. 

When P is a permanent sequentia! process, and no confusion can arise, we wil! 
sametimes use P as if it is a handshake process and omit the phrase "the hand­
shake process corresponding to". In particular, permanent sequentia! processes 
wil! be used to define the behavior of handshake components and handshake 
circuits. 

In [Hoa85] terminal traces are appended with a symbol .j, indicating suc­
cessful termination. A clear advantage of such an encoding is the absence of 
the need to introduce another process model. To some extent, this advantage 
is eroded when the extra rules that govem the use of .j have to be taken into 
account. Moreover, the recording of the terminal traces in a separate set wiJl pay 
off in the definitions of the various operators on sequentia! processes. 

For a port structure A the following generic sequentia! processes are defined. 
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Definition 4.3 

0 

0. CHAOS· A is the least predictabie sequentia) handshake process. It can en­
gage in a handshake through any port at any time, it ca become quiescent 
at any time, and it may terminate successfully after an closed trace: 

CHAOS- A~ (A, AH, {t: tE AH A c/osedl t: t}) 

1. RUN- A is always willing to engage in a handshake through any of its ports. 
However, it never terminates: 

RUN · A= (A, tPas· (A, AH) , 0) 

2. STOP· A never engages in a handshake communication
1 
through any of its 

ports. Neither does it ever terminate successfully: 

3. SKIP· A never engages in a handshake communication through any of its 
ports. All it does is terminate successfully: 

SKIP · A= (A, 0, {t=:}) 

CHAOS· A, RUN A, and STOP· A have also been defined as handshake processes 
and have the sameset of quiescent traces as their non-sequentia! counterparts (cf. 
Definition 2.20). In future reference to these processes the context will indicate 
which variant is intended. RUN· A and STOP· A are permanent sequentia) 
processes. Also note that: 

• CHAOS · (0 , 0) = ( (0, 0), { t=:}, { t=:}) 

• RUN· (0,0) = ((0 , 0),{t=:},0) 

• STOP· (0,0) = ((0,0),{t=:},0) 

• SKIP· (0,0) = ((0 , 0) , 0, {t=:}) 

lndeed, there are three sequentia) processes with the empty port structure. 
I 
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The CPO of sequential handshake processes 

The set of sequentia! handshake processes with port structure A, denoted by 
L:·A, can be analyzed in a way similar to our analysis of O·A. The respective 
definitions, properties and theorems then bear close resemblance. In this subsec­
tion we rephrase the more significant results of Section 2.4 in terms of sequentia! 
processes. All sequentia! processes in this subsection have port structure A. First 
we introduce a partial order relation Ç among sequentia! processes. 

Definition 4.4 (refinement) 

Let P and Q be sequentia! processes with the same port structure. P refines to 
Q, denoted by P Ç Q, if 

tP 2 tQ and uP 2 uQ 

0 

Again, P Ç Q may be read as P refines to Q, P specifies Q, or Q implements 
P. The least element in this order is CHAOS· A. A function from I:· A to L: ·A 
is order preserving if it preserves refinement ordering. 

Definition 4.5 (nondeterministic composition) 

The nondeterministic composition of P and Q, denoted by P n Q , is defined as 
(A , tPUtQ,uPUuQ) . 

0 

P n Q is the greatest Iower bound of P and Q in the partial order (I:· A, Ç) . 
Later n will be generalized to sequentia! processes with unequal port structures. 
A function from L: ·A to L: ·A is distributive if it distributes over nondeterministic 
composition. 

Definition 4.6 (intersection) 

The intersection of P and Q, denoted by P U Q , is defined as 

(A, tP n tQ , uP n uQ) 

0 

The intersection of two sequentia! processes is generally not a sequentia! process. 
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However, with limit and chain defined as in Section 2.4 we arrive at the following, 
hardly surprising, theorem. 

Theorem 4.7 

Partial order (L·A, Ç) is a CPO with CHAOS· A as least element 
and (U i : 0 ::; i : P;) as limit of chain (i : 0 ::; i : Pi). 

D 

In accordance with Definition 2.38, function F from L ·A to [:·A is continuous 
if it commutes with the limit operation. 

Recursion 

One way to define a sequentia! handshake process is by recursion, for example 
as a fixpoint of a given function F, i.e. a solution of the equation P = F · P . 
We conclude this section by instantiating the well-known fixpoint construction in 
CPO's [BHR84,DP90]. 

Theorem 4.8 

Let F be a continuous function from L·A to L·A , and let the n-fold composition 
of F be denoted by pn. Then 

(U n: 0::; n: pn. CHAOS) 

is the least fixpoint of F. 

Proof First we prove that the above limit is a fixpoint of F: 

P. (Un: 0::; n: pn. CHAOS) 

= { Continuity of F } 

(Un: 0::; n: F· (Fn· CHAOS)) 

= { calculus } 

(Un : 1 ::; n : pn ·CHAOS) 

= { CHAOS Ç pn · CHAOS } 

(Un : 0 ::; n : pn ·CHAOS) 

It is also the least fixpoint, since (let Q be a fixpoint): 
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(Un: 0::; n: Fn· CHAOS) 

C { CHAOS Ç Q and Fis order preserving } 

(Un : 0 ::; n : Fn · Q) 

{ Q is a fixpoint } 

(Un : 0 ::; n : Q) 

= { calculus } 

Q 

0 

An application of this fixpoint theorem is given in the next section. 

4.2 Process calculus 
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This section develops a calculus for sequentia) handshake processes. lt is re­
stricted to sequentia! processes with undirected ports, thereby excluding input 
and output of data. Extensions to this calculus, including data communication 
and assignments, are described informally in Section 4.4. The calculus includes 
the foUowing operations: parallel composition, extension, concealment, nonde­
terministic composition, sequentia! composition, N -fold repetition , infinite rep­
etition, enclosure, and choice. The choice of the operators is inspired by the 
syntax of Tangram. 

Basic sequential processes 

The following definition introduces four basic sequentia! processes. 

Definition 4.9 (stop, skip, a 0
, and a•) 

Let a be a name. 

0. stop STOP· (0 , 0) = ((0,0), {c},0) 

1. skip SKIP· (0,0) = ((0,0),0,{c}) 

2. ao = (a0
, {c}, {aoat}) 

3. a• = (a• , {ao}, {aoai}) 

0 
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Note that a0 may both denote a port structure and a sequenti process; the same 

holds for a•. Generally, the context indicates which denotati n is intended. 

Parallel composition 

Definition 4.10 (parallel composition) 

Let P and Q be two corrnectable sequentia! processes, and let A = e(pP u pQ). 
The parallel composition of P and Q is denoted by P 11 Q a d defined by 

0. p(P 11 Q) =A 

1. t(P 11 Q) = 
(tP w tQ U (uPl w tQ u tP w (uQ)x u div· (tP~ w tQ~ ))f A 

2. u(P 11 Q) = (uP w uQ) fA 

where the weave of trace sets V and W in the context of pP aild pQ is shorthand 

for 

{ t : t E (pP U pQ)H 1\ t f pP E V 1\ t f pQ E W : t} 

0 

This definition closely resembles Definition 3.14. The main actdition is the re­
quirement that both P and Q must agree on successful termination. 

Property 4.11 

0 

0. P 11 Q is a sequentia! process. 

1. Parallel composition is commutative, associative, distributive, and contin­
uous. 

2. skip 11 P = P . 

3. a0 
11 a• = skip . 
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Conformant port structures 

Connectability of port structures is a requirement for the parallel composition of 
(sequentia!) handshake processes. In such a composition, two processes may only 
share the opposite side of a channel. lf sequentia! processes share the same side 
of a channel, a different requirement is imposed on the respective port structures: 
they must be conformant. 

Definition 4.12 (conformance) 

Port structures A and B are conformant denoted by A M B, if 

0. A and B arecompatible, and 

1. A o n B• = 0 and A o n B• = 0 . 

Two handshake structures are conformant if their respective port structures are. 
Confonnance of sequentia! processes is defined similarly. 

0 

Confonnance is related to connectability by the following property. 

Property 4.13 

A M B = At><IB 

0 

Confonnance enjoys the following obvious properties. 

Property 4.14 

0. A M B = BMA. 

1. B Ç A ::::} B M A. Consequently, AM 0 and AM A. 

2. pA n pB = (/) A A and B are compatible ::::} A M B . 

0 

Extension 

Some relations and operations on processes are defined only for processes with 
equal port structures. Under such circumstances, the extension of the port struc­
ture of a process may be useful. The extension of P with confonnant port 
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structure A is a sequentia! process that has port structure pP U A , and behaves 
like P. The following definition relies on the fact that disjoint port structures are 
both conformant and connectable. 

Definition 4.15 (extension) 

Let A M pP. The extension of P by A is denoted by (A) · P and defined as 

P 11 SKIP · (A\ pP) 

D 

Property 4.16 

Let A, B and pP be mutually conformant Then 

0. (A) · P is a sequentia! process. 

1. ((0,0))·P = P 

2. (A) ·P = (A\ pP) ·P 

3. (pP) ·P = P 

4. (B) ·(A)·P = (A)·(B) ·P = (A u B) ·P 

5. (A) ·stop STOP · A 

6. (A)·skip = SKIP· A 

D 

The following property is helpfut in translating Tangram programs into hand­
shake circuits. 

Property 4.17 

Let A be a port structure and P a permanent sequentia! process. Then 

(A) ·P = P 11 STOP · (A\ pP) 

Of course, (A)· P is then also permanent. 

D 
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Concealment 

Concealment of a subset of the ports of sequentia! process P has the effect that 
handshakes through these concealed ports occur without participation of the en­
vironment, and are even invisible to the environment. This concealment may 
have the effect of hiding unbounded sequences of handshakes through the con­
cealed ports. These possible divergences are taken into account in the following 
definition . 

Definition 4.18 (concealment) 

Let A M pP . The behavior of P with A concealed, denoted by I[A I PJI, is 
defined as 

(B, (tP u div· (pP u A, tP:S))iB, uPrB) 

where B = pP \ A . 

0 

Concealment enjoys the following properties. 

Property 4.19 

Let A and B be port structures and P a sequentia! process such that A, B and 
pP are mutually conformant Then 

0 

0. I [A I P] I is a sequentia! process. 

1. I[A I PJI = I[A n pP I PJI 

2. I[A II[B I FIIJI = I[A u BI P]l 

3.1[(0,0)1PJI=P 

The following property is helpful in translating Tangram programs into handshake 
circuits. 

Property 4.20 

Let A be a port structure and P a permanent sequentia! process, such that 
AM pP. Then 

I[A I PJI = P 11 RUN· (A n pP) 
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Sequentia! process I [A I P] I is then also permanent. 

0 

Nondeterministic composition 

This subsection generalizes nondetenninistic composition of ~equential processes 
with equal port structures to sequentia! processes with different, yet confonnant, 
port structures. 

Definition 4.21 (nondeterministic composition) 

Let P M Q . The nondetenninistic composition of P and Q is denoted by 
P n Q , and defined as 

(pQ)·P n (pP)·Q 

0 

Property 4.22 

Let P and Q be conformant sequentia! processes. 

0 

0. P n Q is a sequentia! process. 

1. Nondetenninistic composition is idempotent, commutative, associative, dis­
tributive, and continuous (cf. continuity of sequentia! composition below). 

2. P n CHAOS· pP =CHAOS· pP 

Sequential composition 

The sequentia! composition of P and Q first behaves like P and, upon success­
ful terminalion of P, continues to behave like Q. The definition of sequentia! 
composition starts with the sequentia! composition of sequentia! processes with 
equal port structures. 
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Definition 4.23 (sequential composition) 

0. Let P and Q be handshake processes with port structure A. The sequentia! 
composition of P and Q is denoted by P;A Q , and defined as 

0 

(A, tP u (uP; tQl, (uP; uQ)r) 

where the sequentia! composition of trace sets V and W is defined by 

V; W = { v , w : v E V A w E W : vw} 

1. Let P and Q be handshake processes with conformant port structure. The 
sequentia! composition of P and Q is denoted by P; Q , and defined as 

(pQ)·P ;A (pP)·Q 

where A = pP U pQ . 

Note that if pP = pQ we have P ;pp Q P;Q. 

Property 4.24 

0. P; Q is a sequentia! process. 

1. Sequentia! composition is associative and distributive. 

2. skip; P = P = P; skip 

3. stop; P = stop 

4. P; stop == (pP, tP U uPx r, f/J) , which is clearly permanent. 

0 

The next property finds application in the definition of infinite repetition. 

Property 4.25 

Sequentia! composition is continuous in bath operands, that is 

and 
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We prove the Jatter. 

Proof Continuity is proven for the terminal traces; the proof for the quiescent 
traces is similar. 

t E u(Ui :: P ; Qi) 

= { definitions of U and sequentia! composition } 

t E (ni :: (uP; uQil) 

= { continuity of r-closure (Property 2.41) } 

t E (ni :: (uP; uQi)l 

{ definition of r-closure } 

(:3u : t r u : u E (ni :: uP; uQi)) 

= { definitions of chain and sequentia! composition } 

(::Ju : t r u : (Vi :: (::Jr, s : u= rs : r E uP 1\ s E uQi)) 

{ finite number of u and hence of s (cf. Property 2.4l) } 

(:3u, r, s : t r u 1\ u= rs 1\ r E uP : (Vi :: (s E uQi))) 

= { definition of limit; calculus } 

(::Jr, s : t r r s 1\ rE uP: sE (ni :: uQi)) 

= { definitions of sequentia! composition, r-closure, and limit } 

t E (uP; u(Ui :: Qi)l 

= { definition of sequentia! composition } 

tE u(P; (Ui :: Qi)) 

D 

N-fold repetition 

The 0-fold repetition of P behaves like skip. For positive JV,I the JV-fold repeti­
tion of P behaves like P, and after successful termination of P behaves like the 
(JV - 1)-fold repetition of P. 
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Definition 4.26 (N-fold repetition) 

Let N be a natura) number. The N -fold repetition of P is denoted by #N [P], 
and defined as 

D 

Property 4.27 

if N = 0 

0 N > 0 
fi 

----> SKIP· pP 
----> P;#(N- l)[P] 

Let P be a sequentia) processes and let N be a natura) number. 

0. #N[P] is a sequentia) process. 

I. Finite repetition is continuous. 

2. #N[stop] =stop , for N > 0. 

3. #N [skip] =skip . 

D 

Finite repetition is not distributive, i.e. in general we do not have 

#N[P n Q] = #N[P] n #N[Q] 

Sequentia) process #N[P n Q] may choose between P and Q at every step of 
the iteration; in the case of #N[P] n #N[Q] this choice is made only once. The 
latter is a refinement of the former. 

Infinite repetition 

The infinite repetition of P behaves like an infinite sequentia) composition of 
sequentia) process P , schematically suggested by P; P; P; ... 

Definition 4.28 (infinite repetition) 

The infinite repetition of P is denoted by #[P] and defined as the least fixpoint 
of F, where F is defined by F- X= P; X. 

D 

This fi xpoint is the limit of the chain (i : 0 ::::; i : #i [P]; CHAOS. pP) as explained 
in Section 4.1. 
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Property 4.29 

0. #[P] is a sequentia! process; it is àiso pennanent. 

1. Infinite repetition is continuous. 

2. P; #[P] = #[P] 

3. #[stop]= stop 

4. #[skip]= CHAOS· 0 

D 

It is interesting to campare these properties with Property 4.27. The last property 
shows that infinite repetition of P cannot be regarded as the limit of the chain 
(i : 0 :S i : #i[P]) . Infinite repetition is not distributive, for the same reason as 
finite repetition. 

Enelosure 

The enelosure of a sequentia! process P by a passive handshake a0 (assume 
a0 (j_ pP) first behaves like STOP· pP . After event ao it behaves like P, and if 
P tenninates successfully, the enelosure tenninates successfully with event a 1• 

Definition 4.30 (enclosure) 

Let a0 be a port structure, such that a0 is not contained in pP . The enelosure 
of P by a0 is denoted by a0 

: P and defined as 

(a0 U pP, t(STOP · pP) U ( { ao}; tP)r, ( { ao}; uP; {at} )r) 

0 

Property 4.31 

Let P be a sequentia! process, and let a and b be distinct mames, such that a0 

and b0 are not contained in pP . 

0. a0 
: P is a sequentia! process. 

1. Enelosure is distributive and continuous. 
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3. a0 :stop = STOP· a0 

0 

The last property, which may co me somewhat as a surprise, is a direct conse­
quence of the reordering in Definition 4.30. 

Choice 

Consicter the conformant sequentia! processes a 0
; P and b0

; Q . Sequentia! pro­
cesses of this form are called guarded processes. We are interested in a sequentia! 
process that either behaves like a0

; P or like b0
; Q , such that the environment 

may choose between the two sequentia! processes by either offering a0 or b0 . 

This is quite different from a0
; P n b0

; Q , in which the choice between the 
operands of n is made nondetenninistically. 

The above choice is denoted by [a0
; P I b0

; Q] , and behaves like the se­
quentia! process a0

; p n b0
; Q ' except that traces ao and bo are not quiescent. 

The choice construct can be generalized by allowing an enclosures as guarded 
processes. Reeall that an enelosure is a sequentia! process of the fonn a 0 

: P , 
This brings us to the following definitions. 

Oeftuition 4.32 (guarded process) 

A guarded process is a sequentia! process that cao be written as b0
; P or as 

b0 
: P . Port b0 is called the guard of the guarded process. 

0 

Reeall that b0 = b0
; skip = b0 

: skip . 

Definition 4.33 (choice) 

Let P and Q be two conformant guarded processes, with disjoint guards p and q. 

If P is an enelosure we require p rf. p 0 P and similarly for Q and q. The choice 
between P and Q is denoted by [P I Q] , and defined as 

(A , t((A) ·P) \ {qo} U t((A)·Q) \ {p0}, uP U uQ) 

where A = pP U pQ . 

0 
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The difference with the nondeterministic composition of P a!Îld Q is rather subtle. 
In contrast with nondeterministic composition trace po is nbt a quiescent trace, 
unless it is a quiescent trace of P; similarly for trace qo and Q. 

Property 4.34 

Let P and Q be two conformant guarded processes. 

0. [P I Q] is a sequentia! process. 

1. Choice is commutative, distributive and continuous. 

2. [a 0 :stop I b0 :stop]= STOP· (a 0 u b0
) 

3. [ao; bo I bo; ao] = ao 11 bo 

D 

The sequentia! process denoted in the last property is 

The choice construct can readily be generalized to provide a choice among N, 
N > 0, guarded processes. 

4.3 Examples 

Since handshake processes correspond to permanent sequentia! handshake pro­
cesses, the calculus of Section 4.2 can be used to specify h3!hdshake processes. 

Example 4.35 

Most handshake processes of Example 2.23 are repeated be!ow, but now repre­
sented by expressions in the handshake calculus. 

0. STOP· (a 0
) (a0 )·stop 

1. RUN· (a 0
) #[ao] 

2. CON· (a 0
, b•) = #[a 0 

: b•] 

3. OR· (a 0
, b•, c•) = #[a 0 

: (b. n c•)] 

4. SEQ· (a 0
, b•, c•) = #[a 0 

: (b•; c•)] 
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5. DUP· (a 0
, b•) = #[a0 

: (b•; b•)] 

6. REP· (a0 , b•) = (a 0 
: #[b•]) 

7. PAR· (a 0
, b•, c•) = #[a0 

: (b• 11 c•)] 

8. MIX. (a0
, b0

, c•) = #[[a0 
: c• I ba : c•]] 

9. PAS· (a0
, b0

) = #[ao :ba] 

10. JOIN· (a 0
, b0

, c•) = #[a 0 
: b0 

: c•] 

11. COUNT N" (a 0
, b•) = #[a0 

: #N[b•]] 

0 

In Chapter 2 we have established the above components to be initial-when-closed, 
meaning that for each closed trace tin p "S. the process after· (t, P) is arefinement 
of P itself. The property initial-when-closed can be checked syntactically, as 
shown by the next property. 

Property 4.36 

A sequentia! handshake process that can be written in the form #[a 0 
: P] or in 

the form #[a0 
: P I b0 

: Q] is permanent. The corresponding (non-sequentia!) 
handshake process is both passive and initial-when-closed. 

0 

Note that (a0 ) ·stop can also be written as #[a0 :stop]. As a matter of fact, all 
handshake components required for the compilation of Tangram can be written 
in one of the two forms of Property 4.36. 

4.4 Directed communications 

With the calculus introduced so far we can only specify sequentia! processes with 
undirected ports. The handshake circuits obtained by the translation of Tangram 
programs also require handshake components with input and output ports, such 

as VARBoor (a 0
, b0

) in Example 2.23. This section extends the calculus of the 
previous section to sequentia! handshake processes that communieale data. These 
extensions are introduced informally and applied to the specification of handshake 
components. 
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Declarations 

The first operand of the concealment construct I [A I P] I ma), also contain deela­
rations of variables. For instance, x : var T deelares variabJe x of type T. The 
scope of such a deelaration is delineated by the enelosing b~acket pair. 

Input 

Assume port definition a0 ?T, where T is a finite set of values, such as Boot. The 
sequentia! process a0 ?x has the above port structure, and re, ponds to any input 
ao: v, with v ET, with an acknowledgement a1• 

The x in a0 ?x is a variabie that denotes the incoming value (cf. Tangram), 
I 

and may be referenced elsewhere. In the sequentia! composi~1ion a0 ?x ; F · x the 
second operand F x denotes a sequentia! process whose behavior depends on the 
value of x . In the enelosure a0 ?x : F· x the acknowledgement to an incoming 
value through a0 is postponed until after the successful termiriation of F x. Both 
a0 ?x; F · x and a0 ?x : F · x are guarded processes and may therefore occur as 
alternatives in choice processes. 

With active port a•?T, sequentia! process a•? x requests an input by outputting 
ao. Then it is receptive to all inputs a 1 : v with v E T. In the sequentia! 
composition a•?x; F· x the behavior of sequentia! process F · x depends on the 
value of x, being the most recent value input through a•. 

Output 

An example of a sequentia! process whose behavior depends on the value of x 
is the output process a0 !E(x ), where E(x ) is an expression in which x occurs 
as a free variable. The enelosure a0 !E(x ) : P is a sequentia! process, that 
behaves like P after communication ao, and, after successful termination of P 
and successful evaluation of E, coneludes with communication a1 : E(x). The 
value of E(x) may depend on P. For instance, the terminal tra,ces of b0 !x: a•?x 
are bo ao a1 :v h :v, with v ranging over T . The active counterpart of a0 !E(x) 
is a•!E(x ). 

Guarded selection 

The equivalent of guarded commands (see Chapter 1) can be introduced as well. 
With Ba Boolean expression, if B ----+ P fi behaves as P if B evaluates to true, 
and is left unspecified otherwise. This generaiizes to selecrlions with multiple 

I 

guards in the well-known way. 
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Sequential process do B __... P od repeatedly behaves as P, as long as B 
evaluates to true. In particular do false __... P od behaves like SKIP· (pP) and 
do true __... P od behaves like #(P]. 

Examples 

The handshake processes below illustrate the above extensions. Together with the 
handshake processes of Example 2.23 they form a complete list of all handshake 
components required for the compilation of Tangram programs. 

Example 4.37 

0. STOP(? ,T) · (a0
) accepts any input a: v, with v E T, but does not respond 

to it: 

1. STOP(! ,T) · (a0
) does not respond to a request for a value in T . 

= 

2. RUN(?,T) · (a0
) repeatedly responds to any input through a of type T with 

the acknowledgement a 1: 

3. RUN(' ,T> · (a0
) repeated1y responds to ao by an output of the form a 1 : v, 

with v E T , and is clearly static nondeterministic: 

= 

4. With C a constant, CSTc (a0
) repeatedly responds to input a0 with output 

a1 : C . Process CSTc (a0
) may be regarded as a deterministic refinement 

of RUN(! ,T) · (a0
), provided that the value of C is in T. 
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= 

5. Connector CON(?,T)· (a 0
, b•) repeatedly passes a value of set T arriving at 

passive port a through active port b. 

= 

6. Connector CON(! ,T) · (a0
, b•) is similar to CON(? ,T) · (a0

, b•), except that it 
is "demand driven", whereas the latter is "data driven't 

= 

7. UN(o ,T) · (a0
, b•) behaves rather similar to CON(',T) · (a0

, b•). The main 
difference is that the value output through a0 is Dv, \Vhere v is the most 
recent value input through b•, and D is a unary operator: If Dv is not 
defined, the subsequent behavior is left unspecified. The type of port a0 is 
OT. 

= 

Examples of unary operators are ' --, ' and ' - '. 

8. ADAPT(r,ur(a0
, b•) is a specialization of UN(o,T)' (a0

, b•). For input values 
in T it behaves as a connector. After reception of a r alue in U \ T its 
subsequent behavior is left unspecified. 

= 
(a0 !T, b•?U)· 

#[l[x: var TU U I a0 !x : (b•?x ; if x ET --) skip fi )JIJ 

9. BIN(o,u,v) · (a0
, b•, c•) is the generalization of UN(o ,T) · (a 0

, b•) to binary 
operators. The type of port a0 is UDV. 
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= 
(a0 !(UDV), b•?u, c•?V)· 
#[ I [x : var U & y : var V 

I a 0 !(x[Jy): (b•?x 11 c•?y) 

Jl 

Examples of binary operators are 'V','/\','=','<','+','-', and '*'· 

10. M/X(!,T) · (a 0
, b0

, c•) is one of the two generalizations of MIX· (a0
, b0

, c•) 
that wil! be considered. Incoming values of type T through ports a0 ?T and 
b0 ?T are passed through c•!T. The subsequent acknowledgement through 
c•!T is routed to the origin of the last message. M/X(!,T)" (a0 ,b0 ,c•) may 
be called a multiplexer. 

= 
(a 0 ?T, b0 ?T, c•!T)· 
#[l[x: var TI [a 0 ?x: c•!x I b0 ?x: c•!xJJIJ 

11. M!Xo,rr(a 0
, b0

, c•) is the other generalization of MIX(a 0
, b0

, c•). Requests 
through a0 !T and b0 !T are passed through c•?T. The subsequent value 
input through c•?T is passed through the output port where the request 
came from. An appropriate name for this process is demultiplexer. 

= 
(a 0 !T, b0 !T, c•?T)· 
#[l[x: var T I [a0 !X: c•?x I b0 !X: c•?xJJIJ 

If a multiplexer is considered as the data driven generalization of the mixer, 
the demultiplexer is to be considered as its demand driven generalization. 

12. 10/No,rr (a 0
, b0

, c•) generalizes the JOIN· (a 0
, b0

, c•) in a demand driven 
way. Requests through a and b are joined before the request is passed 
through c. The incoming data through c is forked through a and b. 

= 
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13. 10/N(! ,T)" (a0
, b0

, c') generalizes the JOIN (a0
, b0

, c') iJl). a data driven way, 
though in a rather subtie way. The incoming data throdgh a is joined with 
a request through b befare the value is passed through . An acknowledge­
ment through c leads to an acknowledgement through a and an output of 
the value through b. 

14. TRFr- (a0
, b' , c') is a transferrer. Repeatedly, after aqivation through a0 

it actively requests for an input through port b'?T and actively passes the 
message through port c'!T, befare it acknowledges through a 0

• It is a 
key component in the translation of Tangram input, output and assignment 
commands. 

= 
(a0

, b'?T, c'!T)·#[a0
: l[x : var TI b'?x; c'!x] l] 

15. The Boolean variabie of Example 2.23 is generalized to1 a variabie of arbi­
trary type below. 

= 

Variabie x is declared outside the infinite repetition. This ensures that the 
value output with b0 !x is the most recent value input through a 0

• 

16. The last three components are needed for the translation of Tangram ' s 
guarded commands. Component IF · (a0

, b' , c') responds to an ao by an 
active input of a Boolean value through b'?Bool. If this value equals fa/se, 
its subsequent behavior is left unspecified. If this value is true, an active 
handshake through c• follows and after a subsequent a 1 the component 
returns to its initia! state. 

= 
(a0

, b'?bool, c')· 
#[ a0 

: I [x : var boot I b'?x; if x ___.., c• fi lil 
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0 

17. Component DO(a0
, b•, c•) responds to an ao by an active input of a Boolean 

value through b•?Bool. If this value equals true, an active c• comes next, 
foliowed by another active input through b•?Bool. This repeats until the 
value false arrives. When the value false arrives, the component returns to 
its initia! state after an a 1• 

(a0
, b•?bool, c•) · 

#[a0 
: l[x : var boot I b•?x; do x -t c•; b•?x od JIJ 

18. BAR- (b0
, c0

, tb•, te•, rb•, re•) is the most complex component for more than 
one reason. Firstly, it has as many as 6 ports, organized in three pairs (b, c), 
(tb , te) and (rb, re). Secondly, it combines two more or less independent 
behaviors, from which the environment can choose. lts behavior is best 
explained by the restricted forrn in which it will be used in compiled 
Tangram programs: as a 2-phase behavior. 

Phase 0 starts with a request fora Boolean output through b. This request is 
forked through tb and rb. The disjunction of the incoming Boolean values 
is then returned through b. Let x and y denote these incoming Boolean 
values. 

Phase 1 starts with a request through c0
. Depending on the values of x 

and y, the component responds with an active handshake through te (if 
x = true), or with an active handshake through re (if y = true). If both x 
and y are true, the choice between te and re is nondeterministic. If both 
values are false the subsequent behavior is left unspecified. 

(b0 !boot, c0
, tb•?bool, te• , rb•?bool, re•)· 

I[ x, y: var boot 
I #[ [b0 !(x V y ) : (lb•?x 11 rb•?y) 

I c0 
: if x -t te• 0 y -t re• fi 

] 

l I 
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Chapter 5 

Tangram 

5.0 Introduetion 

Tangram is a VLSI-programming language based on CSP. The main construct 
of Tangram is the command. Commands are either primitive cornmands, such as 
a?x and .x := x + 1, or composite comrnands, such as R; S and R 11 S, where R 
and S are commands themselves. 

Execution of a command may result in a number of communications with 
the environment through extemal ports. Another form of interaction with the 
environment is the reading from and writing into extemal variables. A Tan­
gram program is a comrnand without extemal variables, prefixed by an explicit 
definition of its extemal ports. 

Not all compositions of commands are valid in Tangram. For instance, in 
a sequentia! composition the two constituent commands must agree on the in­
put/output direction of their common ports. Also, two commands composed in 
parallel may not write concurrently into a common variable. Section 5.1 defines 
the syntax of Tangram, including these composition rules. The meaning of each 
command is described informally. 

For a subset of the Tangram commands the handshake-process denotations 
are given in Section 5.3 . This subset is refeiTed to as Core Tangram. 

5.1 Tangram 

The main syntactic constructs of Tangram are program, comrnand, guarded­
command set, and expression. With each construct we will associate a so-called 
alphabet structure: a set of typed ports and variables. 

123 
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Alphabet structures 

Let Val denote the set of all values. Val includes the Bo Jean values Bool, 
Boot = ifalse, true} , and the integer numbers. Val also ctntains the special 
null value -. A type is a fini te subset of 'Val'. The set of 11 types is denoted 
by P · Val, viz. the power set of Val. Ports and variables a e typed. The type 
information of ports and variables is recorded in an alphabet structure. 

Definition 5.0 (alphabet structure) 

D 

0. An alphabet structure A is a 5-tuple (p? A, p!A, v? A, v! J4, TA), where p? A, 
p!A, v? A, v!A are sets of names. I 

1. p? A is the set of input ports, and p!A the set of output ports. p? A and 
p!A must be disjoint; their union is denoted by pA. 

2. v?A is thesetof read ports and v!A thesetof write ports. Sets v?A and 
v!A need not be disjoint, because a process may read from and write into 
the same variable. The uni on of the two sets is denoted by vA. 

3. pA and vA must be dis joint. The set of all ports, i.e. th:e uni on of pA and 
vA, is denoted by cA. 

4. TA is the type function of alphabet structure A: 

TA: cA----* P· Val 

It assigns a type to each name in cA. 

5. The empty alphabet structure (0, 0, 0, 0, 0) is abbreviated to 0. 

Symbols p?, p!, p, v?, v!, v and c are considered as operators on alphabet 
structures. A concise notation for alphabet structures is based on so-called port 
definitions. A port definiiion may have one of the four forms below. 

Definition 5.1 (port definition) 

Let a and x be narnes and let T be a finite subset of Val. 

0. a-= ({a},0,0,0,{(a, -)}),a synchronization port. 

1. a?T = ({a},0,0,0,{(a,T)}), an input port of type T. 
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2. a!T = (0, {a},0,0, {(a,T)}), an output port of type T. 

3. x : T = (0,0, {x}, {x}, {(.r ,T)}), a variabie of type T. 

0 

The following definition introduces a few notions that are useful when com­
posing Tangram commands and expressions. Let, for the remaioder of this chap­
ter, A and B be alphabet structures. 

Definition 5.2 (relations and operations on alphabet structures) 

0. A and B are type compatible if common narnes are either ports or variables 

in both alphabet structures, and if these common narnes are of the same 
type, i.e. if 

(pA n v B = 0) 1\ (pB n vA = 0) 
1\ (Aa : a E cA neB : TA· a = TB· a) 

1. A and B are conformant, denoted by A M B, if they are type compatible 
and if their common ports agree in direction: 

A M B = A and B are type compatible 
1\ (p?A n p!B = 0) 1\ (p?B n p!A = 0) 

2. The conformant union of two conformant alphabet structures A and B is 
denoted by A UM B, and is defined as the componentwise union of A and 
B. 

3. The conformant difference of two conformant alphabet structures A and B 
is denoted by A \M B, and is defined as componentwise set difference of 
A and B. 

4. A and B are connectable, denoted by A l><l B, if they are type compatible, 
have no common output ports, and variables with write access of one 
structure do not occur in the other structure: 

A txJ B = A and B are type compatible 
1\ (p!A n p!B = 0) 1\ (vAn v!B = 0) 1\ (v!A n vB = 0) 

5. The connectab/e union of two conformant alphabet structures A and B is 
denoted by A U1><1 B, and is defined as componentwise union of A and B, 
except for p?(A U1><1 B): 

p?(A U1><1 B) = (p?A u p?B) \( p!A u p!B) 

t.e . the output ports dominate. 
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D 

6. Let D denote a list of port definitions that define mutually conformant 
alphabet structures. Then D defines the alphabet structure formed by the 
conformant union of the alphabet structures of the individual port defini­
tions. This alphabet structure is denoted by AD. 

Alphabet structures will be defined for Tangram programs, commands, guarded­
command sets and expressions. In many instances, these alphabet structures are 
expressed in terms of the alphabet structures of the constituent constructs, with 
an associated composition rule. 

Programs 

Let 5 be a command and let D be a list of port definitions. Then the following 
table defines valid Tangram programs. (Let AS denote the alphabet structure of 
command S.) 

construct I Al phabet structure I rule 
Program 
(D) . .S' J AD I AS <;;; AD 1\ V AS = 0 

The (composition) rule states that S has no external variables, and that all ex­
ternals ports must be defined in D . The behavior of program (D) · S is that of 
command S. The program does not participate in communications though ports 
in AD \ AS. 

Primitive commands 

The primitive commands of Tangram are listed in the table below. Let a be 
declared0 as a port of type U, let :r be declared as a variabie of type V, and let 
E be an expression with alphabet structure AE. 

0 Declarations are di sc ussed with the block commancl. 
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construct Alphabet structure rule 

Commands 

stop 0 
skip 0 

-a a 
o?x a?U UM (0 , 0, 0, {.T}, {(.T , V)} ) a-=/.r 
a!E a!UUM AE a rf_ v?AE 
.7: :=E (0 ,0,0, {:r}, {(.r, V)}) UM AE 

• stop does not engage m any action; it corresponds to an unconditional 

deadlock. 

• skip doesnotengage in any action either, but it does terminate successfully. 

• a is a synchronization command. The execution of a amounts to a syn­
chronization action through port a. 

• a?:r: is an input command. The execution of a?.r involves the reception of 

a value through port a and the subsequent storage of that value in variabie 

x. If the received value is not in V the effect of a?x is left unspecified. 

• a!E is an output command. The execution of a!E statts with the evaluation 

of E. If this evaluation terminaces and the result is in U, this value is sent 
through a. Otherwise the behavior of a!E is left unspecified : it may 

for instanee re sult in deadlock, or in sending an unspecified value ( E U) 

through a. 

• :r: := E is an assignment command. If the evaluation of E terminates and 
the result value is in V , the execution of x := E assigns the result value of 

this evaluation to x. Otherwise the behavior of x := E is left unspecified. 

Composite commands 

All composite commands, except the selection and repetition commands, are 
listed in a table below. LetRand S be commands, N a natura! number, and let 

D be a list of port definitions. 
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construct Alphabet structure rule 

Commands 

H n S AR UM AS ARM AS 
R;S ARUM AS ARM AS 
#N[S] AS 
#[S] AS 
H jj S AR Uw AS AR 1XJ AS 

I[D I SJ I AS\M AD ADMAS 
(D)·S' ADUM AS AD M AS 

• R n 5 is the nondeterministic composition of R and 8. This composi­
tion behaves either like R or like 5, where the selection between them is 

nondeterministic. This command is included mainly for theoretica! interest. 

• R; 5 is the sequentia/ composition of Rand 5 . It firs t behaves like R and, 

when R terminates successfully , continues by behaving tike 5 . If R does 

not terminate successfully, neither does R; 5 . 

• #N[5] is the N-fold repetition of 5. Command #0[5] behaves Jike skip, 
and for N > 0 the behavior of #N[5] is that of S; #(N - 1)[5] . 

• #[5] is the infinire repetition of S. It never terminales successfully. 

• R 11 S is the parallel composition of R and S. Note that R and S are 

not altowed to have write access to common variables. However, R and 

S may share input ports and variables with read access. 

The behavior of this composition must agree with the behavior of both 

R and S. lts execution involves the parallel execution of both R and S. 
Communications on common ports must occur simultaneously in R and S. 
The synchronized execution of a!E in one process and a?.r in the other 

has also the effect of x := E . 

• I[D I SJI is a h!ock (command) . A port definition in D has two roles in 
this construct. Firstly, the type function of the alp ha bet structure of D 
applies to the ports of S. Secondly, the narnes declared in D are hidden 
(concealed) for the environment of the block. In other words, D declares 

port and variabie names, whose scope is bound by the enclosing scope 
brackets. The behavior of I [D I S] I is that of 5, with all interaction on 
ports and variables declared in D conceated for the environment. 
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• (D) · S extends the alphabet structure of S by the port definitions of D. 
(D) · S is not prepared to engage in any communication through the ports 
AD \M AS; otherwise it behaves like S. 

Of the binary command operators, the semicolon binds the strongest, foliowed by 
'IJ' and then 'n'. As usual, the bracket pair'(' and ')' may be used to overrule 
this priority rule. 

Guarded commands 

The selection and repetition commands are listed in the table below. They intro­
duce so-called guarded-command sets [Dij75], a third syntactic category next to 
programs and commands. Let B be a Boolean expression, S a command, and 
let G and H be guarded-command sets. 

construct I Alphabet structure I rule 
Commands 

if G fi I AG 
doG od AG I 

Guarded-commands sets 
B-+S I ABUM AS I AB M AS 
GOH AGU M AH AG M AH 

• The execution of a selection command with a guarded-command set G 
depends on the value of BB · G, the disjunction of the guards of G: 

BB· 0 
BB · (B-+ S) 

BB · (G 0 H) 

fa/se 
= value of B 
= BB· Gv BB· H 

If BB · G evaluates to fa/se, the behavior of the selection command is left 
unspecified: for instance, it may stop. Otherwise, the selection command 
behaves like one of the commands of the guarded-command set for which 
the guard evaluates to true. 

• do God is Tangram's guarded repetition command. As long as BB · G 
evaluates to true, one of the commands for which the guard evaluates to 
true is selected for execution. When BB · G evaluates to fa/se, doG od 
terminates successfully. Accordingly, do od is equivalent to skip. 
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Expressions I 
Expressions form a fourth syntactic category in Tangram. T~ey occur in assign­
ments, output commands and guards. The four forms of expr~ssions are listed in 
the table below. Let E and F be expressions, x a variabie declared of type V, 
and let C be a constant. 

construct Alphabet structure rule I 
Expressions I 
c (/J 

l x (0,0, {x},0, {(x, V)}) 
DE AE 
EDF AE UM AF AEMAF 

• The value of expression C is simply the value of constant C; its type is 
{ C }. The evaluation of expression C always terminates successfully. 

• lf .x is declared as a variable, then x is also an expression with type V. 
I 

The value of .x is the value of the variable. The initia! value of .x is in V, 
but otherwise unspecified. A program may therefore start with b!.x as in 
shift registers of Section 1.3. Successful terminatien is guaranteed. 

• DE is an expression constructed from expression E an'd a unary operator 
'D'. The type of DE is the set of values obtained by applying D to all 
elements of the type of E. The evaluation of DE terminates successfully 
if that of E does and the operator 'D' is defined for the value of E. If 
the evaluation of E tenninates successfully the value of DE is obtained 
by applying D to the value of E . 

• EDF is the natura! generalization of DE to binary operators. 

5.2 Tangram semantics 

In Chapter 6 we develop a mapping from Tangram programs! to handshake cir­
cuits. The (external) behavior of such a handshake circuit has been defined as 
the handshake process obtained by the parallel composition of its constituent 
handshake components (cf. Chapter 3). In order to relate a compiled handshake 
circuit to the original Tangram program, a handshake-process 1denotation of that 
Tangram program is required. Given such a denotation, it is sensible to require 
that the extemal behavior of the compiled handshake circuit 's a refinement of 
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that handshake-process denotation. In this section we investigate the semantics 
of Tangram in terms of (sequentia!) handshake processes. 

There are two viabie approaches to obtain a handshake-process denotation of 
a Tangram program: 

0. the direct approach in which a sequentia! handshake processes is associated 
with each Tangram command; 

I. the indirect approach comprising a denotation in terms of an ex1stmg 
process model (such as the well-known synchronous failures/divergences 
model of CSP) and a mapping from that model to handshake processes. 

The direct approach is pursued in this thesis, and is discussed next. The indirect 
approach is discussed in Appendix B. 

Direct approach 

We want to associate a sequentia! handshake process with each Tangram com­
mand. An issue with far-reaching consequences is the choice between a passive 
or an active implementation for each Tangram port. Tangram itself does not give 
much of a clue to this, except that choice favors passive ports (see Section 4.2), 
and read/write accesses to external variables must be through active ports (cf. 
VAR in Example 2.23). 

Also connectability requirements in the case of parallel composition have to 
be considered in the choice between passive or active port implementations. Note 
e.g. that a Tangram command without output ports is connectable to itself, which 
is obviously not true for a (sequentia!) handshake process. Another complication 
is that braadcast in Tangram (i.e. common ports are not concealed with parallel 
composition) has no counterpart in sequentia! handshake processes. 

We shall ignore the latter complications for a while and first consicter two 
simple strategies: 

• directed mappings, viz. inputs passive and outputs active, or vice versa; 

• uniform mappings, viz. the all-passive mapping (all ports implemented 
passively) or the all-aclive mapping (all ports implemented actively). 

Both strategies are viable. Directed mappings have the advantage that directed 
point-point channels do not give rise to connectability violations. However, a 
provision has to be made for undirected channels and braadcast in Tangram. The 
directed mapping "inputs active and outputs passive" results in cheaper circuits 
than the other directed mapping [Mar89]. 
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A uniform mapping leads to a simpte translation strat~y, as is shown in 
Chapter 6. After some simpte loc al optimizations ( cf. Sect~on 7 .1) circuits are 
obtained that are camparabie in cost and performance with t e circuits obtained 
by the directed mappings. In the sequel we shall consider uniform mappings 
only. 

For both uniform mappings the notions of conformanee of (Tangram) alphabet 
structures and conformanee of (handshake) port structures fu~y agree. However, 
also for both choices, parallel composition of sequentia! hfndshake processes 
requires redefinition, since connectability is satisfied only in ~rivial cases. 

Consider connectable Tangram commands S and T, and lclt the corresponding 
compiled handshake circuits be denoted by C · S and C · T. In genera!, these 
handshake circuits cannot be connected to form a larger har\dshake circuit, be­
cause of connectability violations: some form of "glue" han~shake components 
is needed. We first campare the all-passive and the all-active mappings: 

• All-passive tends to result in expensive handshake circuits: here we pay 
the price for receptiveness, especially for passive input ports (see also 
Section 7.2). More importantly, glue components that synchronize passive 
handshakes cannot be realized, because there is not any way to enforce 
synchronization between two passive two-phase handshakes. 

• All-active is relatively straightforward, and cheap. Mor:eover, passive glue 
can be realized: e.g. a passivator synchronizes two active handshakes. 
Moreover, with a JOIN as glue component, the common ports of a par­
allel composition remain accessible for the environment, thus providing 
the equivalent of broadcast. All-active is also consistent with the require­
ment for active read/write access to extemal variables. However, all-active 
excludes the choice construct, at least with two-phase handshaking. 

The all-active approach is clearly favored by the above analysis, and is there­
fore adopted for the semantics of Tangram. For Core Tangra~ such a denotation 
will be given in the next subsection. We expect that this approach can be ex­
tended to full Tangram. The price we pay is that a choice copstruct in Tangram 
is not accommodated for. 

5.3 Core Tangram 

Core Tangram is obtained by reducing Val to {-} , and by subsequent weeding out 
all constrocts that have become meaningless or redundant. The resulting language 
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is then defined in terms of sequentia! handshake processes. With - as only value, 
the Tangram distinction between input and output disappears. Also, the concept 
of storage is no Jonger meaningful. Alphabet structures in Core Tangram have 
the form: 

(p?A, 0,0,0, {-}). 

Consequently, an alphabet structures does not contain more information than 
a set of port names. Also, the notions type compatibility, conformanee and 
connectability of alphabet structures become void: all alphabet structures are 
both conformant and connectable. For the remainder of this section alphabet 
structures contain input ports only, all of type { - }. Note also that the syntactic 
categories expressiQn and guarded-command set are meaningless when Val = {-}. 

Definition 5.3 (port structure of an alphabet structure) 

Let A be a alphabet structure of the form (p? A , 0, 0, 0, { - }) . The handshake 
expansion of A, denoted by 'H · A, is defined as 

(Ua : a E p? A : a•) 

D 

Clearly, ('H· A)0 = 0 . The next definition gives the sequentia! handshake-process 
denotations for Core Tangram commands. 

Definition 5.4 (Core Tangram commands) 

Let a be a name, D a list of port definitions, N a natura! number, and S and 
T Core Tangram commands. The ten commands of Core Tangram and their 
sequentia! handshake-processes denotations are enumerated below. 

0. 'H · skip = skip 

1. 'H · stop = stop 

3. 'H · ((D)·S) = ('H· D) ·('H · S) 

4. 'H· (Sn T) = 'H· S n 'H· T 

5. 'H· (S;T) = 'H · S; 'H· T 

6. 'H · (#N[S]) = #N['H · S] 
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7. H· (#[S]) = #[H · S] 

8. H· (S 11 T) = H · S 11 H · T , providedAS nAT = 0A. 
A general parallel composition is defined below. 

9. H· I[D I SJI = I[H· DI H· S]l 

0 

General parallel composition in Core Tangram in the ab9ve context requires 
an alternative form of parallel composition of sequentia! ha'ndshake processes. 
This alternative must deal with common active ports and broadcast. A conse­
quence of the latter is that we do not need to worry about divergences! It is 
presumably possible to base the definition of this form of parallel composition 
on the existing definition by introducing glue handshake processes . (For perma­
nent processes this is shown in Chapter 6.) However, this seems to result in a 
relatively ugly definition, and the successful termination aspect is hard to deal 
with. A simpler and more direct alternative is developed nexl. 

Consider sequentia! handshake processes P and Q. L~t a be a common 
(active) port of Pand Q , and let trace t satisfy tI pP E tP<5. and similarly for Q: 
trace t may be observed when P and Q operate in parallel. Assume furthermore 
that ao would lead P subsequently into a quiescent state (i.e. tao E tP), but that 
Q is not prepared to participate in ao (i.e. t ao ~ tQ <5. ). In s1,1ch a situation, the 
parallel composition of P and Q is quiescent after trace t , even if tI pP ~ tP 

or tI pQ ~ tQ . This analysis shows that the weave of P an;d Q is insuftleient 
to describe the effect of parallel composition. In other words: outputs cannot be 
synchronized. 

The following definition of parallel composition is based on the observation 
that the inability of one process to participate in a common output wil! force the 
composite into a quiescent state. 

Definition 5.5 (parallel composition in Core Tangram) 

Let S and T be conneetab ie Tangram commands. Let P = H · S and Q = H · T . 

•• 
0. H · (S 11 T) = H· S 11 H · T 

•• 
I. where P 11 Q denotes the parallel composition of al~-active processes, 

defined as 

(pP U pQ , tP8 w tQ U tP w tQ8 , uP w uQ) 
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where weaving of trace sets is used as in Definition 3.14. 

2. where ps is the s ciosure of P, based on the preorder s on handshake 
traces: 

s St = (::Ju: u E (oP)* : su = t) 

s is a prefix of t that can be extended to t with outputs only. 

D 

Now that we have defined the parallel composition of connectable Tangram com­
mands. we can complete the definition of the semantics of Core Tangram. 

Definition 5.6 (Core Tangram program) 

A Core Tangram program is an extension command of the form (D)·S, such that 
AS ç AD. 

D 

In Chapter 6 we also use the "repeatable go" of 'H · T. 

Definition 5.7 (repeatable go) 

Let P be a sequentia! handshake process. The repeatable go of P, denoted by 
t>* · P, is the sequentia! handshake process 

#[ t> o : P] 

where port name t> is pronounced as "go". 

D 

Consider t>* · 'H · T. The environment may start the execution of T by sending 
a t> 0 . If T terminates successfully t>* · 'H · T will reply with a t> 1. After event 
t> 1 the handshake process is ready for another execution of T. Note also that 
t>* · 'H · T is passive and initial-when-closed. 

Function 'H defines a semantics for Tangram. We shall refer to this semantics 
as handshake semantics of Tangram. Extending 'H to full Tangram relies on the 
extension of the calculus in Chapter 4. In Chapter 6 we assume that 'H has been 
extended to cover all Tangram. 
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Chapter 6 

Tangram -----+ handshake 
circuits 

6.0 Introduetion 

The topic of this chapter is the translation of Tangram programs into handshake 
circuits. Let T be a Tangram program. In Chapter 5 we have defined the meaning 
of T as the handshake process H · T. The translation to handshake circuits is 
presented as a mathematica! function C, from the set of Tangram programs to 
the set of handshake circuits. Thus, C · T is a handshake circuit, and handshake 
process 11 · C · T is the behavior of that circuit. Function C will be designed such 
that 

r>* · H · T = 11 · C. T 

where r>*·P was defined as#[ r> 0
: P] (cf. Definition 5.7). That is, the translation 

preserves all the nondetenninism of the program. From a practical viewpoint it 
is suftleient to realize 

r>*·H·T ç II·C·T 
in which the behavior of the handshake circuit is a refinement of the handshake 
behavior of the Tangram program. It may be expected that this relaxed form 
results in cheaper handshake circuits. The advantage of defining the most nonde­
terministic handshake circuit of T is that many alternative translation functions 
that synthesize more deterministic circuits can readily be derived from it. Some 
of these alternatives will be indicated. 

The translation function C has been described briefly and incompletely in 
[vBKR*91]. A predecessor of the translation method [vBRS88] is organized 
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quite differently, but yields essentially the same handsh4 e circuits. Similar 
syntax-directed translation methods have been presented in [BM88,BS89,Bro90]. 
A major difference, however, is that these methods translat~ directly into some 

I 
form of asynchronous gate-level circuits with a specific timmg discipline. 

The translation of Tangram programs into handshake oircuits is syntax di­
rected, that is, the compilation function C is structured acc6rding to the syntax 
of Tangram. This technique is conveniently introduced by 9eans of an example, 
in which we apply C to cammand T. This example will als~ be used to explain 
a graphical representation of the compilation function. 

a b 

The concentric circles enclosing T denote the application of function C to the 
Tangram command T. The peripheral open circle represents the passive port t> 
and the peripheral filled circles represent the active ports of the compiled circuit. 
Now, suppose that T is of the form R; S, such that the alphabet structures of R 
and S are disjoint Syntax-directed translation suggests to construct the handshake 
circuit forT from the two handshake circuits obtained by the ~ranslation of R and 
S. These subcircuits behave like #[l [> 0 

: 'H· R] and #[r [> 0 l 'H · S] respectively 
(with activation ports l t> and r t> ). The sequentia! activation of these two circuits 
can be enforced by connecting them to a sequencer as in 

rt> 

After the circuit is activated through t>, by t>o, the sequencer will activate the 
circuit corresponding to R with l t>o. Successful termination of R, is acknowl­
edged by l t> 1, to which sequencer responds with r t>o. If S also terminates 
successfully it will indicate so by r t> 1, and the execution of R; S is completed 
by t> 1• Then the circuit is in its initia! state, available for another execution of 
R;S. 
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When Rand S have ports in common, the translation of R; Sis only slightly 
more complicated. Given the disjoint nature of the compiled subcircuits, a "glue" 
component is required to give both R and S access to a single external port. A 
mixer for each common port, together with proper renaming of the involved 
ports, results in the desired handshake circuit. In the circuit below, it is assumed 
that command R has ports a and b and that command S has ports b and c. 

The general translation of Tangram commands of the form R; S is described 
later. The significanee of the above suggested approach is that the compilation 
function can now be applied recursively toR and S independently. The required 
port renaming wiJl be made more precise later. 

Section 6.1 presents the translation of Tangram programs in a semiformal 
manner. For each Tangram production rule (cf. Section 5.1) a corresponding 
compilation rule is defined, supported by a graphical version of it and an opera­
tional interpretation. The required handshake components have been introduced 
in Examples 2.23, 4.35, and 4.37. 

The aim of Section 6.2 is to formalize the discussed equivalence between 
Tangram programs and the corresponding handshake circuits in the Compilation 
Theorem. The scope of the Compilation Theorem is restricted to Core Tangram, 
as a consequence of similar restrictions in 7-î and the handshake calculus in 
Section 4.2. 

6.1 Compilation function 

The translation of Tangram into handshake circuits is defined by means of com­
pilation function C. The syntax-directed organization of C makes it necessary 
to include all syntactic categories of Tangram in the domain of C, viz. program, 
command, guarded-command set, and expression. The application of C to an 
element of each of these categones results in a handshake circuit. The port struc-
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tures and behaviors of the handshake circuits corresponding to these syntactic 
categories are introduced informally below. 

• Let S be a Tangram command. The port structure of IC· S consists of the 
passive activation port 1> 0 and an active port correspoQding toeach port of 

I 
alphabet structure AS. A handshake through 1> 0 results in the execution of 
S, according to the handshake semantics of Tangram discussed in Chapter 
5. 

• Let T be a Tangram program. The port structure an behavior are those 
of cammand T. 

• Let G be a non-empty guarded-command set in TangJam. The handshake 
circuit C · G has, in addition to the handshake ports that stem from its 
alphabet structure, two passive ports, viz. b0 and 1> 0

• Port b0 is a Boolean 
output port through which the environment may colleQ:t the disjunction of 
the guards. Port 1> 0 is the activation port through which the appropriate 
guarded command is selected for execution. 

• Let E be aTangram expression. The handshake circuit[ C· E has a passive 
output port e0 through which the value of E is output. Por each variabie x 
that occurs in E the circuit C· E has a single active read port rx•. Multiple 
occurrences of x share the same read port. 

The handshake circuits for the four syntactic categories are depicted below. Here 
i and o denote an input and an output port respectively, rx and wx denote the 
read portand write port of a variabie x, and the other ports are explained above. 

rx wx rx wx 

C·S C·T 

bA( 
i Ka rx~e 
rx wx 

C·G C·E 
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In the presentation of the compilation function C the grouping of syntactic 
constructs of Chapter 5 is followed. The order of these groups is slightly different 
for didactica! purposes. Before defining C for all of Tangram 's production rules, 
the technica! issue of renaming of ports must be dealt with. 

Renaming 

The translation of composite Tangram commands such as R; S results in a hand­
shake circuit consisting of the sub-circuits C · R and C · S, and some "glue" 
circuitry. Part of this glue circuitry is required to deal with ports common to 
both C · R and C · S. The introduetion of glue components makes it necessary 
to introduce new narnes for specifying the interconnections. This requires a sys­
tematic way of renaming the activation ports and the common ports of R and S. 
The narnes introduced by such a renaming may not clash with existing names. 
A simple and effective renaming that avoids clashes is to modify all narnes in R 
and S by prefixing the name with a fixed character string. 

Definition 6.0 (renaming) 

0 

0. Let n be a name. L n is the l-renaming of n and equals ln, i.e. the eh araeter 
string n prefixed with the letter l. 

I. Let A be an alphabet structure. l· A is the alphabet structure A with all 
portand variabie narnes l-renamed. 

2. Let T be a Tangram command. L T is the command T with all occurrences 
of port and variabie narnes l-renamed. 

3. Let P be a handshake component. l· P is the handshake component P 
with all occurrences of symbol narnes l-renamed. A similar renaming also 
applies to handshake circuits. 

4. The .r.-renaming is defined similarly. 

The following properties of renaming are frequently used. 

Property 6.1 

l- and .r.- renaming commute with 

0. Tangram operators and 'H (when applied to commands), 



142 Tangram ____, handshake circuits 

1. parallel composition (when applied to handshake processes), and 

2. U (when applied to handshake circuits). 

0 

Furthermore C is designed to commute with renaming as w~ll. 

Tangram program 

The translation of Tangram program (B)·S yields the same Handshake circuit as 
the translation of the extension command (B) · S, which is tr~ated next. 

Extension and concealment 

Extension 

The extension of a command S with an alphabet structure B behaves like S. 
The ports of B that were not already part of S are simply eonnected to STOP 
components ( cf. Property 4.17). 

~~·· n 
stop 

I 

I 

I 

~ 
~ I 

Stop 

C· ((B)·S) 

The definition of this compilation rule is somewhat streamlined by introducing a 
Stop term. 

Definition 6.2 

0. C· ((B)·S) =Stop· (B \aS) u C· S 
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1. Let A be an alphabet structure. Stop· A is the handshake circuit 

0 

Concealment 

{ c : c E c? A : STOPo,rc)" (c0
)} 

U {c: c E c!A : STOPC!,rcl· (c0
)} 
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In the translation of I [B I SJ I, ports and variables of B have to be treated dif­
ferently. Ports can simply be connected to appropriate RUN components (cf. 
Property 4.20). Variables to which S has both read and write access are imple­
mented by VAR components of the appropriate type. Variables to which S has 
either read or write access are connected to appropriate RUNcomponentsas well, 
in order to avoid dangling write or read ports of VAR components. 

0 

~ ________________ ~Run 

c · I[B I SJI 

The handshake components stemming from B are collected into a Run term. 

Definition 6.3 

0. C·I[B I SJ I =Run·(BnAS)U C·S 

1. Let A be an alphabet structure. Run· A is the handshake circuit 

0 

{x:xE v?Anv!A 
U {x :xEv?A\v!A 
U {x : x E v! A \ v? A 
U { c: c E p?A 
U {c: c E p!A 

: VAR.,.x · (wx0
, r x 0

)} 

: RUN(! ,r,;)" (WX
0

)} 

: RUNo,rx) · (rx 0
)} 

: RUN(!,rc) · (c0
)} 

: RUN(? ,rc). (c0
)} 
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Composite commands 

Sequentia! composition 

The translation of Tangram commands of the form R; S is epicted by 

rt> 

I 

_~Mix 

C. (R; S) 

It contains the handshake subcircuits I- C · R and r.· C · S (in ithe picture we have 
used the commutation of renaming and application of C). 

The subcircuit contained in the dashed box is called a Mix term, and contains 
appropriate MIX components for ports common to R and S and CON components 
for other ports in R and S. These connectors are a byproduct of the renaming 
of all ports of R and S. The introduetion of the connectors can be avoided, by 
using a more complex renaming scheme. 

Definition 6.4 

0. C.(R;S)= {SEQ·(t> 0 ,tt>•,rt>•)} u Mix·(AR, AS) 
u {-C·RUr.·C.S 

I. Let A and B be conformant alphabet structures. Mix· i(A , B) is the hand­
shake circuit 

Cont · (A \ B) u Conr · (B \ A) 
U {c : c E c?A n c? B: M!Xe,Tc). (lc0

, r4°, c•)} 
U { c : c E c!A n c!B : M/X(! ,Tc) · (lc0

, re"', c•)} 
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D 

2. Let A be an alphabet structure. Conz ·A is the handshake circuit 

{ c : c E c? A : CON(?,Tc) · (lc0
, c•)} 

U {c: c E c!A : CON(',Tc)' (lc0 ,c•)} 

Similarly for Conr · A. 

Nondeterministic choice 
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The translation for Tangram commands of the form R n S closely resembles that 
of sequentia! commands. Since Rand S are never activated concurrently, a Mix 
term takes care of the common ports. 

Definition 6.5 

C· (R n S) = 
0 

I 

_~Mix 

C. (R n S) 

{OR· ( r> 0 , l r> •,r r>•)} u Mix- (AR, AS) 
u {C · R Ur_· C· S 

The OR component nondeterministically selects between the activation of the 
subcircuits { C · R and r_ · C. S. An alternative compilation rule, which reduces 
nondeterminism and avoids the costly Mix-term, is 

C · (R n S) = C. R 
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Parallel composition 

The compilation of commands of the form R 11 S is a little more complicated, 
because accesses to common ports and to common variables have to be treated 
differently. Communications through common ports have ito be synchronized 
by JO/N components. Read access to common variables must be mixed by a 
MIX component. Reeall that parallel commands do not have write access to 
common variables. In the circuit diagram below, i and o are common ports and 
rx provides read access to common variabie x. 

lr> 

C· (R 11 S) 

I 

I 

_ ~ Join 

The required "glue" for parallel composition is collected into a Join term. 

Definition 6.6 

0 

0. C· (RIIS)= {PAR·(I> 0 ,ll>•,rr>•)} u Join·(AR,AS) 
u {-C·RUr..·C · S 

1. Let A and B be connectable alphabet structures. Join· (A , B) is the hand­
shake circuit 

Con1 · (A \ B) U Conr · (B \ A) I 
U {x: x E v?A n v?B: M!X(?,rc)" (lrx 0

, rr'X0
, rx•)} 

U { c : c E p? A n p? B : JO!N(?,Tc) · (lc0
, rc0

, c•)} 
U { c : c E p!A n p? B : JO!N(!,Tc) · (lc0

, rc0
, c•)} 

U { c : c E p?A n p!B: 10/N(! ,Tc)· (rc0
, lc0

, c•)} 
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Repetition 

The two farms of repetition in Tangram are simply included in the definition of 
C. A Con term makes the renaming of the repeated cammand consistent with 
earlier commands. 

C· (#N[S]) C. (#[SJ) 

Definition 6.7 

0. C·(#N[S])={COUNTN"([> 0 ,l[>•)} u Con1·AS u L· C·S 

1. C· (#[SJ)= {REP · ( [> 0 ,l [>•)} u Con1 · AS u L· C· S 

D 

Guarded commands 

Selection 

Each selection or guarded repetition contains a set of guarded commands. Let G 
be a guarded-command set. Given C · G the translation of a selection cammand 
is depicted by 



148 Tangram ---t handshake circuits 

[> 

c. ( if fi ) C · ( if G fi) 

After activation through !> 0 , the if component collects the disjunction of the 
guards through tb•, as computed by l C · G. If this value is true, the subcircuit 
l C · G is activated through l !>; if false the subsequent behavior of circuit is left 
unspecified. 

Definition 6.8 

0. C. ( if fi) ={STOP · ( !> 0
)} 

1. C.(ifGfi)={IF·(!> 0 , lb• , t!>•)} u Con1 · AG u L· C·G 

D 

Note that the ioclusion in Tangram's guarded commands of a default guard 
"otherwise" can be implemented straightforwardly by modifying the if compo­
nent. An additional "otherwise" activation port is selected for handshaking if the 
value false is received through b. 

Guarded-command set 

A singleton guarded-command set has the form B ---t S. The corresponding 
handshake circuit consists of subcircuits L· C· B and L· C· S. 'Jlle guard B and the 
cammand S may have read-access to common variables. Hence, renaming and 
a Mix term are required. The connector connected to !> o is also a consequence 
of renaming. Tangram does not restriet guards to Boolean expressions. Hence, 
an adapter is required to guarantee that only Boaleao values are passed along b. 
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I> 

C· (B ~ S) 

I 

'Mix - ... 
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A guarded-command set with at least two elements can be decomposed into 
two nonempty guarded-command sets. In Tangram such a set is denoted by 
connecting the component sets with a ' 0 '. The circuit C · ( G 0 H) contains the 
subcircuits I· C· G and r: C· H . A BAR component implements the Tangram ' 0 '. 
Common ports and variables of guarded-command sets G and H are accessed 
through a Mix term. 

I> 

C· (G 0 H) 

I 
1Mix - ... 
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I 

The two-phase operation of the circuit C· (G 0 H) can be understood as follows. 
Firstly, the environment requests a value through b0

• Th is request is passed on 
to the subcircuits {- C · G and r.· C · H, and the disjunction of the Booleans that 
arrive through lb and rb is then output through b0

• I 
If this value is true, the circuit is ready for the second f,hase, which starts 

with 1>0. The BAR component nondeterministically selects either t I>• or r I>•, 
provided that a true value arrived through the corresponding Boolean port in 
the first phase. After termination of the selected guarded-colnmand subset, the 
second phase is completed with I> f. 

Definition 6.9 

0. C.(B--tS)= {ADAPT(bool,rs l · (b0 ,tb•)} U C.B 

1. C· (G 0 H) = 

0 

u CON·(I> 0 , rl>•) u C· S 
U Mix· (vB, vS) 

{BAR· (b0
, 1> 0

, tb•, t I>•, tb• , r I>•)} 
u Mix · (AG, AH) 
u l· C· G u r · C. H 

Nondeterminism can be reduced by making the BAR component more deter­
ministic. For instance, if both incoming Booleans are true, the component may 
favor t I> • after reactivation through I> 0 . 

Guarded repetition 

The handshake circuitfora guarded repetition closely resembles that of a selection 
command. The behavior of do od equals that of skip, which is simply 
implemented by a RUN component. If there is at least one guarded command, 
the resulting handshake circuit becomes: 
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C · (do od) C· (doG od) 

After activation through 1> 0
, the do component inputs a Boolean through tb• 

and, if true, handshakes through ll> •. Th is is repeated until false arrives. Th en 
the do component returns in its initia! state after a I> f. 

Definition 6.10 

0. C·(do od)={RUN·(I> 0
)} 

1. C· (doGod)={DO·(I> 0 , lb•,tl>•)} u Cont·AG u I· C·G 

0 

Primitive commands 

Input 

The circuit of C · (a?x) is depicted by 

C· (a?x ) 
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The adapter takes care of a possible mismatch between the J pes of a and ·'· 

Definition 6.11 

c. (a?x) = {TRF Tx. ( [> 0
' d.' wx•) ' ADAPT(Tx,Ta). (d0

' a•)} 

D 

Output 

The circuit of C · (a!E) contains the subcircuit C · E. Again, an adapter is 
introduced to resolve possible type mismatches. Port rx• provides read access 
to variabie x. 

C· (a!E) 

Definition 6.12 

c. (a!E) = {TRF Ta. ( t> 0
' d.' a•) ' ADAPT(Ta,TE). (d0

' e•)} u c. E 

D 

Assignment 

The translation of the assignment is very similar to that of the output command. 

C ·(x:= E) 

Definition 6.13 

c. (x := E) = {TRF Tx. ( [> 0
' d.' wx•) ' ADAPT(rx,TE). (d0

' e•)} u c. E 

D 
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Synchronization 

The synchronization cammand a is implemented by connecting the activation 
port t> o to port a • . 

Definition 6.14 

C· a = {CON · ( [> 0
, a•)} 

0 

Skip and stop 

C·a 

The translations of skip and stop are self-evident. 

C· skip C. stop 

Definition 6.15 

0. C·skip={RUN·(t>0
)} 

1. C. stop= {STOP· ( t> 0
)} 

0 

Expressions 

Expressions farm the last syntactic category left to consicter for compilation to 
handshake circuits. 
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Binary operators 

The circuit C · (DOE) contains the subcircuits C · D and C · E, appropriately 
renamed. If D and E both refer to the same variable, say x" a JOIN component 
can be used to combine the read accesses to x . A Join term is then needed to 
accommodate for an overlap v? D and v? E. 

C- (DOE) 

Definition 6.16 

C· (DOE)= 

0 

{BINco ,r0 ,rE ). (e 0 ,le•,re•)} U Join· (AD,AE) 
u {-C·DUr_ ·C ·E 

Note that a Mix term would do the job as well . Whereas a Join term enforces 
synchronization of accesses to common variables, the Mix term enforces sequen­
tialization. Cost and performance considerations favor the Join term in most 
cases. 

Unary operators 

Expressions of the form DE are translated similarly. 

C· (DE) 
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The Join term reduces to a Con term. 

Definition 6.17 

C· (DE)= {UN(o,TE). (e0
, te•)} U Con1 · AE U f · C· E 

0 

Constants 

The handshake circuit for a constant expression is self-evident. 

C·C 

Definition 6.18 

0 

Variables 
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The expression x translates to a simpte connector. Reeall that the declaration of 
variabie x yields a VAR component with read port rx0

• 

Definition 6.19 

C · x= { CONo,Tx ) · (e0
, rx•)} 

0 

C·x 

This concludes the translation of Tangram commands into handshake circuits. 
Examples of compiled handshake circuits can be found in Chapter 1. The circuits 
of Figures 1.1, 1.2, 1.3, 1.9, and 1.11 can be obtained by applying C to the 
corresponding Tangram programs or commands. The circuits of Figures 1.4 and 
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1.5 can be obtained by compilation and subsequent minor J ptimizations at the 
handshake-circuit level (cf. Chapter 8). The circuits of FigSe 1.12 require non­
trivia! extensions of C. 

6.2 Compilation theorem 

In this section we analyze the most important property of the C function, specif­
ically that it yields handshake circuits that are equivalent t the corresponding 
Tangram programs in a precise sense. This analysis is restbcted to Core Tan­
gram. Reeall that in Core Tangram all involved alphabet structures are of the 
forrn (p? A , 1/J , 1/J , 1/J, {-} ). For convenience we shall write a to denote p? AS, 
where S is a Core Tangram command. Note that aS is a set: of names. 

Below the compilation function for Core Tangram is presented in a self­
contained form. The function C is consistent with the more general compilation 
function of the previous section. 

Definition 6.20 

The compilation function C for Core Tangram is defined by: 

0. C· skip 

l. C · stop 

2. C·a 

3. C· (R; S) 

4. C· (Rn S) 

5. C· (#N[S]) 

6. C · (#[S]) 

7. C· (R 11 S) 

8. c. (i[B I SJI) 

9. C · ((B)·S) 

={RUN· ( !> 0
)} 

={STOP· ( !> 0
)} 

={CON· ( !> 0 ,a•)} 

{SEQ · ( !> 0
, L!>-, T !>•)} U Mix· (aR, aS) 

U l·C.RUr:C·S 

{OR-(!> 0 , ll>•,r!>•)} U Mix- (aR,aS) 
u {C·RUr_·C·S 

= {COUNTw(l> 0 , ll>.)} u Conz ·aS U { C·S 

= {REP·(I> 0 ,l!>.)} U Conz · aS l.J l· C.S 

= {PAR·(I> 0 , ll>• ,rl>•)} u Join·(pR,pS) 
u {C · RUr.· C.S 

=Run· (B n aS) u C · S 

=Stop· (B \aS) u C · S 
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where (in alphabetic order): 

12. JOIN· (a0
, b0

, c•) 

13. MIX· (a0 ,b0 ,c•) 

14. OR·(a0 , b•, c•) 

15. PAR· (a0
, b• , c•) 

16. REP· (a0 , b•) 

17. RUN· (a0
) 

18. SEQ· (a0
, b• , c•) 

19. STOP· (a0
) 

and: 

20. Run · A 

21. Stop· A 

22. Con1 ·A 

23. Mix- (A , B) 

24. Join· (A , B) 

0 

= #[a0 
: b0 

: c•] 

= #[[a0 
: c• I b0 

: c•]] 

= #[a0 
: (b• ll c•)] 

= #[a0 
: (b• 11 c•)] 

= (a0 
: #[b•]) 

= #[ao] 

= #[a0 
: (b• ; c•)] 

= (a0 )·stop 

={a: a E A: RUN· (a0
)} 

={a: a E A: STOP· (a0
)} 

={a: a E A: CON· (la0 ,a•)} 

= Conz · (A\ B) U Conr · (B \ A) 
U {a : a E A n B :MIX. (la 0

, ra0
, a•)} 

= Cont · (A\ B) u Conr · (B \ A ) 
U {a:aEAnB:JOIN·(la0 ,ra0 ,a•)} 

One of the central theorems of this thesis is the compilation theorem. 

Theorem 6.21 (compilation theorem) 

Let T be a Core Tangram program. Then 

r:>* · 1i. · T = 11 · C · T 

157 
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by structural induction over Core Tangram later in jthis section. Pro of 

0 I 
The proof of the compilation theorem requires a little mor~ ground work to be 

I 

done. I 

Separation properties I 
The presented syntax-directed translation method is one ofl recursive decompo­
sition . The circuit for a composite command is decompored into circuits for 
the subcommands and some additional circuitry that is specific for the command 
operator and for the port alphabets of the subcommands. One could say that this 
additional circuitry is separated from the circuits of the sl;lbcommands during 
such a decomposition step. A systematic analysis of this förm of separation is 
studied next. 

The formulation of separation properties is based on so-called a-functions. 
A a-function is a function from sequentia! processes to sequentia! processes of 
a restricted form . 

Definition 6.22 (a-function) 

Let a. be a name, N a natura! number, B a port structure, ~nd P a sequentia! 
handshake process. 

0. Let X be a sequentia! handshake process. Then the following expressions 
define a-functions: 

(a) (B)·X 

(b) P n x 
(c) X ; P 

(d) P; X 

(e) #[X] 

(f) #N[X] 

(g) p 11 x 
(h) 0.

0 
: X 

Furthermore, a composition of a -functions is also a a-f~nction. 

1. a-function F is said to interfere with port structure A if there is a port a. , 
a. E A, for which F · 0.

0 or F · a.• is undefined. 
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D 

2. a-function F is permanent if its image consists exclusively of permanent 
sequentia! processes. 

Function !>* is an example of a a-function. In genera!, a a-function is partial. 
For instance, function F, F ·X = X; P, is defined only if X is conformant 
with P. The definition of a-functions can be extended to include the complete 
handshake calculus. Such extensions are not relevant to our current purposes. 

Property 6.23 (separation) 

0. Cammand separation. Let P be a sequentia! process and let F be a per­
manent a-function, such that F does nat interfere with pP or a0

• Then 

The non-interference requirement on F guarantees that F · a• and #[a0 

P] are connectable. This separation property is similar in intent to the 
"decomposition rule" of [Mar89]. 

1. Con separation. Let P be a sequentia! process such that p 0 P = 0, and 
let a E p• P . Furthermore, let F be a a-function, such that F does not 
interfere with pP or la. Then 

P. P = F· (a:= la)· P 11 CON · (la0
, a•) 

where (a := la)· P denotes the sequentia! process P with all occurrences 
of symbols of port a l-renamed. Consequently, 

P. P = P. I- P 11 Cant · pP 

Again, non-interference of F with pP or la assures connectability. 

2. Mix separation. Let P and Q be conformant sequentia! processes, with 
p 0 P = p0 Q = 0 and let a E p• P n p•Q. Furthermore, let F be a a­
function, such that F does not interfere with pP, pQ, la, or ra (to assure 
connectability in the decomposition below). Then 

Consequently, 

F· (P; Q) = P. ({- P; r. · Q) 11 Mix· (pP, pQ) 
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0 

3. A similar Mix separation exist for F · (P n Q) . 

4. Join separation. LetPand Q be sequentia) processes with p0 P = p0 Q = 0 
and let a E p• P n p•Q. Furthermore, let F be a rJ- unction, such that F 
does not interfere with pP, pQ, la or ra (to assure connectability in the 
decomposition below). Then 

•• •• 
P.(P 11 Q)=F·((a:=la)·P 11 (a:= r a)·Q) 11 101N·(la0 ,ra0 , a•) 

I 
Consequently, 

•• •• 
P. (P 11 Q) = P. (l· P 11 r. · Q) 11 Join· (pP, pQ) 

•• 
Since I· P and r. · Q are obviously connectable, the 11 in the last process 
expression may be replaced by 11· 

The separation properties can be used to prove most of the parallel compositions 
in Example 3.18. 

Example 6.24 

Consicter rJ-function F defined by P. X = #[a0 
: #2[X]] . Clearly, a handshake 

through a 0 has the effect of executing X twice. Note that P. b• = DUP· (a0
, b•) , 

the duplicator of Example 2.23. Using the above separation properties, we obtain 
the following decomposition of P. P: 

p.p 

= { Separation property 0 } 

P. b• 1/ #[b0 
: P] 

= { Definition of F } 

0 

#[a0 
: #2[b•]J 11 #[b0 

: P] 

{ Separation property 2; Definition of SEQ } 

SEQ · (a0
, lb•, rb•) 11 MIX. (lb 0

, r b0
, b•) 11 #[b0 

: P] 
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Proof of the compilation theorem 

The proof of the compilation theorem is by structural induction over Core Tan­
gram, and follows the cammand order of Definition 6.20. The proofs for the 
three primitive commands skip, stop and a• are skipped. The syntactic cate­
gory program is not treated separately, since a program is a just an extension 
command. 

Most proof cases refer to one or more separation properties. Of course, 
it is then a part of the proof obligations to verify that a proper cr-function is 
involved. In particular, the non-interterenee of the cr-function with its argument 
or with the freshly introduced ports must be checked. From the simplicity of 
the applied renaming scheme, non-interterenee can be easily established, and 
hence the connectability of the sub-circuits introduced by the separation step is 
guaranteed. 

Case cammand 5; T 

t>* · H · (5; T) 

= { 1-{ distributes over ; } 

t>* · (H · 5 ; H · T) 

= { Mix separation } 

t>* · ({H· 5; r_·H· T) 11 Mix · (a5,aT) 

= { cammand separation (twice) } 

t>* · (ft>•;rt>•) 11 I· t>* · H·5 11 r· t>* · H·T 11 Mix·(a5, aT) 

= { induction hypothesis } 

t>*· (l t> •; r t>•) 11 <kil · C· 5) 11 (r: 11· C· T) 11 Mix- (a5,aT) 

= { rewrite; definition of SEQ } 

II·({SEQ·(t> 0 ,Lt>•,rt>•)} U Mix-(aR,a5) U I· C·5 U r· C·T) 

= { definition C } 

11 · C· (5; T) 

Case cammand 5 n T similar to cammand 5; T . 

Case cammand #[5] 

[>* . 1-{. (#[5]) 
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= { H commutes with # } 

1>* · #[H · S] 

{ Con separation } 

t>*·#[{·H·S] 11 Cont ·aS 

= { command separation } 

t>*·#[lt>•] 111· t>* · H·S 11 Cont·aS 

= { induction hypothesis } 

I>*·#[ZI>•] 11 (f II·C·S) 11 Cant ·aS 

{ rewrite; definition of REP } 

II·({REP·(I> 0 ,ll>•)} U Cont·aR U 1- C.S) 

{ definition C } 

11 · C. (#[SJ) 

Case command R = #N[S] : similar to command #[S]. 

Case command S 11 T 

1>* · H · (S 11 T) 

= { H distributes over 11 } 

•• 
!>*· (H· S 11 H· T) 

= { J oin separation } 

!>*· <1· H· S 11 r_· H· T) 11 Join · (aS, aT) 

= { command separation (twice) } 

l>*·(lt>.llrt>•) 111 · t>*·H·S 11 r_· t>* · H · T 11 Join·(aS,aT) 

= { induction hypothesis } 

t>*·(lt>.llrt>•) 11 <kii·C.S) 11 <~II·C·T) 11 Join· :<aS,aT) 

= { rewrite; definition of PAR } 

II ·({PAR-(!> 0 , ll>•,rl>•)} U Join·(aR,aS) U 1- C·S U r_· C·T) 

= { definition C } 

II ·C.<SI IT) 
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Case cammand I[B I SJI 

I>*. H· I[B I SJ I 

= { property of concealment } 

I>*·H·I[BnaS I SJI 

= { H "distributes over" concealment } 

1>* · I[H· (B n aS) I H· SJI 

= { concealment commutes with enelosure and repetition } 

I[H·(BnaS) I I>*·H·SJI 

= { property 4.20 of non-terminating processes } 

1>* · H · S 11 RUN· H· (B n aS) 

= { induction hypothesis } 

II·C·S 11 RUN·H·(BnaS) 

= { rewrite; definition of Run } 

11·( C. S u Run· H· (B n aS)) 

= { definition C } 

11 . c. I [ B I S] I 

Case cammand (B)·S : similar to cammand I[B I S]j . 
D 
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Chapter 7 

Handshake circuits --7 VLSI 
circuits 

7.0 Introduetion 

Handshake circuits are proposedas an intermediary between communicating pro­
cesses (Tangram programs) and VLSI circuits. Chapter 6 describes the translation 
of Tangram programs into handshake circuits. This chapter is concemed with the 
realization of handshake circuits as efficient and testable VLSI circuits. First we 
observe that the fine-grained parallelism available in VLSI circuits matches the 
fine-grained concurrency in handshake circuits nicely. The mapping of handshake 
circuits to VLSI circuits can therefore be relatively direct. 

A rather naive mapping is suggested by the following correspondence: 

0. a channel corresponds to a set of wires, one per symbol; 

1. an event with name a corresponds to a voltage transition along wire a; 

2. each handshake component corresponds to a VLSI circuit that satisfies the 
specification at the transition level. 

There is no doubt that the above mapping can result in functional circuits. In 
genera!, however, the resulting circuits wil! be prohibitive in size, poor in perfor­
mance, probably hard to initialize, and impractical to test for fabrication faults. 
Concerns for circuit size, performance, initialization and testability will therefore 
be recurring themes in this chapter. 

A full treatment of all relevant VLSI-realization issues is beyond the scope 
of this thesis. Issues that directly relate to (properties of) handshake circuits have 
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I 

been selected for a relatively precise treatment; other topids are sketched more 
briefly. This chapter discusses: 

• peephole optimization: the substitution of subcircuits by cheaper ones; 

• relaxation of the receptiveness requirement of handsh~ke processes; 

• handshake signaling between handshake components; 

• decomposition into VLSI operators and (isochronie) f rks; 
I 

• initialization of the resulting VLSI circuits; 

• fabrication testing of the VLSI circuit. 

7.1 Peephole optimization 

An obvious method of optimization of handshake circuits is :substitution of sub­
circuits by cheaper subcircuits on the basis of "equals for eqt.Jals". Example 3.18 

I 

lists a number of pairs of circuits with equal behavior. Substitution of one mem-
ber of the pair by the other will not affect the functional beliavior of the circuit. 
However, for given VLSI realizations of the handshake components, such a sub­
stitution will affect the circuit's cost and performance. At this point we shall not 
delve into cost models or metrics. In the examples below the advantage(s) of 
substitution in one way or the other wiJl be hinted upon only. 

Example 7.0 

The following optimizations are the most interesting from a practical viewpoint 

D 

0. Removal of connectors as suggested by Examples 3.18.0 and 3.18.1 has 
only advantages. However, since connectorscan be realized by wires only, 
the expected advantages will evaporate during the layo'ut phase. 

1. Example 3.18.2 is a useful one. It allows the elimination of most RUN 
components from compiled handshake circuits. Since the proposed com­
pilation function introduces a RUN for each intemal channel in a Tangram 
program, this optimization yields interesting savings. 

2. Example 3.24 discusses trees of MIX, SEQ, PAR, and OR components. 
Balancing of such trees does not affect the cost of a circuit, but generally 
improves the (average) performance. The same hold~ for trees of BAR 
components (cf. Example 4.37.18). 
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In many instances a subcircuit may be replaced by a cheaper subcircuit with 
an "almost equal" behavior. Such substitutions are allowed if their effect on the 
extemal behavior of the circuit cannot be observed by any possible environment. 
This form of optimization will be called refinement in context. 

Definition 7.1 (refinement in context) 

Let P, Q and R be handshake processes, such that pP = pQ and pP l><l pR . 
Process P refines to Q in the context of R , denoted by P ÇR Q , if 

P il R c::: Q II R 

0 

The following properties are given without proof. 

Property 7.2 

0 

1. P Ç R Q 1\ Q ÇR T =? P ÇR T (Hence, Ç R is a preorder.) 

2· p ÇCHAOS0 Q = p ç Q 

3. If pR = pP, the defining expression of refinement in context can be rewrit­
ten as 

tP n tR ::2 tQ n tR 

Example 7.3 

Three examples with practical interest are given below. We assume that the 
context H is a handshake circuit, such that for refinement P Ç H Q the circuit 
P U H can be obtained by compilation of a Tangram program. Several of these 
substitutions may be applied in succession. 

0. The following refinement in context has been applied to the circuit of 
Figure 1.3 in order to obtain that of Figure 1.4. 
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b 

a b 

d d 

A difference between the two circuits is that trace a is quiescent in the 
circuit of the right-hand side and not in the other one 

1. The following optimization has been applied after the translation of the 
wagging buffer of Section 1.1 in order to obtain the handshake circuit of 
Figure 1.5. 

c 

a 

a b 

d c d 

b 

The substitution relies on the mutual exclusion of handshakes through ports 
a and b. Overlap of these handshakes may cause message overtaking via 
the parallel transfer paths. 

2. Read access to a common variabie in a Tangram progr11m results in a tree 
of MIX components connected to the read port of the hriable. This form 
of the MIX component tums out to be rather expensiv!e. A variabie with 
multiple read ports that can be served in parallel is a lcheaper and faster 
altemative. 

xro 

xw 

X TJ 

xw ~xro 

~XT} 
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0 

This optimization has been applied in order to obtain the handshake circuit 
of Figure 1.11. 

The above form of local optimization will be called peephole optimization by 
analogy to optimizations in conventional compilers that generate machine code 
[McK65]. By scanning over a handshake circuit and looking at alocal subcircuit 
(with a bounded diameter), as if through a peephole, one can find opportunities 
for improvements by substitution. It is characteristic of peephole optimization 
that an impravement may spawn opportunities for additional improvements. 

7.2 Non-receptive handshake components 

By Definition 2.19 handshake processes are required to be receptive. The main 
advantage of this requirement is the relatively simple definition of parallel com­
position of handshake processes (Definition 3.14 ), which guarantees absence of 
computation interference (Theorem A.12). 

Unfortunately, the requirement of receptiveness tends to make the circuit real­
izations of handshake processes more costly. In particular, the constant readiness 
for inputs through passive ports requires gates or latehes to "shield" or remember 
input transitions for later processing. Moreover, the choice construct requires an 
arbiter circuit to arbitrate between transitions through the guard inputs. A non­
receptive implementation of choice is deterministic and arbitration can therefore 
be avoided (cf. the MIX and NMIX componentsof Example 2.23). 

In this section we investigate the conditions under which a (receptive) hand­
shake component may be replaced by a non-receptive component without taking 
the risk of computation interference. The scope of the following (re-)definition 
is restricted to the current section. 

Definition 7.4 

0 

0. A handshake process is a handshake structure that satisfies all conditions 
of 2.19 except for condition 2.19 .4. 

I . A receptive handshake processes is a handshake process that also satisfies 
condition 2.19 .4. All other handshake processes are non-receptive. 

Let P be a handshake process, and let t E tP:5. and a E iP, such that ta E (aP)H. 
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Receptiveness implies ta E tP S. . Conversely, ta ~ tP S. implies, that P is non­
receptive. Examples of non-receptive processes areNMIX arld NVAR of Example 
2.23. 

I 

This generalized form of handshake processes is distinct/Y m0re complicated 
than receptive handshake processes. It is not our intention t~ develop a theory of 
(non-receptive) handshake processes. We point out two essential differences in 
order to prepare ourselves fora particular application of non- eceptive handshake 
processes. 

Refinement ordering of handshake processes is rather su ,tie compared to that 
of receptive processes. Consicter receptive process CON· (a0

, c•). lts trace set is 
also a valid trace set for a process with port structure A, wh~re A = a0 U b0 U c•. 
Let Q be the handshake process with port structure A and th~ quiescent trace set 
of CON· (a0

, c•). Process Q is clearly non-receptive, since trace bo is not in its 
trace set. Interestingly, we have tQ C tMIX· (a0

, b0
, c•). However, this does not 

make Q a suitable implementation of the mixer! 
Also parallel composition of handshake processes is more complicated when 

processes are not receptive. Consicter the parallel composition of Q and RUN · 
{b•}. In their asynchronous interaction, process RUN · {b•} will output a bo 
despite the fact that Q is not ready to receive it: a clear case of interference. 

Note that the trace set of Q w RUN· { b•} equals that of Q. Weaving ignores 
the distinction between input and output, and is therefore not a suitable basis for 
parallel composition when there the danger of interference exists. 

The parallel composition of Q and STOP · { b•} is free ot1 interference. (With 
concealment of b we obtain the receptive process CON· (a0

, c•).) In other words, 
only if Q operates in an environment that never produces a bo, may the mixer 
be replaced by Q. More generally, a process may be refined into a process with 
fewer possible behaviors when the environment restrains itself appropriately. 

Let, for the remaioder of this section, P , Q , and R be handshake processes, 
such that pP = pQ and pP 1><1 pR. 

Definition 7.5 (strong refinement in context) 

P strongly refmes to Q in the context of R, denoted by P .S Q , if 

tP :2 tQ 1\ (t(P w R) = t(Q w R))i 

0 



Non-receptive handshake components 

Property 7.6 

0. Strong refinement in context is a preorder (cf. 7.2). 

I. For receptive handshake processes P, Q and R we have 

D 

Example 7.7 

The relation 
MIX·(b0 ,c0 , d•) ÇR NMIX.(b0 , c0 ,d•) 

is a strong refinement for 

but not for 

0 
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A nice property of strong refinement in context is that it does not introduce inter­
ference. The following theorem assumes that the domaio of parallel composition 
(cf. Definition 3.14) is extended to handshake processes. 

Theorem 7.8 

If P 11 R is free of interference and P ,S RQ then Q 11 R is alsofree of interference. 

0 

Remember that if P and R are both receptive, absence of interference is guar­
anteed. In particular, a component in a handshake circuit and its environment 
are receptive. If this component is e.g. a MIX component it may be replaced 
by an NMIX on account of Example 7.7, provided that the environment avoids 
overlaps of the handshakes through the mixer's passive ports. The MIX compo­
nents introduced in the compilation function of Chapter 6 are all placed in such 
a restricted environment. Consequently: 
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Theorem 7.9 

All MIX components introduced on ground of the separatiom Property (cf. 6.23) 
can be strongly refined into NMIX components in their resp ctiv~ contexts. 

D 

Similar strong refinements in context apply to directed MI components. Also, 
VAR components can be strongly refined into a non-receptiv component without 
overlap in read and write access, because of the required confprmance of alphabet 
structures (cf. Definition 4.12). 

7.3 Handshake refinement 

Symbols have been introduced as narnes of events of interest to describe the 
interaction of a handshake process and its environment. In this section we relate 
these symbols to wires and to transitions of the states of thde wires. In CMOS 
these state transitions usually correspond to voltage transitioljls (cf. Sec ti on 0.1 ). 

Let p be a port of handshake process P. First we assume that we may use 
a wire for each symbol of p, the so-called One-Hot encodin:g0 . With symbol a 
we associate wire a. The states of a wire will be referred to as low and high. A 
transition of wire a from low to high will be denoted by al, and a transition vice 
versa by a!. lf we assume that the initia] state of a wire is low, the observed 
behavior of the state of the wire can be recorded by a sequence in which a I and 
a! alterna te, starting with an a I. 

The notion of a handshake process can be refined accordingly. We will not 
develop a forma] handshake-process model at the level of transitions. Instead, we 
simply require port structures .to be of the form A x {I ,!}. Also, the projection of 
a trace of 'H· (A x {1,!}) on a single port must result in the proper alternation of 
up and down transitions. Without loss of generality we assume that all wires are 
low initially and that the first event on each wire is therefore an I transition. A 
handshake process with these properties is referred to as a transition handshake 
process. Similarly, we speak of transition handshake comportents and transition 
handshake circuits. 

Useful shorthands for ports (p,l) and (p,!) are p l and p !. The alphabet 
structure A x {I,!} will be abbreviated to At. Thesetof all transition handshake 

I 

processes with port structure At will be denoted by fit· A. 

0More economie encodings are discussed in Section 7.4. 
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Handshake action p Ta assumes both wires Po and PI to be low, and, after 
successful terrnination, leaves both wires high. Similarly, action p! a assumes 
both wires to be high, and leaves both wires low, provided successful terrnina­
tion. This suggests that we cao still use the handshake calculus of Chapter 4, 
provided that the described process satisfies the rule of alternation of up and 
down transitions. 

In this section we investigate various ways to implement a handshake process 
by a transition handshake process. The central notion is that of phase reduction. 

Definition 7.10 (phase reduction) 

A phase reduction is a partial function rjJ : fit· A ----7 TI· A that satisfies: 

0. rjJ is surjective 

1. r/J· (P n Q) = r/J· P n r/J · Q 

2. r/J · (P u Q) = r/J· P u r/J· Q 

3. r/J·(P II Q)= r/J·P IIr/J·Q 

0 

Let R = </>Q. Then Ris said to be the phase reduction of Q. Altematively, Q will 
be called a handshake refinement of R. A phase reduction is a homomorphism 
on account of 7.10.1 and 7.10.2. 

Transition handshake processes P and Q are equivalent if r/J· P = r/J · Q. This 
equivalence is actually a congruence, and is the kernel of rjJ (cf. [DP90] page 
116). 

Let P, Q and R be transition handshake processes. On account of 7.1 0.3 we 
conclude P 11 R and Q 11 R are equivalent if P and Q are equivalent. More 
generally, the replacement of a transition handshake component by an equivalent 
one in a transition handshake circuit results in an equivalent handshake circuit. 

Two classes of phase reductions are studied in some detail: 2-phase and 4-
phase reductions. The associated handshake refinements are called 2-phase and 
4-phase refinements respectively. 

2-phase refinements 

The simplest handshake refinement is based on the phase reduction obtained by 
ignoring the distinction between up and down transitions. 
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Definition 7.11 (2-phase reduction) 

0. Let t be a handshake trace in Afl. The 2 -phase re duet: on of t, denoted by 
r/J2 · t, is defined by: 

(h · t = if t=E ---t E 

0 t =cT u ---t e r/J2·U 

0 t = cl u ---t e r/J2·U 

fi 

1. Let P be a transition-handshake process. r/J2 · P is the handshake process 
obtained by applying the 2-phase reduction to all trac~s of P. 

0 

The following theorem is hardly a surprise. 

Theorem 7.12 

r/J2 is a phase reduction. 

0 

rp2 is total and is clearly a bijection. lts inverse wiJl be calleql the 2-phase hand­
shake refinement of a handshake process. The 2-phase handshake refinements of 
a number of handshake components are given next. 

Example 7.13 

0. CON·(a0 ,b•) =#[aj 0
: br-;a ! 0

: b!•] 

1. SEQ· (a0
, b• , e•) =#[a re: (b j •; er-); a! 0 : (b ! • ; c! •)] 

0 

2. REP·(a0 ,b• ) = aj 0 : #[bj•;b ! •] 

3. MIX· (a0
, bo, e•) = M(o,o), 

where 
M(O,O) =[a j o: e j •; M(l,O) 

M(l,O) =[a! 0 : cl•; M(O ,O) 

M(ü, I) =[a j o: cl•; Mo,I) 

M(I , I) = [a ! 0 : e r-; M(ü,I) 

b j 0
: ej•; M(o,l)] 

b j 0
: cl•; M(I,I )] 

b! o: cl•; M(O,O) ] 
b! 0 : er•; Mo ,0)] 
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The above mixer in particular is considerably more complicated than the MIX 
component of Example 4.3. The 2-phase refinements of directed components 
such as variables, multiplexers and adders are distinctly more complex than the 
above mixer. 

The handshake protocol that results from 2-phase refinement is also known as 
2-cycle signaling or non-return-to-zero signaling [Sei80]. The good news about 
2-phase refinement is that it results in handshake circuits in which components 
interact by the minimum number of transitions possible. Consequently , these 
circuits are potentially as fast and energy-efficient as possible. The bad news is 
that circuits sensitive to voltage transitions tend to be significantly larger than 
circuits sensitive to voltage levels [Sei80]. This overhead in circuit size may 
reduce the speed and power benefits considerably. 

The advantages of 2-phase refinements are likely to dominate in the case of 
off-chip communication and, to a lesser extent, for long-distance on-chip com­
munication. 

4-phase refinements 

4-phase refinements form practical alternatives to 2-phase refinements. The re­
sulting handshake protoeals are known as Muller signaling, 4-cycle signaling 
or return-to-zero signaling [Sei80]. The essence of 4-phase refinements is that 
handshakes are implemented by a signaling sequence of four communications. 
A first form is based on complete 4-phase reduction : 

Definition 7.14 (complete 4-phase reduction) 

Let (A t , T) be a transition handshake process, and let C = OA T Ul A l (C 
consists of the first and fourth phases of a 4-phase handshake). The complete 

4 -phase reduction of (At , T), denoted by cP4c· (At, T) , is defined only for (At, T ) 
that satisfy 

('t:/t : t E T: SUC · (t , tT) ç iAt u C) 

and results in the handshake process 

(A, {t : t E T 1\ suc · (t , tT) Ç C : c/Jz · (tjC)}) 

0 

Complete 4-phase reduction is based on the concealment of symbols in the com­
plement of C, viz. OA l U l A l. The restrietion on the domaio of cP4c excludes 
transition handshake processes that become quiescent while capable of doing 
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I 
an output in the complement of C. The reduction selects · nly those traces for 
projection on C that have successors in C. 

Theorem 7.15 

cP4c is a phase reduction. 

D 

In contrast to c/J2, the 4-phase reduction is not a bijection. The complete 
4-phase handshake refinement of a handshake process is usually not unique. 
Examples of complete 4-phase expansions of some handshake components are 
given below. 

Example 7.16 

D 

0. The two-phase connector is suitable in a four-phase setting as well . Alter­
natives are 

and 

1. A suitable four-phase version of the sequencer is 

An alternative is 

2. A four-phase repeater can be identical to the two-phase version. 

3. The four-phase MIX is remarkably simple compared to the two-phase ver­
sion: 

An important property of complete 4-phase refinement is that the wires of 
a port are in their initia! states after the completion of each handshake. In 
most cases the circuits are therefore simpler than their 2-phase counterparts. An 
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obvious disadvantage is the doubling of the number of transitions, with associated 
penalties in power consumption and computation time. The latter disadvantage 
can be relaxed somewhat by adopting the following alternative 4-phase reduction: 

Definition 7.17 (quick 4-phase reduction) 

Let (At, T) be a transition handshake process, and let C = OA T u lA T (With 
this choice, C cönsists of the first and second phases of a 4-phase handshake). 
The quick 4-phase reduction of (At, T), denoted by c/J4q · (At, T) , is defined in 
the same way as c/J4c. taking the difference in symbol set C into account. 

0 

Theorem 7.18 

cp4q is a phase reduction. 

0 

cp4q is not a bijeetion and a associated handshake refinement is therefore not 
unique. Quick 4-phase refinements tend to be faster than complete 4-phase refine­
ments, because the environment does not need to participate in the return-to-zero 
transitions. The price for this gain in speed is that the circuits tend to be more 
complex, because after output transition a 1 T the component must be receptive 
for ao 1 while possibly engaging in other handshakes. 

Mixed forms of complete and quick 4-phase refinements may be considered, 
with the objective of taking the best of both worlds: quick 4-phase refinement 
when the speed gain is substantial and the overhead in circuit complexity is 
acceptable, and complete 4-phase refinement in all other instances. Of course, 
such mixed refinments must be based on a proper phase reduction. A useful 
transition handshake component to convert a complete 4-phase refinement into a 
quick one on a single-port basis is the quick-return linkage 1• 

Example 7.19 (quick-return linkage) 

The transition handshake component QRL- (a0
, b•) is defined as 

0 1 In [Udd84] attributed to C.L. Seitz. 
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Component QRL is a quick 4-phase handshake refinement f a connector. Ob­
serve that alo and b t• are coupled as in CON, and that a l1 and b 1• can occur 
independently as in PAR. 

Transferrers 

Realizations of handshake components using 4-phase handsh~ke refinements lead 
to reasonably efficient VLSI circuits. The current Tangram cEmpiler (cf. Chapter 
8) uses the complete 4-phase handshake refinement for all harrshake components, 
except for the transferrer. Reeall that transferrers are introducf d abundantly in the 
compilation of Tangram programs. The behavior of a transfyrrer with activation 
port a0

, input b• and output c• is defined by (assuming apptopriate declarations 
of a, b, c and x): 

A complete 4-phase refinement is: 

Other 4-phase refinements have in common that the b an~ c handshakes are 
strictly sequentia!, requiring costly storage of the incoming value between the 
communications bl•?x and cr-Lr. 

A transition handshake component with a behavior similar to the transferrer, 
and with an extremely cheap circuit realization is (cf. Sectioh 7.5) : 

The reductions in cost and delays have been achieved by Ç::reating an overlap 
between the b and the c handshake. It turns out that, with few exceptions, this 
handshake refinement of the transferrer is allowed in the compiled handshake 
circuits. This cao be checked for each syntax/compilation fule that introduces 
transferrers. Exceptions are assignments of the form x := E in which E depends 
on the value of x. Forthese so-called auto assignments (e.g. i := i + 1) we have 
to accept the more expensive handshake refinement. 

7.4 Message encoding 

In the previous section we assumed a One-Hot encoding of d~ta: toeach symbol 
in the two symbol sets of a port we assigned a wire. A set öf 16 symbols then 
requires 16 wires. On the other hand, 16 wires may eneode as many as 2 16 
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(= 65536) values. This suggests ample room for impravement over One-Hot 
encoding. Our prime interest is in encodings that preserve the delay-insensitive 
nature of the communication among handshake components. [Ver88] presents a 
definition and an overview of these so-called "delay-insensitive codes". In this 
section we repeat this definition and link it to the most popular delay-insensitive 
code: the double-rail code, also known as the dual-rail code. 

A code is a pair (I, C), where I is a finite set of indexed wires, and C is 
a set of subsets of I: the code words. The size of I is called the length of the 
code, and the size of C is called the code's size. A One-Hot code of size n has 
length n. 

The implementation of port (Op, lp) requires a code for both Op and lp. In 
most cases, ho wever, at least one of these two sets is a singleton (code size = I), 
and a single wire suffices (code length = 1). 

A code word is an element of C and indicates along which wires a transition 
will be sent for the transmission of the corresponding message. Not all code 
words are suitable for delay-insensitive communication. For instance, the empty 
set is useless, because the receiver would not be able to detect its arrival. 

Definition 7.20 

A code (I , C) is delay insensitive when [Ver88] when 

0/x, y : x E CA y E CA x Ç y : x = y) 

0 

That is, when no code word is contained in another code word. This property 
allows the receiver to detect the arrival of a message. After a transition has 
arrived on each wire of a code word, the receiver can detect that it has received 
a complete message. 

The concatenation of codes (I , C) and (J, D) with I n J = 0 is the code 
(I U J, CD) , where CD is defined by 

{x ,y: x E C Ay E D: x U y } 

The concatenation of two delay-insensitive codes is also delay-insensitive. 
The well-known Double-Rail code [Sei80] can now be introduced as the 

concatenation of n (disjoint) One-Hot codes of length 2. Using 16 wires, a 
Double-Rail code of 8 wire pairs eneodes 28 (=256) code words, which is a clear 
impravement over the 16 code words of the One-Hot code. Arrival detection 
of Double-Rail encoded messages is simple, so is the conversion from and to 
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(delay-sensitive) Single-Rail codes. These properties makl Double-Rail codes 
fairly popular in the design of delay-insensitive and other s lf-timed circuits. 

However, compared with clocked circuits, in which a tr sition of the clock 
announces the arrival of a message, Double-Rail codes are ather wasteful. For 
a given code size, the overhead in number of wires is I 00 , wttich is consider­
able in a technology where costs are dominated by wires. Ot er delay-insensitive 
codes [Ver88] have considerably less overhead. However, heir use in the real­
ization of handshake circuits is constrained by: 

• the Jack or excessive costs of circuits for arithmetic with such codes, 

• the size of encoding and decoding circuits near storade elements, and 

• the delays involved in encoding and decoding. I 
For off-chip and long-distance on-chip communication these overheads of coding 
and decoding may nevertheless be worthwhile. 

When wire delays can be sufficiently controlled, de!ay-sensitive codes become 
attractive for circuit realization. With n wires, a code of size 2n- 1 can be 
implemented, in which one wire is used to signa! the arrival of a message. Of 
course, the delay along that wire must exceed the delay in each of the n - I other 
wires. This is sometimes called a data-bundling constraint [Sut89]. In practice 
this requires suftleient control over the spatial layout of handshake components 
and the connecting wires, introduetion of additional delays or a combination of 
both. Conversion circuits from and to Double-Rail codes are given in [Sei80]. 

7.5 Handshake components ---+ VLSI circuits 

The previous sections show how the specificatien of a handshake component can 
be refined by: 

0. reducing receptiveness (depending on the camponent's context), 

I. refining handshakes, and 

2. encoding messages. 

These refinements result in the specificatien of a circuit in 1terrns of transitions 
on individual input and output wires. The next step is to r decompose such a 
specificatien into a circuit of available VLSI primitives such as inverters and 
NAND gates. Methods for these decompositions are emerging ([Mar89,Ebe89, 
MBM90,JU91]), with different choices in and emphases on: 
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0. the handshake protocol chosen, 

1. the available VLSI primitives, 

2. the degree of delay-insensitivity. 

In this section we review decompositions of a few handshake components into 
circuits of so-called VLSI operators. 

VLSI operators and (isochronie) forks 

The behavior of a VLSI operator is defined by the Boolean values of the output 
wire(s) in terrns of present and past values of the inputs. The behavior of a 
monadic (single output) operator is specified by a pair of so-called production 
rules [Mar89] 

F f---+ zT 
G f---+ zl 

F and G are Boolean expressions called the guards of the operator. The identifiers 
in F and G are the inputs of the operator. z is the output of the operator. z T 
and z 1 are shorthand for z := true and z := false respectively. The production 
rule F f---+ z T can be read as "when F holds z becomes true". 

The guards of an operator are required to be mutually exclusive, i.e. -.F V 

-.G must hold at any time. Furtherrnore, the guards have to be stable, i.e. 
once a guard evaluates to true, it has to remain true until the completion of the 
corresponding output transition. Stability of the guards is not a property of the 
operator: it must be satisfied by the environment of the operator. The same holds 
for the mutual exclusion of the guards of operators for which -.F V -.G is not a 
tautology. 

An input transition denotes the change of an input variable. An input transi­
tion is productive if it causes an output transition, and void otherwise. The time 
between a productive input transition and the corresponding output transition may 
be arbitrary (i.e. positive and fini te). 

An operator is called "combinational" if F vG is a tautology, and "sequentia!" 
or "state-holding" otherwise. 

Some examples of operators are given below. They wil! return in later ex­
amples. 
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Example 7.21 

D 

0. An inverter is specil1ed by 

-,a !-----; zT 
a !-----; z! 

1. The familiar AND operator is specified by 

al\b !-----; zT 
-,a V ---,b !-----; z! 

2. Similarly, the OR operator is specified by 

a v b !-----; zT 
-,a 1\ ---,b !-----; z! 

a 1----{>- z 

3. The previous three operators are combinational operators. A well-known 
example of a sequentia! operator is the Muller-e element: 

Note that this specification allows two successive transitions on an input, 
provided stability of the guards. 

eMOS implementations of VLSI operators are discussed in [Mar89,vB91]. An 
example of a eMOS circuit for a Muller-e element is depicted in Figure 7.0. It 
consists of a Majority circuit with it output z fed back to o~e of its inputs. Note 
that during the (dis-)charging of wire y two paths of transistors pull together. 

VLSI operators may be connected by (point-to-point) wires. Wires themselves 
may be regarded as VLSI operators: 

a !-----; zT 
-,a !-----; z! 

However, since VLSI operators may have arbitrary delays themselves, there is 
no point in introducing extra variables here. Therefore we treat wires as single 
variables. 

When a value is to be transmitted to the inputs of two operators a FORK 
operator must be used . The FORK operator has two outputs, both following the 
input: 



Handshake components ---+ VLSI circuits 183 

vdd 

a-1 

z 

b-j 

vss 

Figure 7.0: A CMOS circuit fora Muller-e element. Wires with the same label 
are connected. vdd and vss denote the power and ground rail respectively .. 

a-<: 
The comma between the output transitions expresses concurrency: the two events 
may occur in either order and no assumption is made about the time duration 
between these events. (Simultaneous occurrence of both events caooot be ex­
pressed in the model). In implementation technologies where wire delays may 
dominate other delays (such as CMOS) it turns out to be necessary to represent 
the outputs of the fork by two distinct variables. 

A network of VLSI operators and forks is said to be delay insensitive if 
it functions correctly under arbitrary and possibly varying delays in operators 
and wires. This rather extreme class of asynchronous circuits has the additional 
advantage that it simplifies the layout: delays introduced by wires do oot affect 
the behavior of the circuit. Unfortunately, the class of (purely) delay-insensitive 
circuits constructed from operators and wires only is small and oot very interesting 
from a practical view point ( cf. [BE90] and [Mar90]). 

The "weakest possible compromise" [Mar90] with respect to delay insensitiv­
ity seems to be a forking wire with constraints on the arrival times of transitions 
at the ends of the fork: the isochronie fork. An isochronie forks is a special case 
of the FORK operator. Below we present two types of isochronie forks. An 
asymmetrie isochronie fork guarantees that one output transition occurs before 
the other, as expressed by the semicolon: 
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a 1--7 y T;z T 
-,a 1--7 yl; z l 

Handshake circuits - VLSI circuits 

·-<: 
In circuit diagrams such forks are indicated by a '<' at the fast end . A symmetrie 
isochronie fork guarantees that both output transitions occ~r at the same time: 
the narnes of the outputs are simply aliases for the same variable. In circuit 
diagrams such forks are indicated by a '=' near the fork. 

The above classification of isochronie forks is a coars one. By requiring 
different timing behaviors for up- and down-going transitio .s finer classifications 
can be obtained. Isochronie forks must he applied with cautïon and implemented 
with care [vB92]. 

Networks of VLSI operators and (isochronie) forks are speed independent 
[Mil65 ,Rem91]. 

A useful auxiliary circuit for the realization of complete 4-phase transition 
handshake components is the S-element [vB92] . An S-element has as port struc­
ture a0 u b• , and can be specified by the transition handshake process 

A possible circuit realization of the S-element in terms of VhSI operators is given 
below. 

Initially, ao =ai = bo = b1 =fa/se and z = true. The forks connected to ao and b1 
are both isochronie. In [Mar89] the circuit is called a Q-element. The D-element 
of [BM88] behaves similarly, but is not strongly initializable (cf. Section 7.6), 
whereas the S-element is . 

Circuit realizations for some handshake components 

The circuit realizations of the handshake components below are all based on 
complete 4-phase refinements (cf. Example 7.13). 
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Example 7.22 

0. A circuit realization of a connector consists of wires only: 

1. A repeater consists of a NOR and an inverter. Output a 1 is connected to 
ground and will not be involved in any transition. 

2. A circuit for the sequencer is based on the S-element. 

So~ L ~~ JL· __ j-l ___ , : 

3. The PAR component can for instanee be realized as: 

4. A circuit for the non-receptive mixer is: 
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0 

The fork connected to c1 is isochronie. 

5. An undirected 10/N can be realized by 

6. A Boolean transferrer can be realized by wires only, provided that the b 
and c handshakes may overlap (cf. Section 7.3). 

bo ~ t.:_ co 
b1 :false co :false 

b1 : true co: true 

For an n-bit transferrer (n > 1) the above transferrer can be extended by 
adding n - 1 wire pairs from port b to port c. 

7. The circuit below is that of a Boolean variabie with a single read port. 
Transition a 1 T acknowledges a write action; transitionboT is a read request. 

ao :false 
b1 :false 

bo 

ao :true 
b1 : true 

The circuit of a 2-bit variabie can be realized by two 1-bit variables, a 
fork connected to the two read-request inputs, and a Muller-C element that 
joins the write-acknow1edgements (with inputs and outputs appropriately 
labeled). 

The presented circuit solutions are not claimed to be optima!. Clever combi­
nations of operators on the transistor level often yield interesting savings. The 
circuits of Example 7.22 are sufficient to realize the optimized handshake circuit 
of the two-place buffer of Example 1.4. 
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7.6 Initialization 

When a VLSI circuit is connected to a power supply, the circuit generally does 
not proceed to an initial state by itself. Ij the circuit becomes quiescent after 
some time, the resulting state may not even be reachable from an initia! state. 
Also, the circuit may start oscillating (di verging), even when its specification 
does not allow for such oscillations. 

So, we have a circuit-initialization problem: how to force a VLSI circuit into 
its initia! state. This problem is not specific to self-timed or other asynchronous 
circuits. In clocked circuits, this problem is solved by the introduetion of addi­
tional reset circuitry. This circuitry can be used to force a well-chosen subset 
of all wires into their initial states. This strategy is also applicable to the VLSI 
circuits studied in this chapter. Nevertheless, we develop a different strategy 
that avoids the need for additional circuitry and that builds on the properties of 
compiled handshake circuits. 

First we take stock of the properties of handshake components and circuits 
that will be used: 

• The initia! state of handshake components is passive: only an input event 
can cause a handshake component (and hence a handshake circuit) to leave 
the initia! state (cf. 3.19). 

• Handshake components and handshake circuits have the initial-when-closed 
property. Hence, a handshake circuit is in its initia! state if and only if all 
its ports (both internat and external) are also (cf. 3.19). 

• The environment of a handshake circuit has only control over the inputs 
of the extemal ports of that handshake circuit. 

It must be stressed that the behavior of the VLSI circuit after power-on 
cannot be analyzed within the model for handshake circuits, since all kinds of 
interterenee may occur. Fortunately, we are not interested in this behavior; we 
only want a guarantee that the circuit will arrive in an initia! state within a finite 
and predictabie amount of time. 

The initialization properties of handshake circuits will be analyzed in terms 
of the binary relation ~ between symbol sets. 

Definition 7.23 (initializes) 

Let B and C be a symbol sets. B ~ C (pronounced as "B initia! i zes C ") is a 
binary relation with the following properties: 
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0. C ç B ::::} B rv. C 

2. B rv. C 1\ D rv. E ::::} B u C rv. D u E 

0 

The following properties follow immediately from the defi ition of rv. . 

Property 7.24 

0. From 0 we can see that rv. is reflexive, i.e. B rv. B. 

I. Tagether with I we conclude that rv. is a preorder. 

2. Combining 0 and I yields B rv. C 1\ B Ç D ::::} D "f C . 

3. Altematively, B rv. C 1\ D Ç C ::::} B rv. D . 

4. Finally, combining 0 and 2 yields B rv. C ::::} B rv. .& U C . 

0 

Our aim is to develop a rv. relation on (UP : P E H : aP) for handshake circuit 
H, given such relation for the constituent handshake components. 

Definition 7.25 (weak initializability) 

0 

0. A handshake component P is weakly initializable if it is passive, initial­
when-closed and iP rv. oP. On ground of Property 7.24.4 the latter is 
equivalent to iP rv. aP . 

I. A handshake circuit H is weakly initializable if its constituent handshake 
components are and i(eH) rv. o(eH) , where eH denotes the extemal port 
structure of H (cf. Definition 3.8). 

Clearly, a weakly initializable handshake component can be forced into its initia! 
state by making all inputs initia!. 

Example 7.26 

All circuits of Example 7.22 are weakly initializable. 

D 
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Unfortunately, requiring all handshake components to be weakly initializable 
(Definition 7.25.0) is not sufficient to make a handshake circuit weakly initializ­
able (Definition 7.25.1). In order to make handshake circuits weakly initializable, 
additional provisions are required. We first examine a simpte strategy that is ef­
fectively and efficiently applicable to undirected handshake circuits. A more 
general, but also more elaborate strategy is sketched next. 

A simple initialization strategy 

Definition 7.27 (strong initializability) 

0 

0. A weakly initializable handshake component P is strongly initializable if 
iP0 

'""-+ oP• . 

1. Accordingly, a weakly initializable handshake circuit H is strongly initial­
izable if its constituent handshake components are and i(eH)0 

'""-+ o(eHt . 

Example 7.28 

All circuits of Example 7.22 except the transferrer are strongly initializable. 

0 

The next theorem expresses that strong initializability is preserved under 
parallel composition, provided that the associated activity graph is acyclic. 

Definition 7.29 (activity graph) 

An activity graph is a directed graph. The actiVIty graph associated with a 
handshake circuit has one node for each handshake component and one are for 
each channel, directed from the active port to the passive port of that channel. 

0 

Theorem 7.30 (initialization) 

Let H be a handshake circuit whose associated activity graph is acyclic and 
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whose constituent handshake components are strongly init alizable. Then H is 
weakly as well as strongly initializable. 

Proof When circuit H is empty or a singleton, the th'eorem is trivia!. In 
the case H consists of at least two components, it can be decomposed into two 
non-empty subcircuits Ho and H 1 such that p0 Ho n p• H 1 += 0 (here we use the 
acyclicity of H). We use the following abbreviations (seJ picture below): 

• A 0 = (p0 Ho, 0) 

• s• = (0, p• Ho\ p0 H,) 

• c• = (0, p• Ho n p0 H, ) 

• co = (p• Ho n p0 H, , 0) 

• Do = (P0 Ht \ p• Ho, 0) 

• E• = (0, p• H,) 

Note that pHo = (A, B U C) and pH, = (C U D , E ) . Also, iC 0 = oe • and 
oC 0 = ie• . Weak initializability of H is now proven by ( the derivation uses 
property 7.24.4 implicitly): 

"-'+ { Ho is strongly initializable } 

oB• u oe • 

"-'+ { H, is weakly initializable; oe · = iC 0 
} 

oC0 U oD0 U oE• 

"-'+ { oC0 = iC•; Ho is weakly initializablè } 

OA0 

Clearly, all symbols are initializable from the external inputs. Strong initializ­
ability which is proven similarly. 

0 
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Theorem 7.31 

Let T be a Tangram program. The activity graph associated C · T is acyclic. 

Proof Can be checked easily from the diagrams that depiet the compilation 
function in Chapter 6. 

D 

Weak initializability of a handshake circuit is suftkient for practical purposes. 
Strong initializability allows the environment to postpone the initialization of the 
active input wires until all passive outputs wires have become low. For the set of 
undirected handshake components of Example 2.23 four-phase realizations can 
be designed that are strongly initializable. The simpte strategy is then effective. 
The time needed to initialize a handshake circuit is proportional to the length of 
the longest directed path in the associated activity graph. In practice this amounts 
to less than a micro second for current CMOS realizations. 

A more general initialization strategy 

For the handshake components needed for the implementation of Tangram strongly 
initializable realizations exist (4-phase). However, fora few components weakly 
initializable realizations exist, that are significantly cheaper than their strongly 
initializable counterparts. These cheap variants often have properties that are use­
ful for more elaborate initialization strategies. For example, for TRFr- (a0

, &•, c•) 
a very cheap 4-phase realization exists (cf. Example 7.22) that satisfies 

This implies that port &• must be initialized before c• cao be initialized. Acyclicity 
of the associated activity graph of a handshake circuit is then insuftleient for 
weak initializability. However, depending on the initialization properties of the 
components involved, specific classes of weakly initializable handshake circuits 
may exist. It cao, for instance, be proven that with the above transferrer, compiled 
handshake circuits of full Tangram are still weakly initializable. 

7.7 Testing 

Introduetion 

Fabrication of ICs introduces defects on the surface of the IC, such as spurious 
blobs of metal, impurities in the oxide layers, silicon-crystal defects, and cracks 
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in wires. These defects cannot be avoided completely and h ve a density of a few 
per cm2 of IC area. Unfortunately, they may cause malfunc ioning of the circuit. 
The fraction of defect-free chips for a given IC technolog depends mostly on 
the size of the chip and ranges from over 90 % for chips f a (ew mm2 to less 
then 10 % fora large IC of, say, 2 cm2 . 

The main purpose of testing is fault detection : the di rimination between 
correctly manufactured circuits and faulty circuits. Anoth r purpose is that of 
fault location [Fuj85]. This section only addresses the foffiljer. 

An effective test procedure must make assumptions OJ!l how defects affect 
the circuit behavior. The set of assumptions is common~y referred to as the 
fault model. A popular fault model is the so-called stuck-aif fau1t model, which 
models defects that prevent a wire to be pulled-up from a Ibw state (stuck-at 0) 
or to be pulled-down from a high state ( stuck-at 1 ). It must be noted that the 
stuck-at model only addresses those wires that conneet logica! gates (cf. VLSI 

I 

operators, Section 7.5). More elaborate fault models also lnclude e.g. bridging 
faults (spurious connections between two wires) and crosspoint faults (redundant 
transistors) . Despite its limitations, the stuck-at model is widely used. 

Testing of asynchronous circuits received little attention in literature. The 
subject is suggested to be difficult ([Fuj85], page 81): 

Test generation is much more difficult for asynchronoV!s circuits than 
for synchronous circuits, because of races, hazards, or oscillations. 

Also, the class of asynchronous circuits considered is usually restricted. Re­
cent work [DGY90,BM91,MH91] suggests that for asynchronous circuits that 
are "sufficiently" delay insensitive, the prospects for testabiliity are fairly promis­
mg. 

The purpose of this section is to show that testing of CMOS realizations of 
handshake circuits is viabie and that the costs of testing qm be kept relatively 
modest. First we address the issue of the generation of test traces: traces that 
can be used to detect faults. This is based on the stuck-at model, restricted to 
stuck-at faults on (gate) outputs. For a more general appro 'eh that also includes 
stuck-at faults on inputs see [MH91]. 

Unfortunately, the length of a test trace or the time to execute a test trace 
may grow exponentially with the size of the circuit. In ordJr to control the costs 
of test-trace generation and execution, it is necessary to mt dify the circuit with 
the objective to reduce these costs. This so-called testability enhancement will 
be addressed at the handshake-circuit level and forms the second topic of this 
section. 
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Both topics are treated informally and rather sketchy. This reftects the imma­
turity of the discipline of asynchronous-circuit testing and the presence of open 
problems. 

Test traces 

Our analysis starts with consirlering only those wires that conneet handshake 
components. Assume, withoutlossof generality, that all these wires are required 
to be low at an initia! state of the circuit. Let a be such a wire, and let Q be 
the handshake component for which a is an input wire. Stuck-at faults on wire 
a may have quite different effects on the circuit behavior: 

0. A stuck-at 0 on a does not interfere with the initialization of the circuit. (It 
may even speed up the initialization procedure.) A subsequent ûp transition 
a I, however, will never arrive at Q, as if it experiences an infinite delay. 
Component Q can therefore not participate in any trace that involves a I. 
In most cases (see below) this can eventually be observed extemally by 
the inhibition of an output transition. 

1. A stuck-at I on a prevents the correct initialization of Q and hence of the 
circuit. Unfortunately, this stuck-at may have the same effect on Q as a 
(premature) up transition on a. In genera!, not much can be said about the 
response of Q to such a premature transition. We assume, however, that 
Q is not able to participate in a subsequent handshake that involves a 1. 

In either case, the handshake circuit cannot participate in a trace that contains 
bothar and al. 

An internat test trace is defined as a trace in W · H that causes each channel 
wire to make an up and a down transition. An external test trace, or test trace 
for short, is a trace t E (eH)H that satisfies: 

(Vu : (u I eH) = t : u is an intern al test trace) 

The idea is that the behavior of a handshake circuit cannot display a test trace in 
the presence of a stuck-at fault. Given this definition of test trace, three important 
questions arise: 

0. under which circumstances does a test trace exist? 

1. how to compute a test trace? 

2. can test traces be executed? 
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For many handshake circuits no test trace exists, as is revi~weq below. Fortu­
nately, for practical circuits escapes are often available. 1 

0. Some wires never make a transition. For instance, wir 1 a 1 o.f the repeater in 
Example 7.22. These wires are clearly redundant and should be removed. 
In the sequel we assume that circuits are oot redunda t. 

1. Sametimes a wire makes at most one transition. For instance, wire a0 of 
the repeater of Example 7.22 makes at most one up-transition. There are 
two ways to deal with this situation. One cao either relax the definition of 
test trace and add circuitry to observe stuck-at faults on these wires, or one 
cao modify the circuit such that it is able to execute a signaling sequence 
with both transitions (see below under test enhancement). 

2. Even if every wire cao make both transitions, oot all wires need to be 
covered by a single trace. The way out here is to concatenate several 
traces, linked with initialization steps into a single test trace. 

3. Divergences cause special problems. The occurrence of a divergence cao 
easily be observed in a CMOS realization of a handshake circuit, by roea­
suring the supply current in an (extemally) quiescent state. However, since 
it is oot possible in all cases to identify the wires involved in a divergence, 
a test trace may oot exist in a divergent circuit. 

4. A more serious problem may be that of intemal nondeterminism. Some 
forms of internal nondeterminism, such as the circuits! compiled from Tan­
gram programs with uninitialized variables, are relatively innocent. Other 
forms of internal nondeterminism involve circuit redundancy. The result­
ing nondeterminism must then be restricted during test time. Clearly more 
research is needed for testing intemally nondeterministic circuits. 

In summary, a test trace does exist, provided that 

• the circuit is oot redundant, non-diverging, and intem.ally deterministic; 

• provisions are made to deal with wires that (would otherwise) make at 
most one transition; 

• re-initializations are allowed. 

An undirected handshake channel is tested after the completion of a 4-phase 
handshake. Testing of a double-rail encoded channel requires at least two 4-phase 
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handshakes, so that both wires of each wire pair make both transitions. But how 
about the wires internat to the handsha.ke components? 

It turns out that the handshake components of Example 4.35 can be realized 
such that the internat wires are covered by a test trace that tests the external wires. 
This also holds for the handshake components of Example 4.37, except for some 
of the binary operators, such as adders. For adders an additional handshake is 
necessary to fully cover the testing of the carry chain. 

Given the above testability properties of handshake components, it is in many 
cases straightforward to compute a test trace from the handsha.ke circuit and even 
from the original Tangram program. 

Example 7.32 

D 

0. Example of a test trace for BUFz(a, c) (cf. Figure 1.4): 

This trace tests a ripple buffer of arbitrary capacity! The test time can be 
reduced by changing the order of c• !0 and a•?I . 

1. A test trace of WAG(a, c) (cf. Figure 1.5) is 

In order to test the two parallel paths in the handshake circuit, twice as 
many communications are required in comparison with the test trace of 
BUFz(a, c). 

Note that a test trace also detects multiple stuck-at faults on outputs. Masking 
of one fault by another fault cannot occur. 

Test-trace execution 

Can a test trace be executed? That is, is it possible to force a correctly manu­
factured IC to display the behavior specified by the test trace? In a strict sense, 
this is seldomly possible, because of reordering of output transitions. If the ques­
tion is interpreled "modulo reordering", there still is a problem: that of extemal 
nondeterrninism. 

For instance, the first N outputs of an N-place shift register (cf. Section 1.3) 
are unkown at test time. The resulting nondeterrninistic behavior is relatively 
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innocent, because the communication behavior at the port evel is not affected. 
More erratic forrns of extemal nondeterrninism are hard t handle by existing 
test equipment. 

Given an executable test trace, ICs can be tested. An I is .free of stuck-at 
faults, if the complete test trace can be executed, The costs ' f testing are largely 
determined by the length of the test trace and the time nee ed to execute it. As 
a rule, shorter traces require less test time. 

Testability enhancement 

Testability enhancement of a circuit involves the modification of the circuit with 
the purposes of 

• reducing the length or execution time of a test trace; 

• establishing the existence of a test trace. 

Consider the duplicator chain of Example 3.24, consisting df N duplicators: 

Completion of the handshake through port ao requires 2N handshakes through 
port a N. Clearly, the time to execute a test trace of the duplicator chain grows 
exponentially with the circuit size. The problem is not as artificial as it may 
seem: a watch is basically a set of counters that can be realized with duplicator 
chains. The circuitry that counts leap years must then also be tested! 

The explosion in test time can be avoided by cutting the chain into two parts, 
more or less equal in size, and to test them independently. This can be realized 
by inserting a mixer and a break component B. 

t 

The behavior of component B is defined by (with m a locaJ Boolean variable) 

m := false; #[ [ t 0 
: m := -,m 

I C
0 

: if m ----> skip IJ -,m ----> d• fi 
] 
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Variabie m records whether B is in test mode . Initially, B is not in test mode. 
A handshake through t sets B in test mode, and a second handshake through t 
resets m. If B is in test mode, communications through c0 are simply absorbed. 
lf B is in not in test mode it acts like a connector. 

The effect of B halfway in the duplicator chain is dramatic. The front sub­

ehaio of length N div 2 can be tested in test mode in 2<N div 2l time units. The 
back subchain of length N - (N div 2) can be tested in normal mode roughly 
in the same amount of time. This results in an overall reduction by a factor of 

2<N div 2)-1. 

In general, insertion of mixers and breaks makes it easier to obtain test traces 
in a systematic way. As illustrated above, it may also reduce the test time 
significantly. 

An example of testability enhancement of the second kind, viz. one that 
helps to establish the existence of a test trace, is the following. A repeater 
can be equipped with a passive port that is used to (re-)set the repeater in test 
mode, similar to the break component in the duplicator chain. By modifying the 
behavior of the repeater such that in test mode it behaves like a connector, the 
wires connected to the passive port of the repeater can conveniently be tested. As 
a bonus, most handshake circuits will then in test mode complete the handshake 
through port !> 0

• 
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Chapter 8 

In practice 

Handshake circuits and the associated compilation method from CSP-based lan­
guages were conceived during 1986 at Philips Research Laboratories. A first 
IC (7000 transistors) was designed using experimental tools to manipulate and 
analyze handshake circuits (then called "abstract circuits") and to translate them 
into standard-cell netlists. The IC realized a subfunction of a graphics processor 
[SvB88] and proved "first-time-right" (September 1987). Extensive measure­
ments hinted at interesting testability and robustness properties of this type of 
asynchronous circuits [vBS88]. 

Encouraged by these early results the emphasis of the research shifted from 
the design of the graphics processor to VLSI programming, compilation methods 
and tooi design. Generalization and systematization of the translation method 
resulted in an experimental silicon compiler during spring 1990 [vBKR*91]. 

A second test chip has been designed and verified during the autumn of 1991. 
In addition to some test structures, the IC contains a simple processor, including 
a four-place buffer, a 100-counter, an incrementer, an adder, a comparator, and a 
multiplier in the Galois Field G F(28) . The Tangram program was fully automati­
cally compiled into a circuit consisting of over 14 thousand transistors. Extensive 
testing and mearsuring demonstrated functional and structural correctness over a 
supply-voltage range from 1.2 Volt to 7.5 Volt. 

Current work on the compiler aims at extending its input language Tan­
gram [Sv88*9l,KvBB*92] and improving the efficiency of the generated cir­
cuits. Most of the theory reported in this thesis evolved in conjunction with the 
work on the method and tools. This final chapter reports some of our practical 
experiences with VLSI programming and silicon compilation. It concludes with 
an appraisal of asynchronous circuits. 
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8.0 VLSI programming and compilation 

Experiences with VLSI programming and compilation wil! e presented from a 
programmer's viewpoint After an overview of the design tools, a benchmark 
program (that of a Compact Disc error decoder) is used to ill strate various VLSI 
programming and compilation issues. 

Tooi overview 

circuit 
stalistics 

B 

cell 
library 

VLSI programroer 

Tangram 
program 

A 

handshake 
circuit 

E 

netlist 

F * 

VLSI 
layout 

silicon foundry 
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G 

timed 
trace 

D * 

VHDL 
circuit 

Figure 8.0: Overview of the main Tangram-compilation tools. Boxes denote 
design representations, arrows denote tools. 

An overview of the design tools is depicted in Figure 8.0. Design represen­
tations are shown as boxes, tools as arrows. Arrows labeled with an asterisk 
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denote commercially available tools. The main Tangram-compilation tools are: 

• A: a translator from Tangram to handshake circuits (text format); 

• B: an analyzer of handshake circuits that produces statistics at the levels 
of handshake circuits, CMOS circuits and layout; 

• C: a converter of handshake circuits into VHDL [LSU89] descriptions; 

• D: a VHDL simulator that produces a trace with detailed timing informa­
tion; 

• E: a generator that expands the handshake circuit into a netlist of standard 
cells; 

• F: a standard-cell layout package that performs placement of the standard 
cells and cell-to-cell routing accordjng to the netlist; 

• G: a test trace generator (under development) . 

The vehicle 

The benchmark for this chapter is a simple error decoder with application in 
Compact Disc players (cf. Section 0.0). A precise description of this function 
can be found in [KvBB*92]. A global description of the error decoder is the 
following. The decoder receives code words of 32 symbols (of 8 bit), of which 
four are designated as parity symbols. These parity symbols allow for the correc­
tion of two erroneous symbols. The benchmark program can only locate single 
errors. Por each code word the decoder produces an error status (0, 1 or more 
errors) and, in the case of a single error, an error location and an error value. 
The actual correction is not performed by the decoder. Code words arrive at a 
rate of one per 70 p,seconds. 

VLSI programming 

A Tangram program for the decoder can be found in [KvBB*92]. Schematically 
it can be described by 

#[x:= input(a); s := syndrom e(x ); e := search(s); c!e] 

The incoming code word (through port a) is stored in variabie x by function 
input. Function syndrome then computes the syndrome of x, which is stored 
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in s (a tuple of four symbols). The syndrome contains the error inforrnation in 
an implicit form . Function search makes this information explicit in variabie e, 
using a linear search. The number of steps in this search varies between 0 (for 
correct words) and 32 (in the case of more than one error); Finally, the error 
information is output through port c. An important improvement on the above 
program is obtained by computing the syndrome "on the fty ' and thus avoiding 
the costly storage of the incoming code word. 

For the detailed program of the decoder the subset of Tangram of Chapter 
5 is insuftkient The applied arithmetic in the Galois Fi~ld GF(28) requires 
provisions for the definition of the appropriate types and associated operations. 
These provisions include tuple construction and selection, type casting, and type 
fitting (SvBB*91]. The structure of the program benefits from function and 
procedure definitions. Sharing of a number of these procedures (cf. Section 1.5) 
avoids duplication of circuitry with hardly a penalty in performance. 

The program text consists of 68 lines, divided over three paragraphs that 
are more or less equal in size. The first paragraph contains type and function 
definitions for the Galois Field arithmetic. The second paragraph consists of 
declarations of variables, functions and procedures and the third paragraph is the 
detailed version of the above command. 

The transparency of the translation method plays an important role in YLSI 
programming. As the coarse performance can be read directly from the Tangram 
text, the selection of the above algorithm may be justified at an early stage. Also 
the choice of the amount of parallelism in the syndrome computation and in the 
error search is guided by the observation that most elementary operations in the 
Galois Field are very cheap. 

Simple analysis (KvBB*92] shows that the decoder takes in the worst case 
about 20 J-LSeconds per codeword, which clearly suffices. In the case of stricter 
performance requirements, the following program for the decoder may be con­
sidered: 

#[x := input(a); s := syndr ome(x ); b!s] 

11 #(b?r; e := search(r); c!e] 

It consists of two parallel processes: one for computing the syndrome and one for 
searching the error. The type of the internal channel b is a tuple of four symbols. 
The resulting forrn of pipelining is akin to that of the ripple buffer in Section 1.1. 
The throughput of the above program is approximately twice as large compared 
with the first decoder program. Aspects of a more detailed comparison of both 
decoder programs recur below. 
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Compilation to handshake circuits 

The compilation of Tangram programs has been implemenled according to an 
extension of the method of Chapter 6. The compiler translates directly to com­
plete 4-phase handshake circuits, and many of the optimizations of Section 7.1 
and 7.2 are included. The compiler generates a handshake circuit in a simple 
textua1 format. 

The compiler uses the handshake components of Examples 2.23 and 4.37. 
The extensions of Tangram mentioned above require only a few extra handshake 
components. 

The compiled decoder consists of 523 handshake components, including 174 
connectors. The pipelined version contains 741 handshake components, of which 
244 are connectors . 

Simulation 

Additional confidence in the correctness of a Tangram program can be gained 
from simulation of the compiled handshake circuit. We have based our simu­
lation tools on a commercially available VHDL simulator. A simple program 
translates the handshake circuit into an equivalent VHDL architecture [LSU89]. 
Together with a library of VHDL models for the various handshake components 
this provides access to simulation tools used in main-stream VLSI design. A 
major advantage over a specific handshake-circuit simulator is that the above 
setup also allows interfacing to other circuits, including clocked ones, within the 
VHDL framework. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

input 11111111111111111111111111111111 11111111111111111111111111111111 

s := .. I I 

search I 111 I I I 111 I 111 I lil 1111 I 11 I I 11 111 

output I I 

Figure 8.1: Timing diagram of the standard error decoder. The time scale is in 
microseconds. 

Both decoder programs have been simulated with input ports connected to 
data files containing several code words . By inspeetion of the files connected to 
the output ports the correct functional behavior was verified. An alternative to 
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file l/0 is to model the environment by a Tangram progra · and to inspeet the 
data transferred along intemal channels. 

In addition to functional verification, simulation proves useful in analyzing 
the detailed timing behavior of the compiled circuit. The YIHD~ models of the 
handshake circuits have been characterized with regard to timing, based on the 

I 
timing of its constituent operators and conservative estimations of the average 
wire capacitances. An interactive post processor of the generhted timing data has 
been used to generate the timing diagrams Figures 8.1 and S.2. 

Figure 8.1 displays the timing behavior of the standard d~coder.. The square 
dots are actually short line segments, each indicating a handshàke interval, marked 
from the first phase to the fourth phase. The top line shows the handshakes of 
the input port, 32 per code word. The second line depiets an intermediate step 
between the input phase and the search. The third line shows the search: for the 
first code word (with two errors) the search takes 32 steps, , and for the second 
code word (correct) 0 steps. The output of the error inf<?rmation is on line 
four. An incorrect code word takes at most 12 J.LSeconds, a correct word about 6 
f.LSeconds. 

The timing diagram of the pipelined error decoder in Figure 8.2 is markedly 
different. The same channels have been monitored as in the standard decoder, 
with the intermediate step replaced by the intemal communic:ation along channel 
b. It is clearly visible that the input of the second code word is in parallel with 
the error search of the first code word. 

The throughput of the pipelined decoder is indeed twice that of the standard 
decoder, viz. one code word per 6 J.LSeconds. (The simul~tion interval of 17 
f.LSeconds in the timing diagram of Figure 8.2 left thus ple~ty of room for the 
decoding of a third code word.) The elapsed time for an incorrectable code word 
has also improved, because less overhead is involved in the sharing of procedures. 

0 1 2 3 4 5 6 7 8 9 10 11 12 1~ 14 15 16 17 

input 1111111111111111111111111111111111111111111111111111111111111111 11111111111111.11111111111111111 

b I I I 

search 11111111111111111111111111111111 

output I I I 

I 

Figure 8.2: Timing diagram of the pipelined error decoder. The time scale is in 
microseconds. 
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For critica! designs, the timing model may be too consèrvative. Significant 
improvements, however, can only be obtained when the handshake circuit is 
"back annotated" with wiring capacitances from the layout (cf. simulation of 
power consumption at the end of this section). 

VHDL simulation provides detailed feedback, but is too slow for heavy work. 
The simulation of large Tangram programs and large input files , as required for 
e.g. digital video signa! processing, requires more powerlul simulation tools. A 
salution may be to compile Tangram code directly to VHDL, or to an ordinary 
programming language such as C or Pascal. At the expense of the accuracy of 
the timing information, several orders of magnitude may be gained in simulation 
speed. 

Circuit statistics 

Comparison of different VLSI programs and optimization of the chosen program 
with regard to layout area requires feedback about circuit and layout costs. Un­
fortunately, the automatic generation of relatively smalllayouts may take several 
hours. Larger layouts may involve interactive floorplanning and optimization, 
and their generation may then take a few days or weeks, or even Jonger. 

A quick form of feed back is a tab ie of statistics computed from the handshake 
circuit. These statistics include the area covered by standard cells, but ignores the 
wiring area, which is sametimes a serious limitation. Excerpts from the statistics 
generated for the standard decoder are displayed in Table 8.0. 

The first paragraph reports the MOS transistor count and the area occupied 
by the standard cells. These quantities are detailed by function, based on the role 
of the handshake component in the computation (e.g. sequencer: contra!, mixer: 
communication, binary operator: logic, and variable: memory). These functional 
profiles vary considerably from one Tangram program to another. 

The second paragraph presents the standard cell counts. It is confined to the 
six most frequently used cells, accounting for about two thirds of the transistors 
and cel! area. 

The third paragraph gives an estimation of the area of the standard-cell part 
of the layout. Here it is assumed that the routing channels occupy the same area 
as the standard cells. For this example this is quite accurate, as we shall see 
later. 

The pipelined decoder counts 11376 transistors and 989 cells, occupying a 
cell area of 1.5 mm2. The estimated core area is 3.0 mm2 , which will turn out 
to be rather optimistic. 
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Part #MOS Ts ce ll re a (rnm"2 ] 

Decoder 7292 [100.0 %] [100.0 %] 
contro l 1010 [ 1 3 . 9 %] [ 1 3.0 %] 
commun i cation 938 [ 12.9 %] [ 15. 3 %] 
l og i c 2772 [ 38.0 %] [ 27.0 %] 
memory 2568 [ 35.2 %] 0.415 [ 44.5 %] 

Ce ll s #cells #MOSTs 

Decoder 610 [100.0 % l 7292 [100.0 %] 
C2 26 [ 4.3 % l 312 [ 4.3 %] 
C3 37 [ 6 .1 % l 444 [ 6.1 %] 
EQL 122 [ 20.0 % l 2440 [ 33.5 %] 
OR2 1 30 21. 3 % l 780 [ 10.7 % l 
s 34 5.6 %] 612 [ 8. 4 % l 
VAR 1 54 8.9 %] 8 6:4 [ 11. 8 %] 

estimated co re area 1. 9 mm "2 
estimated transistor dens it y: 39 16 mm " - 2 

Table 8.0: Circuit statistics for the standard decoder. 

The problem here is how to take the wiring area into account, without laying 
out the complete circuit. The ratio core-area/cell-area has been observed to vary 
between 1.8 and 3. Conclusion: statistics are helpful with the selection among 
alternatives and the tuning of a final program, but layout generation is necessary 
for an accurate assessment of the circuit size of a VLSI program. 

Layout generation 

The generation of a layout from a handshake circuit involves two steps. First 
the handshake circuit is expanded into a netlist of standard ~ells. These standard 
cells are then placed and interconnected according to the con(:lectivity information 
described in the netlist 

We have developed a library of twenty-odd standard c,ells. Most standard 
cells implement a single VLSI operator; some implement a qombination of a few 
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Figure 8.3: Layout of the standard error decoder. 

operators in order to economize on layout area. 
The expansion of handshake components also resolves their parameters (e.g. 

word width, number of read ports). Placement and routing are performed by 
commercially available layout tools. 

Figure 8.3 shows a layout of the standard error decoder, synthesized fully 
automatically from the Tangram program. The core area (standard cells + inter­
cell routing) measures 2.2 mm2 in a 1.2 J.L double-metal CMOS process. 

A layout of the pipelined error decoder is shown in Figure 8.4. The difference 
between the measured core area (4.0 mm2

) and the estimated core area (3 .0 mm2) 

is visible in the relatively wide routing channels. This is partly a consequence 
of the 32 x 2 wires for realizing channel b. Both layouts contain 55 pads: 22 
inputs, 31 outputs, 1 power and 1 ground. 
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Figure 8.4: Layout of the pipelined error decoder. 
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Simulation of energy consumption 

In addition to circuit size and circuit speed, energy consumption is a third 
cost/perlormance indicator. The energy consumed and dissipated by the decoder 
is analyzed next. 

The number of steps in the error search varies from 0 to 32. The total time to 
decode a word by the standard decoder varies correspondingly between 6 and 12 
fLSeconds (cf. Figure 8.1 ). We may therefore ex peet to find a variation in energy 
consumption as well ( cf Section 0.1 ). 

By good approximation the energy consumption of a static CMOS circuit can 
be calculated by summing over all wires the quantity lf CV2 , where N is the 
number of transitions on that wire, C the capacitance of the wire (including that 
of the transistor gates connected to it), and V the supply voltage. Accurate values 
of all capacitances can be extracted from the layout. The number of transitions 
can be obtained for given input stimuli by means of switch level simulation. The 
above summation then yields the energy required for the computation. Division 
by the specified (or simu1ated) computation time results in an indication for the 
power consumption of the circuit. 
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Figure 8.5: Power consumption of the standard error decoder for an incorrectable 
code word. 

Results of such simulations are given in Figures 8.5 and 8.6. The spikiness has 
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no physical meaning, but is characteristic for event-drive~ simulations, which 
condense all energy of simultaneously occurring transitions into a single time 

instant. ~ 
Figure 8.5 shows the simulation results for an incorrec ble codeword. The 

two main phases, viz. input with on-the-fty syndrome comp tation (32 steps) and 
error search (again 32 steps) are clearly visible. The circpit activity after the 
search includes output of the error information. Then the ci~cuit is quiescent: no 
power is consumed until a next code word is offered. No energy is dissipated in 
clock distribution or in a controller that issues "skip" instructions. 

The smooth curve represents the average power: the energy consumed so far 
divided by the elapsed time. The power consumption is 2.5. mWatt, assuming a 
rate of one incorrectable code word per 70 J.LSeconds. 
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Figure 8.6: Power consumption of the standard error decoder for a correct code 
word. 

For correct code words, quiescence is reached soon after the syndrome compu­
tation , as shown in Figure 8.6. The power consumption is then only I .2 m Watt, 
assuming a rate of one correct code word per 70 J.LSeconds. This example nicely 
shows that asynchronous circuits consume energy only when and where needed. 

I 
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Test-trace generation 

A test trace consisting of 3 code words (with 0, I and 2 errors) has been verif'ied to 
test for all stuck-at faults in both decoders. The trace has been generated by hand0 

from the Tangram program text. The transparent compilation rules and some 
simple properties of the circuit realizations of the handshake components made 
this a feasible task. The fault coverage was checked by switch-level simulation. 
It may be interesting to note that a single code word covers already 97 % of the 
possible stuck-at faults. 

8.1 An appraisal of asynchronous circuits 

In Chapter 7 we have seen that handshake circuits are most naturally realized 
by asynchronous circuits. However, the overwhelming majority of today's VLSI 
circuits are synchronous. Are there good reasoos to educate and train a new gen­
eration of designers in designing asynchronous circuits and VLSI programming? 
It is hard to teil. The balance of pros and cons is mixed. This section aims at 
reviewing this balance. 

Research on asynchronous circuits is booming. With few exceptions, this 
research is carried out in academie research institutes. We may expect significant 
progress in the understanding of these circuits, and we may hope for further 
improvements in their cost and performance. Synchronous-circuit design has a 
respectable tradition of several decades, whereas asynchronous circuit design is 
making its first steps along the leaming curve. The appraisal below is therefore 
only a 1992 snapshot. 

A major problem in camparing asynchronous and synchronous circuits is 
the large variety in their characteristics and realizations. For both synchronous 
and asynchronous circuits there exist different architectures, different (detailed) 
timing disciplines and different building blocks. Quantitative camparisoos are 
therefore hard to make. 

The following aspects will be reviewed: ease of design, circuit speed, robust­
ness, testability, circuit size, and energy consumption. 

Ease of design 

A clock is an artefact. It has been introduced to solve timing problems at the 
circuit level, viz. the controlled usage of latehes and the avoidanee of critica! 

0Marly Roncken's 
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I 
races. By the evaJution of VLSI circuits, the clock gradually · ecame an important 
system-level design issue. 

A choice for a single clock frequency in a VLSI syst m has many reper­
cussions on the modularity of the system, as well as on it performance. In a 
synchronous circuit there is an excess of synchronization among subcircuits, 
viz. at the end of each clock period. In an asynchron us circuit synchro­
nization is reduced to its (functional) minimum. This lea s to a high degree 
of modularity, allowing modules to be designed and opti~ized independently 
[Sei80,Sut89,MBM90]. One of the earliest projects in hard*"are design that ad­
dressed the issue of modularity is that of 'Macro modules' ~OSC67]. 

Furthermore, there is no need to design the circuits forl the basic functions 
(shifting, addition, multiplication, etc.) under the restrietion that they can be 
'evaluated' well within the clock period. In an asynchronous circuit, the slow­
ness of a multiplier may be compensated by a fast shift or transfer step in a 
computation. 

Problems with clock distribution and clock skew are of course absent in 
asynchronous circuits. A gain in design productivity is also expected from VLSI 
programming and compilation techniques described in this thesis. 

Circuit speed 

Less synchronization among subcircuits makes circuits faster. Consider for in­
stance two parallel processes, one that perfarms an addition foliowed by a multi­
plication, the other perfarms both operations in the opposite order. (Symbolically: 
"( +; *) 11 ( *; + )".) Furthermore, let the time required for a multiplication m be 
considerably Iarger than the time required for an addition a. Asynchronous ex­
ecution of this process requires m + a time units. Synchronization of the two 
parallel processes at the semicolon, as happens in clocked circuits, increases this 
to 2m time units. 

Asynchronous circuits also allow one to take advantage of the data-dependenee 
of computation times. A well-known example is that of the -n-bit parallel adder 
in [Sei80]. The average addition time is proportional to the average carry-ripple 
path (O(Iog n)), whereas the worst case addition time is proportional ton. In syn­
chronous circuits an O(log n) response time can only be obtained with additional 
carry-acceleration circuits. Then the worst-case and average7case performances 
are equal. 

Circuit speed has been an important motivation for asynohronous circuits in 
[KTT*88,KTT*89,MBM90]. 

The asynchronous circuits realized from handshake circuits have another 
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speed advantage that sterns from the extreme form of control distribution. e.g. a 
sequencer that activates two transferrers avoids the large timing overheads com­
mon to central controllers. 

Although the number of synchronizations is smaller in asynchronous circuits, 
their explicit nature has its price. Especially in complete four-phase signaling, 
the associated overheads may easily outweigh the above advantages for regular 
computations. Quick four-phase refinements and perhaps two-phase refinements 
may help here. 

Robustness and reliability 

Insensitivity to delay seems to relate to insensitivity to variations in IC-processing 
parameters and operating conditions. These issues have hardly been researched, 
and will only be touched upon by means of a few examples. 

A decrease in the width of the polysilicon tracks in a CMOS circuit yields 
faster transistors (shorter channels) and slower wires (higher resistance). In syn­
chronous circuits this may result in violations of the set-up and hold times of 
the latches. In speed-independent circuits however, variations in the widths of 
polysilicon tracks may influence the circuit's performance, but not its correct 
operation. 

Measurements of our test silicon [vBS88] showed a high degree of robustness 
with respect to variations in power supply voltage. A large self-inductance in 
the power-supply wires caused the supply voltage to drop below 0 volt for brief 
periods of time, without affecting the functional correctness of the circuit. In 
[MBL *89] an asynchronous microprocessor is reported to operate with a supply 
voltage in the range of 0.35 to 7 Volt. 

On a related note, it has been reported that fundamental reliability problems 
that come with the synchronization of independently clocked circuits [Ano73, 
CM73] can be avoided in delay-insensitive circuits [Sei80]. The occurrence 
of glitches (the occurrence of a metastable state) does not lead to anomalous 
behavior, because subsequent computations are simply delayed until metastability 
has been resolved. 

Testability 

There are indications that the testing of asynchronous circuits is feasible. It is 
even expected that speed-independent circuits may be simpler to test, because 
stuck-at faults can be observed through deadlock [BM9l,MH91]. This feature 
also highly simplified the generation of tests for our grapbics chip [ v BS88] and 
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the decoder of Section 8.0. The progress in research towards utomatic generation 
of test traces is nevertheless slow. This presumably reflects that this problem is, 
"combinatorially speaking", a hard one. 

Circuit area 

In most cases the layout area is dominated by circuits that store, communicate 
or process data; circuitry for control covers usually less th n 15 % of the area 
(cf. the statistics of the decoder in Section 8.0). With D+ ble-Rail encoding, 
which requires two wires per bit, we may then not expect tcl obtain circuits that 
can compete in silicon area. Wh at should we think of this roughly 100 % area 
overhead? 

Firstly, there are campensa ti ons. Availability of two wires per bit simplifies 
some operations: e.g. the Boolean complement is obtained by simply crossing 
the two wires. Also, as we have seen with the shift registers in Section 1.3, 
slave latehes can be saved selectively, whenever allowed by the performance 
requirements. Another farm of compensation is realized by the extreme farm 
of control distribtition intrinsic to the applied farm of syntax-directed translation. 
This leads to fewer and shorter wires. An example of an inciÇental compensation 
is the absence of carry acceleration circuitry for applications where the average 
throughput matters. 

Secondly, other delay-insensitive codes that require less wires may be con­
sidered (cf Section 7.4) . Clever eneader and decoder circuits may reduce the 
casts of (de-)multiplexing, synchronizing and long-distance qommunications. 

Thirdly, and presumably most significantly, campromises with regard to de­
lay insensitivity are required to arrive at competing circuits. Natura! candidates 
for first experiments in this respect are: aff-ehip communicatiön, Random-Access 
Memories (RAMs) and Read-Only Memories (ROMs). Exi~ting standards and 
the availability of well-engineered embedded memories ma.fe it impractical to 
insist on delay-insensitive circuit realizations in these cases. In many ICs the in­
put/output circuitry (including bonding pads) tagether with thy memories account 
for well over half the circuit area. 

Single-rail encoding for the remaining circuitry has been proposed in [Sut89]. 
Ultimately this may result in circuits that are even smaller than their synchronous 
counterparts. Avoidanee of interference (cf. Sec ti on 0.1 ), ho wever, requires delay 
circuitry [KTT*88,KTT*89] or completion detection by using alternative circuit 
techniques [MBM90]. On a more speculative note, it ma~ be interesting to 
investigate circuit techniques that eneode three states in a single wire. 
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Unfortunately, campromises with regard to delay insensitivity may jeopardize 
testability and complicate layout design. 

Finally, VLSI programming and automatic silicon compilation allow the de­
signer to construct and compare many alternative solutions for the specification 
at hand. By exploring a large portion of the 'solution space' he may expect to 
find cheaper designs compared with current VLSI-design methods. 

Energy consumption 

Self-timed circuits consume potentially less energy than clocked circuits 1• There 
are several reasons for this. Absence of interference (see Section 0.1) and other 
transient phenomena such as hazards make each transition productive. 

Also, there is no dissipation in clock signals. In high-throughput applications, 
such as in video-signa! processing, the distribution of a high-frequent clock may 
account for well over 20 % of the total power consumption. 

Furthermore, control distribution leadstoa high degree of locality, thus avoid­
ing the power consumption in central controllers and the long wires from and to 
these controllers. 

Viewed differently, one may say that a self-timed circuit only consumes 
energy where and when needed. The circuit compiled from a Tangram procedure 
or function consumes no energy when it is not invoked. The error decoder 
of Section 8.0 consumes energy only during the first 12 J.LSeconds of the 70 
J.LSeconds available. For correct code words the required energy is even only half 
that required for incorrect code words. 

To what extent these potential advantages can be realized highly depends on 
the chosen handshake refinements and data encoding. 

As a rule, energy savings increase with a decrease in regularity of the com­
putation. Error decoding, where the work load depends on the correctness of the 
code words, is a nice example of an irregular computation. Circuits that stand 
by for most of the time, but have to respond to exceptional conditions represent 
another example (e.g. a processor triggered by key-board inputs). 

This observation concludes both the appraisal of asynchronous circuits and 
the last chapter of this monograph. 

1 Here we assume a circuit technology without static dissipation, such as CMOS. 
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Appe11dix A 

Delay insensitivity 

Introduetion 

In [Udd84,Udd86,Ebe89,UV88] the notions delay insensitivity, independent al­
phabet and absence of computation interference have been defined for directed 
processes. In this section we investigate to what extent these notions apply to 
handshake processes. 

Definition A.O (directed process) 

A directed process T is a triple (iT, oT, tT), in which iT and oT are disjoint sets 
of symbols and tT is a non-empty, prefix-closed subset of (iT u oT)* . 

0 

A handshake process is not a directed process: the alphabet of a handshake pro­
cess has more structure and the trace set is not prefix closed. However, to every 
handshake process P there corresponds a directed process, viz. (iP, oP, tP So) . 

All port structures in this appendix have no intemal ports. 

Composability 

Composability of traces captures the notion that symbols communicated between 
processes arrive no earlier than they were sent. Consider directed processes P 
and Q such that iP = oQ and oP = iQ. Let s E tP and t E tQ. Composability 
restricts the way how the pair (s, t) may evolve from (E, E). Let a E iQ (and 
therefore a E oP). Then E is composable to a, but the converse is not true, 

217 
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because a must be sent by P befare it can be received bï Q. Similarly, for 
b E oQ, we have b composable to E. Also, trace s is com ·osable to ta if s is 
composable to t and a is on its way, i.e. ten· (tI a) < le · (sf a) . With this 
introduetion we have prepared ourselves for the following d finition. 

Definition A.l (composability) 

D 

0. Let I and 0 be two disjoint sets of symbols. Cu,oJ is the smallest binary 
relation on (I U 0)* such that for all symbols a E I, ymbols b E 0 , and 
traces s ,t E (JUO)*: I 

E C(l,O) E = true 
E Cu ,o) tb E cu,o) t 
sa c(/,0) E s C(l,O) E 

s C(l,O) ta = s C(l,O) t 1\ len · (tja) < len· (sfa) 
s b c(l ,O) t = s C(l,O) t 1\ len · (tfb) > len · (sfb) 
sa c(l ,O) tb = sa c(l,O) t V s C(l ,O) tb 

Sets I and 0 contain the input and output symbols respectively. When 
(I , 0 ) are clear from the context, Cu,oJ wiJl be shortened to C. 

1. Let A be a port structure. c A is a re lation on AH andl is defined by 

s CA t = S C (ÎA ,OA) t 

r.e. the restrietion of C to AH. 

Relation Cu,oJ is the converse of the composable relation introduced by [Udd84, 
UV88]. Relation c is a preorder on AH. Consequently, we shall write se 
to denote the composability ciosure of S and (c)· S to denote the composability 
closedness of S ( cf. Sec ti on 2.1 ). Both operators are lifted to handshake structures 
in the obvious way. The composability relation plays a central role in much of 
the theory on delay insensitivity. We shall therefore first analyze a number of its 
properties. 

property A.2 

Let A be a port structure. 

0. s, tE AH 1\ a E iA 1\ s C ta ::::} ta E A H 

1. s , tE AH 1\ b E oA 1\ sb Ct ::::} s b E A H 

D 
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Relations r and c are related by: 

Property A.3 

For s, t E AH we have s rA t = s CA t 1\ (#8 = #t), where #t denotes the bag 
of symbols of trace t. 

D 

Another way of relating r and c is suggested by "welcoming the traveling 
symbols": 

Property A.4 

For port structure A and t, u E AH we have: 

u ct = 3t',u' 
(#~ = #Cu liA) \ #CtliA)) 1\ (#~ = #(t!OA) \ #cu!OA)) 
uu' r tt' 

Proof We derive: 

u ct 

= { Property A.2.0; definition of c } 

(3t' : #t' = #CuliA) \ #CtliA) : u C tt') 

= { Property A.2.1; definition of c } 

(3t', u': (#t' = #<uliA) \#<triAl) 1\ (#u'= #ct iOA) \ #cuiOA)): uu' C tt' ) 

= { Property A.3, using len· uu' = len· tt' } 

(3t', u': (#t' = #(ujiA) \#<triAl) 1\ (#u'= #ctiOA) \ #cuiOA)): uu' r tt') 

D 

Relations c, r and x are related in a remarkable way for prefixed closed handshake 
structures, as shown in the next theorem. 

Theorem A.S 

For handshake structure S, such that ( ::;) · S we have: 

(c)· S = (r)· S 1\ (x)· S 
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Proof Let t E tS and u E (pS)H. We derive for LHS Ç= HS 

tEtS 1\ u ct 

= { Property A.4 } 

(3t', u' : t E (iA)* 1\ u E (oA)* : u u' r tt' 1\ t E tS) 

=} { (x)· S } 

(3t', u' : t E (iA)* 1\ u E ( oA)* : u u' r tt' 1\ tt' E tS) 

=} { (r) · S ; calculus } 

(3u' : u' E (oS)* : uu' EtS) 

=} { (:S)· s } 
(3u' : u' E (oS)* : u E tS) 

=} { calculus } 

u EtS 

LHS =} RHS follows readily from the definitions of c , r and x . 

D 

Corollary A.6 

Por handshake process P we have (c)· pS. . 

D 

Equipped with the above property of handshake processes we are ready to analyze 
the delay insensitivity of handshake processes. 

Delay insensitivity 

Delay insensitivity of directed processes has been defined in many ways [Udd84, 
Udd86,Ebe89,UV88]. The cited definitions ar~ all provably equivalent. 
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Definition A.7 (delay insensitive) 

0. A directed process (I, 0 , T) is delay insensitive if 

'ïls,t,a 
sETI'dET 

221 

(a E I 1\ s C(l,O) ta =? ta E T) 1\ (b E 0 1\ sb C(l,O) t =? sb E T) 

D 

) 

(Cf. Definition 23 and Lemma 5 in [UV88]; reeall the reversal of the 
arguments with respect to their definition of C .) 

1. A handshake process is delay insensitive if the corresponding directed pro­
cess is. 

Theorem A.S 

Handshake processes are delay insensitive. 

Proof Let P be a handshake process and s, t E tP~ . 

Case a E iP. We derive: 

a E iP 1\ s C ta 

::::} { Property A.2 } 

ta E AH 

::::} { tactl\(c)·P~ } 

ta E tP~ 

Case b E oP. We derive: 

a E oP 1\ sb Ct 

=? { Property A.2 ; Definition of C } 

sb E AH 1\ sb ct 

=? { (c)·P~ } 

sb E tP~ 

D 
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In [Udd84) the notion of independenee of a symbol set ~s introduced. It is 
nice to view a handshake process as a directed process in which a port forms 
the 'unit' of independence. Independenee of a symbol set C' with respect to P 
embodies the notion that if an input symbol is allowed to occllr in p r c it is also 
allowed to occur in P. 

Definition A.9 (independent alphabet) I 
0. Let P be a delay-insensitive directed process and C a set of symbols such 

that C Ç (iP U oP). C is independent with respect to F if: 

0 

('is, a: sE tP 1\ a E (C niP): (sa fC E tPfC ) = 

1\ (Vs, a :sEtP/\aE (Cn iP):(safC E tPfC) 

(sa E tP)) 
(sa E tP)) 

where the complement of C with respect to (iP U oP) is denoted by C. 

1. Let P be a handshake process and A a port structure spch that A Ç pP. 
A is independent with respect to P if aA is independe:nt with respect to 
the directed process corresponding to P. 

Hardly surprising, given the receptiveness of handshake processes, we arrive at 
the following theorem. 

Theorem A.lO 

For handshake process P and port structure A such that A Ç pP, we have: A is 
independent with respect to P. 

0 

Computation interference 

The justilkation of the definition of parallel composition of handshake processes 
relies on the absence of interference. Interference may manifest itself in two 
forms [ vdS85): transmission interference and computation int~rference. Trans­
mission interference occurs when more than one transition is on its way along 
the same link. The restrietion to handshake traces excludes this: form of interfer­
ence right from the start. The absence of computation interferehce in handshake 
circuits requires some elaboration. 
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Definition A.ll ( computation interference) 

0 

0. Directed processes P and Q are connectable if and only if the sets iP n iQ 
and oP n oQ are empty. 

1. Let H be a finite set of delay-insensitive directed processes, such that ele­
ments of H are pairwise connectable. H is free of computation interference 
if [Ebe89) . 

(Vt, P, a : t E W · H 1\ P E H 1\ a E oP : ta I pP E tP =? ta E W · H) 

2. Handshake circuit H is free of computation interference if the set of cor­
responding directed processes is. 

Theorem A.l2 

Handshake circuits are free of computation interference. 

0 

A similar result has been suggested in Property 4.10 of [vdS85). Absence of 
computation interference in handshake circuits follows directly from the recep­
tiveness of handshake processes. If output a may occur for some component P 
after trace t, trace ta will be in W · H, either because a is extemal, or because 
there is another component that is receptive for a. 
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Appendix B 

Failure semantics 

Introduetion 

In Chapter 5 we have developed a handshake semantics for Tangram. An alterna­
tive semantics for Tangram can be based on failure processes [BHR84]. Failure 
processes form the underlying model of CSP [Hoa85], and are the basis for a 
well-established theory for CSP, including a powerful calculus [RH88]. 

The availability of two distinct semantics for the same program notation 
suggests several questions, including: 

0. Is the handshake-process semantics consistent with the failure semantics? 
If so, in what sense? 

1. Can VLSI programroers use calculi that are based on failure semantics? 

The last question is of obvious practical significance. 
This appendix starts with a description of failure processes. By means of 

a simple example it is shown that an embedding of failure processes into all­
active handshake processes does not exist. A more subtle approach is chosen to 
link handshake semantics and failure semantics are linked, resulting in positive 
answers to the above questions. 

Failure processes 

This subsection describes a process model based on failures. The description 
below is rather concise; for a more extensive treatment the reader is referred to 
[BHR84], [BR85] and [Hoa85]. 

An alphabet structure defines an alphabet as a set of communications. 

225 
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Definition B.O (alphabet of an alphabet structure) 

Let A be an alphabet structure. 

0 

and V ETA· a. 

1. The alphabet of A is the set of all communications o A and is denoted 
by aA. 

Note that an alphabet is finite, on account of the finite numbf r of ports and the 
finiteness of types. In CSP a communication is an event in ~hich a process cao 
engage. An alphabet is the set of all communications of interest. The actual 
occmTence of a communication is regarded as an instantaneous (atomie) event 
without duration. 

Traces on aA are used to record the communication events in which a process 
has engaged up to some moment in time. The linear ordering of events in a 
trace assumes that the simultaneous occulTenee of two events cao be ignored. 
When simultaneity of two events is important, as with the ynchronization of 
two processes, it will be represented by a single communicatibn. 

Definition B.l (failure structure) 

0 

0. A failure structure is a pair (A, F), where A is an alphabet structure and 
F the so-called failure set: a re lation between (aA)* and P · (a A) . 

1. Elements of F are called failures. Let (t, X) with t E (aA)* and X E 
P · (a A) be such a failure. Then t is referred to as its trace and X as its 
refusal set. 

2. Let S be a failure structure. Then AS denotes its alphabet structure and 
fS denotes its failure set. aS is a shorthand for a(AS). 

Definition B.2 (failure process) 

A failure process is a failure structure (A, F) that satisfies the following condi­
tions: 

0. (E, 0) E F 
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1. (st, X) E F ==> (s, 0) E F 

2. (s, Y) E FA X Ç Y ==> (s , X) E F 

3. (s,X)EF A x E aP=> (s,XU{x})EF V (sx,0) E F 

0 

This is essentially the definition of [BHR84], restricted to finite alphabets. A 
quote from [Hoa85] explains the idea behind failures (page 129): 

"If (s, X) is a failure of [process] P, this means that P cao engage in 
the sequence of events recorded by s, and then refuse to do anything 
more, in spite of the fact that its environment is prepared to engage 
in any of the events of X." 

The four conditions have the following implications. 

0. A processis a non-empty failure structure; failure (E, 0) represents its initia! 
state. 

1. If trace st cao be observed, trace s must be observable as well. 

2. lf X cao be refused then all subsets of X cao be refused. 

3. After any trace, a particular communication may happen, cao be refused, 
or bath. 

[BR85] and [Hoa85] present "an improved failures model for communicating 
processes". The impravement consists of the possibility to distinguish among 
various farms of deadlock. The improved model is more powerful and supports 
a slightly more elegant algebra. For brevity ' s sake, this impravement is oot 
included in this thesis. 

Definition B.3 (maxima! failures) 

Let F be a failure set. The maximalfailures of F , denoted by Max· F , is defined 
as 

{ t, R : (t , R) E FA • (3R' : (t, R') E F : R c R') : (t , R)} 

0 

On account of Definition 8.2.2 we may conclude that the failure set of a failure 
process is fully characterized by its maximal failures. The set of all failure 
processes with alphabet structure A is denoted by flr·· A. 
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With each Tangram program a failure process cao be asslciated, by means of 
a mapping F: from Tangram to TI.rA. For details of such a mapping we refer 
to [Hoa85]. 

The following example provides the failure processes t ~at correspond to a 
number of elementary Care Tangram programs. They are lncluded as illustra­
tion and for later reference. For brevity's sake only the maximal failures are 
enumerated. 

Example 8.4 

0. Synchronization on a. The failures of (a-)·a are: 

{(c,0), (a, {a})} 

I. Extension of a with port b. The failures of (a-,b-)·a are: 

{(c, {b}), (a, {a,b})} 

2. Sequentia! composition of a and b. The failures of (a-, b-) · (a; b) are: 

{(c, {b}),(a,{a}), (ab, {a,b})} 

3. Parallel composition of a and b. The failures of (a-, b-)·(a 11 b) are: 

{(c,0), (a, {a}), (b, {b}), (ab, {a,b}), (ba,{a,b})} 

4. In tema! choice between a and b. The failures of (a-, b-) · (a 11 b) are: 

{(c,{a}),(c,{b}), (a, {a,b}), (b, {a,b})} 

5. Extemal choice between a and b. This does oot correspond to any Care 
Tangram. A possible syntaxis (a-,b-)·[a I b], with failures: 

{(c,0), (a,{a,b}), (b,{a,b})} 

6. Intemal choice between a; b and b; a. The failures of ( q-, b-) · (a; b n b; a) 
are: 

{(c,{a}), (c,{b}), (a,{a}), (b,{b}), (ab,{a,b}), (ba,{a,b})} 
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D 

7. Extemal choice between a; band b; a. The failures of (a-, b-) · [a; bIb; a] 

are: 
{(c, 0) , (a, {a}), (b,{b}) ,(ab,{a,b} ), (ba, {a, b})} 

The remaioder of this section is used to discuss the structure of TI.r A. For 
more background, appreciation and proofs, the reader is referred to earlier cited 
materiaL 

Failure processes with the same alphabet structure can be ordered. 

Definition B.S (refinement order) 

Let Pand Q be failure processes with alphabet structure A . 

D 

0. P refines to Q, denoted by P Ç Q, iffP ;2 fQ. Process Q has less failures 
than P and is therefore better. 

I. Process CHAOS· A is defined as (A, (aA)* x P · (aA)) . 

2. An (ascending) chain is an infinite sequence (i : 0 ::; i : Pi) of processes 
such that Pi Ç Pi+l . 

Clearly, (TI_rA, Ç) is a partial order. According to [BR85], (f1_rA , Ç) is also 
a CPO, with CHAOS· A as least element and (U i: 0::; i: Pi) as limit of chain 
(i : 0 :S i : Pi) . 

Example B.6 

In the following refinements S Ç T is a shorthand for F · S Ç F · T , where S 
and T are Care Tangram programs. 

0. (a- ' b-)·(a n b) ç (a- ' b-)·a 

1. (a-, b-)·(a;bnb;a) C (a-,b- ) ·(a;b) 

2. (a - ,b-)·(a;bnb;a) C (a -, b- )·(a 11 b) 

3. (a-,b - )·[a;blb;a] = (a- , b-)·(allb) 

D 
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Embedding of failure processes into handshake prolsses 

We are looking for a mapping from failure processes to handshake processes that 
preserves the 'essential' properties of the original processesl. By this we mean 
that the mapping must respect ordering and that the image of ~ll failure processes 
must be equally rich in structure. Such a mapping is called r embedding: . 

Definition B.7 (embedding) I 
Let [ be a function from CPO X to CPO Y. Function [ is an embedding [DP90] 
of X into Y if: 

D 

o. E. P n E. P E. (P n Q) 

1. E. P u E. P = E. (P u Q) 

2. p = Q = [ 0 p = [ 0 Q 

The following property of an embedding follows immediately. 

Property B.8 

An embedding is order preserving, i.e. P Ç Q ::::} [. P Ç ![ · Q . 

D 

Our search for such an embedding starts with camparing a few refinements in the 
two process models. In the domain of failure processes we have (cf. Example 
B.6.2): 

a; b n b; a Ç a 11 b 

A similar refinement in the domain of handshake processes, however, does not 
hold: 

a•;b•nb•;a• ~ a•llb• 

The left-hand side requires the handshakes through a• and &• to exclude each 
other in time. The parallel composition at the right hand side ~ however, has e.g. 
aoboa 1 b 1 as quiescent trace. 

The above example shows that a mapping basedon rt (cf.l Section 5.3) is not 
order preserving, and hence not an embedding. It also suggests that there does 
not exist an embedding from failure processes to all-active handshake processes. 
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However, in the space of all-passive processes we do have (cf. B.6.2) 

Moreover, as with failure processes we have (cf. B.6.3): 

Both examples show that order of passive handshakes is masked by reordering. 
Because of this masking effect there is less distinction in the space of all-passive 
processes than in the space of all-active processes. This insight will be elaborated 
along two different lines that will meet at the end of this appendix: 

• handshake expansion: an embedding of failure processes into the set of 
all-passive handshake processes, and 

• passivation: a transformation of an all-active process into an all-passive 
process . 

Handshake expansion 

Handshake expansion is a mapping from failure structures to handshake struc­
tures. Handshake expansion is also defined for alphabet structures, traces, refusal 
sets and failures. 

Definition B.9 (handshake expansion) 

0. The handshake expansion of alphabet structure A , denoted by [ · A is the 
port structure defined by 

(E· A) 0 = {a: a E p?A: a0 ?TA· a} U {a: a E p!A : a0 !TA · a} 
(E· At = 0 

Note that all ports are chosen to be passive. 

1. The handshake expansion of trace t with respect to alphabet structure A, 
denoted by [ · (t , A), is defined by 

E·(c,A) 
[. (a:v t,A) 

= é 

= if 
D 
fi 

a E p!A 
aEp?A ---) 

---) ao a, : v E · (t, A) 
ao: v a, E·(t,A) 
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0 

2. The handshake expansion of refusal set X with respect lto alphabet structure 
A, denoted by E ·(X, A), is defined as the symbol set 

{a , v : a E p? A 1\ a: v E X : ao: v} U {a : a E p! 1\ a E X : ao} 

These symbols are received, but refused in the sen e that they are not 
acknowtedged. 

3. The handshake expansion of a faiture (t, X), with resp ct to atphabet struc­
ture A, denoted by E · ( (t , X) , A), is defined as the ha dshake-trace set 

{u: #u= E· (X , A): E · (t , A)u}r 

where #u denotes the bag of symbols of trace u. Actually, u is a permu­
tation of E · (X, A). 

4. The handshake expansion of faiture structure (A, F), denoted byE· (A, F) 
is defined as the handshake structure 

(E· A,{f: f E F: E· (f,A)}) 

The crux of the above definition is in the handshake expansioh of a faiture (t , X) 
(cf. Definitoin B.9.3). The postfix u corresponds with refl)Jsal set X. If the 
environment continues with handshakes through all ports in X (by sending the 
corresponding - -symbols) the state resulting after tu is quiescent. 

The following property is helpfut in understanding function E. 

Property B.IO 

Let f and g be faitures defined on atphabet structure A. Then 

f =I g =? E · (f, A) n E · (g, A)= 0 

0 

Theorem B.ll 

Let A be an alphabet structure and let P E TI.r A. Then: 

0. E is an embedding; 
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1. [ · P is a handshake process; 

2. [.CHAOS· A= CHAOS·[. A; 

3. [ is continuous; 

4. Hence, [ · <Ih··A) is a CPO. 

D 

The definition of [ ignores the issue of successful tennination. Extending [ 
to such a more comprehensive process model is relatively straightforward. Given 
such an extended embedding, equalities such as 

can easily be verified. 

Passiva ti on 

[. (P;Q) = E· P;[· Q 
[. (P 11 Q) = [. P 11 [ . Q 

E· #[P] = #[E· P] 

Another way to obtain an all-passive process is to conneet passivators to the 
active ports of a handshake process. The following definition is restricted to 
all-active processes with undirected ports only. Extension to general handshake 
processes is straightforward. 

Definition B.12 (passivation) 

The passivation of an all-active handshake process P, denoted by 1r· P, is defined 
as 

where I· P denotes the t-renaming of P defined in Definition 6.0. 

0 

The effect of passivation is illustrated by the following example. 

Example B.13 

(ta•; tb• n tb•; ta•) 11 #[ta0
: a0

] 11 #[lb0
: b0

] = (a0
; b0 n b0

; a0
) 

D 
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Let T be a Tangram program. The following theorerp expresses that the 
passivation of H · T equals the handshake expansion of :F· 'J'. 

Theorem B.14 

1ro1i = [o:F 

0 

An important corollary is obtained when this theorem is combined with the com­
pilation theorem. Graphically this corollary is illustrated in Fïgure B.O. 

Corollary B.lS 

7r 0 11 0 c = [>* 0 [ 0 :F 

0 

Tangram 
programs 

c 

handshake 
circuit 

:F 

r>* o H 

11 

failure 
processes 

~E 
all1passive 
handshake 

process 

V: all-active 
handshake 

process 

Figure B.O: Failure processes related to handshake circuits. 

Corollary B.l5 may be applied as follows. We call two all-active processes 
P and Q 1r-equivalent if their passivations are identical. Let the behaviors of two 
compiled handshake circuits G and H be 1r-eqûivalent. Then there does not exist 
any third compiled handshake circuit that can distinguish G from H when it is 
connected to them by passivators. Under such circumstances, the designer may 
use the all-passive semantics of Tangram, as obtained by 1r ? H. The existence 

I 

of the embedding [ then demonstrates that the VLSI program:mer canthen apply 
programming laws that arebasedon a failure semantics of Tangram (cf. [RH88]). 
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Sets 

Notation 
s s. 
(:::;)· B 
B 'V>C 

Traces 

Notation 
E 

len· t 
s :::; t 
st 
B * 
tfB 
#t 

Meaning 
:::;-closure of set B 
B is :::;-closed 
B initializes set C 

Meaning 
empty trace 
length of trace t 
s is a prefix of t 
concatenation of traces s and t 
set of all traces over alphabet B 
projection of t on B 
bag of symbols in t 

Ports, port structures and port definitions 

Notation 
ap 
Op 
lp 
Ao 
A• 
iA 
oA 

Meaning 
symbol set of port p 
0 symbols of p 
1 symbols of p 
passive ports of port structure A 
active ports of A 
input symbols of A 
output symbols of A 
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Definition 
2.0 
2.0 
7.23 

Definition 
2.7 
2.7 
2.7 
2.7 
2.7 
2.7 
A.3 
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2.3 
2.3 
2.3 
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2.3 
2.4 
2.4 
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ao 

a0 ?T 
a 0 !T 
a• 
a•?r 
a•!r 
A 
eA 
A~B 

AMB 
AUB 
A\B 
C>o 

passive nonput port (structure) a 
passive input port (structure) a of type T 
passive output port (structure) a of type T 
active nonput port (structure) a 

active input port (structure) a of type T 
active output port (structure) a of type T 
reftection of A 
extemal port structure of A 
A and B are connectable 
A and B are conformant 
pairwise union of A and B 
pairwise set difference of A and B 
passive port 'go' 

Handshake traces and handshake-trace sets 

Notation Meaning 
closed · t all handshakes in handshake trace t are closed 
AH set of handshake traces over port structure A 
s rAt s reorders t w.r.t. A 
s r t s rA t with A obvious from context 
Er r-closure of handshake trace set B 
(r)· B B is r-closed 
s XA t s is an input extension of t w.r.t. A 
s x t s XA t with A obvious from context 
Ex x-closure of B 
(x)· B B is x-closed 
SCAt s is composable with t w.r.t. A 
set s CA t with A obvious from context 
Be c-closure of B 
(c)· B B is c-closed 

Handshake structures 

Notation 
pS 
tS 

Meaning 
port structure of handshake structure S 
handshake-trace set of S 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
3.0 
3.8 
3.0 
4.12 
2.3 
2.3 
5.6 

Definition 
2.26 
2.8 
2.14 
2.14 
2.0 
2.0 
2.17 
2.17 
2.0 
2.0 
A.l 
A.1 
2.0 
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Definition 
2.10 
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SUC· (t, S) 

pas· (t, S') 

Pas · S 
ajrer· (t, S) 
div· S 
SCT 
Sn T 

successor set of trace t in S 
t is passive in S 
passive restrietion of S 
handshake structure after t 

divergences of S 
S refines to T 
union of S and T 

S u T intersection of S and T 
(U i : 0 ~ i : S') limit of chain (i : 0 ~ i : S') 

S w T weave of S and T 
S b T blend of S and T 
S 11 T parallel composition of S and T 

Handshake processes 

Notation 
P Ç RQ 
P S RQ 
</> · p 
<1>2 . p 
</>4c · P 
</>4q. p 
1f·P 

Meaning 
P refines to Q in the context of R 
P strongly refines to Q in the context of R 
phase reduction of P 
2-phase reduction of P 
comple te 4-phase reduction of P 
quick 4-phase reduction of P 
passivation of P 

Handshake circuits 

Notation 
J><JH 
eH 
W·H 
B ·H 
II·H 

Meaning 
handshake circuit H is connectab1e 
external port structure of H 
weave of H 
blend of H 
parallel composition of the components of H 
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2. 11 
2.11 

2.11 
2.25 

3.10 
2.29 
2.34 
2.36 

2 .37 
3 .3 
3.8 
3.14 

Defin ition 
7.1 

7.5 
7. 10 

7. ll 
7. 14 
7.17 
B.1 2 

Definition 
3.20 
3.21 
3.2 1 
3.21 
3.21 
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Sequentia! handshake processes 

Notation Meaning Defin ition 

skip, stop 4.9 
ao passive handshake through port a 4.9 
a• active handshake through a 4.9 
P Ç Q sequentia! handshake process p ren nes to Q 4.4 
PUQ intersection of P and Q 4.6 
P II Q P in parallel with connectable Q 4.1 0 

•• 
P II Q all-active P in parallel with all-active Q 5.5 
(A)·P P extended with port structure A 4.1 5 
j[A I PJI P with A concealed 4.1 8 
P n q nondeterministic choice between P and Q 4.5, 4.21 
P;Q P followed by Q 4.23 
#N[P] N -fold repetition of P 4.26 
#[P] infinite repeti tion of P 4.28 
(Lo : p P enclosed by a 0 4.30 
[P I Q] choice between guarded processes P and Q 4.33 
I>* . p repeatable go of P 5.7 

a a function 6.22 

Alphabet structures 

Notation Meaning Definition 
pA ports of alphabet structure A 5.0 
p?A input ports of A 5.0 
p! A output ports of A 5.0 
vA variables of A 5.0 
v?A read ports of A 5.0 
v!A write ports of A 5.0 
TA type function of A 5.0 
A M B A and B are conformant 5.2 
A UM B conformant union of A and B 5.2 
A\M B conformant difference of A and B 5.2 
ANB A and B are connectable 5.2 
AU1><1 B connectable un ion of A and B 5.2 
7-f. . A port structure of A 5.3 
l · A l-renaming of A 6.0 
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I'· A 
E·A 

r-renaming of A 
handshake expansion of A 

Core Tangram 

Notation Meaning 

a synchronization port 

skip 
stop 
CL synchronization on CL 

(A)·S S extended with alphabet structure A 
SnT nondeterministic choice between S and T 
S;T S foliowed by T 
#AfS'] N-fold repetition of S 
#[SJ infinite repetition of S 
S 11 T S in parallel with T 

I[A I -"11 S with A concealed 

l- S l-renaming of S 
T· S r -renaming of S 
c.s handshake circuit of S 
:FS failure process of S 

Failure structures 

Notation 

AS 
fS 
S ÇT 
E· S 

Meaning 
alphabet structure of failure structure S 
failure set of S 
S refi nes to T 
handshake expansion of S 

6.0 
8.9 
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Definition 

5.1 
5.4 
5.4 
5.4 
5.4 
5.4 
5.4 
5.4 
5.4 
5.4 
5.4 
6.0 
6.0 
6.20 
in 8 

Definition 

B.l 
B.l 
8 .5 
8 .9 
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Samenvatting 

Het proefschrift handelt over het ontwerpen van digitale VLSI schakelingen. De 
volgende ontwerpaanpak wordt hierbij verondersteld: 

• een ontwerper beschrijft zijn systeem in een geschikte programmeertaal; 

• een zogenaamde siliciumcompiler vertaalt dit programma in een VLSI 
schakeling. 

De keuze van de programmeertaal is bepalend voor het toepassingsgebied, het 
gemak van ontwerpen en de efficiëntie van het resultaat. In het proefschrift wordt 
de taal Tangram geïntroduceerd als een algemeen toepasbare VLSI-programmeer­
taal. Tangram is gebaseerd op Communicating Sequentia! Processes (CSP). De 
geschiktheid van de taal wordt beargumenteerd en geïillustreerd aan de hand 
van een aantal voorbeelden in Hoofdstuk 1. Hoofdstuk 5 beschrijft een preciese 
definitie van Tangram. 

Bij het vertalen van Tangram programma's naar VLSI circuits spelen zoge­
naamde handshake circuits een centrale rol. Een handshake circuit is een netwerk 
van elementaire asynchrone bouwstenen die onderling communiceren volgens een 
handshake protocol. Een theorie over handshake circuits vormt het hart van het 
proefschrift. Deze theorie omvat: 

• een procesmodel ("handshake-processen") waarin de gedragingen van hand­
shake circuits, de bijbehorende bouwstenen, en Tangram programma's kun­
nen worden vastgelegd (Hoofdstuk 2), 

• een bijbehorende algebra (Hoofdstuk 4), 

• een analyse van eigenschappen van handshake circuits, zoals vertragings­
ongevoeligheid (Hoofdstuk 3 en Appendix A), en 

• een inbedding van CSP-processen gebaseerd op een zogenaamde failure­
semantiek in handshake-processen (Appendix B). 
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De vertaling van Tangram programma's naar handshake fircuits is gedefini­
eerd als een recursieve functie, gestructureerd volgens de Tapgram-grammatica. 
Voor de kern van Tangram wordt een precies gedefinieerde Fquivalentie tussen 
Tangram programma's en door vertaling verkregen handshak!e circuits bewezen 
in Hoofdstuk 6. 

Van de afbeelding van handshake circuits naar asynchrone VLSI circuits wor­
den een aantal aspecten schetsmatig behandeld in Hoofdstuk : (peephole) opti­
malisaties, handshake protocollen, waardecoderingen, circuit-mitialisatie en test­
baarheid. 

In een afsluitend hoofdstuk wordt ingegaan op enige prclktische ervaringen 
met het ontwerpen van VLSI systemen in Tangram en het a~tomatisch vertalen 
van deze programma's naar VLSI layouts middels een bij Ph~lips Research ont­
wikkelde siliciumcompiler. Deze compiler is gebaseerd op dd in het proefschrift 
behandelde methode. Hoofdstuk 8 behandelt tevens een aantal voor- en nadelen 
van asynchrone schakelingen, mede aan de hand van gepubliceerde resultaten 
van derden. 
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0. Omdat asynchrone schakelingen alleen aktief zijn op plaat~en en tijden dat 
het nodig is, en bovendien geen energie verspillen aan rabes en klokdis­
tributie, zijn ze potentieel zuiniger mer energie. 

[Lit.] Hoofdstuk 8 van dit proefschrift. 

1. Een nacking arbiter (ook wel non-blocking arbiter genoemd' wordt gespeci­
ficeerd door het handshake proces 

(a0 !bool & b0 !bool). 
I [ x a, xb : var bool 
I xa, xb := true, true 

ll 

; #[ [ a0 !xb; xa := xa =I xb 
I b0 !xa; xb := xb =/x a 
] 

[Lit.] Mark. B. Josephs and Jan Tijmen Udding. Delay;-insensitive 
circuits: an algebraic approach to their design. In Con­
Cur'90; Theories of Concurrency: Unification an~ Extension, 
pages 343-366. Volume 458 of Lecture Notes in Computer Sci­
ence. Springer-Verlag, 1990. 

2. Ten behoeve van de correcte implementatie van isochrone vorken is het be­
langrijk de spreiding in logische drempelspanningen van VLSI operatoren 
beperkt te houden. Sequentiële VLSI operatoren gerealiseerd met behulp 
van een zogenaamde trickle inverter [0] vertonen een inherent grote sprei­
ding. VLSI operatoren met uniforme logische drempelspanningen kunnen 
worden gerealiseerd volgens [1 ]. 

[0] 

[1] 

Alain J. Martin. Programming in VLSI: From Compmnicating 
Processes to Delay-lnsensitive Circuits. In C.A.R. Höare, editor, 
UT Year of Programming; /nstitute on Concurrent Prqgramming, 
Addison-Wesley, 1989. I 
Kees van Berkel. Beware the Isochronie Fork. Verschijnt in 
/ntegration, the VLSI journal, 13(2), 1992. 

3. Een sequentiële VLSI-operator gespecificeerd door de protluktieregels: 

F --t zT 
G --t zl 

kan worden ontleed in een combinatorische operator gespecificeerd door: 

F V (z" A --,Q) --t z' T 
G V ( --,z" A --,F) --t z' l 



en een isochrone vork met ingang z' en uitgangen z en z". 

[Lit.] C.H. van Berkel. Beware the isochronie fork. Teehoical Re­
port UR 003/91, Philips Research, 1991. 

4. Het gebruik van dynamische circuits bij de realisatie van vertragingsonge­
voelige schakelingen leidt tot een interessante reductie in circuitafmetingen. 

5. Het terugmeldcircuit van de schrijfpoort van een 1-bit VAR component kan 
met slechts 2 NMOS transistoren worden gerealiseerd. 

[Lit.] C.H. van Berkel and R.W.J.J. Saeijs Latch with write acknowl­
edge. NL. Patent Application 9000544, 1990. 

6. Het toepassen van inverse logica (false correspondeert met de voedings­
spanning en true met 0 Volt) bij de CMOS realisatie van 4-fase handshake 
componenten levert een aantrekkelijk voordeel op in schakelsnelheid. 

7. Voor een gegeven schermgrootte kan het rasteren van orthogonale rechthoe­
ken in "constante tijd" worden uitgevoerd. Met hedendaagse CMOS tech­
nologie kan dit bovendien ruim binnen 1 p., seconde. 

[Lit.] C.H. van Berkel and R.H.W. Salters. Box addressable memory 
with decision tree. US. Patent 4845678. 

8. Door de afwezigheid van globale synchronisatie en door de vergaande 
mogelijkheden voor gedistribueerde besturing leent CSP zich bij uitstek 
voor het beschrijven van flexibele productiesystemen zoals kanban. 

[Lit.] Ronald W.J.J. Saeijs and C.H. (Kees) van Berkel. The Design 
of the VLSI Image-Generator ZaP. In Proceedings of the 1988 
IEEE Int. Conf on Computer Design: VLSI in Computers & 
Processors, pages 163-166, 1988. 

[Lit.] R.J. Schönberger, Japanese Manufacturing Techniques, Nine 
Hidden Lessans in Simplicity, The Free Press, New York, 1982. 

9. De mogelijke rol van de wiskunde in VLSI ontwerp, ontwerpmethoden en 
ontwerpgereedschappen wordt overschat door wiskundigen en informatici 
en onderschat door electrotechnici en VLSI ontwerpers. 

10. Het is kenmerkend voor de eenvoud van het Nederlandse belastingstelsel 
dat het aangiftebiljet A de laatste 10 jaar 10keer is gewijzigd. 


