

Handshake circuits : an intermediary between communicating
processes and VLSI
Citation for published version (APA):
Berkel, van, C. H. (1992). Handshake circuits : an intermediary between communicating processes and VLSI.
[Phd Thesis 2 (Research NOT TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische
Universiteit Eindhoven. https://doi.org/10.6100/IR372904

DOI:
10.6100/IR372904

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR372904
https://doi.org/10.6100/IR372904
https://research.tue.nl/en/publications/06e9bea5-1380-4fc5-b26a-a77aef43d688

Handshake circuits:

an intermediary between

communicating processes and VLSI

Aan Takako, Tazuko, Koos en Leon

Cover: a fantasy handshake circuit shaped according to the ancient Chinese
Tangram puzzle

Handshake circuits:

an intermediary between

communicating processes and VLSI

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus,
prof. dr. J.H. van Lint,

voor een comm1ss1e aangewezen
door het College van Dekanen
in het openbaar te verdedigen

op woensdag 6 mei 1992 om 16.00 uur

door

Comelis Bermanus van Berkel

geboren te Leimuiden

Dit proefschrift is goedgekeurd door de promotor prof. dr. M. Rem.

The work described in this thesis has been carried out at !the Philips Research
Laboratories Eindhoven as a part of the Philips Research p'rogramme.

Acknowledgements

The work presented here grew out of the project "VLSI programming and silicon
compilation" being conducted at Philips Research Laboratories Eindhoven since
1986. This project combines the research efforts of Ronan Burgess, Joep Kessels,
Marly Roncken, Ronald Saeijs, Frits Schalij and myself. Tagether we defined
the VLSI-programming language Tangram, built a silicon compiler, developed
interesting demonstrators, and tested functional silicon. This thesis could only
be written on the fertile ground of this inspiring and pleasant cooperation.

I am grateful to the management of Philips Research Laboratories, in partic­
ular to Theo Ciaasen and Eric van Utteren, for their support of the project, the
provision of a very stimulating working environment, and their eneauraging me
to write this thesis.

Special thanks go to Cees Niessen. Numerous illuminating, critica!, stimu­
lating, and curious discussions with him helped me in choosing directions and
setting priorities.

I am indebted to Martin Rem who supervised the workon this thesis . He also
helped me in focusing this thesis on handshake circuits and separating essential
issues from side issues. Also, his active interest in the topic provided a constant
souree of inspiration and motivation.

A number of people have given me substantial constructive criticism on all
or parts of a draft version of this thesis. For their help I would like to thank Jos
Baeten, Ronan Burgess, Ton Kalker, Joep Kessels, Frans Kruseman Aretz, Ad
Peeters, Marly Roncken, Frits Schalij, and Kees Vissers.

Finally, this thesis could not have been built without TBX and J.è.TJ?(, for
which I thank Donald Knuth and Leslie Lamport.

Contents

0 Introduetion
0.0 VLSI systems
0.1 VLSI circuits
0.2 Overview of this thesis

1 Introduetion to Tangram and handshake circuits
1.0 Introduetion
1.1 Some simpte Tangram programs
1.2 Some simple handshake circuits .
1.3 Cast-performance trade-offs
1.4 More examples
1.5 Epilogue

2 Handshake processes
2.0 Introduetion . .
2.1 Notationa1 conventions
2.2 Handshake structures
2.3 Handshake processes
2.4 The complete partial order (f1 ·A, Ç)
2.5 Nondetenninism

3 Handshake circuits
3.0 Introduetion
3.1 Parallel composition
3.2 Handshake circuits .

4 Sequential handshake processes
4.0 Introduetion
4.1 Sequentia! handshake processes
4.2 Process calculus
4.3 Examples
4.4 Directed communications

1
3
6

12

15
15
18
20
25
31
39

41
41
42
46
51
67
73

77
77
78
92

97
97
97

103
114
115

5 Tangram 123
5.0 Introduetion 123
5.1 Tangram .. 123
5.2 Tangram semantics 130
5.3 Core Tangram ... 132

6 Tangram --+ handshake circuits 137
6.0 Introduetion 137
6.1 Compilation function 139
6.2 Compilation theorem 156

7 Handshake circuits --+ VLSI circuits 165
7.0 Introduetion 165
7.1 Peephole optimization 166
7.2 Non-receptive handshake components . 169
7.3 Handshake refinement 172
7.4 Message encoding 178
7.5 Handshake components --+ VLSI circuits 180
7.6 Initialization 187
7.7 Testing ' . 191

8 In practice 199
8.0 VLSI programming and compilation 200
8.1 An appraisa1 of asynchronous circuits . 211

A Delay insensitivity 217

B Failure semantics 225

Bibliography 235

Glossary of symbols 243

Index 248

Samenvatting 251

Curriculum vitae 253

Chapter 0

Introduetion

This thesis is about the design of digital VLSI circuits. Whereas LSI circuits
perform basic functions such as multiplication, control, storage and digital-to­
analog conversion, VLSI circuits contain complex compositions of these basic
functions . In many cases all data and signal processing in a professional or
consumer system can be integrated on a few cm 2 of silicon. Examples of such
"systems on silicon" can be found in

• Compact Disc (CD) players,

• Compact Disc Interactive (CDI) players,

• Digital Compact Cassette (DCC) players,

• Digital Audio Broadcast (DAB) receivers,

• cellular radios and mobile telephones,

• High-Definition TeleVision (HDTV) sets,

• digital video recorders,

• display processors,

• car-navigation systems,

• image processors, and

• digital test and measurement systems.

1

2 Introduetion

These systems generally process analog as well as digital sipnals, but the digital
circuits dominate the surface of an IC. The memory neededj for storing interme­
diate results often covers a significant fraction of the silicon area.

Systems on silicon tend to become more complex andl tend to increase in
number. The increase in complexity follows from advanceinents in VLSI tech­
nology, and the rapid growth of the number of transistors i tegrated on a single
IC. The constant reduction of the costs of integration makes integration econom­
ically attractive for an increasing number of systems. Also, .the rapid succession
of generations of a single product increases the pressure dn design time. The
ability to integrate systems on silicon effectively, efficiently, land quickly has thus
become a key factor in the global competition in both consumer and professional
electrooie products. This recognition has lead to a quest for design methods and
tools that increase design productivity and reduce design times.

At Philips Research a number of approaches to this goal are being investi­
gated [WD89,NvBRS88,LvMvdW*91]. One of these, viz. 'fVLSI programming
and compilation to asynchronous circuits" forms the background of the research
reported in this thesis. The central idea is that of viewing Vl.-SI design as a pro­
gramming activity, and thereby capitalizing on the achieveinents in computing
science with regard to complexity bridling [Sei80,Rem81 ,vdS85,Mar89].

VLSI programming assumes a VLSI-programming language that provides
the programmer with a suitable abstraction from the VLSI technology and circuit
techniques. This abstraction allows systems on silicon to be designed by system
(e.g. digital audio) specialists without detailed involvement of IC specialists.
Ideally, this avoids the costly, time-consuming and error prone transfer of design
data from system specialists to VLSI-circuit specialists. The degree of abstraction
is constrained by the required cost and performance of the rJsulting IC. A VLSI
programming language is thus a compromise between progra)11ming convenience
and silicon efficiency.

The automatic translation of VLSI programs into VLSI circuits is often called
silicon compilation. This thesis proposes a compilation scqeme that results in
asynchronous circuits. This relatively uncommon circuit st)de has specific ad­
vantages with regard to system modularity and IC power consumption.

The central contribution of this thesis is that of handsh(lke circuits: an in­
termediary between VLSI programs and VLSI circuits. A handshake circuit is a
network of asynchronous components connected by point-to-point channels along
which components interact by means of handshake signaling; The role of an in­
termediary is generally that of separation of- more or less orthogonal -concerns.
This introductory chapter continoes with taking stock of these concerns and ends
with an overview of this thesis.

VLSI systems 3

First we shall have a closer look at a particular system on silicon: a Compact
Disc Decoder IC. This example shows the variety in interfaces, protocols and
data types involved in system design.

The next section examines the VLSI medium by means of the mainstream
VLSI technology CMOS. A computation wil! be viewed in terms of voltage
transitions on wires. Differences between synchronous and asynchronous circuits
are explained by discussing how to deal with the phenomenon called inteJjerence.

The final section contains a roadmap to this thesis and positions the handshake
circuits as an intermediate form between VLSI programs and VLSI circuits.

0.0 VLSI systems

One of the key modules of the Compact Disc (CD) player is its chip set. Other
key modules are: a laser-optica! piek-up, a turn table, and a user interface con­
sisting of a key-board and a display. Typically, the chip set consists of a servo
controller, a decoder, a digital filter, a digital-to-analog converter, a DRAM, and
a micro processor [Phi90]. There is a tendency towards single-chip solutions.
The decoder has been selected to illustrate a number of issues relevant to VLSI
programmmg.

The main function of the decoder is to convert the digital signa! from the
optica! disc into a digital (stereo) audio signa!. The block diagram of the decoder
in Figure 0.0 has been adapted from [Phi90]. The main parts of the interface of
the decoder are:

• clock: crystal oscillator input (11.2896 MHz),

• A: bit stream from the optica! piek-up (average bit frequency: 4.32 MHz),

• B: disc-motor control signa!, pulse-width modulated (88.2 kHz, duty factor
ranges from 1.6 %- 98.4 %),

• C: interface to extemal DRAM of 16k x 4 bit (12 clock cycles fora single
read or write access),

• D: bit serial output of stereo samples (2 x 16 bit) with an error flag per
sample in parallel (rate: clock/4 ~ 2.82 MHz),

• E: subcode signa! to extemal microprocessor (bit-serial, in bursts of 10 bit
at 2.82 MHz; one handshake per burst).

4 Introduetion

E

I t
+ I

A - demodulator r-
subcoding int ~rpolator

r+-- r-processor muter D

I

1 :

motor-speed RAM ---+- ~
error --

controller interface corrector B clock -
I I t I

t t I
c

Figure 0.0: Simplified block diagram of the CompactDisc IDecoder SAA7310.

The above overview indicates a variety in data rates and clock frequencies. Most
frequencies are derived from clock by division. The incoming bit stream A,
however, contains an implicit clock that must be recovered through frequency
and phase detection. This doek frequency varies with the rotation speed of the
disc. A feed back mechanism guarantees that on the average the incoming data
rate matches the outgoing data rate.

There is also a considerable variety of data types invol!Jed. The incoming
data are a formated stream of bits. Frames of 32 symbols of 8 bit are extracted
internally. The arithmetic applied to these symbols, as required for error correc­
tion, is in the Galois Field GF(28). The interfacing to the RAM requires address
computations in natura! numbers in the range [0 .. 2 16). Aud(o samples are pairs
of integersin the range [- 2 15 .. 2 15). A general-purpose VLSil-programming lan­
guage must be able to deal with this variety in data rates and data types.

The behavior of VLSI programs is restricted to discrete events and discrete
values. Conversion to and from time-continuous and/or coptinuous values re­
quires adapter circuits such as digital-to-analog converters.

VLSI systems 5

The main submodules of the decoder are (with reference to Figure 0.0):

• Demodulator: extracts a clean digital signa! and a clock signa! from the
disc signa!. This digital signa! is then demodulated and converted into
frames of 32 symbols of 8 bit, error flags and subcode information. The
rate of the extracted clock signa! follows the rotation speed of the disc.
This clock is local to the Demodulator.

• Suhcoding processor: accumulates subcode words of 96 bit, performs a
cyclic redundancy check (CRC), and sends the corrected word (80 bit) to
an extemal microprocessor on an extemal clock.

• RAM intelface: controts the traftic "Demodulator ---+ RAM ---+ Error cor­
rector ---+ RAM ---+ Error corrector". The extemal RAM is used for two
distinct purposes: that of a tirst-in tirst-out queue (FIFO) to buffer the ir­
regularly produced data from disc, and that of a store for de-interleaving
the symbol stream.

• Motor-speed controller: controls the speed of the disc motor based on the
degree of occupancy of the FIFO.

• Error corrector: corrects the code words according to Cross Interleaved
Reed-Solomon Code (CIRC) with a maximum of 2 x 2 errors per frame of
32 symbols.

• Interpolator!Muter: converts symbols in stereo audio samples, interpolates
single errors and mutes in the presence of two or more successive erroneous
samples.

These submodules operate in parallel. lt is therefore hard to describe the behavior
of the decoder in a traditional imperative programming language (such as Pascal,
C or Fortran). The behavior of each submodule, however, can be conveniently
described in such a language extended with appropriate primitives for input and
output.

This describes exactly the idea of Communicating Sequentia! Processes (CSP)
as proposed by Hoare in [Hoa78], and forms the basis of the VLSI-programming
language Tangram 0 developed at Philips Research.

0Tangram is the name of an ancient Chinese puzzle [Eif76]. It consistsof a few, simple fonns
(five triangles of three different si zes, one square and one parallelogram), a simple composition rule
(forms may not overlap), and allows the construction o f a large variety of intricate and fasc inating
shapes. This view on design also shaped our YLSI-programming language Tangram.

6 Introduetion

0.1 VLSI circuits

A typical 1991 VLSI circuit is al most l cm 2 in si ze and consists of a bout I 00,000
transistors, 100 meter wiring and 100 bonding pads. During its operation, when
connected toa power supply, more than a 10 11 events (voltage transitions) may
occur each second, of which often less than one percent are observable at the
bonding pads. An event consumes about a picojoule of ener y; the power con­
sumption of a chip is usually less than one Watt.

These rounded numbers apply to digital VLSI circuits manafactured in CMOS,
the dominant VLSI technology of today. For state-of-the-art c~ ips the above num­
bers may be multiplied by an order of magnitude. The yearly world production
of integrated transistors is in the order of I 0 1 S, or a bout a thousand transistors
per world citizen per day 1

•

Transitions

The voltage transitions observable at the bonding pads are the only evidence of
a computation going on inside a VLSI chip, apart from indirect evidence such
as power consumption . We shall therefore first concentrare pn such events, in
particular on their occurrences on wires.

Wires are metal conductors usually conneering two or more (distant) transis­
tors. Electrically they can be regarded as capacitors to the IC substrate. Except
for the very long wires, the metal area may be considered equipotential: differ­
ences in potenrial along the wire tend to equalize in a time period shorter than
the switching time of a transistor 2 . For long wires and wire!'; made of material ·
with a high sheet resistance such as polysilicon this approximation is not valid.
Then the transmission delays caused by wire resistance and the speed of light
may no Jonger be neglected.

A wire may be charged ("pulled up") through a path of transistors connected
to the power-supply rail. Such a pull-up path usually consi ts of pMOS tran­
sistors, a type of transistor that conducts when its gate potenrial is low, i.e.
connected to an uncharged wire. Similarly, wires may be discharged ("pulled
down") by a pathof nMOS transistors connected to ground. An nMOS transistor
conducts when its gate potential is high. Often such paths may be merged, i.e.

1 A sim i lar type of est i mate was presenled during an invited lecture de livered by G. Moore at
the Decennia! Caltech Conf. on VLSI, 1989.

2For equipotential wires the image of a voltage transition propagating a long a wireis false; when
applied with care, the metaphor (as e.g. applied in the foam-rubber wrapper principle [Udd84])
may be useful.

VLSI circuits 7

individual transistors or combinations of transistors may be part of more than
one path.

Generally, the situation in which both a pull-up path and a pull-down path
compete in charging and discharging a wire is avoided, or at least restricted to
a very short duration. For langer durations this form of short-circuit dissipation
may form a considerable power drain.

When a wire is neither pulled up nor pulled down (it "fioats"), its potential
may not be constant due to charge leakage. A circuit is staticifit has the property
that its wires never float. If the fioating of wires is essential for the operation of
a circuit, the circuit is called dynamic.

Interference

So far, it was tacitly assumed that voltage transitiOns are complete, i.e. they
praeeed all the way from the ground to the supply voltage or vice versa. But
what if the (dis-)charging of a wire is interrupted? Figure 0.1 depiets two wires
a and b and an nMOS transistor n.

b

vr
a -------1

round a

t_,

Figure 0.1: lnterference occurs e.g. when wire a is discharged during the dis­
charging of b.

When wire a has a high potential, the nMOS transistor farms a conducting
path between wire b and ground. Assume that b is being discharged through
n, and the potential on a drops to the ground level: the discharging of b is
interrupted. Wire bis discharged partially and its potential is somewhere between
the ground and the supply voltage. In such a situation, the transition on a is said
to inte1jere with the transition on b. The transistors controlled by b may or may
not have changed their state of conductance, and may or may not be involved in
(dis-)charging other wires, et cetera. If b is subsequently recharged, the effect of
this "runt" pulse on other wires critically depends on sizes of currents, capacitors,

8 Introduetion

threshold voltages of transistors and the time interval betw en the two events.
The runt pulse may have caused a multitude of partial or omplete transitions
on other wires, or not. Similar complications occur when th discharging of b is
interrupted by a short period of charging. Figure 0.2 gives e amples of a proper
transition (monotonie and complete), a runt pulse and a non- onotonic transition.

VT

(a) t---+ (b) t---+ (c) t---+

Figure 0.2: A proper transition (a), a runt pulse (b), and a nbn-monotonic tran­
sition (c).

There are two ways of dealing with interference:

• Accept the possibility of interference, but insist that at specific moments
the mess has cleared, i.e. the circuit is in a quiescent state and all wires
are stabie at well-defined potentials. Synchronous timing disciplines are
based on this principle: an extemally supplied clock defines the moments
at which the circuit must be quiescent.

• Avoid interference: guarantee that all transitions are mönotonic and com­
plete. Many asynchronous timing disciplines are based on this principle,
self-timed and delay-insensitive being two of them.

The overwhelming majority of today's digital VLSI circuits are synchronous.

Proper transitions

Our interest in asynchronous circuits justifies some elaboration on the notion of
proper transition. A nice and effective way to capture all requirements on proper
transitions is by means of a phase diagram as proposed in [Bro89]. The evolution
of the voltage of a wire in time is then reeordered by a so-called trajectory in the
space (V, dV / dt). The values of V and dV/ dt are bounded by

1
a doughnut shape

as in Figure 0.3. With this choice of axis orientations, changes in V result in

VLSI circuits

V

J!Y
dt

9

Figure 0.3: Phase and time diagramfora runt pulse foliowed by a non-monotonic
transition.

counter-clockwise trajectories. Lower bounds on (V, dV / dt) exclude runt pulses
and non-monotonic transitions as illustrated in Figure 0.3.

The thickness of the doughnut determines amongst others the margins in the
voltage to count as logica] false or true. Within these margins runt pulses may
occur, as illustrated in Figure 0.4. The doughnut also bounds the slope of a
transition. This is significant, because different transistors may change their state
of conductance at different voltage levels of the cantrolling gate. Transistors
controlled by the same wire may then "observe" the same transition at different
moments. Bounds on the slope of a transition therefore effectively limit these
time differences (cf. isochronie forks in Section 7 .5).

V

J!Y
dt

Figure 0.4: Phase and time diagram for two proper transitions in succession.

10 Introduetion

Asynchronous circuits

The method addressed in this thesis aims at the design of synchronous VLSI
circuits. The key question is then how to guarantee absence o· interference. How
to control the timing and dependencies of billions of transi ions in such a way
that the integrity of every single transition is assured?

The central idea is to construct the circuit from elementary circuits that in­
dicate by means of transitions on output wires that transitiops on specific input
wires will not eau se interference3. Circuits organized according to this principle
are said to be se/f-timed [Sei80]

De/ay-insensitive circuits are a restricted form of self-timed circuits. A cir­
cuit is delay-insensitive if the absence of interference does not depend on any
assumption a bout delays of these elementary circuits and wires [vdS85]. In
delay-insensitive circuits only point-to-point wires between elementary circuits
are allowed, i.e. wires that conneet one output to one input. A major advantage
of delay-insensitive circuits is their modularity : a delay-ins~nsitive composition
of subcircuits will operate correctly, regardless of the response times of the sub­
circuits and regardless of the delays introduced by the co~necting wires. An
appraisal of delay-insensitive circuits is given in Section 8.1.

The constituent elementary circuits of self-timed and delay-insensitive circuits
may be of arbitrary size, ranging from an inverter to an etnbedded self-timed
RAM. It is attractive to have a finite set of elementary circuits from which delay­
insensitive circuits can be constructed for any specification. Such a universa!
basis of elementary circuits has been proposed in [Ebe89]. Unfortunately , circuits
constructed from this basis exclusively tend to be unpractically large.

A more practical set of elementary circuits has been proposed by Mar­
tin [Mar85b]. These elementary circuits are called VLSJ operators and form
a generalization of the traditional gates. Unfortunately, the class of delay­
insensitive circuits that can be constructed from VLSI operators is severely re­
stricted [BE90]. With the so-called isochronie fork as only concession to delay
insensitivity [Mar90] reasonably efficient circuitscan be constructed (cf. Section
7.5).

3The requirement of absence of interference restricts the behavior of the environment as wel!.
In some cases this may be too restrictive. For instance, the handling of concurrent requests for
a single resource requires a circuit that assures mutual exclusion. Inside ~uch a mutual-exclusion
circuit interference cannot be avoided . lt is a good idea to localize the interfering transitions inside
e leme ntary circuits such as 'arbiters.

VLSI circuits 11

Cost and performance issues

A 1991 CMOS transistor is less than 10 J..lm2 in area. Th is would allow for
a packing density of over 100,000 transistors per mm2. The densest practical
circuits are embedded memories with about 10,000 transistors per mm2. The
average density in other VLSI circuits is a1most an order of magnitude below
this number. The almost two orders of magnitude difference between possible
and practical transistor density is caused by wires. A quick glance at any VLSI
circuit layout shows that wires dominate the circuit area and therefore production
costs. The area of an IC is still a most critica] resource: 20 % area overhead in
a competitive market is considered a serious handicap, and 50 % area overhead
is usually acceptable only for prototype circuits, or for small series.

The time it takes to (dis-)charge a wire is proportional to its capacitance,
and, for a given width, this is proportional to its length. For average wires this
is about 1 nanosecond. For longer wires this may exceed lO nanoseconds. The
switching time of a transistor is well below l nanosecond. Clearly, the wires
determine the operating speed of a VLSI circuit.

For a given power-supply voltage, the energy consumed by a single event is
proportional to the capacitance of the wire on which it occurs. Consequently,
the energy required for a computation depends on the number of events and the
lengths of the wires involved. For a given set of events the wires determine
the energy consumption of a circuit. More and more often these systems on
silicon end up in portable products such as walkmans and notebooks. Efficient
usage of battery power is then an important design consideration. Asynchronous
circuits potentially consume less energy, because there is no energy used for
clock distribution and no energy is wasted in interference.

In summary: wires dominate concerns for cost and performance in every
respect. The wires delermine the area, the computation time and the energy
consumption [SM77,Sei84]. Every VLSI design method, existing or novel, must
acknowledge this fact.

Testing

The VLSI fabrication process is extremely comp1icated. For moderately sized
circuits the yield is about 50 %, i.e. 50 % of the manufactured circuits fu nction
correctly. For complex circuits in an advanced technology the yield may well
be below 10 %. To make things worse, for larger circuits the yield decreases
exponentially with the circuit area. This has two important consequences: circuit
area is a most critica! resource and there is a test problem.

12 Introduetion

The problem of testing is how to discriminare between~ correct circuit and
a faulty circuit. This bears no relation with software testin . It is assumed that
the circuit design is correct and that a possible malfunctio ing is caused by a
defect introduced during the fabrication of the circuit. For 4dvanced production
technologies such defects cannot be avoided: their density is about 1 per cm2 .

The problem of testing consists of two parts:

• bring the circuit into a state where an assumed fault akes a difference in
the subsequent computation;

• detect this possible difference.

Given the exorbitant number of possible faults and circuit states on the one hand
and the limited number of pads to control and observe the circuit behavior on
the other hand, it is clear that the test problem is a hard orte, in every respect.
Testing of circuits is also costly: provisions for enhancing the testability of a
circuit and executing tests may well account for 10 to 30 % of the price of an
IC.

Given the complexity of testing, the user of an IC is not in a position to
test an IC effective1y. It is the joint responsibility of the circuit designer and
the manufacturer. A novel VLSI-circuit design method without a systematic,
effective and affordable test method simply is not viable.

0.2 Overview of this thesis

Handshake circuits are intended as an intermediary between VLSI programs and
VLSI circuits. It thus separates concerns for systematic and efficient VLSI­
programming from concerns at the VLSI-circuit level, such :as absence of inter­
ference, data encoding, initialization, and testing (cf. Figur.e 0.5). The narrow
waist of the "hourglass" is intended to reftect the clear separation realized by
handshake circuits.

Handshake circuits can also be considered as a VLSI architecture. According
to Webster's Ninth New CoJlegiate Dictionary [Mis87] one of the meanings of
architecture is "a unifying or coherent form or structure". Handshake circuits
unite control, storage, communication, logic and arithmetic in a single structure,
supported by a single form of interaction: that of handshake signaling.

An overview of this thesis is presented with reference to Figure 0.6. By
means of a variety of examples Chapter 1 presents an informal introduetion to
Tangram and handshake circuits. Concerns for cost and performance get special

Overview of this thesis

Tangram program

powertul primitives,
simple compositions,

abstraction,
sharing

handshake
circuit

data encoding,
timing discipline,

handshake protocol,
initialization, testing,

circuit style, technology

VLSI circuit

13

Figure 0.5: Handshake circuits: a separation of VLSI programming and VLSI
circuits concerns.

attention, as they make VLSI programmingdifferent from (and also more difficult
than) traditional computer programming.

The body of this thesis is a theory for handshake circuits. The key notion
is that of handshake process. A handshake process is a mathematica! object that
describes a handshake-communication behavior. This handshake behavior may
be that of the components of a handshake circuit (Chapter 2).

A handshake circuit is a set of handshake processes that satisfy a simple
composition rule (Chapter 3). The behavior of the handshake circuit is defined
through parallel composition '11' of its constituent components, and is, again, a
handshake process. In Appendix A the delay insensitivity of handshake circuits
is related to the theory reported in the literature.

Chapter 4 develops a calculus for handshake processes. This calculus allows
concise descriptions of behaviors of handshake components.

In Chapter 5 a precise definition of Tangram is given. For a subset of Tan-

14

1,5

3

0,7

Tangram
program

6 c

handshake
circuit

7

YLSI
circuit

Introduetion

5

H

11

2,4

3

Figure 0.6: An overview of this thesis (numbers denote chapters).

gram, which we call Core Tangram, a forma! denotation 'H' is given in terms
of handshake processes. Here we use the calculus of Chapter 4. In Appendix B
a link to the well-known failure semantics of CSP is established.

Chapter 6 describes the translation of Tangram programs into handshake cir­
cuits by means of the mathematica! function ' C'. For Core 1angram it is proven
that the behavior of the compiled handshake circuit is equivalent to that of the
original program in a well-defined sense.

The realization of handshake circuits in YLSI is the subject of Chapter 7.
Duc to the variety of issues and the large number of choiceb involved we have
not pursued completeness here. Issues such as peephole optimization, handshake
refinement, data encoding, decompositions into YLSI-operator networks, initial­
ization and testing are discussed in varying degrees of depth and completeness.

Chapter 8 discusses some practical experiences with YLSI programming and
silicon compilation at Philips Research.

Chapter 1

Introduetion to Tangram
and handshake circuits

1.0 Introduetion

This thesis pursues a programmingapproach to the design of digital VLSI circuits.
In such an approach the VLSI-system designer constructs a program in a suitable
high-level programming language. When he is satisfied with his program the
designer invokes a so-called silicon compiler which translates this program into
a VLSI-circuit layout.

The choice of the programming language is a crucial one, for it largely
determines the application area, the convenience of design, and the efficiency of
the compiled circuits. A good VLSI-programming language

0. is general purpose in that it allows the description of all digital functions;

1. eneaurages the systematic and efficient design of programs by abstracting
from circuit, geometry and technology details;

2. allows the automatic translation into efficient VLSI circuits and test pat­
tems.

Below follows a motivation for these requirements.

0. A wide range of applications is required to justify the investment in tools
and training.

1. A major gain in design productivity can be expected by designing in a pow­
erful high-level language. Furthermore, system designers do not need to

15

16 Introduetion to Tangram and handshake circuits

resort to VLSI specialists. Systematic design methods I supported by math­
ematica! reasoning, are required to deal with the over helming complexity
involved in the design of VLSI systems.

2. Automatic translation to VLSI circuits avoids the intr duetion of errors at
the lower abstraction levels. It also becomes attractive to design alternative
programs and compare the translated circuits in costs nd performance.

Any such language is of necessity a compromise bet ·een convenience of

design and efficiency of the result.

Traditional programming languages such as Pascal and C can be considered
for this purpose. However, these languages were conceived for the sequentia!
execution on a specific architecture. It is not at all clear how to benefit from the
parallelism so abundantly available in VLSI, when the program describes a total
order of all elementary computation steps. On the other hand, these so-called
imperalive programming languages are successful in that they are general purpose
and offer a good compromise between convenience of design and efficiency of
the compiled machine code.

In an effort to add parallelism to the traditional sequentia! programming lan­
guages, Hoare developed Communication Sequentia! Processes [Hoa78]. CSP
soon became an important vehicle for the (theoretica!) study of concurrency in
computing science. lt also was the basis for OCCAM [INM89] , a Janguage suit­
able for programming networks of microprocessors. The suitability of CSP-based
languages for VLSI programming has been addressed in [Mar85a,vBRS88].

In terms of CSP a VLSI circuit can be described as a fixed network of
processes connected by channels. These processes are simultaneously active and
co-operate by synchronization and the exchange of messages along channels. The
behavior of each processcan bedescribed in a C or Pascal-like language to which
proper primitives for synchronization and communication have been added.

If one considers the translation of such programs into circuits, it is attractive
to preserve the parallelism of the program by translating ieach process into a
subcircuit, and by translating each channel into a set of wire~. This "transparent"
way of translating programs into circuits has the advantage that the pregrammer
has control over the efficiency and performance of his circuits.

Figure 1.0 depiets an example of a network of three communicating processes
P, Q and R. The arrows indicate the directions of data transport along the
channels. Channel a is an input to P, b is an input channel that forks to two
processes, and e is an output channel. Channels c, d and f do not convey data:
they are used for synchronization only.

Introduetion 17

a e
p

b + l d _t

c f
Q R

Figure 1.0: Communicating Sequentia! Processes.

One of the attractions of CSP is that it allows arbitrary numbers of processes
of arbitrary complexity. The table below gives an impression of what can be
realized in a single 100,000 transistor IC in terms of communicating processes.
For a single IC the product of the degree of parallelism and the grain size (size
of each process, measured e.g. in number of transistors) is more or less constant.

degree of # processes # transistors example
parallelism I process
sequentia) I lOOk microprocessors
coarse-grained 10 !Ok digital audio (CD)
fine-grained 100 lk systolic arrays

So far the notion "process" has been used rather loosely. In the sequel it
is used to denote the set of observable communication behaviors of an object,
irrespective of how the object is organized intemally. The behavior of a network
of processes can also bedescribed as a single process. A program is an alternative
way to define a process.

This thesis uses Tangram as a VLSI programming language. Tangram has
been developed at Philips Research. It is based on Hoare's CSP [Hoa85] and
includes Dijkstra's guarded-command language [Dij75].

The translation of Tangram programs into VLSI circuits has so-called hand­
shake circuits as an intermediary. Handshake circuits are networks of elementary
asynchronous processes that communicate according to a handshake protocol.
These elementary processes are called handshake components. The translation
of Tangram programs into handshake circuits requires a modest set of different
handshake components. The translation method is highly transparent, which al­
lows the VLSI programmer to infer cost and performance of the compiled circuit

18 Introduetion to Tangram and handshake circuits

fairly directly from his Tangram program.
This chapter gives an informal introduetion to Tangram by means of a series

of small programs. For many of the programs or program fragments the corre­
sponding handshake circuits are presented. The examples have been chosen so
as to cover most of Tangram, and to give a flavor of VLSI rogramming and the
translation of Tangram programs into handshake circuits.

1.1 Some simple Tangram programs

One of the simplest Tangram programs is BUF 1 (a , b), a one-place buffer:

(a?W & b!W)·I[.:r: var W I #[a?x; b! x lJI

where W is an arbitrary type, e.g. boot or the integer range [0 .. 256). The opening
pair of parenthesis contains the declarations of the extemal ports of BUF 1 (a, b).
Port a is an input port of type W and port b is an output port of the same type.

The segment of Tangram text following the dot define the behavior of the
program. This behavior is described by a so-called commarzd (statement). Here
the behavior is described by a block command, in which the local variabie x of
type W is introduced. The brackets Ï[' and 'JI' delineate the scope of x. The
bar 'I ' separates the local declarations from the command.

Command #[a?x; b!x] defines an infinite repetition of input action a?x
foliowed by output action b!.:r. Execution of command a?a: amounts to the re­
ception of an incoming value through a and the storage of that value in variabie
x. Command b!x denotes the sending of the value of x through b.

In summary, BUF 1 (a, b) repeatedly receives a value through a and sends that
value through b. The variabie x is merely a container to store the incoming
value between the two communication actions. The identity of x and its role in
the operation of the buffer cannot be observed extemally, kince .:r is effectively
concealed by the scope brackets. Only the extemal communications through a

and b can be observed. If type W is the range [0 .. 1 0), a possible observation of
BUF 1 (a, b) is:

a:3 b:3 a:9 b:9 a:9

Same simple Tangram programs 19

where a: v denotes the communication of value v through port a. Such a fini te
sequence of communications is called a trace.

A slightly more interesting program is that of two-place buffer SUF2 (a , c):

(a?W & c!W)·j[b: chan W I (SUF,(a , b) 11 SUF,(b, c))J I

This two-place buffer is a cascade of two instances of SUF1• The output of the
first instanee is connected to the input of the second. Both instances operate in
parallel, as denoted by '11 '. Cascades of in stances of SUF 1 are called "ripple
buffers".

- SUF1 (a , b) SUF 1 (b , c)
a b c

The internal communication along channel b has two aspects. Firstly, it requires
simultaneous participation of sender and receiver. In other words, the output
action of the Ie ft B U F 1 and the input action of the right SUF 1 form a single
communication act ion. Secondly, a communication has the effect of the assign­
ment action xr := x l, where x l and xr are aliases for the variabie x in the left
and right buffer instanee respectively.

Communications along b are concealed by the scope brackets around the
declaration of channel b. The communication behavior of SUF2 (a, c) is more
interesting than that of SUF 1 (a , c). In addition to all the traces of the one-place
buffer (with their output port renamed), a trace such as:

a:3 a:9 c:3 c:9 a :O c :O

may be observed. True to its name, the two-place buffer allows the number of
input communications to exceed the number of output communications by two.

A quite different program is TEE(a, b, c) :

(a?W & b!W & c!W)·(SUF,(a,b) 11 SUF,(b, c))

It is a two-place buffer where the intermediate channel b is not concealed, but
declared as an output port:

SUF 1(a,b) SUF1(b, c)
a c

b

20 Introduetion to Tangram and handshake circuits

A communication along a channel that connects a single ender to multiple re­
ceivers is sometimes called a broadcast . A broadcast requi es simultaneous par­
ticipation of the sender and all receivers. A possible obse ation of TEE(a, b, c)
IS:

a:3 b:3 a:9 c:3 b:9 c:9 a:O b:O

The external behavior of the program below is identical o that of BUFz(a, c).
The program is named WAG(a, c) [vBRS88], because it b haves in a wagging
fashion intemally:

(a?W & c!W)·I[x,y: var W I a?x;#[(a?y 11 c!x); a?x 11 c!y)]]l
I

Inputs are alternatingly written intovariables x and y. Similarly, the outputs are
alternatingly read from the same variables. After the first Input WAG(a , c) may
proceed with a second input ("buffer full'') or with an output ("buffer empty").
A second input must then be foliowed by an output or vice versa. Etcetera.

WAG(a, c) is interesting, because its behavior cannot be distinguished from
that of BUF2(a , c). Still, the compiled circuits differ considerably, as do their
cost and performance. This will be shown in the next sections.

1.2 Some simple handshake circuits

This section presents the handshake circuits for the various buffer programs of
the previous section. lts main purpose is to develop an intuitive understanding of
the operation of handshake circuits and the way they are generated from Tangram
programs. The forma! definition of handshake circuits is presented in Chapter 3.
The translation method is described in depth in Chapter 6.

Handshake circuit for BUF1 (a, b)

Figure 1.1 shows a handshake circuit for BUF1 (a , b). lit consists of 5 hand­
shake components (depicted by circles), 5 channels (labeleÇ c, d, e, wx and rx)
and 3 ports (labeled t>, a and b). Handshake components oommunicate through
(handshake) ports. A channel connects one passive port (6epicted by an open
circle) to one active port (depicted by a fat dot). The communication along
these channels is by means of a simple two-phase handshake protocol, in which
the active side requests for a communication and the passive side responds by
retuming an acknowledgement.

In the handshake circuit for BUF 1 (a, b) the active ports a and b correspond to
the Tangram ports with these names. The passive port t> (pronounced as "go")

Same simple handshake circuits 21

a b

Figure 1.1: Handshake circuit for BUF1 (a, b).

is the activation port of the handshake circuit. The environment activates the
buffer by a request along f>. Only in the case of a terrninating program, which
BUF1 (a, b) is not, does the handshake circuit acknowledge termination through
the same port.

The handshake component labelect with a semicolon is a sequencer. Once
activated along c it sequentially perfarms handshakes along d and e, befare it
returns an acknowledgement along c. It implements the semicolon that sepa­
rates the input and output commands in the Tangram program. Unless explicitly
indicated otherwise, the activation of the two active ports is counter-clockwise.

The component labelect with a '#' implements infinite repetition and is there­
fore called a repeater. Once activated along f> it repeatedly executes handshakes
along c, causing the repeated activation of the sequencer. The repeater never re­
turns an acknowledgement along f>.

Component .1: is a variable. A value can be written into x by sending it
along channel wx. The acknowledgement along wx signals completion of the
write action. Similarly, reading the variabie starts by sending a request along rx
(against the direction of the arrow). Component x responds by sending the most
recently written value.

The two components labelect with a T are so-called transferrers. A request
along d results in an active fetch of a value along a; this value is subsequently
passed actively along wx. The left transferrer implements a?x and the right
transferrer implements b!x.

Observe that the structure of the handshake circuit of BUF 1(a,b) clearly

22 Introduetion to Tangram andj handshake circuits

reflects the syntactic structure of the Tangram program.

Handshake circuits for BUF2(a, c)

lt> rt>

a

Figure 1.2: Handshake circuit for BUF2(a, c).

A handshake circuit for BUF2(a, c) is shown in Figure 1.2. It introduces
three handshake components. The two concentric circles en~losing a B represent
instances of the handshake circuit of the one-place buffer. l The two one-place
buffers are activated along l t> and r t> at the same time by the parallel com­
ponent after a request on t>. Only when the parallel cornponent receives an

I

acknowledgement through bath its active ports it wil! ackndwledge through t> .
The handshake component labeled with a bullet is a synchronizer. It im­

plements the concept of "communication and synchronization" of Tangram. If
a request for communication arrives along bath lb and rb the message arriving
along lb is actively output along b. A subsequent acknowledgement along b
results in a concurrent acknowledgements along lb and an output along rb.

The concealment of the Tangram channel b is realized by connecting a run
component to handshake channel b. This component simply acknowledges each
message it receives. Removing component run results in a handshake circuit for
program TEE(a, b, c), with output ports a and b.

By expanding the two one-place buffers in the circuit of figure 1.2 the hand­
shake circuit of Figure 1.3 is obtained. The circuit clearly r;eflects the syntactic
structure of the original program. The applied translation rpethod is syntax di­
rected in that it closely follows the syntactic composition of the program in

Same simpte handshake circuits 23

a

Figure 1.3: Expanded handshake circuit for BUF2(a, c).

constructing the corresponding handshake circuit.

Such a syntax-directed translation may incur inefficiencies where subcircuits
are combined in a way that only depends on their syntactic relation. Such ineffi­
ciencies can be removed by replacing smal! subcircuits by equivalent but cheaper
subcircuits. This form of substitution is known as peephole optimization. One
form of peephole optimization can be applied to the buffer of Figure 1.3: the
result is shown in Figure 1.4. The component labeled '•' is again a synchronizer.

The handshake components introduced so far all implement Tangram primi­
tives. Given the relatively smal! number of such primitives, the set of handshake
components is modest in size. By providing an "equivalent" VLSI circuit for
each handshake component and by wiring them according to the structure of
the handshake circuit a VLSI circuit can be obtained. The circuits for many
handshake components are simple and fixed. For handshake components such
as variables and transferrers the circuit structure depends on the number of bits
required to eneode the relevant data types.

Handshake circuits are clockless. All synchronization is explicit by means
of handshake actions between neighboring components. The scheduling problem
of assigning a time slot to every primitive action is thus avoided. Furthermore,

c

24 Introduetion to Tangram and handshake circuits

a c

Figure 1.4: Optimized handshake circuit for Bt)F2(a, c).

the absence of global synchronization avoids the timing overhead of aligning
all primitive actions to clock transitions. Clockless oper(ltion combined with
the locality of data and control make handshake circuits potentially faster than
synchronous circuits.

Although the buffers are about the simplest Tangram pwgrams one can think
of, the design of synchronous "elastic" buffers offers considerable challenges.
In particular, the synchronization of clocked input and output actions with an
asynchronous environment involves complex circuitry and fundamental reliability
problems [Ano73,Sei80].

Handshake circuit for WAG(a , c)

A handshake circuit for WAG(a , c) is presenred in Figure 1.5. The three com­
ponents labelect 'I ' are so-called mixers. They have in common that handshakes
through their passive ports are passed to their active ports.

The component connected to a behaves like a demultiplexer. A request from
either passive port is passed along a. The incoming message is passed to the
side of the request.

The mixer conneeled to c passes the incoming message from one of its two
passive input ports to the active output. The acknowledgernent along b is passed
to the side of the last incoming message (cf. multiplexer) .

The third mixer is a multiplexer for synchronizing handshakes only. It allows

Cast-performance trade-offs 25

the transferrer connected to its active side to be activated by either of the two
handshake components connected to its active ports.

These mixers make the wagging implementation of the two-place buffer more
expensive in area than the ripple implementation.

a c

Figure 1.5: Optimized handshake circuit for WAG(a , c). The numbers near the
sequencers indicate the order of activation.

1.3 Cost-performance trade-offs

The programs for BUFz(a, c) and WAG(a, c) inSection 1.1 are functionally iden­
tical. The corresponding handshake circuits of Figures 1.4 and 1.5, however,
differ considerably. In general, a range of Tangram programs can be designed
that satisfy a single functional specification. The corresponding compiled circuits
will differ in cost and performance. The best Tangram program is then the one
that results in the smallest compiled circuit that satisfies the specified performance
requirements.

26 Introduetion to Tangram and I andshake circuits

With this view on VLSI programming it is important t at for a given func-
!

tional specitl.cation a range of Tangram programs can be co~structed, covering a
wide part of the cast-performance spectrum. An N -place s 1ift register serves as
a vehicle to demonstrate the idea.

Specification

An N-place shift register, N 2 I, is a component with an input port, a, and an
output port, b, of the same data type, with the following be~avior:

• communications along a and b strictly altemate, starting with an output
along b;

• the sequence of values along b consists of N unspecified values, foliowed
by the sequence of input values.

This shift register wil! be denoted by SRN(a, b). Shift registers are common
building blocks in VLSI systems, e.g. in various types of digital filters in signai­
processing applications. The processed messages are usually called samples.

Note that in both aspects the behavior of a shift register differs from that of
an N -place buffer. For an N -place buffer the difference in (he number of a and
b communications may vary in time over the range [O .. N]. Also, the sequence
of output values is a plain copy of the input sequence.

Implementations of shift registers wil! be compared in cost and performance.
Cost ultimately denotes silicon area and performance refers to the sample rate, i.e.
the number of processed samples per second. In a final comparison nine different
VLSI programs of an 8-place 8-bit shift register wil! be compared in terms of
transistor count and average cycle time of the corresponding VLSI circuits. The
transistor count is a reasanabie measure for the silicon area, by which we ignore
the variation observed in wiring area. The cycle time is the time between two
successive inputs (or outputs) and is the inverse of the sample rate.

A cheap realization

The simplest realization of SR 1 (a, b) is denoted by SRA(a, b) and is defined by
the Tangram program

(a?W & b!W)· I[x: var W I #[b!.x; a?x]]l

where W denotes the data type of the samples. Note that the ,repetition command
closely resembles that of a 1-place buffer. The only difference is in the order of
the input and output command.

Cast-performance trade-offs 27

SRM(a, b) SRN(b, c)
a b c

Figure 1.6: SRcM+NJ(a, c) composed of two shift registers with a smaller capacity.

For the construction of an N -pi ace shift register a well-known cascade prop­

erty of shift registers is used (see Figure 1.6):

l[b: chan W I SRM(a, b) 11 SRN(b, c)]l = SRuvi+NJ(a, c)

A realization for SRN(a, b) can now be obtained by cascading N instances of
SRA. This salution will be denoted by AN.

Note that AN is capable of producing N outputs before doing its first input.
Moreover, after these initia) N outputs the behavior is that of an N -place buffer.
On closer inspection, is AN really an implementation of SRN(a, b)?

It depends. If the environment relies on the alternation of b and a communi­
cations then definitely not. If the environment enforces this altemation, AN is an
acceptable realization. In order to avoid forther confusion, the first requirement
of the specification of SR N(a, b) is redefined as: the following composition must
not deadlock:

SRN(a, b) 11 l[x, y: var W I #[b?.:x: 11 a!y] ll

Note that the specification is relaxed to the extent that the i th input and the i th
output may occur concurrently.

What can be said about the performance of AN? Afterits first output, the
last cell in the cascade is ready to do an input: "it is vacant". This vacancy
then propagates backwards to the input of AN and it takes N - 1 successive
internal assignments before an input action can occur. The cycle time is therefore
proportional to N. The time an 8-bit assignment takes will be chosen as a time
unit. A reasanabie value for this time unit in current VLSI CMOS technologies
is 25 nanoseconds. For an 8-place 8-bit shift register the cycle time is then 8 time
units, or 200 nanoseconds. It depends on the performance requirements whether
200 nanoseconds are acceptable or not.

The cost of AN is modest. It takes only N variables, which is obviously a
lower bound for SR N(a, b).

28 Introduetion to Tangram and handshake circuits

Fast realizations

An alternative realization of SR 1(a,b) is SRB(a,b). It consits of an instanee of
SRA and a 1-place buffer:

(a?W & b!W)·I[x, y: var W & c: chan W I #[c!x; a? ·] 11 #[c?y; b!y)JI

SRB resembles a traditional synchronous shift register comp sed of master-siave
flipflops. The SRA part assumes the role of the master, th~ 1-place buffer that
of the slave. Input and output actions may overlap in ti1e. In contrast to a
synchronous shift register (and with SRA for that matter) SRB may start with an
input. Shift register SRB(a, b) can be rewritten into SRC(a, b):

(a?W & b!W) · I[x,y: var W I #[(b!y 11 a?x);y := x]]i

SRB and SRC are very close in terms cost and performance (SRC is slightly
cheaper, because of its simpter control structure).

By cascading N instances of SRC we obtain a second realization of SRN(a, b).
This realization will be denoted by eN. Because each SRC section has its own
vacancy, the behavior of eN is markedly different from that of AN. For the
analysis it is assumed that when the environment is ready to participate in an
input or output action, it does so without delay. Then t~e input and output
actions of each individual SRC occur simultaneously, and all N stages operate
in harmony. As a result the sample rate is independent o,f N, and the cycle
time amounts to only two time units (50 nanoseconds). The price for this nice
performance is substantial: eN requires 2N variables, twic~ that of AN.

Given the substantial difference in cost and performaode between AN and
eN one may wonder if intermediale solutions exist. Indeed, by introducing one
or more SRC cells in a sequence of SRA cells, intermediale solutions can be
obtained of the form eK AN-K, with 0 :S K < N. The solid circles in Figure
1.8 indicate the average cycle time and transistor counts for five shift registers
of this kind, with K equal to 0, I, 2, 4 and 8 respectively. The cycle times were
obtained by simulation of the compiled handshake circuits. The timing models of
the handshake components have been calculated from the timing characteristics
of their constituent VLSI operators.

The realizations described so far have in common that ~he messages ripple
through a cascade of N cells. Hence, they will be referred to as ripple shift
registers.

Cast-performance trade-offs 29

Still faster realizations

One may wonder whether eN is the fastest possible shift register. Equivalently, is
two time units the minimum cycle time? By putting two shift registers in parallel,
and by serving them altematingly, faster shift registers can be constructed (see
Figure 1.7). Shift registers based on this structure will be referred to as wagging

shift registers. In order to keep matters simple, N is restricted to even values.
SRD(a, c, e) de-interleaves the incoming sequence by sending the incoming

values altematingly along c and e:

(a?W & c!W & e!W)·I[x,y: var W I #[(c!x 11 a?y);(e!y 11 a?x))]l

SRE(d, j , b) interleaves the incoming sequences by receiving inputs altematingly
along d and f:

(d?W & f?W & b!W)·I[x ,y: var W I #[(b!x 11 d?y);(b!y 11 f?x)JJI

SR(N/2-l)(c, d)
c d

a b
--~ SRD(a, c, e) SRE(d, j, b)

e f
SR<N/2-l)(e, j)

Figure 1.7: The wagging shift register.

Both SRD and SRE have a cycle time of one unit, measured at the input and
output respectively. Unfortunately, due to some additional overhead in control
and data routing, the real cycle time is somewhat larger. For 8-bit messages 30
nanoseconds is realistic.

For the two parallel shift registers ripple implementations can be used, e.g.
composed of SRA and SRC cells. A regular communication behavior is obtained
by taking identical cell sequences for SR(N/2_ 1)(c, d) and SR<N/2-l)(e, j).

30 Introduetion to Tangram and handshake circuits

1
200 As

•

150

cycle eA7

• time 100 e2A6
[ns] • e4A4 es

• 50 0 •
A3 0 0 0

eA2
e 2A e3

0
1000 1500 2000 2500 3000 3500 4000

transistor count

Figure 1.8: Cycle time versus transistor count for nine different 8-place 8-bit shift
registers. Solid circles represent ripple solutions, open circles wagging solutions.

In Figure 1.8 the compilation and simulation results for four triplets for
SR3(c,d) and SR3(e,f) (from slow/small to fast/large): A 3, eA2, e 2A and e3.

Due to the aforementioned overhead, e2 A is barely an impravement over eA2.
For the same reason e3 offers no advantages over e2 A.

Discussion

One type of realization has not been considered: array-based solutions. Such
an array can be mapped on a Random Access Memory (RAM). Array-based
realizations are attractive for large N, because of the very small area/bit of
a RAM. For smal! N, array-based solutions are less attractive due to an area
overhead of circuitry for timing, control and addressing.

Despite the simplicity of the specification of SRN(a , b) an interesting range of
implementations has been realized. lf we ignore the wagging solution with cel!
sequence e3, all implementations have different cycle times and different costs.
Among these eight solutions there is no best solution. Depending on throughput
requirements, each of these eight implementations may be the best, except es.

Even totally different considerations may part of the cast/performance trade­
off, for example energy consumption. An 8-bit assignment consumes approxi-

More examples 31

mately a quarter of a nanoJoule. A reasonable measure for the energy consump­
tion of a ripple buffer is then the number of moves made by a single message
from input to output, viz. K + N. The power consumption of A8 running close to
its maximum speed (5 Mhzsample rate) will then be approximately 10 mWatt.
For C8 at 20 Mhz this amounts to 80 mWatt. Wagging solutions, on the other
hand, are markedly economie in their energy consumption, because the path tra­
versed by a message is only half in Jength compared to that of ripple solutions.
For instance, a message takes five moves to ripple through A3 . At 20 Mhz this
results in a power consumption of 25 mWatt. Of course, more accurate esti­
mates for size, timing and power need to be provided by the silicon compiler and
simulation tools.

These concerns for cost and performance make VLSI programming differ­
ent from and also more difficult than conventional programming. Especially
high-performance systems (e.g. digital video systems) may require detailed per­
formance analysis. But also for)ow-performance systems (e.g. digital audio
systems) with critica) requirements on silicon area, balancing the performance of
subsystems is important.

From a VLSI-circuit perspective, these asynchronous shift registers also pro­
vide an interesting insight. AN requires one latch per section per bit whereas
a master-siave flipflop requires two. In principle, no solution based on master­
sJave flipflops can beat AN in circuit size. Mimicking the behavior of AN with
synchronous circuits requires complex timing/control circuitry.

Although the sample rate of AN is Jow, the vacancy travels at maximal speed
from output to input. With a few SRC cells, the intemal timing behavior becomes
highly inegular. This form of inegularity is hard to capture in clocked circuits.

In complex VLSI systems the different input and output ports often have dif­
ferent sample rates. Somelimes the samples are offered or consumed inegularly
in time. Even if these rates are constant and identical , this need not be so for in­
tema! channels. Certain subcomputations have data-dependent processing times,
or are invoked at irregular intervals, e.g. for handling exceptional situations. In
such situations the absence of a clock opens new architectmal possibilities and
trade-offs.

1.4 More examples

Buffers and shift registers are not very interesting from a data-processing point of
view: the sequence of output message is basically a copy of the sequence of input
messages. This section introduces Tangram constructs by which more interesting

32 Introduetion to Tangram and handshake circuits

programs can be described. Various small programs are uL d as illustrations.
Where appropriate, the corresponding handshake circuits are given.

An adder

ADD(a, b, c) is a simple process that repeatedly accepts tw values of type W
along its two inputs a and b and outputs their sum along c:

ADD(a, b, c) = (a?W & b?W & c!W)·I[x, y: var W I #[(a?· 11 b?y); c!(x + y)JJI

Expressions such as x + y may occur in assignments, outguts commands and
guards (see later in this chapter). It wil! be assumed that the evaluation of an
expression always terminates. However, if the result value does not "fit" its
destination, the consequent behavior is not specified: the program may deadlock,
or may proceed in some erratic way. ADD continoes properly as long as the
value of x+ y is of type W.

[>

a

c

b

Figure 1.9: Handshake circuit for ADD(a, b, c).

The handshake circuit for ADD is presented in Figure ~.9. The handshake
component labeled '+' is an adder. The expression x + j; is evaluated in a
demand-driven fashion:

0. a request for a sum is passed to the passive output of the adder;

More examples 33

I. the adder forks this request to its active inputs;

2. the input values arrive at the inputs of the adder;

3. their sum is output along the output.

A simple FIR filter

A Finite Impulse Response (FIR) filter is a process with a single input and a
single output. The input and output communications strictly altemate, starting
with an input. For a FIR filter of order N the output values are specified as
follows. The value of the ith output, i 2 N, is generally a weighted sum of the
N most recent input values. The N weights are generally referred to as the filter
coefficients. The first N output values are left unspecified.

A very simple FIR filter of order N can now be constructed by connecting
ADD with a shift register:

(a?W & b!W) · i[b: chan W I ADD(a,b, c) 11 SRJV(a,b)JI

The ith output, i 2 N, is the sum of the ith input and the input with index
i - N . Th is composition is depicted in Figure 1.10. Clearly, the input channel
a is connected to both ADD and SR. In genera!, any number of receivers may
be connected to a channel. The connected receivers must all participate in each
communication along that channel. This is anothet example of broadcast. There
may be at most one sender.

SRN(a, b) ADD(a, b, c)
a c

b

Figure 1.10: A simple FIR filter constructed from SR N(a, b) and ADD(a, b, c).

A more general FIR filter program is discussed in [vBRS88], in which the
degree of parallelism is parameterized. The program is a linear systolic array of
N div M cells, where j\1 is a measure of the grain size of the parallelism. If
M = N the program is sequentia! and requires a single multiplier. The other
extreme solution is !V! = I: an array of N cells guarantees maximum throughput,
but requires N multipliers.

34 Introduetion to Tangram and bandshake circuits

A median filter

A median filter repeatedly outputs the median value of th three most recent
inputs. (Similar to the FIR filter, the sequence of output m ssages starts with a
few unspecified values.) A Tangram program for the media filter is given by:

(a?W & b!W).

l[x, y, z : var W & .xy, y z, zx : var bool
I #[(z := y; y :=.x ; a?x 11 y z := xy)

J I

; x y := x ::; y 11 zx := z ::; x
if zx = .x y _____, b! x
0 x y=yz _____, b!y
0 y z = z x _____, b! z

fi

The program segment if .. fi is a selection command [Dij75]. The if fi
bracket pair encloses three so-called guarded commands. Guarded commands
have the form B _____, S, where B is a Boolean expression and S a command.
The execution of the selection command starts with the evaluation of the guards.
If all guards are false the henceforth behavior program is left unspecifi ed. If at
least one guard evaluates to true the command corresponding to a true guard
is executed. If more than one guard is true, the choice which of command to
execute is not specified. This nondeterminism can be resolved at compile time,
or even at run time. Of course, for purposes of efficiency the programmer may
strengthen the guards to make them non-overlapping.

The following may help to understand the Tangram description of the median
filter. Just prior to the execution of the selection command, the variables x, y
and z contain the three most recent input values, in increasing age. At that point
the three Boolean variables x y, y z and z .x have the values x ::; y, y ::; z and
z ::; .x. The expression zx = x y is then equivalent to "x is the median value".
The two other guards can be read similarly.

Note that if x = y = z all three guards evaluate to true. The correspond­
ing nondeterministic selection of one of the three output commands cannot be
observed extemally. However, the internal operation does depend on how the
nondeterminism is resolved.

The median filter nicely demonstrates an advantage of this form of command
selection. The symmetry among the three guards can onl~ be captured in a
language with explicit and overlapping guards for the thre~ altematives. The

More examples 35

reader may try for instanee an if-then-else command to replace the above selection
command to convince himself.

The handshake circuit for the if ti section of the median filter program is
depicted in Figure 1.11. The write ports of the variables are left unconnected.
After an activation along [> the selection command is executed in two phases.

b

Figure l.ll: Handshake circuit for the if ti section of the median filter.

In the first phase the if component actively collects the disjunction of the
guards. The component labeled ' I] ' passes on a request on its output to both
its Boolean inputs; upon the reception of these Booleans their disjunction is
transmitted along its output. Note that the guards are evaluated in parallel.

The effect of the second phase depends on the collected disjunction of the
guards. If this value equals false, the if component remains passive and the
circuit deadlocks. If the vaJue equals true, as is always the case for the median
filter, component if activates the topmost 0 component. This component
activates the circuit corresponding to an input from which it received the value
true. In this solution the nondeterminism is resolved in the 0 component.

This implementation scheme works for an arbitrary number of guards. When
the 0 components are organized according to a binary tree, the computation of

36 Introduetion to Tangram and bandshake circuits

the disjunction of the guards and the selection of the appro 'riate cammand can

be done in O(log N) time, where N denotes the number offuards.
The handshake component labeled '=' is another example fa ~inary operator.

The variables xy, yz and zx have two read ports, from w ich croncurrent read
actions are allowed.

The median filter is an instanee of a so-called rank-ordyr filter. After each
input value the rank-order filter outputs the value with rank {< among the last N
inputs (0 ~ K < N). A value has rank k among N values if_it has position k in
the ascendingly ordered list of these N values. The median filter is a rank-order
filter with N = 3 and K = 1. [KR89,KU91] present progtams for rank-order
filters. Both solutions are linear systolic arrays of N cells.

1
Except for the two

end cells, all cells are identical. The cells communieare with neighboring cells
in a regular, systolic manner.

The greatest common divisor

Program CCD repeatedly computes and outputs the greatest common divisor of
the two most recent inputs:

(a?W & b?W & c! W).

l[x, y: var W
I #[(a?x 11 b?y)

ll

do x > y ____, x := x - y

ll y > x ____, y := y - x
od

; c!x

The algorithm goes back to Euclid; this particularly elegant version is based on
[Dij76]. The program segment do .. od is a guarded repetition, a generalization
of the well-known while command. As long as at least one guard evaluates
to true one of the true guards is selected and the correspcpnding cammand is
executed. If all guards fail, the repetition cammand terminates. If one of the
inputs equals 0 the guarded iteration will not terrninate. I

In [Dij76] a similar algorithm is given for computing the least common mul­
tiple. The Tangram program for a sequentia! multiplier [v BS88] also resembles
CCD. The number of cycles required to compute the greatest common divisor
strongly depends on the two input values. The computation time and energy are
proportional to this number.

More examples 37

Note that the communication behavior of CCD is identical to that of ADD.
The handshake circuits have the same external ports, viz. an activation port, two
input ports and one output port. The fact that CCD contains an iterative algorithm
is completely bidden for the user of the circuits. The proposed method of com­
piling Tangram programs into handshake circuits leads to a form of distributed
controL Information is kept local, with the associated advantages of shorter wires
and minimum timing overhead.

Modulo-N counters

The modulo-N counter is presented to introduce the choice command. There
are two ways in Tangram by which the environment can inftuence the future
course of action of a program. Firstly, the environment may select the value to
send through an input port. The incoming value is stored in a variabie and may
subsequently occur in the guards of a guarded command. The input value may
thus determine the future pattem of communications and computations.

Secondly, the environment may have the choice among a set of ports through
which it may synchronize or communicate. The binary form of this choice is
exemplified by the program CE (a, b, c, d) (CE is an acronym for Count Even, as
will become clear later):

(a & b & c & d) ·#[[c; a; a I d; b]]

Operator ';' binds more strongly than 'I'. The environment is repeatedly of­
fered the choice between a synchronization on c or on d. These two commands
act as guards in the choice command. For each c, process CE performs two
synchronizations on a; for each d, it performs only one synchronization on b.

Using the choice command, a programfora modulo-N counter will be con­
structed (N 2: 1). The program has two external synchronization ports, a and b.

A modulo-N counter repeatedly performs N synchronizations on a foliowed by
a single on b. Let this behavior be denoted by

#[#N[a]; b]

The simplest counter is a modulo-1 counter C 1:

#[a;b]

For even values of N the modulo-N counter can be written as

#[#M[a; a]; b]

38 Introduetion to Tangram and handshake circuits

where JIJ = N div 2. By introducing a modulo-M counter this cao decomposed

into

l[c,d: chan I (CE(a,b,c,d) 11 #[#M[c];d])]l

In words, the moduio-NJ counter performs NI synchronizations on c, which are
effectively doubled by CE and passed through a. A closing d is simply passed

by CE as b. I
For odd values of N, N > I, a similar decomposition cao be derived, m

which CO (a, b, c, d) extends a moduio-NI counter to a mod~io-N counter:

(a & b & c & d) ·#[a; [c; a I d; b]]

A program for the modulo-N counter cao now be constructed with the cells Cl,
CE and CO for any value of N. This requires 2 log N + 1 cells. For instance,

the number 11 cao be written as 1 + 2 * (I + 2 * (2 * 1)), yielding the following
program for an modulo-11 counter

J[c,d,e,j,g,h: chan
I CO(a,b,c,d) 11 CO(c,d,e,f) 11 CE(e,j,g,h) 11 Cl(g,h)

11

Figure 1.12 depiets handshake circuitsforCE and CO. Note that both circuits
consist of the same handshake components, albeit connected differently.

The choice component (labeled '11]') implements the choice construct. After
activation through its topmost passive port, the choice component is prepared

to participate in a handshake through one of the other two passive ports. The
choice between the two is made by the environment. Subsequently, the choice
component actively handshakes on the active port opposite to the selected passive
port, and then returns an acknowledgement along its activation channel.

There is something special about this type of modulo-N counter: the rate of
counting is independent of N and independent of the state of the counter. (lt is

the head cel! that determines the rate of counting; the next cel! needs to count
at only half the rate.) This property seems to be unique, as traditional counters
slow down with log N. The resulting rate of counting is prdbably as fast as cao
be. In [Kes91a] the program has been carried over to the domaio of synchronous
circuits. Presumably, this systolic modulo-N counter cao be carried over to the

domaio of synchronous circuits. But, would it have been invented without the
Tangram example?

Counting also appears to be a very useful primitive in a VLSI programming

language. In many cases an action has to be repeated N times, where N is a

Epilogue 39

c a c

d b d

Figure 1.12: Handshake circuitsforCE (a, b, c, d) and CO (a, b, c, d).

constant (e.g. the number of pixels in a video line, the number of samples in a
block, or the number of bits in a word). For this reason the construct #N[S] is
part of Tangram and means: repeat S exactly N times. The implementation of
this construct contains a handshake circuit composed of the cells of Figure 1.12.

This section on choice and counters ends on a less fortunate note. It turns
out that the full implementation of the choice construct is fairly complicated. It
was decided not to include its treatment in this thesis.

1.5 Epilogue

The programs and handshake circuits of this chapter give an impression of Tan­
gram and its compilation into handshake circuits. The following remarks place
the preceding experiments in a wider perspective.

Full Tangram

The programs of this chapter were written in a subset of Tangram. The main
omissions of this chapter are

• functions and procedures;

• the data type constructars tuple and array;

40 Introduetion to Tangram and handshake circuits

• operators such as tuple forming, tuple selection, type

• explicit sharing of functions and procedures.

With these extensions arithmetic operators such as *·
cao be defined as Tangram functions. This also extends to
field symbols [SvBB*91] , complex numbers, and other fo
arithmetic.

mod and shift
perators on Galois­
s of less common

The circuits corresponding to functions and procedures can be shared, pro­
vided that they are used sequentially. Sharing avoids unnec . ssary duplication of
resources, but has an overhead in termsof (de-)multiplexink circuitry. Whether
sharing actually saves circuitry and whether the associated penalties in delays cao
be afforded depends on the size of the shared resource and the timing specifica­
tion. e.g. the sharing of a large multiplier is more likely to be advantageous than
the sharing of a one-bit adder. In line with the choice for transparent compilation,
Tangram supports explicit sharing of functions and procedu es.

I

OCCAM [INM89] is another CSP-based language. Essenrial differences be-
tween Tangram and OCCAM are related to differences in the implementation
target: VLSI circuits versus Transputer networks. In particular, OCCAM does
not support broadcast and sharing, and has limited facilities for type construction
and operators.

Applications

To which extent are Tangram and handshake circuits general purpose? Neither
Tangram nor handshake circuits contain constrocts or notions that are specific to
eertaio application areas such as controllers or signa) proceSsors.

Applications range from very smal! circuits (e.g. the bu'ffers of Section 1.1)
to quite sizable circuits (e.g. a graphics processor [SvB88], or a high-throughput
RSA encryptor [Kes91b]).

Tangram and handshake circuits support fine-grained parallelism (as for in­
stance in systolic arrays [Rem87]), and coarse-grained paralllelism (e.g. in Com­
pact Disc subsystems [KS90,KvBB*92]).

Many diverse applications were cited along with the programs. Other ex­
amples of programs in CSP-based notations include: a systolic block sorter
[v BRS88], a micro-processor [MBL *89] , and a regular-expression recognizer
[KZ90].

Chapter 2

Handshake processes

2.0 Introduetion

A handshake is a means of synchronization among communicating mechanisms.
In its simplest form it involves two mechanisms connected by a pair of so-called
links, one for sending signals and one for receiving signals. The sending of a
signa! and the reception of a signa! are atomie actions, and constitute the possible
events that may occur between the mechanisms.

A signa! sent by one mechanism is bound to arrive at the other mechanism,
after a finite, non-zero amount of time. Hence, this form of communication is
asynchronous; the sending and the arrival of a signa! correspond to two distinct
events. It is assumed that a link allows at most one signa! to be on its way.
Consequently, a signa! sent must arrive at the other end of the link before a next
one can be sent. When the traveling time of a signa! along the link is unknown,
the only way to know that a signa! has arrived at the other side, is to be so
informed by the other mechanism via a communication along the other link.

Such a causally ordered sequence of events is called a handshake. The two
mechanisms involved play different (dual) roles in a handshake. One mechanism
has the active role: it starts with the sending of a request and then waits for
an acknowledgement. The other mechanisrn has the passive role: it waits for a
request to arrive and responds by acknowledging. A handshake realizes synchro­
nization among mechanisms; it can and will occur only if both mechanisms are
ready to participate.

Some useful terminology is introduced next. The pair of links forms a so­
called channel; the two terminals of a channel are called ports. This study only
considers channels with a fixed division of the passive and active roles during

41

42 Hardshake processes

handshakes. Hence, a port is either passive or active, depen, ing on its handshake
role.

In a more general setting, a channel consists of two finite, non-empty sets of
links. A handshake then consists of a request along a link of one set, acknowl­
edged by a signa! along a link from the other set. By choo~ing a particular link,
a mechanism can convey additional information. For instance, a pair of output
links suffices to communicate a Boolean value with each ~andshake. A mecha­
nism may be connected to several other mechanisms, by an arbitrary number of
channels, and may therefore have multiple ports, of different activities.

This chapter presents a formalism for mechanisms that interact exclusively
by means of handshakes. The central notion is that of handshake process, a
mathematica] object that can be used to specify all possible behaviors of such
a handshake mechanism. In Chapter 3 it is shown that handshake processes
can also be used to describe the extemal behavior of handshake circuits, i.e. of
networks of handshake processes. In Chapter 5 the semantics of a subset of
Tangram is expressed in terms of handshake processes.

In the context of VLSI circuits, a mechanism may corirespond to a CMOS
circuit, a link to a wire and a signa! to a voltage transition. The requirement that
at most one signa] may be on its way on a single link agr€es with the required
absence of interterenee (cf. Section 0.1). Chapter 7 discusses in more detail the
relationship between handshake processes and VLSI circuits.

Before we delve into the rnathematics of handshake processes we shall review
some notational conventions used in this thesis.

2.1 Notational conventions

Functions

A function f in A ----+ B has domain A and range B. Function application is
denoted with an infix '·' as in f- x, instead of the more tradifional f(x). Operator
'·' is right binding and it binds more strongly than all othe~ operators except for
subscription and superscription (e.g. exponentiation).

Notational conventions 43

Guarded selection

An expression may have the form of a guarded selection as in:

if Bo ----) Eo
0 BI ----) E1

0 BN- J ----) EN-I
fi

Guarded expression Bi ___, Ei consists of guard Bi and expressi011 Ei. A guard is
a Boolean expression. The order of the alternatives is irrelevant. In the guarded
selections of this thesis we shall see to it that at least one of the guards evaluates
to true, and that if both Bi and Bj evaluate to true expressions Ei ànd Ej have
the same value. For instance, the minimum of two integers, denoted by x min y
may be defined as

if x~ y ----) x

0 y~x ___, y

fi

The notation for guarded selection strongly resembles that of guarded commands
[DS90] (cf. the median filter in Section 1.4).

Quantified expressions

Universa! quantification is a generalization of conjunction. lts format [DS90] is

(V dummies : range : term)

where

• "dummies" stands for an unordered list of local variables whose scope is
delineated by the parenthesis pair;

• "range" is a predicate that delineates the domain of the dummies; and

• "term" denotes the quantified expression.

Similarly, existential quantification (with quantifier 3) is a generalization of dis­
junction. Quantification over an empty range yields the unit element of the
quantifier: true for V and false for 3. When the range is evident from the context
it is usually omitted.

44 Hahdshake processes

The above format is also applied to generalizations of [her symmetrie and
associative binary operators. For instance, the continued u ·on of the set of sets
A is denoted by (Ua : a E A : a). If A = 0 this expressi n yields 0, the unit
element of set union .

For set construction a similar format is used, viz

{ dummies : range : term}

For instance, the image of function f with domaio D can e written as

{x : x ED:f·x}

Derivations

Let ~ be a partial order, i.e. ~ is a reflexive, antisymmetrie and transitive relation
on some set. For convenience's sake we often abbreviate a conjunction of the
form (E = F) !\ (F ~ G) to E = F ~ G. In particular, a proof of E ~ G may
take the fonn (cf. [DS90])

E

{ hint why E = F }

F

--< { hint why F ~ G }

G

for some judiciously chosen F . The above example naturally generalizes to a
list of (in-)equalities. From a derivation of the fonn E ~ F ~ · · · ~ E it
may be concluded that all related elements are equal, on aacount of transitivity
and antisymmetry of~. Note that implication ('=>') and se~ ioclusion ('Ç') are
examples of partial orders. An example of a derivation is given below.

Closures

Let (A,~) be a preordered set, i.e. ~ is a reflexive and t' ansitive relation on
A . We shall often base a ciosure operator and a closedness predicate on such a
preorder as follows.

Notational çonventions 45

Definition 2.0 (closure, closed)

0. For any subsetBof A the ~-closure of B in A, denoted by B~, is defined
by

0

B~ = {a : a E A 1\ (3b: b E B : a ~ b) : a}

This ciosure is also known as the downward ciosure of B.

I. B is called ~-closed, denoted by (~)· B, if B = B~ .

Operator ~ is indeed a ciosure operation, since ([DP90] page 36):

Property 2.1

0. B Ç B~

1. B~ = (B~)~

(extensive)

(idempotent)

2. B Ç C => B~ Ç C~ (order preserving)

0

The ciosure operation binds more strongly than any other operation. As an
example of the proof style applied, we prove idempotence of the above ciosure
operation.

Proof of idempotency :

(B~)~

{ definition of ~-closure }

{a : a E A 1\ (3b: b E B~ : a ~ b) : a}

= { definition of ~-closure }

{a : a E A 1\ (3b : b E { c : c E A 1\ (3d : d E B : c ~ d) : c} : a ~ b) : a}

= { calculus }

{a : a E A 1\ (3b: b E A 1\ (3d : d E B : b ~ d) : a~ b) : a.}

= { trading }

{a: a E A 1\ (3b, d: b E A 1\ d E B : a~ b 1\ b ~ d) : a}

= { ~ is reftexive and transitive }

46 Harvdshake processes
I

{a : a E A 1\ (3d : d E B : a ::::5 d) : a}

= { definition of ::::5-closure }

B~

0

For later use we mention without proof:

Property 2.2

0. 0~ = 0, hence (::::5)· 0.

1. B~ u C~ = (B u C)~ .

2. Hence, (::::5)· B 1\ (::::5)· C =? (::::5)· (B u C).

0

2.2 Handshake structures

Ports and port structures

A handshake through a port consists of two events: a request foliowed by an

acknowledgement. We shall identify these events by symbols, such as r and a. A

port consists of a set of request symbols and a set of acknowledgement symbols.
These two symbol sets of port p must be non-empty, disjoint and finite, and wil!

be denoted by Op and lp respectively. A handshake consists of an occurrence of
an event from Op foliowed by an occurrence of an event of lp. A port structure
is a set of ports, partitioned into a set of passive ports and a set of active ports.

Definition 2.3 (port structure)

0. A portpis a pair of disjoint, finite and non-empty sets of symbols (Op, lp).
ap denotes the symbol set of p, viz. Op U lp .

I. A port set P is a finite (possibly empty) set of ports. aP is the set of
symbols of P, viz. (Up: p E P: ap).

2. A proper port set P is port set with disjoint symbol sets:

(V a, b : a E P 1\ b E P : a = b V a a n ab = 0)

Handshake structures 47

0

3. A port structure A is a pair (A0
, A•), of port sets, such that A 0 U A• is a

proper port set. A 0 is called the passive port set of A and A• the äctive
port set of A. Note that aA0 n aA• need not be empty.

aA denotes thesetof symbols of A, viz. aA0 U aA•. Set aA is called the
alphabet of A.

4. Elements of A 0 nA • are the internal ports of port structure A, and elements
of (A 0

\ A•) U (A• \ A 0
) are the external portsof A.

5. Port structures A and B are compatible if A 0 U A• U B 0 U B• is a proper

port set.

6. The union of compatible port structures A and B, denoted by A U B, is
the port structure (A 0 U B 0

, A • u B•) .

7 . The dif.ference of compatible port structures A and B, denoted by A\ B,
is the port structure (A0

\ B 0
, A• \ B•).

The symbols 0 and • are used as postfix operators on port structures; they bind
more strongly than any other operator. If p is a passive port, Op is the set of the
input symbols of p and lp the set of output symbols of p. For active ports this
is the other way around:

Definition 2.4 (input and output symbols)

Let A be a port structure and let a E A. Then

0. ia denotes the set of input symbols of port a:

ia= if aEA0 ~ Oa
0 a E A• ~ la
fi

1. Operator i is lifted to port structures by iA = (Ua : a E A : ia) .

2. oa denotes the set of output symbols of port a:

oa = if a E A 0 ~ l a
I] a E A• ~ Oa
fi

48 Handshake processes

3. Operator o is lifted to port structures by oA = (Ua : a E A : oa) .

0

Obviously, we have iAuoA = aA. If A has no intemal po s then iAnoA = 0.
Ports may be directed as well. An input port is a port that consists of multiple
input symbols and a single output symbol. Accordingly, an utput port is a port
that consists of a single input symbol and multiple output s. mbols. A port that
consists of two singleton sets will be referred to as a nonp~t port; it serves for
mere synchronization. If both symbol sets contain more than one symbol, the port
permits bidirectional transfer of data during each handshake; it may be referred
to as a biput port. Bidirectional data transfer will oot recur in the sequel.

Definition 2.5 (port definition)

A port definition defines a port structure that consists of a single port; it may have
one of the six forms below. Let a be a name and T be a type, i.e . a non-empty
set of values.

0

0. a0
, a0 ?T and a0 !T define port structures of the form ({p}, 0), where p is a

single (passive) port. For the three port definitions p d.enotes ({ao}, {ai}),
({ao} x T , {ai}), and ({ao}, {a 1 } x T) respectively.

1. Likewise, a•, a•?T and a• !T define port structures 9f the form (0 , {p}) ,
where p is a single (active) port. For the three port definitions p denotes
({ao}, {ai}), ({ao}, {ai} x T) , and ({ao} x T, {ai}) respectively.

2. The name in the port definition will be used as port name.

3. A list of port definitions separated by commas defines a port structure,
provided that the port narnes are distinct. The port structure is obtained
by taking the union of the port structures specified b); the individual port
definitions.

Note that a0 and a• define nonput ports, that a0 ?T and a•?fJ' define input ports
and that a0 !T and a• !T define output ports.

Example 2.6

0. a0 ?Bool defines a port structure consisting of a single passive input port of
type Boot, viz. the port ({ ao :fa! se , ao: true} , {ai}) . Trie input symbols are

Handshake structures 49

0

ao :false and ao: true and the output symbol is a1, the acknowledgement
to an input.

1. a0 !Bool defines a port structure consisting of a single passive output port
of type Bool, viz. the port ({ao}, {a 1 :false,a1 :true}). The input symbol
ao denotes a request for an output. The output symbols are a1 :false and
a1 :true.

The alphabet of port structure A, denoted by aA, was defined as the set of
symbols that occur in the port definitions of port structure A. The symbols of
an alphabet are used to denote individual communications between a mechanism
and its environment. Finite symbol sequences are called t.t·aces.

Definition 2.7 (trace)

0

0. A trace is a finite sequence of symbols.

1. The empty LJ·ace is denoted by é.

2. len · t denotes the length of t.

3. The concatenation of traces s and t is obtained by juxtaposition, as in st.

4. Trace s is called a prefix of t, denoted by s :S t , if there exists a trace u
such that su = t .

5. The set of all traces over alphabet B is denoted by B* .

6. The projection of trace t on alphabet B, denoted by tI B , is defined by

E:jB
(at)! B

=é

if a i;J B
0 a EB
ti

~ tiE
~ a(tiB)

lf A is a port structure, tI A is used as a shorthand for tI (a A) .

Sets of traces wil! be used to characterize mechanisms. Each trace records a
possible sequence of communication events in which a mechanism has engaged
up to some moment in time. Prefix order is a partial order on traces. Hence, in

50 Ha1shake processas

accordance with Section 2.1, the prefix ciosure of trace set is denoted by B'5:,
and the prefix closedness of trace set B by (:S;) · B.

Given a port structure A, we consider traces over alphab t aA. A handshake
trace is a trace in which the occurrences of 0-symbols and 1-s~mbols of each
port strictly altemate, and in which the first symbol occurrerlce of each port is a

I
0-symbol.

Definition 2.8 (handshake trace) I
Thesetof handshaketraces with port structure A is denoted J)y AH and is defined
as I

{t: tE (aA)* 1\ (Va, s: a E A 1\ s::; t: 0::; len· (s!Oa) -len· (si1a)::; I): t}

D

Property 2.9

0. (f/J,f!J)H={c}

1. (:S;)· AH

2. (A 0 ,A•)H = (A•,Ao)H

D

Definition 2.10 (handshake structure)

D

0. A handshake structure S is a pair (pS, tS), in which pS is a port structure
and tS a set of handshake traces, i.e. tS Ç (pS)H.

1. The prefix ciosure is extended to handshake structures by

s'5: = (pS, (tS):;_)

2. Similarly, a handshake structure is :S;-closed if its trace set is.

Symbols p and t are used as operators on handshake structures. In the sequel R
and S denote handshake structures. Also, the following shorthands are used:

Handshake processes 51

0. p0 S = (pS)0

1. p• S = (pS)•

2. aS= a(pS)

3. iS= i(pS)

4. oS= o(pS)

2.3 Handshake processes

A handshake process will be defined as a handshake structure that satisfies five
conditions. Handshake processes are used to represent the external behavior
of a mechanism. Hence, handshake process (A, T) has no internat ports, i.e.
A on A • = 0 (condition 0). Furthermore, trace set T is required to be non-empty
(condition I).

In addition to the absence of internat ports and the presence of at least one
handshake trace, three more conditions wil! be imposed, relating to progress,
insensitivity to delays, and readiness to accept further inputs.

So far, we clearly distinguished physical objects such as mechanisms and
events, from mathematica! objects such as processes and symbols. Following
Hoare [Hoa85] and others, this distinction will be adhered to less strictly. When­
ever convenient, we use phrases such as "After process P has engaged in trace
t it is ready to accept input a".

Quiescence

Let t be a trace of handshake process P. After engaging in t, the environment
may be unable to obtain fmther output from P. Usually, this happens simply
because the behavior of P does not permit P to extend t with any output symbol.
Even if t can be extended with an output symbol, P may (nondeterministically)
choose not to do so, and remain idle. In either case, t is called a quiescent
trace [Mis84,Jon85]. Process P may leave quiescence after the environment has
supplied further input.

A handshake process wil! be represented by its quiescent traces. The set of
all (observable) traces is then the prefix ciosure of the set of quiescent traces.
The quiescent-trace set of a handshake process must inclttde the traces that have
no output successors, i.e. it must include all its passive traces.

52 Ha~ shake processes

Definition 2.11 (passive traces)

Let S be a handshake structure (pS may have internat ports) and let t be a trace
of tSS.

0. The successar set of t with respect to S, denoted by s c· (t, S), is

{a : a E aS A ta E tSS : a}

1. t is passive in S, denoted by pas · (t, S), when suc · (t, S) n oS = 0 .

2. S is passive when pas· (é, S) .

3. The passive restrietion of S, denoted by Pas· S , is the handshake structure

(pS, { t : t E tSS A pas· (t, S) : t})

0

The following property follows directly from the above definition.

Property 2.12

For handshake structure S we have Pas · S =Pas· s s.
0

For handshake process P, tP represents the set of quiescent traces. Condition 2
in the definition of a handshake process is therefore tPas· S Ç tS.

An alternative way to look at the notion of quiescence is suggested by the
following property.

Property 2.13

Let S be a handshake structure such that tPas· S Ç tS. Then

t E tS S = (:Ju : u E (oS)* : tu E tS)

Or put into words, for any trace t in tSS , there is a trace u ~onsisting of output
symbols only, such that tuis in tS. Phrased differently, a ha 'dshake processcan
always become quiescent by producing outputs only. Sine tu is a handshake
trace, sequence u contains at most one symbol of each port.

Handshake processes 53

Proof We derive:

t E tSS:

= { suc·(t,S)ÇiSuoS}

t E tSS: 1\ (pas· (t, S) V (::Ja : a E oS : ta E tSS:))

:=:} { tPas· S Ç tS; S is a handshake structure }

t E tS V (::la : a E oS : ta E tSS: 1\ a ~ suc· (ta, S))

Repeating the last two steps for the remaining outputs in suc· (ta, S) completes
the proof.

0

Reordering

Let P be a handshake process and let t be a an element of tPS:. Assume that,
after engaging in t, the environment sends signals along links a and b to P, in
that order, and that P is ready to receive them, that is, tab is also in tPS: .
When no assumptions are made about the delays involved, a and b may arrive
in the opposite order. Under such circumstances it is reasonable to require that
tba is also tPS:. Trace tba is said to re01·der trace tab [Mis84,JHJ89]. A similar
reordering must be allowed for two output symbols of P: for outputs c and d,
trace tde reorders ted.

A slightly more subtie reordering is relevant when two symbols of opposite
direction are involved, say input a and output e. Suppose tea is an element of
tPS:. Apparently the input a was not required by Pin order to output e. When a
had experienced less delay it would have arrived before the output of e. Hence,
trace tae reorders tea, provided that both tae and tea are handshake traces. The
converse, tea reorders tae, does not hold, because input a may be a prerequisite
for output e. A formalization of reordering of handshake traces is given by means
of a binary relation rB. where Bis a port structure (B may have internal ports).

Definition 2.14 (reorders)

r B is the smallest binary relation on BH with for all symbols a, b E (iB \ oB),
all symbols e, dE (oB\ iB), and all symbols e E (iB n oB):

0. ab rB ba

54

1. cd rE de

2. acrE ca

3. ae rE ea

4. ec rE ce

and for all handshaketraces r, s, t, u E BH:

5. t rE t

6. r rE s 1\ s rE t =? r rE t

7. r rE s 1\ t rE u =? rt rE su

provided that rt and su are handshake traces as well.

D

Hanf:ishake processes

This definition is based on the reorder relation "Ç" of [JH189], with two dif­
ferences . Firstly, r is restricted to handshake traces. Seco~dly, the relation is
extended to alphabets with common input and output symbols: Properties 3 and
4 are derived from 0 to 2 by requiring e to assume both the role of input and
that of output. When iE n oB = 0, relation r reduces to Ç cited above, albeit
restricted to handshake traces. Note that s r t =? len· s = len· t .

r B wilt usually be shortened to r when B is obvious from the context. Since
r is a preorder on BH, yr denotes the re order ciosure of hands hake-trace set T
and (r)· T denotes the reorder closedness of T (cf. Section 2' 1). Both operators
are lifted to handshake structures in the obvious way.

Property 2.15

Let B and C be compatible port structures, let s , t E BH, and Jlet S be handshake
structure. Then

0. (r)· BH

1. s r BuG t =? s rE t

2. s r t =? sIC r tIC

3. (r)· S =? (r) · (SIC)

4. (r)· S =? (r)· ss.
D

Handshake processes 55

Property 1 is a consequence of the judicious choice of the extension of r. Property
2 follows from 2.14. 7, and Property 3 is a corollary of 2.

Proof of 4. Let t E tS:S: and u E (pS)H. We derive:

t E tS:S: 1\ u r t

= { definition of :S:-closure }

(::Jv : v E (aS)* : tv E tS) 1\ u r t

=? { definition of r ; calculus }

(::Jv: v E (aS)*: tv EtS /\uv r tv)

=? {(r)·S}

(::Jv : v E (aS)* : uv E tS)

= { definition of :S:-closure }

u E tS:S:

D

Example 2.16

Implication (:S:)- S =? (:S:)· sr does not hold in genera!, as shown by the following
S. pS consistsof two passive ports, viz. a0 and b0

• By definition, iS= {a0 , bo}
and oS= { a1, bi}. The trace set of Sis given by tS = { aobo}S.

Obviously, we have (:S:) · S and aobo E tS. Also, with u = boao, we have
u E sr. However, prefix bo of u is not an element of sr.
D

Condition 3 in the definition of a handshake process states that tP must be
closedunder reordering. By Property 2.15.6, tPS is then reorder closedas wel!.

Receptiveness

A non-empty set of handshake traces that includes all its passive prefixes and
that is closed under reordering is a good candidate for the definition of handshake
processes. However, it tums out that certain operations on such handshake pro­
cesses, including parallel composition, are complicated in their definitions and
usage. A useful class of handshake processes with surprisingly simple properties
is obtained by imposing an additional requirement.

56 Handshake processes

Definition 2.17 (input extension)

Let B be a port structure, and let t, tu E BH. Handshake race tu is an input
extension of t in B, denoted by tu XE t, if u E (iB \oB)*

D

When B is obvious from the context, XE will be shortened o x . Also x is a
clearly a preorder. Hence, yx denotes the input-extension cl sure of handshake­
trace set T, and (x)· T denotes input-extension closedness. Both operators are
lifted to handshake structures in the obvious way. A handsh~ke structure whose
prefix ciosure is closed under input extension is called reá:ptive. The notion
of receptiveness is similar to that of [Dil89,JHJ89,Jos90], albeit restricted to
handshake traces.

Property 2.18

LetBand C be compatible port structures, let s, t E BH , and let S be handshake
structure. Then:

0. (x)· BH

1. S XEuC t ::::} S XE t

2. s x t ::::} sfC x tfC

3. (x)· S ::::} (x)· (SfC)

4. (x)· s::::} (x)· sr

5. (:S:). s ::::} (:S:). sx

6. (x)· ss.::::} (x)· (Pas· S)'S.

D

Condition 4 in the definition of a handshake process stat~s that trace set tP
must be receptive. As a result, the only obligation to be met !Dy the environment
is that it must adhere to the handshake protocol.

Handshake processes

By collecting the conditions stated so far, we obtain the complete definition of
handshake processes:

Handshake processes 57

Definition 2.19 (handshake process)

A handshake process is a handshake structure (A , T) that satisfies the following
conditions:

(no internal ports)

1. T -/0 (non-empty trace set)

2. t(Pas· (A, T)) Ç T (quiescence for passive traces)

3. (r)· T (reorder closed)

4. (x)· T :5. (receptive)

fl·A denotes the setof all handshake processes with port alphabet A.

D

Like CSP, handshake-process theory has no notion of faimess. Unlike CSP, there
is not a notion of divergence. Consequently, the various causes for quiescence

cannot be distinguished. In the sequel P and Q (possibly subscripted) denote
handshake processes. Unless stated otherwise, the word process is used as a
shorthand for handshake process.

For a port structure A the following generic processes are defined.

Definition 2.20

D

0. CHAOS· A is the least predictabie handshake process . lt can engage in a
handshake through any port at any time, and it can become quiescent at
any time:

CHAOS· A= (A, AH)

1. STOP· A never engages in a handshake communication through any of its
ports. Nevertheless, it does not refuse any input through a passive port; it
simply does not respond to such an input:

STOP · A= (A, {c}x)

2. RUN A is always wiJtingtoengage in a handshake through any of its ports:

RUN· A= Pas · CHAOS· A

58 Handshake processes

Note that CHAOS· (0,0) =RUN· (0,0) =STOP· (0,0) = ((0.0),{E}). There is
only one process with the empty port structure. More examples of handshake

processes are presenred nex t.

Example 2.21

0

0. Po is prepared to engage once in a handshake through u0
:

I. ? 1 is pre pa red to en gage once in a handshake throug h a •:

(u• , { ao, aoa 1})

2. P2 behaves like Po : it participates in a handshake through a0
, but it refuses

to acknowledge an input through b0
:

which equals

(o 0 U b0
• {é,bo

, aoa. 1, aan 1 bo, aoboo 1. boaoa 1
,noatao,noalaobo , aoo lbono ,aoboaloo, boaoa lno}/

Even for such a simple behavior as P2 the number of traces becomes considerable

(11 quiescent traces !).

State graphs

A clarifying representation of handshake processes of modest complexity is the

state graph accompani ed by a port structure. A state graph is a directed graph in

which a rcs are labe led by symbo ls of the alphabet of the process . The nodes of

a state graph are partitioned into a se t of quiescent nodes and a se t of transtent
nodes.

A non-empty subse t of the nodes con tai ns the so-called start nodes; often
there is exactly one start node. A path from a start node corresponds to the trace
that is obtained by listing the labels of the consecutive arcs in the path. The

empty path corresponds to the empty trace. A path ending in a quiescent node
corresponds to a quiescent trace. Di fferent paths corresponding to the same trace

Handshake processes 59

must either all end in quiescent nodes or all end in transient nodes. A state graph

is said to represent a handshake structure if the set of traces conesponding to the

paths that end in a quiescent node equals the set of quiescent traces (provided

that the accompanied port s tructures match as well).

The following conventions are used when drawing state graphs:

0. Quiescent nodes are depicted by open circles, and transient nodes by filled

ones.

I. A start node is enclosed by a concentric circle.

2. To avoid clutter, a node is occasionally depicted more than once. These

multiple occurrences are labelect with a number unique to that node.

3. For ciarity 's sake, a ques tion mark (exclamation mark) is attached to label s

denoting input (output) symbol s.

4. In some regularly drawn state graphs, the labeling of the arcs is incomplete.

Arcs forming two opposite sides of a rectangle are then assumed to have

the same label.

Example 2.22

0. Process P2 of the previous example is depicted by the following state graph:

~I :I :I :I
I . Process P3 is prepared to engage once in a handshake through either a 0 or

bo:

P3 contains 19 quiescent traces as depicted by:

60

D

Handshake processes

ao? a1! ao?

bo?

bo?

2. Process P4 is like P.1, except that the choice between the two handshakes
is made by the process itself:

P4 contains 2 1 quiescent traces as depicted by:

bo?

Trace ao is a quiescent trace. If P4 choses internally for a handshake
through 6° , no progress is made after trace ao. Similarly, P4 may refuse
to complete a handshake through a 0

•

The handshake processes below occur in handshake circuit · obtained by com­
pilation of Tangram programs. Each handshake process is identified by a name

Handshake processes 61

postfixed by a list of narnes enclosed by parentheses. From the narnes in the list
ports are constructed by means of port definitions. The o and • postfixes hint
at the activity of these ports. Substitution of a name by another name yields
an equivalent process, modulo renaming of the symbols. Altematively, the pro­
cess descriptions may be regarded as function definitions with lists of narnes as
domaio and processes as codomain.

Example 2.23

The handshake processes below specify the handshake components required for
the translation of the undirected subset of Tangram. Two examples, viz. NM/X
and NVAR describe non-receptive handshake structures. The directed handshake
components are presented in example 4.37. The behavior of most components is
represented by a state graph. The graphic symbol introduced for each component
wiJl be used in handshake-circuit diagrams in later chapters. Let a, b and c be
distinct names.

0. STOP· (a 0
) has port structure a0

. It does not respond toa request through
port a0

•

ao?
0 1>0

1. RUN- (a0
) has port structure a0

• It acknowledges a request through a0 and
returns to its initia! state.

ao?

0
2. CON(a0

, b•) is a connector. It has port structure a0 Ub• and each handshake
through a0 encloses a handshake through b•.

62 Ha dshake processes

3. OR · (a 0
, b• , c•) has port structure a 0 u b• u c•. Each h ndshake through a 0

encloses either a handshake through b• or one throug c• .

4. SEQ· (a0
, b• , c•) is a sequencer. It has port structure a? u b• u c•. A hand­

shake through a0 encloses both a handshake through b• and one through
c• , in that order.

b ~ c ~
The numbers at the ports b and c specify the order of handshakes. When
omitted, the order is counterclockwise, starting from the passive port.

5. DUP · (a 0
, b•) is a duplicator. lt has port structure a0 U b•. A handshake

through a0 encloses two handshakes through b•. The state graph can be
obtained from the state graph of the sequencer by renaming events co and
c 1 to bo and b1 respectively.

6. REP · (a 0
, b•) is a repeater. lt has port structure a0 U b•. A handshake

through a0 encloses an infinite repetition of handshakes through b• .

Handshake processas 63

bo!

Note that the handshake through port a is never completed.

7. PAR· (a0
, b•, c•) has port structure a0 U b• U c•. A handshake through a0

encloses both a handshake through b• and one through c•, in parallel.

A
~

8. N MIX· (a0
, b0

, c•) has port structure a0 U b0 U c•. A handshake through c•
is enclosed by a handshake through either a0 or b0

.

Note that NMIX · (a0
, b0

, c•) is not a handshake process, because it is not
receptive: for instance, trace ao may not be extended with bo. (NMIX
stands for Non-receptive Mixer; cf. Section 7.2.)

64 Handshake processes

I
9. MIK (a0

, b0
, c•) has the same port structure as NMIK a0

, b0
, c•) and is de-

fined as (Pas·NM/X. (a0
, b0

, c•r:; x)r. Process MIK (a , b0
, c•) is receptive

on account of Property 2.18.6. Hence, MIK (a0
, b0

, c• is a handshake pro­
cess. In environments where handshakes through a 0 d b0 never overlap,
MIX. (a0

, b0
, c•) may be replaced by a NMIX· (a0

, b0
, •) (cf. Section 7.2).

10. PAS · (a0
, b0

) has two passive ports, viz. a0 and b0
• t synchronizes each

handshake through a0 with a handshake through b0
•

0

In [Ka186] PAS· (a0
, b0

) was introduced as a passivator.

11. JOIN· (a0
, b0

, c•) resembles PAS· (a0
, b0

) , but has an additional active port
c• . A handshake through c• is enclosed by handshak es through both a 0

and b0
.

ao?

alv
~
0 ~

Note that JOIN · (a 0
, b0

, c•) and PAR · (a0
, b• , c•) only differ in their are

labelings and in their start nodes.

12. NV ARsoor (a0
, b0

) is a Boolean variabie with write port a0 ?Bool and read

Handshake processas 65

D

port b0 !Boot. In the state graph below, the symbol narnes a0 :fa/se, ao: true,

b, :fa/se and b1 : true are abbreviated by a 1, at, b 1 and bt respectively.

(x is used here as an instanee name of the NVAR component; the type
of the ports is assumed to be clear from the context.) Note that the state
diagram has two initial states. The environment may start with a read
request. NVAR then chooses nondeterministically between the values fa/se
and true.

For the same reason as NMIX, NVAR is not a handshake component: it
is not receptive. The receptive counterpart of NVAR is obtained by taking
input-extension ciosure of VAR foliowed by the reorder ciosure and the
passive restriction:

Process VAR tolerates a write request during read handshake and vice versa.

Note that all handshake processes of Example 2.23 are passive.

Pas and after

The passive restrietion of P, denoted Pas· P, has been defined as a handshake
structure with port structure pP; the trace set of Pas· P contains those prefixes
of tP that have input successors only (see Definition 2.11). Pas is clearly idem­
potent, and the passive restrietion of a handshake process cannot have an empty
trace set. Furthermore, it preserves receptiveness (Property 2.18.6). However,
Pas does not always preserve reorder closedness. Hence, Pas· P is in general
not a handshake process.

66 Ha dshake processes

Example 2.24

With reference to Example 2.22:

2. all handshake processes of Example 2.23 are fixpoints of Pas

D

Next we define the behavior of a handshake process a
1
ter trace t has been

observed.

Definition 2.25 (after)

Let t be a handshake trace. The handshake structure after· (t, S) is defined by:

after· (t, S) = (pS, {u: tu EtS: u})

D

Clearly, P = after· (E, P) . In genera!, however, after · (t, P) is nota handshake
process. For instance, a trace of after· (t, P) may start with an acknowledgement
to a request that occurred in t. For closed traces this is not a problem. A
handshake trace is closed if every handshake started has also been completed.

Definition 2.26 (closed trace)

Handshaketrace t, t E AH is closed, denoted by c/osed· t if len · (tfOa) =

len· (tfla) for all ports a E A .

D

Property 2.27

If t E tP <:; and closed· t then after· (t, P) is a ·handshake pröcess.

D

The complete partial order (flA, Ç) 67

Example 2.28

With reference to Examples 2.22 and 2.23:

0

2.4 The complete partial order (IT ·A, C)

In this sec ti on we analyze the structure of [1 ·A, i.e. the set of all processes
with port structure A. All processes in this section have port structure A. For
convenience, CHAOS· A will be abbreviated to CHAOS. This section follows the
lead of [BHR84,Hoa85].

Refinement order

First we introduce an order relation Ç among handshake structures.

Definition 2.29 (refinement)

Let S and T be handshake structures. S refines to T, denoted by S Ç T, if
tS;;;? tT .

0

Let P and Q be handshake processes. Paraphrasing Hoare ([Hoa85], page 132)
we may say that P Ç Q now means that Q is equal to P or better in that it is
less likely to become quiescent. Q is more predictabie than P, because if Q can
do something undesirable, P can do it too; and if Q can become quiescent, so
can P. CHAOS can do anything at any time, and can become quiescent at any
time. True to its name, it is the least predictabie and controllable of all handshake
processes; or in short the worst. Refinement Ç is clearly a partial order on [1 ·A,
with CHAOS as least element.

Expression P Ç Q can also be read as " P specifies Q", "Q satisfies P",
or "Q implements P". One of the main reasons to choose a nondeterministic
specification, is to allow the implementor to select the cheapest or otherwise most

68 Hai' dshake processas

attractive implementation that satisfies the specification. C nversely, nondeter­
minism in specifications permits the specificator to abstra t from many of the
implementation details.

Example 2.30

0. P Ç Pas · P .

And with reference to Example 2.22:

2. P3 !l Pz , and Pz !l P3 . Neither Pz, nor P3 can be refined any further.

0

Process P is maximal under Ç if any proper subset of tP violates the con­
ditions of the definition of handshake process. With the aid of a state graph, this
maximality can be easily checked. In terms of state graphs there are two ways
to reduce the trace set of the process it represents. One way js to turn a quiescent
node into a transient node. This is allowed only when at least one output are
leaves that node (for instanee the node reachable by trace qo in P4). So, in the
state graph of a maximal process all outputs must leave fr<i>m a transient node.
The other way to reduce the trace set is to remove one or more arcs. However,
elimination of an input are generally results in a process that violates receptive­
ness. Elimination of an output are is allowed only if its souree node is quiescent,
or if it shares its transient souree node with another output are. (Are b1 leaving
the node reached by trace bo in process P4 may be removed.) Of course, the
removal of one or more arcs must also leave the process reorder closed.

The behavior of an assembly in which process P is one of the components
may be described as a function F from processes (with port structure pP) to
processes. If P can be refined into Q, it is only reasonable to require that F· Q
is at least as good as F· P. In other words, F must then be order preserving.

Definition 2.31 (order preserving)

Function F from handshake structures to handshake structures is order preserving
(altematively called monotone or isotone) , if it preserves refihement ordering, i.e.
if

SÇT =? P.SÇF · T

0

The complete partial order (IJ· A, Ç) 69

Property 2.32

0. Let :::S be a preorder on traces. Then the :::5-ciosure on handshake structures
is order preserving.

1. Corollary: prefix closure, reorder ciosure and input-extension ciosure are
order preserving.

D

A property of handshake processes that proves useful in the implementation
of handshake components and handshake circuits is the following.

Definition 2.33 (initial when closed)

A handshake process P is initial-when-closed if for all closed traces t E tP'5. we
have

P Ç after· (t, P)

D

When a ciosed trace of such a process has been observed, we may assume that
the process is in an initia! state. All processes of Exarnple 2.23 are initial-when­
closed. None of the processes of Example 2.22 are.

The complete partial order

The greatest lower bound of a set of handshake processes is obtained by taking
the union of the respective trace sets.

Definition 2.34 (union)

The union of handshake structures S and T, denoted by Sn T, is defined as
(A, tS u tT) .

D

Property 2.35

If P and Q are handshake processes, then P n Q is a lso a handshake process.

D

In Section 2.5 we shall interpret P n Q as the nondeterrninistic composition of
processes P and Q. The least upper bound of a set of handshake processes does

70 Ha dshake processes

in general not exist in [1 ·A. If it exists, it is obtained by intersecting the trace
sets.

Definition 2.36 (intersection)
I

The intersection of handshake structures S and T, denoted hl y S UT is defined
as (A, tS n tT) .

0

For a chain of processes, it will be shown that the continueel U is a process.
I

Definition 2.37 (chain, limit)

0

0. An (ascending) chain is defined as an infinite sequence (i : 0 ::=; i : Si) of
handshake structures, such that si ç si+ l .

1. For chain (i : 0 ::=; i : Si) the limit is defined as the the continued
intersection of the handshake structures in the chain, viz.

which equals
(A, { t : (V i : 0 :::; i : t E tSi) : t})

Definition 2.38 (continuous)

Let F be a function from handshake structures to handshake structures and let
(i : 0 ::=; i : Si) be a chain of handshake structures. F is (upward) continuous if
it satisfies:

0

Continuity of a function from handshake structures to any OPO is defined simi­
larly.

Property 2.39

0. The containment of the passive restrietion is continuous:

(U i : 0 :::; i : tPas· Si Ç tSi)
= (tPas· (U i : 0 :S i : Si) Ç (U i : 0 :S i : Si))

The complete partial order <Il·A, Ç) 71

1. Let :::S be a preorder on traces. Then the :::S-closedness is continuous.

2. Corollary: prefix closedness, reorder closedness and input-extension closed­
ness are continuous.

Proof of 1 (i ranges over the natura) numbers). We derive:

tE (Ui:: Si)

= { definition of limit }

(Vi ::t E Si)

= { si are closed under ::S }

(Vi :: (Vu :u :::S t : u E Si))

= { calculus }

(Vu : u :::S t : (Vi :: u E Si))

= { definition of limit }

(Vu :u :::S t : u E (Ui :: Si))

0

Example 2.40

The ::S-closure is nat continuous in generaL Consider for instanee the chain (i :

0:::; i: Si), with s i = (a0 , {j: i :::; j : (aoa,)J}). Then (Ui:: s f) = (a0 , (a0)H)

and (Ui:: Si)~ = (a0
, 0) .

0

The following property claims continuity for two specific preorders on traces.

Property 2.41

0. r -closure is continuous.

1. x-closure is continuous.

Proof of 0. Let (i : 0 :S i : Si) be a chain and let t be a trace of (Ui :: S[) .
Furthermore, let Ui be the set {u : u E Si 1\ t r u : u} . Note that Ui depends on
t. Clearly, (i : 0 :S i : Ui) is also a chain. We derive:

72 Handshake processes

t E (Ui :: S[)

= { definitions of r-closui-e and of limit }

(Vi :: (3u: t r u: u E Si))

= { definition of ui }

(Vi :: (::Iu ::u E Ui))

= { (i : 0 :::; i : Ui) is chain; I ui I is finite }

(::Ij : j :2: 0 : (Vi : i :2: j : Ui = Uj))

= { (i : 0 :::; i : Ui) is chain }

(::Iu :: (Vi : i :2: 0 : u E Si))

{ definition of ui }

(::Iu: t r u: (Vi ::u E Si))

= { definitions of limit and of r-closure }

tE (Ui: : Sif

0

Theorem 2.42

The limit of a chain of processes is a process.

Proof Follows from the continuity of prefix closedness, reorder closedness,
input-extension closedness and containment of the passive restriction.

0

Definition 2.43 (complete partial order, CPO)

Partial order (Z, ::5) is complete if

0. Z contains a least element, and

1. every chain in Z has a limit.

0

Nondeterminism 73

Corollary 2.44

Partial order (f1·A, Ç) is a complete partial order with CHAOS A as least element
and (U i : 0 :::; i : Pi) as limit of ebains (i : 0 :::; i : Pi) .

0

Property 2.45

For chain (i : 0 :::; i : Si) we have for all j: Pj Ç (U i : 0 :::; i : Si) .

0

One reason why wetook all the trouble to prove that (f1·A, Ç) is a CPO, is
that the least fixpoint for equations of the farm P = F· P, with Fa continuous
function, can be constructed straightforwardly within a CPO. This allows the
definition of handshake processes by means of recursion. Recursive process
definitions will be discussed in Chapter 4.

2.5 N ondeterminism

In contrast with CSP, the maximal elements of the partial order Ç are not neces­
sarily deterministic. Nondeterministic behavior may exhibit itself in two farms:

0. a process may have the choice of doing an output or becoming quiescent;

I . a process may choose between two outputs, where the choice for one of
the outputs disables the other.

This is formalized below.

Definition 2.46 (deterministic handshake process)

Handshake process (A, T) is deterministic if for all distinct output symbols a and
b:

0. ta E y -5. => t ~ T

I. ta E y-5. 1\ tb E T -5. => tab E y-5.

0

74 Handshake processes

Example 2.47

All processes presented so far are deterrninistic, except P3 and P4 in Example
2.22 and OR-(a0

, b•, c•), MIX(a 0
, b0

, c•), NVARBoor(a0
, b0

) and VARBoor(a0
, b0

)

in Example 2.23, and, of course, CHAOS· A . RUN· A is deterrninistic only if A
consists exclusively of nonput ports and input ports. Note th~t NMIX. (a0

, b0
, c•)

is deterrninistic, albeit not receptive. NV AR Boot· (a 0
, b0

) \s nondeterministic,
because after a trace bo the variabie may reply with either bf :false or bo : true .

0

An interesting and useful classification of non-deterministic asynchronous
processes has been suggested by Tom Verhoeff [Ver89], on which we base the
following definition .

Definition 2.48 (statie and dynamic nondeterminism)

Nondeterrninistic process P is statically nondeterministic if it can be refined into
a deterrninistic process, and dynamically nondeterministic otberwise.

0

Example 2.49

With reference to Examples 2.22 and 2.23:

0

0. P4 and OR · (a 0
, b• , c•) are statically nondeterministic; the forrner can be

refined into (for instance!) P2 and the latter to CON (a0
, b•) with c• added

to its port structure.

1. P3 and MIX. (a0
, b0

, c•) are dynamically nondeterminis ie, in spite of their
maximality under Ç .

2. Note that the statically nondeterrninistic P4 can also be refined into the
dynamically nondeterrninistic P3 .

Dynamically nondeterministic processes require arbiters for th~ir implementation.
I

Nondeterminism 75

Nondeterministic composition

Process PnQ ("Por Q") behaves exactly like Por like Q. The choice between
P and Q is nondeterministic.

Property 2.50

D

0. Nondeterministic composition is idempotent, order preserving, commuta­
tive, associative, distributive and continuous.

1. PnQ ç P.

lf a process is specified by P n Q, the implementor is free to select either P or
Q as implementation. For order preserving F we obviously have

F · (P n Q) Ç F · P n P. Q

A stronger property of functions on handshake processes is [BHR84] is distribu­
tivity:

Definition 2.51 (distributivity)

D

0. A function F from handshake processes to handshake processes is distribu­
tive if

P. (P n Q) = P. P n P. Q

1. A function of two or more arguments is called distributive if it is distributive
in each argument separately.

Distributive functions are clearly order preserving. Nondeterministic composition
is distributive, since

Pn(QnR) = (PnQ)n(P n R)

Example 2.52

D

0. Let :::5 be a preorder on traces. Then the :::5 -closure on handshake structures
is distributive.

1. Corollary: prefix closure, reorder ciosure and input-extension ciosure are
distributive.

76 Haridshake processas

Chapter 3

Handshake circuits

3.0 Introduetion

The most interesting operation on handshake processes is parallel composition.
Parallel composition is defined only for connectable processes. Connectability
of handshake processes captures the idea that ports form the unit of conneetion
(as opposed to individual port symbols), and that a passive port can only be
connected to a single active port and vice versa. A precise definition will be
given later.

The communication between connectable handshake processes is asynchro­
nous: the sending of a signa! by one process and the reception of that signa! by
another process are two distinct events. Asynchronous communication is more
complicated than synchronous communication, because of the possible occurrence
of interference. The concept of interterenee with respect to voltage transitions
has been mentioned in Section 0.1. Interterenee with respect to symbols occurs
when one process sends a symbol and the other process is not ready to receive it.
The receptiveness of handshake processes and the imposed handshake protocol
exclude the possibility of interterence, thus yielding a relatively simple definition
for parallel composition.

Another complication is, however, the possibility of divergence: an un­
bounded amount of intemal communication, which cannot be distinguished ex­
temally from deadlock. From an implementation viewpoint divergence is unde­
sirable: it forms a drain on the power source, without being productive.

The extemal behavior of the parallel composition of connectable P and Q
will be denoted by P 11 Q, which is again a handshake process. Both intemal and
extemal behavior of the parallel composition of two processes will be analyzed

77

78 1andshake circuits

in detail in Section 3.1.
Section 3.2 introduces handshake circuits. A handsha circuit is a finite

set of pairwise connectable handshake processes. The exttmal behavior of a
handshake circuit is again a handshake process, and is uni ' uely defined by 11,

due to the associativity and commutativity of 11·

Handshake processes form a special class of so-called delay-insensitive pro­
cesses. Delay-insensitive processes and their parallel (de-~compositions have
been studied extensively (references will be given later). So~e facts about hand­
shake processes and their compositions are stated in terms o the existing theory
on delay-insensitivity in Appendix A, including:

• handshake processes are delay-insensitive;

• ports of handshake processes are independent;

• handshake circuits are free of interference.

3.1 Parallel composition

First we must agree on how to specify connect1v1ty betw~en two handshake
processes, say P and Q. A convenient way to specify conneotivity is by identity
of ports, that is, port a of P is connected to port b of Q if a and b consist of the
same sets of symbols. In order to exclude various forms of "part i al connee ti ons",
we require that ports of P and Q are either identical, or have disjoint symbol
sets: the port structures of P and Q must be compatible (cf. Definition 2.3).
Furthermore, we exclude connections between two passive ports or two active
ports, because this would imply the conneetion of outputs to <Dutputs. In short, P
and Q must be connectable. This notion is defined together with the reflection
of a port structure next.

Definition 3.0 (connectability, reftection)

0. Port structures A and B are connectable, denoted by ~ !Xl B, if

(a) A and B are compatible, and

(b) A o n B 0 = 0 and A • n B• = 0

1. Two handshake structures are connectable if their respe<ttive port structures

~. I

Parallel composition 79

2. The reftection of port structures A, denoted by A, is defined by:

D

Connectability and reftection enjoy the following obvious properties.

Property 3.1

0. A l><li/J

I.AI><lB=BI><lA

2. aA n aB = 0 ::::} A l><l B

3. A l><l A

4. A =A

D

Example 3.2

2. P l><l CHAOS · pP

D

In the sequel P and Q are connectable handshake processes. Now we are
ready to analyze the interaction between P and Q. Let C be the set of intemal
ports, viz. (p0 P n p•Q) U (p• P n p0 Q) , let port p E C , and let a be an element
of ap , such that a E (iP n oQ) . Furtherrnore, let t E tP:; and u E tQ:;, and let
this pair of traces specify the current state.

In genera!, tIC =I u IC , because symbols sent by one process need not have
arrived at the other process yet. Even if all sent symbols have arrived, t and u

may differ due to reordering. Assume that event a may occur next as an output

80 Handshake circuits

of Q, i.e. trace ua E tQ~. By outputing a, process Q eithe I starts a handshake
(if a E Op), or acknowledges a handshake (if a E lp). sicause at most one
symbol cao be on its way in a channel, we may conclude th t urp = tfp. The
question now is: is P ready to input a? I.e., is ta in tP~?

The following simple reasoning shows that this is so. Sin e Q 'is a handshake
process, trace u a must be a handshake trace, and therefore u ar p and ta r p are
also handshake traces. With t a handshake trace, ta must be a handshake trace
as well. Because P is receptive, it must be prepared to ex te ' d t with a. Hence,
ta E tP~: the aaival of a at P does oot cause interterenee Similar reasoning
holds for a E (oP n iQ), because of symmetry. Absence of ,!nterference for sets
of processes is defined in Appendix A.

The interaction through common ports restricts the behavior of P and Q; oot
all traces of P cao occur in the presence of Q and vice vetsa. Let the prefix­
closed trace sets P' and Q' denote the respective restricted behaviors. The above
reasoning suggests that P' r C = Q' r C. lt is because of this that the weave
[vdS85] of P and Q is useful in the definition of P 11 Q.

Definition 3.3 (weave)

For connectable handshake structures Rand S, wedefine the weave of Rand S,
denoted by R w S as

(A, {t: tE AH 1\ trpR E tR 1\ tfpS EtS: t})

where A = pR U pS .

D

The following properties will be used. Cf. [vdS85] for many of the proofs.

Property 3.4

Let R, S and T be three mutually connectable handshake stri.Jctures.

0. R w CHAOS· (0, 0) = R

l.RwS=SwR

2. (R w S) w T = R w (S w T)

D

Some properties of handshake structures are preserved with weaving.

Parallel composition

Property 3.5

Let R and S be connectable handshake structures.

0. (:S) · R 1\ (:S) · S => (:S) · (R w S)

I. (r)· R 1\ (r) · S => (r)· (R w S)

2. (x)· R 1\ (x)· S => (x)· (R w S)

Proof

0. cf. Property 1.17 in [vdS85].

81

I. Let r R, r s and r RS denote r pR, r ps and r pRups respectively. We
derive:

t E t(R w S) 1\ s r RS t

= { Definition 3.3 (weaving) }

tI aR E tR 1\ tI aS E tS 1\ s r RS t

=> { Property 2.15.2 (twice) }

tI aR E tR 1\ sI aR r RS tI aR 1\ ti aS E tS 1\ sI aS r R S ti aS

=> { Property 2.15.1 (twice) }

tI aR E tR 1\ sI aR r R tI aR 1\ tI aS E tS 1\ sI aS r s tI aS

=> { R and S are reorder closed }

sI aR E tR 1\ sI aS E tS

= { definition of weaving }

sE t(R w S)

2. Similar to I.

0

Property 3.6

Let R and S be connectable handshake structures.

I

82 ltlandshake circuits

1. tPas· (R w S) c t(Pas· R w Pas· S)

Pro of

0. cf. Property 1.18 in [vdS85].

1. Similar to Property 3.5.1.

D

The following property of weaving wiJl be used as a lemma in Theorem 3.12.

Property 3. 7

Let P and Q be handshake processes. Then

tE t(P:S w Q:S)
=? tE t(P w Q) :S V (::Ju : u E (oP U oQ)* 1\ tu E t(F:S w Q:S) :u =I c)

Proof LettE (pP u pQ)H. We derive:

tE t(P:S w Q:S)

= { definition of weaving }

tlaP E tP:S 1\ tiaQ E tQ:S

=? { Property 2.13 (twice) }

(::lv ,w: v E (oP)* 1\w E (oQ)*: (tlpP)v E tP 1\ (tipQ)w E tQ)

=? { Pand Q are receptive; Q is reorder closed }

::lv , w : v E (oP)* 1\ w E (oQ)*
(tvwlpP E tP 1\ tvwlpQ E tQ)
V(tvwlpPEtP:S 1\ tvwlpQEtQ:S 1\ (v=/c V w=/c))

=? { u= vw; definition of weaving (twice); calculus; trading }

tE t(P w Q):S V (::Ju: u E (oP U oQ)* 1\ tu E t(P:S w Q:S): u =I c)

D

I
So far we have ignored quiescence in analyzing the padHel composition of

two processes, by looking at the prefix closures of the trace sets only. Fortu­
nately, the weave also captures quiescence, because a para;llel composition is

Parallel composition 83

quiescent if and only if both components are. This makes the weave an attractive
composition operator. However, the weave of two processes is not a handshake
process, because of its intemal ports. By concealing the intemal ports and pro­
jection of the quiescent traces of the weave on the extemal ports, we obtain a
handshake structure that represents the extemally observable behavior of a par­
allel composition, in most cases. This form of parallel composition is known as
blending [vdS85].

Definition 3.8 (blending; external port structure)

0

0. The blend of handshake processes Pand Q, denoted by Pb Q, is defined
as

(P w Q)f e(pP u pQ)

where e(pP U pQ is the extemal port structure, defined next.

1. The externalport structure of port structure A, denoted by e A , is the port
structure A \ A, which is equivalent to (A 0

\ A •, A • \ A 0) (cf. Definition
2.3).

Unfortunately, the blend of two handshake processes is nota handshake process
in genera!, as shown by the following example.

Example 3.9

Consider the parallel composition of REP · (a0
, b•) and RUN · b0

. The former
includes the traces c, aobo and aobob1 bo , the latter includes c , bob I and bob1 bob1.

The handshake structure REP· (a0
, b•) w RUN· b0 contains exactly one trace,

viz. c. Noothertrace is quiescent: after trace ao processes REP· (a0 , b•) and
RUN b0 "play ping pong" indefinitely. Concealment of b has of course no effect
on this trace set. However, the resulting blend (a0

, { E}) is not a handshake
process, because it is not receptive. Trace ao does occur, and is quiescent as far
as the environment is concemed. If we ignore handshakes along b, we apparently
must accept (a0

, {c, ao}) as the behavior of REP· (a0 ,b•) 11 RUN· b0
•

0

The occurrence of an unbounded sequence of intemal events is known as infinite
chatter (cf. [vdS85] page 52) or infinite overtaking (cf. [Hoa85] page 80). The
traces that lead to such a bothersome state of affairs are called divergences.

84 Handshake circuits

Definition 3.10 (divergences)

For handshake structure (A, T) we define the divergences o (A, T), denoted by
div· (A, T), asthetrace set

{ t: (Vn: 0::; n: (3u: u E (A0 n A•)* 1\ tu ET: n lenl· u)): t}

0

Reeall that A0 n A• is the set of intemal ports of A. No e that a handshake
structure without intemal ports cannot have divergences. Th

1
set of divergences

of a reorder-closed handshake structure is also closed undeir reordering, as we
shall prove next.

Property 3.11

0. Let R be a prefix closed handshake structure. Then div· R Ç tR .

1. Let R be a reorder-closed handshake structure. Then dîv· R is also reorder
closed.

Proof

0. Follows immediately from the definition of div.

1. Let R = (A, T) . We derive:

t E tdiv· (A, T) 1\ s r t

{ Definition 3.10 (divergences) }

(Vn: 0::; n: (3u: u EX* 1\ tu ET: n < len· u)) '/\ s r t

= { calculus; Definition 2.14.7 }

(Vn : 0 ::; n : (3u : u E X* 1\ tu E T 1\ su r tu : n < l en· u))

= { T is reorder closed }

(Vn : 0::; n : (3u : u E X* 1\ su E T: n < len· u))

= { definition of div }

s E tdiv· (A, T)

0

Parallel composition 85

Theorem 3.12

Let P and Q be handshake processes. Then

Proof by mutual set inclusion.

Case (t(P w Q) U div(P -5. w Q -5.)) "5. C t(P -5. w Q-5.).

t E (t(P w Q) U div · (P -5. w Q -5.))"5.

=? { prefix ciosure distributes over U; Property 3.11.0 }

t E (t(P w Q) -5. . U t(P-5. w Q-5.) "5.)

= { tS Ç tS -5. ; weaving is monotonic }

t E t(P -5. w Q -5.) "5.

= { Property 3.5.0 }

tE t(P -5. w Q -5.)

Case t(P -5. w Q -5.) Ç (t(P w Q) U div(P -5. w Q -5.)) "5. .

Let trace t E t(P -5. w Q-5.) and let predicate Xn be defined as

tE t(P w Q) -5. V (3u : u E (oP U oQ)* 1\ tu E t(P-5. w Q -5.): n ~ len· u)

Predicate Xo holds trivially. Using Property 3.7 it follows that (Vn : 0 ~ n :
Xn =? Xn+I) Hence, by induction, we have (Vn: 0 ~ n: Xn) Equivalently:

tE t(P w Q) -5.
V (Vn : 0 ~ n : (:Ju : u E (oP U oQ)* 1\ tu E t(P -5. w Q -5.) : n ~ len· u))

The second term brings us very close to the definition of div (cf. Definition
3.10). However, u ranges over all outputs and not exclusively over in te mal
symbols. Fortunately, the number of extemal outputs in u is finite, because of
handshaking and the finite number of ports involved. Hence, as far as the second
term is considered, t is a prefix of a divergence of p -5. w Q -5. . Q.e.d.

D

86 andshake circuits

Corollary 3.13

LetPand Q be connectable handshake processes such that d "v· (P~ w Q~) = 0 .

0. (P w Q)~ = P~ w Q~

1. (P b Q)~ = P~ b Q~

[]

Having dealt with interference, quiescence, concealment, 1nd divergence, we
have done all the groundwork needed for the definition of P JII Q .

Definition 3.14 (parallel composition)

The parallel composition of connectable handshake processes P and Q is denoted
by P 11 Q and defined as

(A, (t(P w Q) U div· (P~ w Q~)) I A)

with A = e(pP U pQ) .

D

As a corollary to Theorem 3.12 we may conclude:

Property 3.15

(P 11 Q)~ = P~ b Q~

D

Theorem 3.16

The parallel composition of connectable handshake processe's P and Q, as de­
noted by P 11 Q, is a handshake process.

Proof Since P 11 Q is clear1y a handshake structure, it rerhains to prove that
P 11 Q satisfies the five conditions of Definition 2.19. The proof is structured
accordingly.

0. According to Definition 3.14 we have p(P 11 Q) = e(pP U pQ). From
Definition 3.8.1 it can directly be seen that e(pP U pQ) has no internal
ports.

Parallel composition 87

1. We derive:

true

:::::;. { tP and tQ are non empty }

E E tP'Sc !\ E E tQ'Sc

:::::;. { definition of blend }

E E t(P 'Sc b p 'Sc)

= { Property 3.15 }

E E t(P 11 Q)'Sc

:::::;. { calculus }

t(P 11 Q) =/0

2. We derive:

tPas· (P 11 Q)

{ Property 2. 12 }

tPas · (P 11 Q) 'Sc

= { Property 3. 15 }

tPas· (P'Sc b Q'Sc)

c { Property 3.6.1 }

t(Pas· p 'Sc b Pas· Q 'Sc)

{ Property 2.12 (twice) }

t(Pas· P b Pas · Q)

C { P and Q are quiescent for passive traces; property of b }

t(P b Q)

c { property of 11 }

t(P 11 Q)

Hence, P 11 Q is quiescent for passive traces.

88 Handshake circuits

3. We derive:

true

=} { P and Q are reorder closed }

(r)· P 1\ (r)· Q

=} { Properties 2.2.1 (twice) and 3.5.1 (twice) }

(r)· (P w Q) 1\ (r)· (P~ w Q~)

=} { Property 3.11.1 }

(r)· (P w Q) 1\ (r)· div· (P~ w Q~)

=} { Property 2.2.1 }

(r) · ((P w Q u div· (P~ w Q~))fe(AP u AQ))

= { definition of P 11 Q }

(r)·(P 11 Q)

4. We derive:

true

=} { P and Q are receptive }

(x)· P~ 1\ (x)· Q~

=} { Property 3.5.2 }

(x)· (P~ w Q~)

=} { Property 2.18 .3 }

(x)· (P~ b Q~)

= { Property 3.15 }

(x)· (P 11 Q)~

D

Parallel composition 89

Property 3.17

0

0. Parallel composition is commutative, associative, distributive and continu­
ous.

1. CHAOS· (0, 0) 11 P P.

In the remaioder of this thesis, examples involving parallel composition are
free of infinite overtaking. Parallel composition then reduces to the conceptually

simpler blending.

The way two processes are connected can be pictured by means of a con­
neetion diagram. These diagrams are also a convenient means to display the

connectivity pattem of handshake circuits (see e.g. the circuits of Section 1.2).
In a conneetion diagram, processes are drawn as circles with their ports drawn as

small circles attached to their periphery. Passive ports are represented by open
circles, active ports by tilled ones. A channel is represented by a line connect­
ing exactly one passive port to one active port of two distinct processes. The
direction of a channel is represented by an arrow indicating the direction of data

transport (when applicable).

Example 3.18

The parallel compositions below refer to handshake processes of Example 2.23 .

0. The parallel composition of two connectors connected "tail to head" is
again a connector:

a~c a-o-e
l . Connecting a connector to a process has the effect of renaming the port it

connects to:

a~c a-0-c

90 Handshake circuits

2. A port of a handshake process can effectively be concealed by connecting

it to a RUN component:

a b a -0----b

AJso:

=

b

3. An active port can be turned into a passive port by conneering it to a

passiva tor:

= e-b
4. A duplicator can be constructed from a sequencer and a mixer:

c

a -<riD--d = a ---e-d
b

Parallel composition 91

A duplicator can also be constructed from a PAR component and a mixer:

(:

a~d = a -6--d

b

It is interesting to campare the respective weaves. Trace a0 b0codo is a trace

of PAR · (a0 ,b•, c•) w MIX· (b0
,C

0 , d•) but not of SEQ· (a0 ,b• .. c•) w MIX ·
(b 0

, .o, d•). Fortrace aobodo the converse is true: it is quiescent only in

the sequencer based duplicator.

However, these differences in internal behavior are concealed to the exter­

nal observer.

5. Nondeterminism is not preserved under paralle l composition:

c

o~d = a -o-d

b

6. A nother realization of CON· (a0
, d•) is suggested by:

c

a~d =

b

In Chapter 6 we shall recognize examples 0, 1, 4 and 6 as in stances of property

6 .23 . Each of the above examples can also be viewed as a substitution or rewrite
rule: the composition at the left-hand side of an equality may be replaced by

the component at the right-hand side. These substitutions the refore a lso suggest

optimizations of hands hake circuits (cf. Sec ti on 7 .1).

0

We conclude this section with two properties of parallel compos1t1on that
prove useful for the initiaJization of handshake circuits (Section 7.6).

92 Handshake circuits

Property 3.19

0

0. The property "being passive" is preserved under parallel composition, that

is, P 11 Q is passive if P and Q are passive.

l. The property initial-when-closed is preserved under parallel composition.

3.2 Handshake circuits

Handshake circuits at last!

Definition 3.20 (handshake circuit)

0

0. A handshake circuit is a finite connectable set of handshake processes.

l. Let H be a fini te set of handshake structures. H is connectable, denotcd
by ~H, if all handshake structures are pairwise connectable, that is:

t?:lH = (V S, T : S E H /\ T E H /\ S =/ T : S txl T)

In particular, the empty set and the singleton set are handshake circuits. Note that

the required connectability excludes "broadcast" among handshake processes:
a port may occur in the port structures of at most two processes of a given
handshake circuit. Consistent with the terminology of Chapter I we shall refer
to the handshake processes of a handshake circuit as its handshake components.

Most of the operators of the previous section can be generalized to handshake
circuits in a straightforward fashion.

Definition 3.21

0. The externaLport structure of handshake circuit H, denoted by eH, is the
port structure

e(U P : P E H : pP)

l. fiS. = { P : P E H : p S. }

2. W · H = (w P : P E H : P)

Handshake circuits

0

3. B· H = (b P: P EH: P)

4.II·H=<II P:PEH:P)

The first definition relies on

A t><l B 1\ B t><l C 1\ C t><l A => e(A u B) t><l C

93

The last three definitions rely on the associativity and commutativity of weaving,
blending, and parallel composition, as well as on the existence of a null element
CHAOS· (0, 0) for all three operators. Many of the properties of the previous
section generalize similarly:

Corollary 3.22

For handshake circuit H we have:

0. div· (W· H~) = 0 => (W · H)~ = W· (H~)

1. div·(W·H~)=0 => II ·H=B·H

2. eH= P< II·H)

3. 11· H is a handshake process.

4. <II·H)~ =II·H~

0

The following properties relate to the set nature of a handshake circuit.

Property 3.23

0

0. 0 is a handshake circuit. Since STOP· (0, 0) is the unit of parallel compo­
sition of handshake processes, we have 11·0 =STOP· (0, 0) .

1. Let H and I be handshake circuits, such that t><l(H u I). Then H u I is a
handshake circuit, and

e(H u I) = e(eH u el)
li·(H u l) =<II·H) 11 <II·I)

94 Handshake circuits

As a corollary to Property 3.19, we may conclude that the behavior of a

handshake circuit constructed from passive components is, also passive. The

same holds for the property initial-when-closed.

Example 3.24

0. A three-way mixer is the natura! generalization of the t o-way mixer MIX.
A three-way mixer with a0

, b0 and C
0 as passive pJts and d• as active

port can be realized by

which is equivalent to

Pictorially this can be expressed as:

a a

= e

b b d

e

c

An N-way mixer (N :2 2) can be realized as a tree 10f N- 1 two-way
mixers. Although all trees exhibit the same behavior (à.e. define the same
N -way mixer process), response times to requests through different passive

ports may differ considerably. The degenerated case, ~ith all N-I mixers
linked into a list, is an extreme in this respect.

1. Similar to the N -way mixer, we may con si der N -way generalizations of
SEQ, PAR and OR. These three handshake circuits have one passive port
and N active ports, and can be constructed from N - I instances of the ir
two-way counterparts.

2. DUPN(a0
, b•) is one way to generalize the duplicator, with DUPr(a0

, b•) =
DUP· (a0 , b•), and for N > 1:

DUPw (a0
, b•) = DUPN- 1 · (a0

, biv _ 1) 11 DUP· (b'N_ 1, b•)

Handshake circuits 95

D

For each handshake through a we may expect 2N handshakes through port
b. With N = 90 and a rate of one handshake through b per nanosecond, it
takes approximately 10 18 seconds to complete a single handshake through
a 0

• Th is is a bout the estimated life time of the uni verse, and may present a
slight problem for the testing of a VLSI circuit that implements this chain
(see Section 7.7).

96 Handshake circuits

Chapter 4

Sequentia! handshake
processes

4.0 Introduetion

So far the quiescent trace set of a handshake process was specified in one of the
following forms: by enumeration, by a predicate, by a state graph, or by parallel
composition of other handshake processes.

For many handshake processes neither of the above forms may be convenient.
An example of such a process is the process that first behaves like P and then,
"after successful terminalion of P", behaves like Q. Of course, such sequentia/
composition of the handshake processes P and Q requires a notion of successful
termination of a process. A sequentia! handshake process is a handshake process
in which that notion is incorporated.

The aim of this chapter is to develop a model for sequentia! handshake pro­
cesses and a calculus for these processes. An important application of this calcu­
lus is the description of the handshake components required for the compilation
of Tangram. Another application is the semantics of Tangram itself.

4.1 Sequential handshake processes

A sequentia! handshake process is a handshake process, of which a subset of the
quiescent traces is designated as traces that lead to successful termination. In a
sequentia! composition these so-called terminal traces can act as antecedents to
traces of the subsequent sequentia! handshake process.

97

98 Sequentia/ han shake processas

Let T denote the set of quiescent traces and let U denot the set of terminal
traces of sequentia! handshake process P. Sets T and U mJst satisfy a number

of conditions, which will be introduced informally first.
1
1

For te.rminal handshake traces u, we require that for any. hanclshake trac~ v,
trace uv IS a handshake trace as well. Therefore, we requ e that all termmal
traces are closed.

Traces that are both terminal and quiescent form a speeial class of traces.
After such a trace, a non-deterministic choice is made whether to terminate suc­
cessfully or not. Hence, T n U does not need to be empty. I

Proper i~put extensions of ~erminal trace u, and reord~rings thereof ~orm
another special class of traces. Smce they are not closed, they jcannot be termmaL
They are not necessarily quiescent either. We choose not to record these traces
explicitely, but to require that (A , T U ux r) is a handshake process.

Reordering should of course not have an effect on termination. Hence, both
T and U must be closed under reordering. Combining the above leads to the
following definition .

Definition 4.0 (sequentia! handshake process)

Let P be a triple (A , T, U) , in which A is a port structure, and T and U are
subsets of AH . Furthermore, let V denote TU ux r . Triple P is a sequentia!
handshake process if the following conditions are satisfied (cf. Definition 2.19):

0. A0 nA•=0

1. V i 0

2. t(Pas· (A, V)) c V

3. (r)· T 1\ (r)· U

4. (x) · v:s and

5. (\:Iu : u E U : closed· u)

Trace set U is the set of terminal traces and T is the set öf quiescent traces.
Sequentia! handshake process P may be written as (pP, tP, uP) . The set of all
sequentia! handshake processes with port structure A is deno ed by I;· A .

0

Note that Conditions 0 to 4 closely mirror the corresponding conditions of the
definition of handshake processes. For brevity's sake, the word handshake may

Sequentia/ handshake processes 99

be omitted in "sequentia! handshake process". In the remaioder of this section
P and Q denote sequentia! handshake processes. The following property shows
their relation to (non-sequentia!) handshake processes.

Property 4.1

0

0. If (A, T, U) is a sequentia! handshake process then (A, T U ux r) is a
handshake process.

1. Corollary: if (A, T , 0) is a sequentia! handshake process then (A, T) is a
handshake process.

These properties inspire the following definition.

Definition 4.2 (permanent sequentia! process)

0

0. A sequentia! handshake process is permanent if its set of terminal traces is
empty.

1. A handshake process (A, T) is said to con·espond to the permanent se­
quentia! process (A, T , 0), and vice versa.

When P is a permanent sequentia! process, and no confusion can arise, we wil!
sametimes use P as if it is a handshake process and omit the phrase "the hand­
shake process corresponding to". In particular, permanent sequentia! processes
wil! be used to define the behavior of handshake components and handshake
circuits.

In [Hoa85] terminal traces are appended with a symbol .j, indicating suc­
cessful termination. A clear advantage of such an encoding is the absence of
the need to introduce another process model. To some extent, this advantage
is eroded when the extra rules that govem the use of .j have to be taken into
account. Moreover, the recording of the terminal traces in a separate set wiJl pay
off in the definitions of the various operators on sequentia! processes.

For a port structure A the following generic sequentia! processes are defined.

100 Sequentia/ handshake processes

Definition 4.3

0

0. CHAOS· A is the least predictabie sequentia) handshake process. It can en­
gage in a handshake through any port at any time, it ca become quiescent
at any time, and it may terminate successfully after an closed trace:

CHAOS- A~ (A, AH, {t: tE AH A c/osedl t: t})

1. RUN- A is always willing to engage in a handshake through any of its ports.
However, it never terminates:

RUN · A= (A, tPas· (A, AH) , 0)

2. STOP· A never engages in a handshake communication
1
through any of its

ports. Neither does it ever terminate successfully:

3. SKIP· A never engages in a handshake communication through any of its
ports. All it does is terminate successfully:

SKIP · A= (A, 0, {t=:})

CHAOS· A, RUN A, and STOP· A have also been defined as handshake processes
and have the sameset of quiescent traces as their non-sequentia! counterparts (cf.
Definition 2.20). In future reference to these processes the context will indicate
which variant is intended. RUN· A and STOP· A are permanent sequentia)
processes. Also note that:

• CHAOS · (0 , 0) = ((0, 0), { t=:}, { t=:})

• RUN· (0,0) = ((0 , 0),{t=:},0)

• STOP· (0,0) = ((0,0),{t=:},0)

• SKIP· (0,0) = ((0 , 0) , 0, {t=:})

lndeed, there are three sequentia) processes with the empty port structure.
I

Sequentia/ handshake processas 101

The CPO of sequential handshake processes

The set of sequentia! handshake processes with port structure A, denoted by
L:·A, can be analyzed in a way similar to our analysis of O·A. The respective
definitions, properties and theorems then bear close resemblance. In this subsec­
tion we rephrase the more significant results of Section 2.4 in terms of sequentia!
processes. All sequentia! processes in this subsection have port structure A. First
we introduce a partial order relation Ç among sequentia! processes.

Definition 4.4 (refinement)

Let P and Q be sequentia! processes with the same port structure. P refines to
Q, denoted by P Ç Q, if

tP 2 tQ and uP 2 uQ

0

Again, P Ç Q may be read as P refines to Q, P specifies Q, or Q implements
P. The least element in this order is CHAOS· A. A function from I:· A to L: ·A
is order preserving if it preserves refinement ordering.

Definition 4.5 (nondeterministic composition)

The nondeterministic composition of P and Q, denoted by P n Q , is defined as
(A , tPUtQ,uPUuQ) .

0

P n Q is the greatest Iower bound of P and Q in the partial order (I:· A, Ç) .
Later n will be generalized to sequentia! processes with unequal port structures.
A function from L: ·A to L: ·A is distributive if it distributes over nondeterministic
composition.

Definition 4.6 (intersection)

The intersection of P and Q, denoted by P U Q , is defined as

(A, tP n tQ , uP n uQ)

0

The intersection of two sequentia! processes is generally not a sequentia! process.

102 Sequentia/ handshake processas

However, with limit and chain defined as in Section 2.4 we arrive at the following,
hardly surprising, theorem.

Theorem 4.7

Partial order (L·A, Ç) is a CPO with CHAOS· A as least element
and (U i : 0 ::; i : P;) as limit of chain (i : 0 ::; i : Pi).

D

In accordance with Definition 2.38, function F from L ·A to [:·A is continuous
if it commutes with the limit operation.

Recursion

One way to define a sequentia! handshake process is by recursion, for example
as a fixpoint of a given function F, i.e. a solution of the equation P = F · P .
We conclude this section by instantiating the well-known fixpoint construction in
CPO's [BHR84,DP90].

Theorem 4.8

Let F be a continuous function from L·A to L·A , and let the n-fold composition
of F be denoted by pn. Then

(U n: 0::; n: pn. CHAOS)

is the least fixpoint of F.

Proof First we prove that the above limit is a fixpoint of F:

P. (Un: 0::; n: pn. CHAOS)

= { Continuity of F }

(Un: 0::; n: F· (Fn· CHAOS))

= { calculus }

(Un : 1 ::; n : pn ·CHAOS)

= { CHAOS Ç pn · CHAOS }

(Un : 0 ::; n : pn ·CHAOS)

It is also the least fixpoint, since (let Q be a fixpoint):

Process calculus

(Un: 0::; n: Fn· CHAOS)

C { CHAOS Ç Q and Fis order preserving }

(Un : 0 ::; n : Fn · Q)

{ Q is a fixpoint }

(Un : 0 ::; n : Q)

= { calculus }

Q

0

An application of this fixpoint theorem is given in the next section.

4.2 Process calculus

103

This section develops a calculus for sequentia) handshake processes. lt is re­
stricted to sequentia! processes with undirected ports, thereby excluding input
and output of data. Extensions to this calculus, including data communication
and assignments, are described informally in Section 4.4. The calculus includes
the foUowing operations: parallel composition, extension, concealment, nonde­
terministic composition, sequentia! composition, N -fold repetition , infinite rep­
etition, enclosure, and choice. The choice of the operators is inspired by the
syntax of Tangram.

Basic sequential processes

The following definition introduces four basic sequentia! processes.

Definition 4.9 (stop, skip, a 0
, and a•)

Let a be a name.

0. stop STOP· (0 , 0) = ((0,0), {c},0)

1. skip SKIP· (0,0) = ((0,0),0,{c})

2. ao = (a0
, {c}, {aoat})

3. a• = (a• , {ao}, {aoai})

0

104 Sequentia/ hant shake processes

Note that a0 may both denote a port structure and a sequenti process; the same

holds for a•. Generally, the context indicates which denotati n is intended.

Parallel composition

Definition 4.10 (parallel composition)

Let P and Q be two corrnectable sequentia! processes, and let A = e(pP u pQ).
The parallel composition of P and Q is denoted by P 11 Q a d defined by

0. p(P 11 Q) =A

1. t(P 11 Q) =
(tP w tQ U (uPl w tQ u tP w (uQ)x u div· (tP~ w tQ~))f A

2. u(P 11 Q) = (uP w uQ) fA

where the weave of trace sets V and W in the context of pP aild pQ is shorthand

for

{ t : t E (pP U pQ)H 1\ t f pP E V 1\ t f pQ E W : t}

0

This definition closely resembles Definition 3.14. The main actdition is the re­
quirement that both P and Q must agree on successful termination.

Property 4.11

0

0. P 11 Q is a sequentia! process.

1. Parallel composition is commutative, associative, distributive, and contin­
uous.

2. skip 11 P = P .

3. a0
11 a• = skip .

Process calculus 105

Conformant port structures

Connectability of port structures is a requirement for the parallel composition of
(sequentia!) handshake processes. In such a composition, two processes may only
share the opposite side of a channel. lf sequentia! processes share the same side
of a channel, a different requirement is imposed on the respective port structures:
they must be conformant.

Definition 4.12 (conformance)

Port structures A and B are conformant denoted by A M B, if

0. A and B arecompatible, and

1. A o n B• = 0 and A o n B• = 0 .

Two handshake structures are conformant if their respective port structures are.
Confonnance of sequentia! processes is defined similarly.

0

Confonnance is related to connectability by the following property.

Property 4.13

A M B = At><IB

0

Confonnance enjoys the following obvious properties.

Property 4.14

0. A M B = BMA.

1. B Ç A ::::} B M A. Consequently, AM 0 and AM A.

2. pA n pB = (/) A A and B are compatible ::::} A M B .

0

Extension

Some relations and operations on processes are defined only for processes with
equal port structures. Under such circumstances, the extension of the port struc­
ture of a process may be useful. The extension of P with confonnant port

106 Sequentia/ han ' shake processes

structure A is a sequentia! process that has port structure pP U A , and behaves
like P. The following definition relies on the fact that disjoint port structures are
both conformant and connectable.

Definition 4.15 (extension)

Let A M pP. The extension of P by A is denoted by (A) · P and defined as

P 11 SKIP · (A\ pP)

D

Property 4.16

Let A, B and pP be mutually conformant Then

0. (A) · P is a sequentia! process.

1. ((0,0))·P = P

2. (A) ·P = (A\ pP) ·P

3. (pP) ·P = P

4. (B) ·(A)·P = (A)·(B) ·P = (A u B) ·P

5. (A) ·stop STOP · A

6. (A)·skip = SKIP· A

D

The following property is helpfut in translating Tangram programs into hand­
shake circuits.

Property 4.17

Let A be a port structure and P a permanent sequentia! process. Then

(A) ·P = P 11 STOP · (A\ pP)

Of course, (A)· P is then also permanent.

D

Process calculus 107

Concealment

Concealment of a subset of the ports of sequentia! process P has the effect that
handshakes through these concealed ports occur without participation of the en­
vironment, and are even invisible to the environment. This concealment may
have the effect of hiding unbounded sequences of handshakes through the con­
cealed ports. These possible divergences are taken into account in the following
definition .

Definition 4.18 (concealment)

Let A M pP . The behavior of P with A concealed, denoted by I[A I PJI, is
defined as

(B, (tP u div· (pP u A, tP:S))iB, uPrB)

where B = pP \ A .

0

Concealment enjoys the following properties.

Property 4.19

Let A and B be port structures and P a sequentia! process such that A, B and
pP are mutually conformant Then

0

0. I [A I P] I is a sequentia! process.

1. I[A I PJI = I[A n pP I PJI

2. I[A II[B I FIIJI = I[A u BI P]l

3.1[(0,0)1PJI=P

The following property is helpful in translating Tangram programs into handshake
circuits.

Property 4.20

Let A be a port structure and P a permanent sequentia! process, such that
AM pP. Then

I[A I PJI = P 11 RUN· (A n pP)

108 Sequentia/ han shake processes

Sequentia! process I [A I P] I is then also permanent.

0

Nondeterministic composition

This subsection generalizes nondetenninistic composition of ~equential processes
with equal port structures to sequentia! processes with different, yet confonnant,
port structures.

Definition 4.21 (nondeterministic composition)

Let P M Q . The nondetenninistic composition of P and Q is denoted by
P n Q , and defined as

(pQ)·P n (pP)·Q

0

Property 4.22

Let P and Q be conformant sequentia! processes.

0

0. P n Q is a sequentia! process.

1. Nondetenninistic composition is idempotent, commutative, associative, dis­
tributive, and continuous (cf. continuity of sequentia! composition below).

2. P n CHAOS· pP =CHAOS· pP

Sequential composition

The sequentia! composition of P and Q first behaves like P and, upon success­
ful terminalion of P, continues to behave like Q. The definition of sequentia!
composition starts with the sequentia! composition of sequentia! processes with
equal port structures.

Process calculus 109

Definition 4.23 (sequential composition)

0. Let P and Q be handshake processes with port structure A. The sequentia!
composition of P and Q is denoted by P;A Q , and defined as

0

(A, tP u (uP; tQl, (uP; uQ)r)

where the sequentia! composition of trace sets V and W is defined by

V; W = { v , w : v E V A w E W : vw}

1. Let P and Q be handshake processes with conformant port structure. The
sequentia! composition of P and Q is denoted by P; Q , and defined as

(pQ)·P ;A (pP)·Q

where A = pP U pQ .

Note that if pP = pQ we have P ;pp Q P;Q.

Property 4.24

0. P; Q is a sequentia! process.

1. Sequentia! composition is associative and distributive.

2. skip; P = P = P; skip

3. stop; P = stop

4. P; stop == (pP, tP U uPx r, f/J) , which is clearly permanent.

0

The next property finds application in the definition of infinite repetition.

Property 4.25

Sequentia! composition is continuous in bath operands, that is

and

110 Sequentia/ handshake processes

We prove the Jatter.

Proof Continuity is proven for the terminal traces; the proof for the quiescent
traces is similar.

t E u(Ui :: P ; Qi)

= { definitions of U and sequentia! composition }

t E (ni :: (uP; uQil)

= { continuity of r-closure (Property 2.41) }

t E (ni :: (uP; uQi)l

{ definition of r-closure }

(:3u : t r u : u E (ni :: uP; uQi))

= { definitions of chain and sequentia! composition }

(::Ju : t r u : (Vi :: (::Jr, s : u= rs : r E uP 1\ s E uQi))

{ finite number of u and hence of s (cf. Property 2.4l) }

(:3u, r, s : t r u 1\ u= rs 1\ r E uP : (Vi :: (s E uQi)))

= { definition of limit; calculus }

(::Jr, s : t r r s 1\ rE uP: sE (ni :: uQi))

= { definitions of sequentia! composition, r-closure, and limit }

t E (uP; u(Ui :: Qi)l

= { definition of sequentia! composition }

tE u(P; (Ui :: Qi))

D

N-fold repetition

The 0-fold repetition of P behaves like skip. For positive JV,I the JV-fold repeti­
tion of P behaves like P, and after successful termination of P behaves like the
(JV - 1)-fold repetition of P.

Process calculus lil

Definition 4.26 (N-fold repetition)

Let N be a natura) number. The N -fold repetition of P is denoted by #N [P],
and defined as

D

Property 4.27

if N = 0

0 N > 0
fi

----> SKIP· pP
----> P;#(N- l)[P]

Let P be a sequentia) processes and let N be a natura) number.

0. #N[P] is a sequentia) process.

I. Finite repetition is continuous.

2. #N[stop] =stop , for N > 0.

3. #N [skip] =skip .

D

Finite repetition is not distributive, i.e. in general we do not have

#N[P n Q] = #N[P] n #N[Q]

Sequentia) process #N[P n Q] may choose between P and Q at every step of
the iteration; in the case of #N[P] n #N[Q] this choice is made only once. The
latter is a refinement of the former.

Infinite repetition

The infinite repetition of P behaves like an infinite sequentia) composition of
sequentia) process P , schematically suggested by P; P; P; ...

Definition 4.28 (infinite repetition)

The infinite repetition of P is denoted by #[P] and defined as the least fixpoint
of F, where F is defined by F- X= P; X.

D

This fi xpoint is the limit of the chain (i : 0 ::::; i : #i [P]; CHAOS. pP) as explained
in Section 4.1.

112 Sequentia/ handshake processas

Property 4.29

0. #[P] is a sequentia! process; it is àiso pennanent.

1. Infinite repetition is continuous.

2. P; #[P] = #[P]

3. #[stop]= stop

4. #[skip]= CHAOS· 0

D

It is interesting to campare these properties with Property 4.27. The last property
shows that infinite repetition of P cannot be regarded as the limit of the chain
(i : 0 :S i : #i[P]) . Infinite repetition is not distributive, for the same reason as
finite repetition.

Enelosure

The enelosure of a sequentia! process P by a passive handshake a0 (assume
a0 (j_ pP) first behaves like STOP· pP . After event ao it behaves like P, and if
P tenninates successfully, the enelosure tenninates successfully with event a 1•

Definition 4.30 (enclosure)

Let a0 be a port structure, such that a0 is not contained in pP . The enelosure
of P by a0 is denoted by a0

: P and defined as

(a0 U pP, t(STOP · pP) U ({ ao}; tP)r, ({ ao}; uP; {at})r)

0

Property 4.31

Let P be a sequentia! process, and let a and b be distinct mames, such that a0

and b0 are not contained in pP .

0. a0
: P is a sequentia! process.

1. Enelosure is distributive and continuous.

Process calculus 113

3. a0 :stop = STOP· a0

0

The last property, which may co me somewhat as a surprise, is a direct conse­
quence of the reordering in Definition 4.30.

Choice

Consicter the conformant sequentia! processes a 0
; P and b0

; Q . Sequentia! pro­
cesses of this form are called guarded processes. We are interested in a sequentia!
process that either behaves like a0

; P or like b0
; Q , such that the environment

may choose between the two sequentia! processes by either offering a0 or b0 .

This is quite different from a0
; P n b0

; Q , in which the choice between the
operands of n is made nondetenninistically.

The above choice is denoted by [a0
; P I b0

; Q] , and behaves like the se­
quentia! process a0

; p n b0
; Q ' except that traces ao and bo are not quiescent.

The choice construct can be generalized by allowing an enclosures as guarded
processes. Reeall that an enelosure is a sequentia! process of the fonn a 0

: P ,
This brings us to the following definitions.

Oeftuition 4.32 (guarded process)

A guarded process is a sequentia! process that cao be written as b0
; P or as

b0
: P . Port b0 is called the guard of the guarded process.

0

Reeall that b0 = b0
; skip = b0

: skip .

Definition 4.33 (choice)

Let P and Q be two conformant guarded processes, with disjoint guards p and q.

If P is an enelosure we require p rf. p 0 P and similarly for Q and q. The choice
between P and Q is denoted by [P I Q] , and defined as

(A , t((A) ·P) \ {qo} U t((A)·Q) \ {p0}, uP U uQ)

where A = pP U pQ .

0

114 Sequentia/ ha dshake processes

The difference with the nondeterministic composition of P a!Îld Q is rather subtle.
In contrast with nondeterministic composition trace po is nbt a quiescent trace,
unless it is a quiescent trace of P; similarly for trace qo and Q.

Property 4.34

Let P and Q be two conformant guarded processes.

0. [P I Q] is a sequentia! process.

1. Choice is commutative, distributive and continuous.

2. [a 0 :stop I b0 :stop]= STOP· (a 0 u b0
)

3. [ao; bo I bo; ao] = ao 11 bo

D

The sequentia! process denoted in the last property is

The choice construct can readily be generalized to provide a choice among N,
N > 0, guarded processes.

4.3 Examples

Since handshake processes correspond to permanent sequentia! handshake pro­
cesses, the calculus of Section 4.2 can be used to specify h3!hdshake processes.

Example 4.35

Most handshake processes of Example 2.23 are repeated be!ow, but now repre­
sented by expressions in the handshake calculus.

0. STOP· (a 0
) (a0)·stop

1. RUN· (a 0
) #[ao]

2. CON· (a 0
, b•) = #[a 0

: b•]

3. OR· (a 0
, b•, c•) = #[a 0

: (b. n c•)]

4. SEQ· (a 0
, b•, c•) = #[a 0

: (b•; c•)]

Directed communications 115

5. DUP· (a 0
, b•) = #[a0

: (b•; b•)]

6. REP· (a0 , b•) = (a 0
: #[b•])

7. PAR· (a 0
, b•, c•) = #[a0

: (b• 11 c•)]

8. MIX. (a0
, b0

, c•) = #[[a0
: c• I ba : c•]]

9. PAS· (a0
, b0

) = #[ao :ba]

10. JOIN· (a 0
, b0

, c•) = #[a 0
: b0

: c•]

11. COUNT N" (a 0
, b•) = #[a0

: #N[b•]]

0

In Chapter 2 we have established the above components to be initial-when-closed,
meaning that for each closed trace tin p "S. the process after· (t, P) is arefinement
of P itself. The property initial-when-closed can be checked syntactically, as
shown by the next property.

Property 4.36

A sequentia! handshake process that can be written in the form #[a 0
: P] or in

the form #[a0
: P I b0

: Q] is permanent. The corresponding (non-sequentia!)
handshake process is both passive and initial-when-closed.

0

Note that (a0) ·stop can also be written as #[a0 :stop]. As a matter of fact, all
handshake components required for the compilation of Tangram can be written
in one of the two forms of Property 4.36.

4.4 Directed communications

With the calculus introduced so far we can only specify sequentia! processes with
undirected ports. The handshake circuits obtained by the translation of Tangram
programs also require handshake components with input and output ports, such

as VARBoor (a 0
, b0

) in Example 2.23. This section extends the calculus of the
previous section to sequentia! handshake processes that communieale data. These
extensions are introduced informally and applied to the specification of handshake
components.

116 Sequentia/ han,dshake processes

Declarations

The first operand of the concealment construct I [A I P] I ma), also contain deela­
rations of variables. For instance, x : var T deelares variabJe x of type T. The
scope of such a deelaration is delineated by the enelosing b~acket pair.

Input

Assume port definition a0 ?T, where T is a finite set of values, such as Boot. The
sequentia! process a0 ?x has the above port structure, and re, ponds to any input
ao: v, with v ET, with an acknowledgement a1•

The x in a0 ?x is a variabie that denotes the incoming value (cf. Tangram),
I

and may be referenced elsewhere. In the sequentia! composi~1ion a0 ?x ; F · x the
second operand F x denotes a sequentia! process whose behavior depends on the
value of x . In the enelosure a0 ?x : F· x the acknowledgement to an incoming
value through a0 is postponed until after the successful termiriation of F x. Both
a0 ?x; F · x and a0 ?x : F · x are guarded processes and may therefore occur as
alternatives in choice processes.

With active port a•?T, sequentia! process a•? x requests an input by outputting
ao. Then it is receptive to all inputs a 1 : v with v E T. In the sequentia!
composition a•?x; F· x the behavior of sequentia! process F · x depends on the
value of x, being the most recent value input through a•.

Output

An example of a sequentia! process whose behavior depends on the value of x
is the output process a0 !E(x), where E(x) is an expression in which x occurs
as a free variable. The enelosure a0 !E(x) : P is a sequentia! process, that
behaves like P after communication ao, and, after successful termination of P
and successful evaluation of E, coneludes with communication a1 : E(x). The
value of E(x) may depend on P. For instance, the terminal tra,ces of b0 !x: a•?x
are bo ao a1 :v h :v, with v ranging over T . The active counterpart of a0 !E(x)
is a•!E(x).

Guarded selection

The equivalent of guarded commands (see Chapter 1) can be introduced as well.
With Ba Boolean expression, if B ----+ P fi behaves as P if B evaluates to true,
and is left unspecified otherwise. This generaiizes to selecrlions with multiple

I

guards in the well-known way.

Directed communications 117

Sequential process do B __... P od repeatedly behaves as P, as long as B
evaluates to true. In particular do false __... P od behaves like SKIP· (pP) and
do true __... P od behaves like #(P].

Examples

The handshake processes below illustrate the above extensions. Together with the
handshake processes of Example 2.23 they form a complete list of all handshake
components required for the compilation of Tangram programs.

Example 4.37

0. STOP(? ,T) · (a0
) accepts any input a: v, with v E T, but does not respond

to it:

1. STOP(! ,T) · (a0
) does not respond to a request for a value in T .

=

2. RUN(?,T) · (a0
) repeatedly responds to any input through a of type T with

the acknowledgement a 1:

3. RUN(' ,T> · (a0
) repeated1y responds to ao by an output of the form a 1 : v,

with v E T , and is clearly static nondeterministic:

=

4. With C a constant, CSTc (a0
) repeatedly responds to input a0 with output

a1 : C . Process CSTc (a0
) may be regarded as a deterministic refinement

of RUN(! ,T) · (a0
), provided that the value of C is in T.

118 Sequentia/ ha shake processes

=

5. Connector CON(?,T)· (a 0
, b•) repeatedly passes a value of set T arriving at

passive port a through active port b.

=

6. Connector CON(! ,T) · (a0
, b•) is similar to CON(? ,T) · (a0

, b•), except that it
is "demand driven", whereas the latter is "data driven't

=

7. UN(o ,T) · (a0
, b•) behaves rather similar to CON(',T) · (a0

, b•). The main
difference is that the value output through a0 is Dv, \Vhere v is the most
recent value input through b•, and D is a unary operator: If Dv is not
defined, the subsequent behavior is left unspecified. The type of port a0 is
OT.

=

Examples of unary operators are ' --, ' and ' - '.

8. ADAPT(r,ur(a0
, b•) is a specialization of UN(o,T)' (a0

, b•). For input values
in T it behaves as a connector. After reception of a r alue in U \ T its
subsequent behavior is left unspecified.

=
(a0 !T, b•?U)·

#[l[x: var TU U I a0 !x : (b•?x ; if x ET --) skip fi)JIJ

9. BIN(o,u,v) · (a0
, b•, c•) is the generalization of UN(o ,T) · (a 0

, b•) to binary
operators. The type of port a0 is UDV.

Directed communications 119

=
(a0 !(UDV), b•?u, c•?V)·
#[I [x : var U & y : var V

I a 0 !(x[Jy): (b•?x 11 c•?y)

Jl

Examples of binary operators are 'V','/\','=','<','+','-', and '*'·

10. M/X(!,T) · (a 0
, b0

, c•) is one of the two generalizations of MIX· (a0
, b0

, c•)
that wil! be considered. Incoming values of type T through ports a0 ?T and
b0 ?T are passed through c•!T. The subsequent acknowledgement through
c•!T is routed to the origin of the last message. M/X(!,T)" (a0 ,b0 ,c•) may
be called a multiplexer.

=
(a 0 ?T, b0 ?T, c•!T)·
#[l[x: var TI [a 0 ?x: c•!x I b0 ?x: c•!xJJIJ

11. M!Xo,rr(a 0
, b0

, c•) is the other generalization of MIX(a 0
, b0

, c•). Requests
through a0 !T and b0 !T are passed through c•?T. The subsequent value
input through c•?T is passed through the output port where the request
came from. An appropriate name for this process is demultiplexer.

=
(a 0 !T, b0 !T, c•?T)·
#[l[x: var T I [a0 !X: c•?x I b0 !X: c•?xJJIJ

If a multiplexer is considered as the data driven generalization of the mixer,
the demultiplexer is to be considered as its demand driven generalization.

12. 10/No,rr (a 0
, b0

, c•) generalizes the JOIN· (a 0
, b0

, c•) in a demand driven
way. Requests through a and b are joined before the request is passed
through c. The incoming data through c is forked through a and b.

=

120 Sequentia/ hanr shake processes

13. 10/N(! ,T)" (a0
, b0

, c') generalizes the JOIN (a0
, b0

, c') iJl). a data driven way,
though in a rather subtie way. The incoming data throdgh a is joined with
a request through b befare the value is passed through . An acknowledge­
ment through c leads to an acknowledgement through a and an output of
the value through b.

14. TRFr- (a0
, b' , c') is a transferrer. Repeatedly, after aqivation through a0

it actively requests for an input through port b'?T and actively passes the
message through port c'!T, befare it acknowledges through a 0

• It is a
key component in the translation of Tangram input, output and assignment
commands.

=
(a0

, b'?T, c'!T)·#[a0
: l[x : var TI b'?x; c'!x] l]

15. The Boolean variabie of Example 2.23 is generalized to1 a variabie of arbi­
trary type below.

=

Variabie x is declared outside the infinite repetition. This ensures that the
value output with b0 !x is the most recent value input through a 0

•

16. The last three components are needed for the translation of Tangram ' s
guarded commands. Component IF · (a0

, b' , c') responds to an ao by an
active input of a Boolean value through b'?Bool. If this value equals fa/se,
its subsequent behavior is left unspecified. If this value is true, an active
handshake through c• follows and after a subsequent a 1 the component
returns to its initia! state.

=
(a0

, b'?bool, c')·
#[a0

: I [x : var boot I b'?x; if x ___.., c• fi lil

Directed communications 121

0

17. Component DO(a0
, b•, c•) responds to an ao by an active input of a Boolean

value through b•?Bool. If this value equals true, an active c• comes next,
foliowed by another active input through b•?Bool. This repeats until the
value false arrives. When the value false arrives, the component returns to
its initia! state after an a 1•

(a0
, b•?bool, c•) ·

#[a0
: l[x : var boot I b•?x; do x -t c•; b•?x od JIJ

18. BAR- (b0
, c0

, tb•, te•, rb•, re•) is the most complex component for more than
one reason. Firstly, it has as many as 6 ports, organized in three pairs (b, c),
(tb , te) and (rb, re). Secondly, it combines two more or less independent
behaviors, from which the environment can choose. lts behavior is best
explained by the restricted forrn in which it will be used in compiled
Tangram programs: as a 2-phase behavior.

Phase 0 starts with a request fora Boolean output through b. This request is
forked through tb and rb. The disjunction of the incoming Boolean values
is then returned through b. Let x and y denote these incoming Boolean
values.

Phase 1 starts with a request through c0
. Depending on the values of x

and y, the component responds with an active handshake through te (if
x = true), or with an active handshake through re (if y = true). If both x
and y are true, the choice between te and re is nondeterministic. If both
values are false the subsequent behavior is left unspecified.

(b0 !boot, c0
, tb•?bool, te• , rb•?bool, re•)·

I[x, y: var boot
I #[[b0 !(x V y) : (lb•?x 11 rb•?y)

I c0
: if x -t te• 0 y -t re• fi

]

l I

122 Sequentia/ han shake processes "

Chapter 5

Tangram

5.0 Introduetion

Tangram is a VLSI-programming language based on CSP. The main construct
of Tangram is the command. Commands are either primitive cornmands, such as
a?x and .x := x + 1, or composite comrnands, such as R; S and R 11 S, where R
and S are commands themselves.

Execution of a command may result in a number of communications with
the environment through extemal ports. Another form of interaction with the
environment is the reading from and writing into extemal variables. A Tan­
gram program is a comrnand without extemal variables, prefixed by an explicit
definition of its extemal ports.

Not all compositions of commands are valid in Tangram. For instance, in
a sequentia! composition the two constituent commands must agree on the in­
put/output direction of their common ports. Also, two commands composed in
parallel may not write concurrently into a common variable. Section 5.1 defines
the syntax of Tangram, including these composition rules. The meaning of each
command is described informally.

For a subset of the Tangram commands the handshake-process denotations
are given in Section 5.3 . This subset is refeiTed to as Core Tangram.

5.1 Tangram

The main syntactic constructs of Tangram are program, comrnand, guarded­
command set, and expression. With each construct we will associate a so-called
alphabet structure: a set of typed ports and variables.

123

124 Tangram

Alphabet structures

Let Val denote the set of all values. Val includes the Bo Jean values Bool,
Boot = ifalse, true} , and the integer numbers. Val also ctntains the special
null value -. A type is a fini te subset of 'Val'. The set of 11 types is denoted
by P · Val, viz. the power set of Val. Ports and variables a e typed. The type
information of ports and variables is recorded in an alphabet structure.

Definition 5.0 (alphabet structure)

D

0. An alphabet structure A is a 5-tuple (p? A, p!A, v? A, v! J4, TA), where p? A,
p!A, v? A, v!A are sets of names. I

1. p? A is the set of input ports, and p!A the set of output ports. p? A and
p!A must be disjoint; their union is denoted by pA.

2. v?A is thesetof read ports and v!A thesetof write ports. Sets v?A and
v!A need not be disjoint, because a process may read from and write into
the same variable. The uni on of the two sets is denoted by vA.

3. pA and vA must be dis joint. The set of all ports, i.e. th:e uni on of pA and
vA, is denoted by cA.

4. TA is the type function of alphabet structure A:

TA: cA----* P· Val

It assigns a type to each name in cA.

5. The empty alphabet structure (0, 0, 0, 0, 0) is abbreviated to 0.

Symbols p?, p!, p, v?, v!, v and c are considered as operators on alphabet
structures. A concise notation for alphabet structures is based on so-called port
definitions. A port definiiion may have one of the four forms below.

Definition 5.1 (port definition)

Let a and x be narnes and let T be a finite subset of Val.

0. a-= ({a},0,0,0,{(a, -)}),a synchronization port.

1. a?T = ({a},0,0,0,{(a,T)}), an input port of type T.

Tangram 125

2. a!T = (0, {a},0,0, {(a,T)}), an output port of type T.

3. x : T = (0,0, {x}, {x}, {(.r ,T)}), a variabie of type T.

0

The following definition introduces a few notions that are useful when com­
posing Tangram commands and expressions. Let, for the remaioder of this chap­
ter, A and B be alphabet structures.

Definition 5.2 (relations and operations on alphabet structures)

0. A and B are type compatible if common narnes are either ports or variables

in both alphabet structures, and if these common narnes are of the same
type, i.e. if

(pA n v B = 0) 1\ (pB n vA = 0)
1\ (Aa : a E cA neB : TA· a = TB· a)

1. A and B are conformant, denoted by A M B, if they are type compatible
and if their common ports agree in direction:

A M B = A and B are type compatible
1\ (p?A n p!B = 0) 1\ (p?B n p!A = 0)

2. The conformant union of two conformant alphabet structures A and B is
denoted by A UM B, and is defined as the componentwise union of A and
B.

3. The conformant difference of two conformant alphabet structures A and B
is denoted by A \M B, and is defined as componentwise set difference of
A and B.

4. A and B are connectable, denoted by A l><l B, if they are type compatible,
have no common output ports, and variables with write access of one
structure do not occur in the other structure:

A txJ B = A and B are type compatible
1\ (p!A n p!B = 0) 1\ (vAn v!B = 0) 1\ (v!A n vB = 0)

5. The connectab/e union of two conformant alphabet structures A and B is
denoted by A U1><1 B, and is defined as componentwise union of A and B,
except for p?(A U1><1 B):

p?(A U1><1 B) = (p?A u p?B) \(p!A u p!B)

t.e . the output ports dominate.

126 Tangram

D

6. Let D denote a list of port definitions that define mutually conformant
alphabet structures. Then D defines the alphabet structure formed by the
conformant union of the alphabet structures of the individual port defini­
tions. This alphabet structure is denoted by AD.

Alphabet structures will be defined for Tangram programs, commands, guarded­
command sets and expressions. In many instances, these alphabet structures are
expressed in terms of the alphabet structures of the constituent constructs, with
an associated composition rule.

Programs

Let 5 be a command and let D be a list of port definitions. Then the following
table defines valid Tangram programs. (Let AS denote the alphabet structure of
command S.)

construct I Al phabet structure I rule
Program
(D) . .S' J AD I AS <;;; AD 1\ V AS = 0

The (composition) rule states that S has no external variables, and that all ex­
ternals ports must be defined in D . The behavior of program (D) · S is that of
command S. The program does not participate in communications though ports
in AD \ AS.

Primitive commands

The primitive commands of Tangram are listed in the table below. Let a be
declared0 as a port of type U, let :r be declared as a variabie of type V, and let
E be an expression with alphabet structure AE.

0 Declarations are di sc ussed with the block commancl.

Tangram 127

construct Alphabet structure rule

Commands

stop 0
skip 0

-a a
o?x a?U UM (0 , 0, 0, {.T}, {(.T , V)}) a-=/.r
a!E a!UUM AE a rf_ v?AE
.7: :=E (0 ,0,0, {:r}, {(.r, V)}) UM AE

• stop does not engage m any action; it corresponds to an unconditional

deadlock.

• skip doesnotengage in any action either, but it does terminate successfully.

• a is a synchronization command. The execution of a amounts to a syn­
chronization action through port a.

• a?:r: is an input command. The execution of a?.r involves the reception of

a value through port a and the subsequent storage of that value in variabie

x. If the received value is not in V the effect of a?x is left unspecified.

• a!E is an output command. The execution of a!E statts with the evaluation

of E. If this evaluation terminaces and the result is in U, this value is sent
through a. Otherwise the behavior of a!E is left unspecified : it may

for instanee re sult in deadlock, or in sending an unspecified value (E U)

through a.

• :r: := E is an assignment command. If the evaluation of E terminates and
the result value is in V , the execution of x := E assigns the result value of

this evaluation to x. Otherwise the behavior of x := E is left unspecified.

Composite commands

All composite commands, except the selection and repetition commands, are
listed in a table below. LetRand S be commands, N a natura! number, and let

D be a list of port definitions.

128 Tangram

construct Alphabet structure rule

Commands

H n S AR UM AS ARM AS
R;S ARUM AS ARM AS
#N[S] AS
#[S] AS
H jj S AR Uw AS AR 1XJ AS

I[D I SJ I AS\M AD ADMAS
(D)·S' ADUM AS AD M AS

• R n 5 is the nondeterministic composition of R and 8. This composi­
tion behaves either like R or like 5, where the selection between them is

nondeterministic. This command is included mainly for theoretica! interest.

• R; 5 is the sequentia/ composition of Rand 5 . It firs t behaves like R and,

when R terminates successfully , continues by behaving tike 5 . If R does

not terminate successfully, neither does R; 5 .

• #N[5] is the N-fold repetition of 5. Command #0[5] behaves Jike skip,
and for N > 0 the behavior of #N[5] is that of S; #(N - 1)[5] .

• #[5] is the infinire repetition of S. It never terminales successfully.

• R 11 S is the parallel composition of R and S. Note that R and S are

not altowed to have write access to common variables. However, R and

S may share input ports and variables with read access.

The behavior of this composition must agree with the behavior of both

R and S. lts execution involves the parallel execution of both R and S.
Communications on common ports must occur simultaneously in R and S.
The synchronized execution of a!E in one process and a?.r in the other

has also the effect of x := E .

• I[D I SJI is a h!ock (command) . A port definition in D has two roles in
this construct. Firstly, the type function of the alp ha bet structure of D
applies to the ports of S. Secondly, the narnes declared in D are hidden
(concealed) for the environment of the block. In other words, D declares

port and variabie names, whose scope is bound by the enclosing scope
brackets. The behavior of I [D I S] I is that of 5, with all interaction on
ports and variables declared in D conceated for the environment.

Tangram 129

• (D) · S extends the alphabet structure of S by the port definitions of D.
(D) · S is not prepared to engage in any communication through the ports
AD \M AS; otherwise it behaves like S.

Of the binary command operators, the semicolon binds the strongest, foliowed by
'IJ' and then 'n'. As usual, the bracket pair'(' and ')' may be used to overrule
this priority rule.

Guarded commands

The selection and repetition commands are listed in the table below. They intro­
duce so-called guarded-command sets [Dij75], a third syntactic category next to
programs and commands. Let B be a Boolean expression, S a command, and
let G and H be guarded-command sets.

construct I Alphabet structure I rule
Commands

if G fi I AG
doG od AG I

Guarded-commands sets
B-+S I ABUM AS I AB M AS
GOH AGU M AH AG M AH

• The execution of a selection command with a guarded-command set G
depends on the value of BB · G, the disjunction of the guards of G:

BB· 0
BB · (B-+ S)

BB · (G 0 H)

fa/se
= value of B
= BB· Gv BB· H

If BB · G evaluates to fa/se, the behavior of the selection command is left
unspecified: for instance, it may stop. Otherwise, the selection command
behaves like one of the commands of the guarded-command set for which
the guard evaluates to true.

• do God is Tangram's guarded repetition command. As long as BB · G
evaluates to true, one of the commands for which the guard evaluates to
true is selected for execution. When BB · G evaluates to fa/se, doG od
terminates successfully. Accordingly, do od is equivalent to skip.

130 Tangram

Expressions I
Expressions form a fourth syntactic category in Tangram. T~ey occur in assign­
ments, output commands and guards. The four forms of expr~ssions are listed in
the table below. Let E and F be expressions, x a variabie declared of type V,
and let C be a constant.

construct Alphabet structure rule I
Expressions I
c (/J

l x (0,0, {x},0, {(x, V)})
DE AE
EDF AE UM AF AEMAF

• The value of expression C is simply the value of constant C; its type is
{ C }. The evaluation of expression C always terminates successfully.

• lf .x is declared as a variable, then x is also an expression with type V.
I

The value of .x is the value of the variable. The initia! value of .x is in V,
but otherwise unspecified. A program may therefore start with b!.x as in
shift registers of Section 1.3. Successful terminatien is guaranteed.

• DE is an expression constructed from expression E an'd a unary operator
'D'. The type of DE is the set of values obtained by applying D to all
elements of the type of E. The evaluation of DE terminates successfully
if that of E does and the operator 'D' is defined for the value of E. If
the evaluation of E tenninates successfully the value of DE is obtained
by applying D to the value of E .

• EDF is the natura! generalization of DE to binary operators.

5.2 Tangram semantics

In Chapter 6 we develop a mapping from Tangram programs! to handshake cir­
cuits. The (external) behavior of such a handshake circuit has been defined as
the handshake process obtained by the parallel composition of its constituent
handshake components (cf. Chapter 3). In order to relate a compiled handshake
circuit to the original Tangram program, a handshake-process 1denotation of that
Tangram program is required. Given such a denotation, it is sensible to require
that the extemal behavior of the compiled handshake circuit 's a refinement of

Tangram semantics 131

that handshake-process denotation. In this section we investigate the semantics
of Tangram in terms of (sequentia!) handshake processes.

There are two viabie approaches to obtain a handshake-process denotation of
a Tangram program:

0. the direct approach in which a sequentia! handshake processes is associated
with each Tangram command;

I. the indirect approach comprising a denotation in terms of an ex1stmg
process model (such as the well-known synchronous failures/divergences
model of CSP) and a mapping from that model to handshake processes.

The direct approach is pursued in this thesis, and is discussed next. The indirect
approach is discussed in Appendix B.

Direct approach

We want to associate a sequentia! handshake process with each Tangram com­
mand. An issue with far-reaching consequences is the choice between a passive
or an active implementation for each Tangram port. Tangram itself does not give
much of a clue to this, except that choice favors passive ports (see Section 4.2),
and read/write accesses to external variables must be through active ports (cf.
VAR in Example 2.23).

Also connectability requirements in the case of parallel composition have to
be considered in the choice between passive or active port implementations. Note
e.g. that a Tangram command without output ports is connectable to itself, which
is obviously not true for a (sequentia!) handshake process. Another complication
is that braadcast in Tangram (i.e. common ports are not concealed with parallel
composition) has no counterpart in sequentia! handshake processes.

We shall ignore the latter complications for a while and first consicter two
simple strategies:

• directed mappings, viz. inputs passive and outputs active, or vice versa;

• uniform mappings, viz. the all-passive mapping (all ports implemented
passively) or the all-aclive mapping (all ports implemented actively).

Both strategies are viable. Directed mappings have the advantage that directed
point-point channels do not give rise to connectability violations. However, a
provision has to be made for undirected channels and braadcast in Tangram. The
directed mapping "inputs active and outputs passive" results in cheaper circuits
than the other directed mapping [Mar89].

132 Tangram

A uniform mapping leads to a simpte translation strat~y, as is shown in
Chapter 6. After some simpte loc al optimizations (cf. Sect~on 7 .1) circuits are
obtained that are camparabie in cost and performance with t e circuits obtained
by the directed mappings. In the sequel we shall consider uniform mappings
only.

For both uniform mappings the notions of conformanee of (Tangram) alphabet
structures and conformanee of (handshake) port structures fu~y agree. However,
also for both choices, parallel composition of sequentia! hfndshake processes
requires redefinition, since connectability is satisfied only in ~rivial cases.

Consider connectable Tangram commands S and T, and lclt the corresponding
compiled handshake circuits be denoted by C · S and C · T. In genera!, these
handshake circuits cannot be connected to form a larger har\dshake circuit, be­
cause of connectability violations: some form of "glue" han~shake components
is needed. We first campare the all-passive and the all-active mappings:

• All-passive tends to result in expensive handshake circuits: here we pay
the price for receptiveness, especially for passive input ports (see also
Section 7.2). More importantly, glue components that synchronize passive
handshakes cannot be realized, because there is not any way to enforce
synchronization between two passive two-phase handshakes.

• All-active is relatively straightforward, and cheap. Mor:eover, passive glue
can be realized: e.g. a passivator synchronizes two active handshakes.
Moreover, with a JOIN as glue component, the common ports of a par­
allel composition remain accessible for the environment, thus providing
the equivalent of broadcast. All-active is also consistent with the require­
ment for active read/write access to extemal variables. However, all-active
excludes the choice construct, at least with two-phase handshaking.

The all-active approach is clearly favored by the above analysis, and is there­
fore adopted for the semantics of Tangram. For Core Tangra~ such a denotation
will be given in the next subsection. We expect that this approach can be ex­
tended to full Tangram. The price we pay is that a choice copstruct in Tangram
is not accommodated for.

5.3 Core Tangram

Core Tangram is obtained by reducing Val to {-} , and by subsequent weeding out
all constrocts that have become meaningless or redundant. The resulting language

Gore Tangram 133

is then defined in terms of sequentia! handshake processes. With - as only value,
the Tangram distinction between input and output disappears. Also, the concept
of storage is no Jonger meaningful. Alphabet structures in Core Tangram have
the form:

(p?A, 0,0,0, {-}).

Consequently, an alphabet structures does not contain more information than
a set of port names. Also, the notions type compatibility, conformanee and
connectability of alphabet structures become void: all alphabet structures are
both conformant and connectable. For the remainder of this section alphabet
structures contain input ports only, all of type { - }. Note also that the syntactic
categories expressiQn and guarded-command set are meaningless when Val = {-}.

Definition 5.3 (port structure of an alphabet structure)

Let A be a alphabet structure of the form (p? A , 0, 0, 0, { - }) . The handshake
expansion of A, denoted by 'H · A, is defined as

(Ua : a E p? A : a•)

D

Clearly, ('H· A)0 = 0 . The next definition gives the sequentia! handshake-process
denotations for Core Tangram commands.

Definition 5.4 (Core Tangram commands)

Let a be a name, D a list of port definitions, N a natura! number, and S and
T Core Tangram commands. The ten commands of Core Tangram and their
sequentia! handshake-processes denotations are enumerated below.

0. 'H · skip = skip

1. 'H · stop = stop

3. 'H · ((D)·S) = ('H· D) ·('H · S)

4. 'H· (Sn T) = 'H· S n 'H· T

5. 'H· (S;T) = 'H · S; 'H· T

6. 'H · (#N[S]) = #N['H · S]

134 Tangram

7. H· (#[S]) = #[H · S]

8. H· (S 11 T) = H · S 11 H · T , providedAS nAT = 0A.
A general parallel composition is defined below.

9. H· I[D I SJI = I[H· DI H· S]l

0

General parallel composition in Core Tangram in the ab9ve context requires
an alternative form of parallel composition of sequentia! ha'ndshake processes.
This alternative must deal with common active ports and broadcast. A conse­
quence of the latter is that we do not need to worry about divergences! It is
presumably possible to base the definition of this form of parallel composition
on the existing definition by introducing glue handshake processes . (For perma­
nent processes this is shown in Chapter 6.) However, this seems to result in a
relatively ugly definition, and the successful termination aspect is hard to deal
with. A simpler and more direct alternative is developed nexl.

Consider sequentia! handshake processes P and Q. L~t a be a common
(active) port of Pand Q , and let trace t satisfy tI pP E tP<5. and similarly for Q:
trace t may be observed when P and Q operate in parallel. Assume furthermore
that ao would lead P subsequently into a quiescent state (i.e. tao E tP), but that
Q is not prepared to participate in ao (i.e. t ao ~ tQ <5.). In s1,1ch a situation, the
parallel composition of P and Q is quiescent after trace t , even if tI pP ~ tP

or tI pQ ~ tQ . This analysis shows that the weave of P an;d Q is insuftleient
to describe the effect of parallel composition. In other words: outputs cannot be
synchronized.

The following definition of parallel composition is based on the observation
that the inability of one process to participate in a common output wil! force the
composite into a quiescent state.

Definition 5.5 (parallel composition in Core Tangram)

Let S and T be conneetab ie Tangram commands. Let P = H · S and Q = H · T .

••
0. H · (S 11 T) = H· S 11 H · T

••
I. where P 11 Q denotes the parallel composition of al~-active processes,

defined as

(pP U pQ , tP8 w tQ U tP w tQ8 , uP w uQ)

Gore Tangram 135

where weaving of trace sets is used as in Definition 3.14.

2. where ps is the s ciosure of P, based on the preorder s on handshake
traces:

s St = (::Ju: u E (oP)* : su = t)

s is a prefix of t that can be extended to t with outputs only.

D

Now that we have defined the parallel composition of connectable Tangram com­
mands. we can complete the definition of the semantics of Core Tangram.

Definition 5.6 (Core Tangram program)

A Core Tangram program is an extension command of the form (D)·S, such that
AS ç AD.

D

In Chapter 6 we also use the "repeatable go" of 'H · T.

Definition 5.7 (repeatable go)

Let P be a sequentia! handshake process. The repeatable go of P, denoted by
t>* · P, is the sequentia! handshake process

#[t> o : P]

where port name t> is pronounced as "go".

D

Consider t>* · 'H · T. The environment may start the execution of T by sending
a t> 0 . If T terminates successfully t>* · 'H · T will reply with a t> 1. After event
t> 1 the handshake process is ready for another execution of T. Note also that
t>* · 'H · T is passive and initial-when-closed.

Function 'H defines a semantics for Tangram. We shall refer to this semantics
as handshake semantics of Tangram. Extending 'H to full Tangram relies on the
extension of the calculus in Chapter 4. In Chapter 6 we assume that 'H has been
extended to cover all Tangram.

136 Tangram

Chapter 6

Tangram -----+ handshake
circuits

6.0 Introduetion

The topic of this chapter is the translation of Tangram programs into handshake
circuits. Let T be a Tangram program. In Chapter 5 we have defined the meaning
of T as the handshake process H · T. The translation to handshake circuits is
presented as a mathematica! function C, from the set of Tangram programs to
the set of handshake circuits. Thus, C · T is a handshake circuit, and handshake
process 11 · C · T is the behavior of that circuit. Function C will be designed such
that

r>* · H · T = 11 · C. T

where r>*·P was defined as#[r> 0
: P] (cf. Definition 5.7). That is, the translation

preserves all the nondetenninism of the program. From a practical viewpoint it
is suftleient to realize

r>*·H·T ç II·C·T
in which the behavior of the handshake circuit is a refinement of the handshake
behavior of the Tangram program. It may be expected that this relaxed form
results in cheaper handshake circuits. The advantage of defining the most nonde­
terministic handshake circuit of T is that many alternative translation functions
that synthesize more deterministic circuits can readily be derived from it. Some
of these alternatives will be indicated.

The translation function C has been described briefly and incompletely in
[vBKR*91]. A predecessor of the translation method [vBRS88] is organized

137

138 Tangram --+ 'handshake circuits

quite differently, but yields essentially the same handsh4 e circuits. Similar
syntax-directed translation methods have been presented in [BM88,BS89,Bro90].
A major difference, however, is that these methods translat~ directly into some

I
form of asynchronous gate-level circuits with a specific timmg discipline.

The translation of Tangram programs into handshake oircuits is syntax di­
rected, that is, the compilation function C is structured acc6rding to the syntax
of Tangram. This technique is conveniently introduced by 9eans of an example,
in which we apply C to cammand T. This example will als~ be used to explain
a graphical representation of the compilation function.

a b

The concentric circles enclosing T denote the application of function C to the
Tangram command T. The peripheral open circle represents the passive port t>
and the peripheral filled circles represent the active ports of the compiled circuit.
Now, suppose that T is of the form R; S, such that the alphabet structures of R
and S are disjoint Syntax-directed translation suggests to construct the handshake
circuit forT from the two handshake circuits obtained by the ~ranslation of R and
S. These subcircuits behave like #[l [> 0

: 'H· R] and #[r [> 0 l 'H · S] respectively
(with activation ports l t> and r t>). The sequentia! activation of these two circuits
can be enforced by connecting them to a sequencer as in

rt>

After the circuit is activated through t>, by t>o, the sequencer will activate the
circuit corresponding to R with l t>o. Successful termination of R, is acknowl­
edged by l t> 1, to which sequencer responds with r t>o. If S also terminates
successfully it will indicate so by r t> 1, and the execution of R; S is completed
by t> 1• Then the circuit is in its initia! state, available for another execution of
R;S.

Gompi/ation tunetion 139

When Rand S have ports in common, the translation of R; Sis only slightly
more complicated. Given the disjoint nature of the compiled subcircuits, a "glue"
component is required to give both R and S access to a single external port. A
mixer for each common port, together with proper renaming of the involved
ports, results in the desired handshake circuit. In the circuit below, it is assumed
that command R has ports a and b and that command S has ports b and c.

The general translation of Tangram commands of the form R; S is described
later. The significanee of the above suggested approach is that the compilation
function can now be applied recursively toR and S independently. The required
port renaming wiJl be made more precise later.

Section 6.1 presents the translation of Tangram programs in a semiformal
manner. For each Tangram production rule (cf. Section 5.1) a corresponding
compilation rule is defined, supported by a graphical version of it and an opera­
tional interpretation. The required handshake components have been introduced
in Examples 2.23, 4.35, and 4.37.

The aim of Section 6.2 is to formalize the discussed equivalence between
Tangram programs and the corresponding handshake circuits in the Compilation
Theorem. The scope of the Compilation Theorem is restricted to Core Tangram,
as a consequence of similar restrictions in 7-î and the handshake calculus in
Section 4.2.

6.1 Compilation function

The translation of Tangram into handshake circuits is defined by means of com­
pilation function C. The syntax-directed organization of C makes it necessary
to include all syntactic categories of Tangram in the domain of C, viz. program,
command, guarded-command set, and expression. The application of C to an
element of each of these categones results in a handshake circuit. The port struc-

I40 Tangram ____, handshake circuits

tures and behaviors of the handshake circuits corresponding to these syntactic
categories are introduced informally below.

• Let S be a Tangram command. The port structure of IC· S consists of the
passive activation port 1> 0 and an active port correspoQding toeach port of

I
alphabet structure AS. A handshake through 1> 0 results in the execution of
S, according to the handshake semantics of Tangram discussed in Chapter
5.

• Let T be a Tangram program. The port structure an behavior are those
of cammand T.

• Let G be a non-empty guarded-command set in TangJam. The handshake
circuit C · G has, in addition to the handshake ports that stem from its
alphabet structure, two passive ports, viz. b0 and 1> 0

• Port b0 is a Boolean
output port through which the environment may colleQ:t the disjunction of
the guards. Port 1> 0 is the activation port through which the appropriate
guarded command is selected for execution.

• Let E be aTangram expression. The handshake circuit[C· E has a passive
output port e0 through which the value of E is output. Por each variabie x
that occurs in E the circuit C· E has a single active read port rx•. Multiple
occurrences of x share the same read port.

The handshake circuits for the four syntactic categories are depicted below. Here
i and o denote an input and an output port respectively, rx and wx denote the
read portand write port of a variabie x, and the other ports are explained above.

rx wx rx wx

C·S C·T

bA(
i Ka rx~e
rx wx

C·G C·E

Gompi/ation tunetion 141

In the presentation of the compilation function C the grouping of syntactic
constructs of Chapter 5 is followed. The order of these groups is slightly different
for didactica! purposes. Before defining C for all of Tangram 's production rules,
the technica! issue of renaming of ports must be dealt with.

Renaming

The translation of composite Tangram commands such as R; S results in a hand­
shake circuit consisting of the sub-circuits C · R and C · S, and some "glue"
circuitry. Part of this glue circuitry is required to deal with ports common to
both C · R and C · S. The introduetion of glue components makes it necessary
to introduce new narnes for specifying the interconnections. This requires a sys­
tematic way of renaming the activation ports and the common ports of R and S.
The narnes introduced by such a renaming may not clash with existing names.
A simple and effective renaming that avoids clashes is to modify all narnes in R
and S by prefixing the name with a fixed character string.

Definition 6.0 (renaming)

0

0. Let n be a name. L n is the l-renaming of n and equals ln, i.e. the eh araeter
string n prefixed with the letter l.

I. Let A be an alphabet structure. l· A is the alphabet structure A with all
portand variabie narnes l-renamed.

2. Let T be a Tangram command. L T is the command T with all occurrences
of port and variabie narnes l-renamed.

3. Let P be a handshake component. l· P is the handshake component P
with all occurrences of symbol narnes l-renamed. A similar renaming also
applies to handshake circuits.

4. The .r.-renaming is defined similarly.

The following properties of renaming are frequently used.

Property 6.1

l- and .r.- renaming commute with

0. Tangram operators and 'H (when applied to commands),

142 Tangram ____, handshake circuits

1. parallel composition (when applied to handshake processes), and

2. U (when applied to handshake circuits).

0

Furthermore C is designed to commute with renaming as w~ll.

Tangram program

The translation of Tangram program (B)·S yields the same Handshake circuit as
the translation of the extension command (B) · S, which is tr~ated next.

Extension and concealment

Extension

The extension of a command S with an alphabet structure B behaves like S.
The ports of B that were not already part of S are simply eonnected to STOP
components (cf. Property 4.17).

~~·· n
stop

I

I

I

~
~ I

Stop

C· ((B)·S)

The definition of this compilation rule is somewhat streamlined by introducing a
Stop term.

Definition 6.2

0. C· ((B)·S) =Stop· (B \aS) u C· S

Gompi/ation tunetion

1. Let A be an alphabet structure. Stop· A is the handshake circuit

0

Concealment

{ c : c E c? A : STOPo,rc)" (c0
)}

U {c: c E c!A : STOPC!,rcl· (c0
)}

143

In the translation of I [B I SJ I, ports and variables of B have to be treated dif­
ferently. Ports can simply be connected to appropriate RUN components (cf.
Property 4.20). Variables to which S has both read and write access are imple­
mented by VAR components of the appropriate type. Variables to which S has
either read or write access are connected to appropriate RUNcomponentsas well,
in order to avoid dangling write or read ports of VAR components.

0

~ ________________ ~Run

c · I[B I SJI

The handshake components stemming from B are collected into a Run term.

Definition 6.3

0. C·I[B I SJ I =Run·(BnAS)U C·S

1. Let A be an alphabet structure. Run· A is the handshake circuit

0

{x:xE v?Anv!A
U {x :xEv?A\v!A
U {x : x E v! A \ v? A
U { c: c E p?A
U {c: c E p!A

: VAR.,.x · (wx0
, r x 0

)}

: RUN(! ,r,;)" (WX
0

)}

: RUNo,rx) · (rx 0
)}

: RUN(!,rc) · (c0
)}

: RUN(? ,rc). (c0
)}

144 Tangram ____, bandshake circuits

Composite commands

Sequentia! composition

The translation of Tangram commands of the form R; S is epicted by

rt>

I

_~Mix

C. (R; S)

It contains the handshake subcircuits I- C · R and r.· C · S (in ithe picture we have
used the commutation of renaming and application of C).

The subcircuit contained in the dashed box is called a Mix term, and contains
appropriate MIX components for ports common to R and S and CON components
for other ports in R and S. These connectors are a byproduct of the renaming
of all ports of R and S. The introduetion of the connectors can be avoided, by
using a more complex renaming scheme.

Definition 6.4

0. C.(R;S)= {SEQ·(t> 0 ,tt>•,rt>•)} u Mix·(AR, AS)
u {-C·RUr.·C.S

I. Let A and B be conformant alphabet structures. Mix· i(A , B) is the hand­
shake circuit

Cont · (A \ B) u Conr · (B \ A)
U {c : c E c?A n c? B: M!Xe,Tc). (lc0

, r4°, c•)}
U { c : c E c!A n c!B : M/X(! ,Tc) · (lc0

, re"', c•)}

Gompi/ation tunetion

D

2. Let A be an alphabet structure. Conz ·A is the handshake circuit

{ c : c E c? A : CON(?,Tc) · (lc0
, c•)}

U {c: c E c!A : CON(',Tc)' (lc0 ,c•)}

Similarly for Conr · A.

Nondeterministic choice

145

The translation for Tangram commands of the form R n S closely resembles that
of sequentia! commands. Since Rand S are never activated concurrently, a Mix
term takes care of the common ports.

Definition 6.5

C· (R n S) =
0

I

_~Mix

C. (R n S)

{OR· (r> 0 , l r> •,r r>•)} u Mix- (AR, AS)
u {C · R Ur_· C· S

The OR component nondeterministically selects between the activation of the
subcircuits { C · R and r_ · C. S. An alternative compilation rule, which reduces
nondeterminism and avoids the costly Mix-term, is

C · (R n S) = C. R

146 Tangram ~ 'andshake circuits

Parallel composition

The compilation of commands of the form R 11 S is a little more complicated,
because accesses to common ports and to common variables have to be treated
differently. Communications through common ports have ito be synchronized
by JO/N components. Read access to common variables must be mixed by a
MIX component. Reeall that parallel commands do not have write access to
common variables. In the circuit diagram below, i and o are common ports and
rx provides read access to common variabie x.

lr>

C· (R 11 S)

I

I

_ ~ Join

The required "glue" for parallel composition is collected into a Join term.

Definition 6.6

0

0. C· (RIIS)= {PAR·(I> 0 ,ll>•,rr>•)} u Join·(AR,AS)
u {-C·RUr..·C · S

1. Let A and B be connectable alphabet structures. Join· (A , B) is the hand­
shake circuit

Con1 · (A \ B) U Conr · (B \ A) I
U {x: x E v?A n v?B: M!X(?,rc)" (lrx 0

, rr'X0
, rx•)}

U { c : c E p? A n p? B : JO!N(?,Tc) · (lc0
, rc0

, c•)}
U { c : c E p!A n p? B : JO!N(!,Tc) · (lc0

, rc0
, c•)}

U { c : c E p?A n p!B: 10/N(! ,Tc)· (rc0
, lc0

, c•)}

Gompi/ation tunetion 147

Repetition

The two farms of repetition in Tangram are simply included in the definition of
C. A Con term makes the renaming of the repeated cammand consistent with
earlier commands.

C· (#N[S]) C. (#[SJ)

Definition 6.7

0. C·(#N[S])={COUNTN"([> 0 ,l[>•)} u Con1·AS u L· C·S

1. C· (#[SJ)= {REP · ([> 0 ,l [>•)} u Con1 · AS u L· C· S

D

Guarded commands

Selection

Each selection or guarded repetition contains a set of guarded commands. Let G
be a guarded-command set. Given C · G the translation of a selection cammand
is depicted by

148 Tangram ---t handshake circuits

[>

c. (if fi) C · (if G fi)

After activation through !> 0 , the if component collects the disjunction of the
guards through tb•, as computed by l C · G. If this value is true, the subcircuit
l C · G is activated through l !>; if false the subsequent behavior of circuit is left
unspecified.

Definition 6.8

0. C. (if fi) ={STOP · (!> 0
)}

1. C.(ifGfi)={IF·(!> 0 , lb• , t!>•)} u Con1 · AG u L· C·G

D

Note that the ioclusion in Tangram's guarded commands of a default guard
"otherwise" can be implemented straightforwardly by modifying the if compo­
nent. An additional "otherwise" activation port is selected for handshaking if the
value false is received through b.

Guarded-command set

A singleton guarded-command set has the form B ---t S. The corresponding
handshake circuit consists of subcircuits L· C· B and L· C· S. 'Jlle guard B and the
cammand S may have read-access to common variables. Hence, renaming and
a Mix term are required. The connector connected to !> o is also a consequence
of renaming. Tangram does not restriet guards to Boolean expressions. Hence,
an adapter is required to guarantee that only Boaleao values are passed along b.

Gompi/ation tunetion

I>

C· (B ~ S)

I

'Mix - ...

149

A guarded-command set with at least two elements can be decomposed into
two nonempty guarded-command sets. In Tangram such a set is denoted by
connecting the component sets with a ' 0 '. The circuit C · (G 0 H) contains the
subcircuits I· C· G and r: C· H . A BAR component implements the Tangram ' 0 '.
Common ports and variables of guarded-command sets G and H are accessed
through a Mix term.

I>

C· (G 0 H)

I
1Mix - ...

150 Tangram --t ~ndshake circuits
I

The two-phase operation of the circuit C· (G 0 H) can be understood as follows.
Firstly, the environment requests a value through b0

• Th is request is passed on
to the subcircuits {- C · G and r.· C · H, and the disjunction of the Booleans that
arrive through lb and rb is then output through b0

• I
If this value is true, the circuit is ready for the second f,hase, which starts

with 1>0. The BAR component nondeterministically selects either t I>• or r I>•,
provided that a true value arrived through the corresponding Boolean port in
the first phase. After termination of the selected guarded-colnmand subset, the
second phase is completed with I> f.

Definition 6.9

0. C.(B--tS)= {ADAPT(bool,rs l · (b0 ,tb•)} U C.B

1. C· (G 0 H) =

0

u CON·(I> 0 , rl>•) u C· S
U Mix· (vB, vS)

{BAR· (b0
, 1> 0

, tb•, t I>•, tb• , r I>•)}
u Mix · (AG, AH)
u l· C· G u r · C. H

Nondeterminism can be reduced by making the BAR component more deter­
ministic. For instance, if both incoming Booleans are true, the component may
favor t I> • after reactivation through I> 0 .

Guarded repetition

The handshake circuitfora guarded repetition closely resembles that of a selection
command. The behavior of do od equals that of skip, which is simply
implemented by a RUN component. If there is at least one guarded command,
the resulting handshake circuit becomes:

Gompi/ation tunetion 151

C · (do od) C· (doG od)

After activation through 1> 0
, the do component inputs a Boolean through tb•

and, if true, handshakes through ll> •. Th is is repeated until false arrives. Th en
the do component returns in its initia! state after a I> f.

Definition 6.10

0. C·(do od)={RUN·(I> 0
)}

1. C· (doGod)={DO·(I> 0 , lb•,tl>•)} u Cont·AG u I· C·G

0

Primitive commands

Input

The circuit of C · (a?x) is depicted by

C· (a?x)

152 Tangram ----+ handshake circuits

The adapter takes care of a possible mismatch between the J pes of a and ·'·

Definition 6.11

c. (a?x) = {TRF Tx. ([> 0
' d.' wx•) ' ADAPT(Tx,Ta). (d0

' a•)}

D

Output

The circuit of C · (a!E) contains the subcircuit C · E. Again, an adapter is
introduced to resolve possible type mismatches. Port rx• provides read access
to variabie x.

C· (a!E)

Definition 6.12

c. (a!E) = {TRF Ta. (t> 0
' d.' a•) ' ADAPT(Ta,TE). (d0

' e•)} u c. E

D

Assignment

The translation of the assignment is very similar to that of the output command.

C ·(x:= E)

Definition 6.13

c. (x := E) = {TRF Tx. ([> 0
' d.' wx•) ' ADAPT(rx,TE). (d0

' e•)} u c. E

D

Gompi/ation tunetion 153

Synchronization

The synchronization cammand a is implemented by connecting the activation
port t> o to port a • .

Definition 6.14

C· a = {CON · ([> 0
, a•)}

0

Skip and stop

C·a

The translations of skip and stop are self-evident.

C· skip C. stop

Definition 6.15

0. C·skip={RUN·(t>0
)}

1. C. stop= {STOP· (t> 0
)}

0

Expressions

Expressions farm the last syntactic category left to consicter for compilation to
handshake circuits.

I
I

154 Tangram ----. handshake circuits

Binary operators

The circuit C · (DOE) contains the subcircuits C · D and C · E, appropriately
renamed. If D and E both refer to the same variable, say x" a JOIN component
can be used to combine the read accesses to x . A Join term is then needed to
accommodate for an overlap v? D and v? E.

C- (DOE)

Definition 6.16

C· (DOE)=

0

{BINco ,r0 ,rE). (e 0 ,le•,re•)} U Join· (AD,AE)
u {-C·DUr_ ·C ·E

Note that a Mix term would do the job as well . Whereas a Join term enforces
synchronization of accesses to common variables, the Mix term enforces sequen­
tialization. Cost and performance considerations favor the Join term in most
cases.

Unary operators

Expressions of the form DE are translated similarly.

C· (DE)

Gompi/ation tunetion

The Join term reduces to a Con term.

Definition 6.17

C· (DE)= {UN(o,TE). (e0
, te•)} U Con1 · AE U f · C· E

0

Constants

The handshake circuit for a constant expression is self-evident.

C·C

Definition 6.18

0

Variables

155

The expression x translates to a simpte connector. Reeall that the declaration of
variabie x yields a VAR component with read port rx0

•

Definition 6.19

C · x= { CONo,Tx) · (e0
, rx•)}

0

C·x

This concludes the translation of Tangram commands into handshake circuits.
Examples of compiled handshake circuits can be found in Chapter 1. The circuits
of Figures 1.1, 1.2, 1.3, 1.9, and 1.11 can be obtained by applying C to the
corresponding Tangram programs or commands. The circuits of Figures 1.4 and

156 Tangram ----+ handshake circuits

1.5 can be obtained by compilation and subsequent minor J ptimizations at the
handshake-circuit level (cf. Chapter 8). The circuits of FigSe 1.12 require non­
trivia! extensions of C.

6.2 Compilation theorem

In this section we analyze the most important property of the C function, specif­
ically that it yields handshake circuits that are equivalent t the corresponding
Tangram programs in a precise sense. This analysis is restbcted to Core Tan­
gram. Reeall that in Core Tangram all involved alphabet structures are of the
forrn (p? A , 1/J , 1/J , 1/J, {-}). For convenience we shall write a to denote p? AS,
where S is a Core Tangram command. Note that aS is a set: of names.

Below the compilation function for Core Tangram is presented in a self­
contained form. The function C is consistent with the more general compilation
function of the previous section.

Definition 6.20

The compilation function C for Core Tangram is defined by:

0. C· skip

l. C · stop

2. C·a

3. C· (R; S)

4. C· (Rn S)

5. C· (#N[S])

6. C · (#[S])

7. C· (R 11 S)

8. c. (i[B I SJI)

9. C · ((B)·S)

={RUN· (!> 0
)}

={STOP· (!> 0
)}

={CON· (!> 0 ,a•)}

{SEQ · (!> 0
, L!>-, T !>•)} U Mix· (aR, aS)

U l·C.RUr:C·S

{OR-(!> 0 , ll>•,r!>•)} U Mix- (aR,aS)
u {C·RUr_·C·S

= {COUNTw(l> 0 , ll>.)} u Conz ·aS U { C·S

= {REP·(I> 0 ,l!>.)} U Conz · aS l.J l· C.S

= {PAR·(I> 0 , ll>• ,rl>•)} u Join·(pR,pS)
u {C · RUr.· C.S

=Run· (B n aS) u C · S

=Stop· (B \aS) u C · S

Gompi/ation theorem

where (in alphabetic order):

12. JOIN· (a0
, b0

, c•)

13. MIX· (a0 ,b0 ,c•)

14. OR·(a0 , b•, c•)

15. PAR· (a0
, b• , c•)

16. REP· (a0 , b•)

17. RUN· (a0
)

18. SEQ· (a0
, b• , c•)

19. STOP· (a0
)

and:

20. Run · A

21. Stop· A

22. Con1 ·A

23. Mix- (A , B)

24. Join· (A , B)

0

= #[a0
: b0

: c•]

= #[[a0
: c• I b0

: c•]]

= #[a0
: (b• ll c•)]

= #[a0
: (b• 11 c•)]

= (a0
: #[b•])

= #[ao]

= #[a0
: (b• ; c•)]

= (a0)·stop

={a: a E A: RUN· (a0
)}

={a: a E A: STOP· (a0
)}

={a: a E A: CON· (la0 ,a•)}

= Conz · (A\ B) U Conr · (B \ A)
U {a : a E A n B :MIX. (la 0

, ra0
, a•)}

= Cont · (A\ B) u Conr · (B \ A)
U {a:aEAnB:JOIN·(la0 ,ra0 ,a•)}

One of the central theorems of this thesis is the compilation theorem.

Theorem 6.21 (compilation theorem)

Let T be a Core Tangram program. Then

r:>* · 1i. · T = 11 · C · T

157

158 Tangram ---+ I handshake circuits

by structural induction over Core Tangram later in jthis section. Pro of

0 I
The proof of the compilation theorem requires a little mor~ ground work to be

I

done. I

Separation properties I
The presented syntax-directed translation method is one ofl recursive decompo­
sition . The circuit for a composite command is decompored into circuits for
the subcommands and some additional circuitry that is specific for the command
operator and for the port alphabets of the subcommands. One could say that this
additional circuitry is separated from the circuits of the sl;lbcommands during
such a decomposition step. A systematic analysis of this förm of separation is
studied next.

The formulation of separation properties is based on so-called a-functions.
A a-function is a function from sequentia! processes to sequentia! processes of
a restricted form .

Definition 6.22 (a-function)

Let a. be a name, N a natura! number, B a port structure, ~nd P a sequentia!
handshake process.

0. Let X be a sequentia! handshake process. Then the following expressions
define a-functions:

(a) (B)·X

(b) P n x
(c) X ; P

(d) P; X

(e) #[X]

(f) #N[X]

(g) p 11 x
(h) 0.

0
: X

Furthermore, a composition of a -functions is also a a-f~nction.

1. a-function F is said to interfere with port structure A if there is a port a. ,
a. E A, for which F · 0.

0 or F · a.• is undefined.

Gompi/ation theorem 159

D

2. a-function F is permanent if its image consists exclusively of permanent
sequentia! processes.

Function !>* is an example of a a-function. In genera!, a a-function is partial.
For instance, function F, F ·X = X; P, is defined only if X is conformant
with P. The definition of a-functions can be extended to include the complete
handshake calculus. Such extensions are not relevant to our current purposes.

Property 6.23 (separation)

0. Cammand separation. Let P be a sequentia! process and let F be a per­
manent a-function, such that F does nat interfere with pP or a0

• Then

The non-interference requirement on F guarantees that F · a• and #[a0

P] are connectable. This separation property is similar in intent to the
"decomposition rule" of [Mar89].

1. Con separation. Let P be a sequentia! process such that p 0 P = 0, and
let a E p• P . Furthermore, let F be a a-function, such that F does not
interfere with pP or la. Then

P. P = F· (a:= la)· P 11 CON · (la0
, a•)

where (a := la)· P denotes the sequentia! process P with all occurrences
of symbols of port a l-renamed. Consequently,

P. P = P. I- P 11 Cant · pP

Again, non-interference of F with pP or la assures connectability.

2. Mix separation. Let P and Q be conformant sequentia! processes, with
p 0 P = p0 Q = 0 and let a E p• P n p•Q. Furthermore, let F be a a­
function, such that F does not interfere with pP, pQ, la, or ra (to assure
connectability in the decomposition below). Then

Consequently,

F· (P; Q) = P. ({- P; r. · Q) 11 Mix· (pP, pQ)

160 Tangram __... handshake circuits

0

3. A similar Mix separation exist for F · (P n Q) .

4. Join separation. LetPand Q be sequentia) processes with p0 P = p0 Q = 0
and let a E p• P n p•Q. Furthermore, let F be a rJ- unction, such that F
does not interfere with pP, pQ, la or ra (to assure connectability in the
decomposition below). Then

•• ••
P.(P 11 Q)=F·((a:=la)·P 11 (a:= r a)·Q) 11 101N·(la0 ,ra0 , a•)

I
Consequently,

•• ••
P. (P 11 Q) = P. (l· P 11 r. · Q) 11 Join· (pP, pQ)

••
Since I· P and r. · Q are obviously connectable, the 11 in the last process
expression may be replaced by 11·

The separation properties can be used to prove most of the parallel compositions
in Example 3.18.

Example 6.24

Consicter rJ-function F defined by P. X = #[a0
: #2[X]] . Clearly, a handshake

through a 0 has the effect of executing X twice. Note that P. b• = DUP· (a0
, b•) ,

the duplicator of Example 2.23. Using the above separation properties, we obtain
the following decomposition of P. P:

p.p

= { Separation property 0 }

P. b• 1/ #[b0
: P]

= { Definition of F }

0

#[a0
: #2[b•]J 11 #[b0

: P]

{ Separation property 2; Definition of SEQ }

SEQ · (a0
, lb•, rb•) 11 MIX. (lb 0

, r b0
, b•) 11 #[b0

: P]

Gompi/ation theorem 161

Proof of the compilation theorem

The proof of the compilation theorem is by structural induction over Core Tan­
gram, and follows the cammand order of Definition 6.20. The proofs for the
three primitive commands skip, stop and a• are skipped. The syntactic cate­
gory program is not treated separately, since a program is a just an extension
command.

Most proof cases refer to one or more separation properties. Of course,
it is then a part of the proof obligations to verify that a proper cr-function is
involved. In particular, the non-interterenee of the cr-function with its argument
or with the freshly introduced ports must be checked. From the simplicity of
the applied renaming scheme, non-interterenee can be easily established, and
hence the connectability of the sub-circuits introduced by the separation step is
guaranteed.

Case cammand 5; T

t>* · H · (5; T)

= { 1-{ distributes over ; }

t>* · (H · 5 ; H · T)

= { Mix separation }

t>* · ({H· 5; r_·H· T) 11 Mix · (a5,aT)

= { cammand separation (twice) }

t>* · (ft>•;rt>•) 11 I· t>* · H·5 11 r· t>* · H·T 11 Mix·(a5, aT)

= { induction hypothesis }

t>*· (l t> •; r t>•) 11 <kil · C· 5) 11 (r: 11· C· T) 11 Mix- (a5,aT)

= { rewrite; definition of SEQ }

II·({SEQ·(t> 0 ,Lt>•,rt>•)} U Mix-(aR,a5) U I· C·5 U r· C·T)

= { definition C }

11 · C· (5; T)

Case cammand 5 n T similar to cammand 5; T .

Case cammand #[5]

[>* . 1-{. (#[5])

162 Tangram --+ handshake circuits

= { H commutes with # }

1>* · #[H · S]

{ Con separation }

t>*·#[{·H·S] 11 Cont ·aS

= { command separation }

t>*·#[lt>•] 111· t>* · H·S 11 Cont·aS

= { induction hypothesis }

I>*·#[ZI>•] 11 (f II·C·S) 11 Cant ·aS

{ rewrite; definition of REP }

II·({REP·(I> 0 ,ll>•)} U Cont·aR U 1- C.S)

{ definition C }

11 · C. (#[SJ)

Case command R = #N[S] : similar to command #[S].

Case command S 11 T

1>* · H · (S 11 T)

= { H distributes over 11 }

••
!>*· (H· S 11 H· T)

= { J oin separation }

!>*· <1· H· S 11 r_· H· T) 11 Join · (aS, aT)

= { command separation (twice) }

l>*·(lt>.llrt>•) 111 · t>*·H·S 11 r_· t>* · H · T 11 Join·(aS,aT)

= { induction hypothesis }

t>*·(lt>.llrt>•) 11 <kii·C.S) 11 <~II·C·T) 11 Join· :<aS,aT)

= { rewrite; definition of PAR }

II ·({PAR-(!> 0 , ll>•,rl>•)} U Join·(aR,aS) U 1- C·S U r_· C·T)

= { definition C }

II ·C.<SI IT)

Gompi/ation theorem

Case cammand I[B I SJI

I>*. H· I[B I SJ I

= { property of concealment }

I>*·H·I[BnaS I SJI

= { H "distributes over" concealment }

1>* · I[H· (B n aS) I H· SJI

= { concealment commutes with enelosure and repetition }

I[H·(BnaS) I I>*·H·SJI

= { property 4.20 of non-terminating processes }

1>* · H · S 11 RUN· H· (B n aS)

= { induction hypothesis }

II·C·S 11 RUN·H·(BnaS)

= { rewrite; definition of Run }

11·(C. S u Run· H· (B n aS))

= { definition C }

11 . c. I [B I S] I

Case cammand (B)·S : similar to cammand I[B I S]j .
D

163

164 Tangram~ handshake circuits

Chapter 7

Handshake circuits --7 VLSI
circuits

7.0 Introduetion

Handshake circuits are proposedas an intermediary between communicating pro­
cesses (Tangram programs) and VLSI circuits. Chapter 6 describes the translation
of Tangram programs into handshake circuits. This chapter is concemed with the
realization of handshake circuits as efficient and testable VLSI circuits. First we
observe that the fine-grained parallelism available in VLSI circuits matches the
fine-grained concurrency in handshake circuits nicely. The mapping of handshake
circuits to VLSI circuits can therefore be relatively direct.

A rather naive mapping is suggested by the following correspondence:

0. a channel corresponds to a set of wires, one per symbol;

1. an event with name a corresponds to a voltage transition along wire a;

2. each handshake component corresponds to a VLSI circuit that satisfies the
specification at the transition level.

There is no doubt that the above mapping can result in functional circuits. In
genera!, however, the resulting circuits wil! be prohibitive in size, poor in perfor­
mance, probably hard to initialize, and impractical to test for fabrication faults.
Concerns for circuit size, performance, initialization and testability will therefore
be recurring themes in this chapter.

A full treatment of all relevant VLSI-realization issues is beyond the scope
of this thesis. Issues that directly relate to (properties of) handshake circuits have

165

166 Handshake circqits ____, VLSI circuits
I

been selected for a relatively precise treatment; other topids are sketched more
briefly. This chapter discusses:

• peephole optimization: the substitution of subcircuits by cheaper ones;

• relaxation of the receptiveness requirement of handsh~ke processes;

• handshake signaling between handshake components;

• decomposition into VLSI operators and (isochronie) f rks;
I

• initialization of the resulting VLSI circuits;

• fabrication testing of the VLSI circuit.

7.1 Peephole optimization

An obvious method of optimization of handshake circuits is :substitution of sub­
circuits by cheaper subcircuits on the basis of "equals for eqt.Jals". Example 3.18

I

lists a number of pairs of circuits with equal behavior. Substitution of one mem-
ber of the pair by the other will not affect the functional beliavior of the circuit.
However, for given VLSI realizations of the handshake components, such a sub­
stitution will affect the circuit's cost and performance. At this point we shall not
delve into cost models or metrics. In the examples below the advantage(s) of
substitution in one way or the other wiJl be hinted upon only.

Example 7.0

The following optimizations are the most interesting from a practical viewpoint

D

0. Removal of connectors as suggested by Examples 3.18.0 and 3.18.1 has
only advantages. However, since connectorscan be realized by wires only,
the expected advantages will evaporate during the layo'ut phase.

1. Example 3.18.2 is a useful one. It allows the elimination of most RUN
components from compiled handshake circuits. Since the proposed com­
pilation function introduces a RUN for each intemal channel in a Tangram
program, this optimization yields interesting savings.

2. Example 3.24 discusses trees of MIX, SEQ, PAR, and OR components.
Balancing of such trees does not affect the cost of a circuit, but generally
improves the (average) performance. The same hold~ for trees of BAR
components (cf. Example 4.37.18).

Peephole optimization 167

In many instances a subcircuit may be replaced by a cheaper subcircuit with
an "almost equal" behavior. Such substitutions are allowed if their effect on the
extemal behavior of the circuit cannot be observed by any possible environment.
This form of optimization will be called refinement in context.

Definition 7.1 (refinement in context)

Let P, Q and R be handshake processes, such that pP = pQ and pP l><l pR .
Process P refines to Q in the context of R , denoted by P ÇR Q , if

P il R c::: Q II R

0

The following properties are given without proof.

Property 7.2

0

1. P Ç R Q 1\ Q ÇR T =? P ÇR T (Hence, Ç R is a preorder.)

2· p ÇCHAOS0 Q = p ç Q

3. If pR = pP, the defining expression of refinement in context can be rewrit­
ten as

tP n tR ::2 tQ n tR

Example 7.3

Three examples with practical interest are given below. We assume that the
context H is a handshake circuit, such that for refinement P Ç H Q the circuit
P U H can be obtained by compilation of a Tangram program. Several of these
substitutions may be applied in succession.

0. The following refinement in context has been applied to the circuit of
Figure 1.3 in order to obtain that of Figure 1.4.

168

c

Handshake circ its ___, VLSI circuits

b

a b

d d

A difference between the two circuits is that trace a is quiescent in the
circuit of the right-hand side and not in the other one

1. The following optimization has been applied after the translation of the
wagging buffer of Section 1.1 in order to obtain the handshake circuit of
Figure 1.5.

c

a

a b

d c d

b

The substitution relies on the mutual exclusion of handshakes through ports
a and b. Overlap of these handshakes may cause message overtaking via
the parallel transfer paths.

2. Read access to a common variabie in a Tangram progr11m results in a tree
of MIX components connected to the read port of the hriable. This form
of the MIX component tums out to be rather expensiv!e. A variabie with
multiple read ports that can be served in parallel is a lcheaper and faster
altemative.

xro

xw

X TJ

xw ~xro

~XT}

Non-receptive handshake components 169

0

This optimization has been applied in order to obtain the handshake circuit
of Figure 1.11.

The above form of local optimization will be called peephole optimization by
analogy to optimizations in conventional compilers that generate machine code
[McK65]. By scanning over a handshake circuit and looking at alocal subcircuit
(with a bounded diameter), as if through a peephole, one can find opportunities
for improvements by substitution. It is characteristic of peephole optimization
that an impravement may spawn opportunities for additional improvements.

7.2 Non-receptive handshake components

By Definition 2.19 handshake processes are required to be receptive. The main
advantage of this requirement is the relatively simple definition of parallel com­
position of handshake processes (Definition 3.14), which guarantees absence of
computation interference (Theorem A.12).

Unfortunately, the requirement of receptiveness tends to make the circuit real­
izations of handshake processes more costly. In particular, the constant readiness
for inputs through passive ports requires gates or latehes to "shield" or remember
input transitions for later processing. Moreover, the choice construct requires an
arbiter circuit to arbitrate between transitions through the guard inputs. A non­
receptive implementation of choice is deterministic and arbitration can therefore
be avoided (cf. the MIX and NMIX componentsof Example 2.23).

In this section we investigate the conditions under which a (receptive) hand­
shake component may be replaced by a non-receptive component without taking
the risk of computation interference. The scope of the following (re-)definition
is restricted to the current section.

Definition 7.4

0

0. A handshake process is a handshake structure that satisfies all conditions
of 2.19 except for condition 2.19 .4.

I . A receptive handshake processes is a handshake process that also satisfies
condition 2.19 .4. All other handshake processes are non-receptive.

Let P be a handshake process, and let t E tP:5. and a E iP, such that ta E (aP)H.

\

170 Handshake circ (s ~ VLSI circuits

Receptiveness implies ta E tP S. . Conversely, ta ~ tP S. implies, that P is non­
receptive. Examples of non-receptive processes areNMIX arld NVAR of Example
2.23.

I

This generalized form of handshake processes is distinct/Y m0re complicated
than receptive handshake processes. It is not our intention t~ develop a theory of
(non-receptive) handshake processes. We point out two essential differences in
order to prepare ourselves fora particular application of non- eceptive handshake
processes.

Refinement ordering of handshake processes is rather su ,tie compared to that
of receptive processes. Consicter receptive process CON· (a0

, c•). lts trace set is
also a valid trace set for a process with port structure A, wh~re A = a0 U b0 U c•.
Let Q be the handshake process with port structure A and th~ quiescent trace set
of CON· (a0

, c•). Process Q is clearly non-receptive, since trace bo is not in its
trace set. Interestingly, we have tQ C tMIX· (a0

, b0
, c•). However, this does not

make Q a suitable implementation of the mixer!
Also parallel composition of handshake processes is more complicated when

processes are not receptive. Consicter the parallel composition of Q and RUN ·
{b•}. In their asynchronous interaction, process RUN · {b•} will output a bo
despite the fact that Q is not ready to receive it: a clear case of interference.

Note that the trace set of Q w RUN· { b•} equals that of Q. Weaving ignores
the distinction between input and output, and is therefore not a suitable basis for
parallel composition when there the danger of interference exists.

The parallel composition of Q and STOP · { b•} is free ot1 interference. (With
concealment of b we obtain the receptive process CON· (a0

, c•).) In other words,
only if Q operates in an environment that never produces a bo, may the mixer
be replaced by Q. More generally, a process may be refined into a process with
fewer possible behaviors when the environment restrains itself appropriately.

Let, for the remaioder of this section, P , Q , and R be handshake processes,
such that pP = pQ and pP 1><1 pR.

Definition 7.5 (strong refinement in context)

P strongly refmes to Q in the context of R, denoted by P .S Q , if

tP :2 tQ 1\ (t(P w R) = t(Q w R))i

0

Non-receptive handshake components

Property 7.6

0. Strong refinement in context is a preorder (cf. 7.2).

I. For receptive handshake processes P, Q and R we have

D

Example 7.7

The relation
MIX·(b0 ,c0 , d•) ÇR NMIX.(b0 , c0 ,d•)

is a strong refinement for

but not for

0

171

A nice property of strong refinement in context is that it does not introduce inter­
ference. The following theorem assumes that the domaio of parallel composition
(cf. Definition 3.14) is extended to handshake processes.

Theorem 7.8

If P 11 R is free of interference and P ,S RQ then Q 11 R is alsofree of interference.

0

Remember that if P and R are both receptive, absence of interference is guar­
anteed. In particular, a component in a handshake circuit and its environment
are receptive. If this component is e.g. a MIX component it may be replaced
by an NMIX on account of Example 7.7, provided that the environment avoids
overlaps of the handshakes through the mixer's passive ports. The MIX compo­
nents introduced in the compilation function of Chapter 6 are all placed in such
a restricted environment. Consequently:

172 Handshake circuits ----+ VLSI circuits

Theorem 7.9

All MIX components introduced on ground of the separatiom Property (cf. 6.23)
can be strongly refined into NMIX components in their resp ctiv~ contexts.

D

Similar strong refinements in context apply to directed MI components. Also,
VAR components can be strongly refined into a non-receptiv component without
overlap in read and write access, because of the required confprmance of alphabet
structures (cf. Definition 4.12).

7.3 Handshake refinement

Symbols have been introduced as narnes of events of interest to describe the
interaction of a handshake process and its environment. In this section we relate
these symbols to wires and to transitions of the states of thde wires. In CMOS
these state transitions usually correspond to voltage transitioljls (cf. Sec ti on 0.1).

Let p be a port of handshake process P. First we assume that we may use
a wire for each symbol of p, the so-called One-Hot encodin:g0 . With symbol a
we associate wire a. The states of a wire will be referred to as low and high. A
transition of wire a from low to high will be denoted by al, and a transition vice
versa by a!. lf we assume that the initia] state of a wire is low, the observed
behavior of the state of the wire can be recorded by a sequence in which a I and
a! alterna te, starting with an a I.

The notion of a handshake process can be refined accordingly. We will not
develop a forma] handshake-process model at the level of transitions. Instead, we
simply require port structures .to be of the form A x {I ,!}. Also, the projection of
a trace of 'H· (A x {1,!}) on a single port must result in the proper alternation of
up and down transitions. Without loss of generality we assume that all wires are
low initially and that the first event on each wire is therefore an I transition. A
handshake process with these properties is referred to as a transition handshake
process. Similarly, we speak of transition handshake comportents and transition
handshake circuits.

Useful shorthands for ports (p,l) and (p,!) are p l and p !. The alphabet
structure A x {I,!} will be abbreviated to At. Thesetof all transition handshake

I

processes with port structure At will be denoted by fit· A.

0More economie encodings are discussed in Section 7.4.

Handshake refinement 173

Handshake action p Ta assumes both wires Po and PI to be low, and, after
successful terrnination, leaves both wires high. Similarly, action p! a assumes
both wires to be high, and leaves both wires low, provided successful terrnina­
tion. This suggests that we cao still use the handshake calculus of Chapter 4,
provided that the described process satisfies the rule of alternation of up and
down transitions.

In this section we investigate various ways to implement a handshake process
by a transition handshake process. The central notion is that of phase reduction.

Definition 7.10 (phase reduction)

A phase reduction is a partial function rjJ : fit· A ----7 TI· A that satisfies:

0. rjJ is surjective

1. r/J· (P n Q) = r/J· P n r/J · Q

2. r/J · (P u Q) = r/J· P u r/J· Q

3. r/J·(P II Q)= r/J·P IIr/J·Q

0

Let R = </>Q. Then Ris said to be the phase reduction of Q. Altematively, Q will
be called a handshake refinement of R. A phase reduction is a homomorphism
on account of 7.10.1 and 7.10.2.

Transition handshake processes P and Q are equivalent if r/J· P = r/J · Q. This
equivalence is actually a congruence, and is the kernel of rjJ (cf. [DP90] page
116).

Let P, Q and R be transition handshake processes. On account of 7.1 0.3 we
conclude P 11 R and Q 11 R are equivalent if P and Q are equivalent. More
generally, the replacement of a transition handshake component by an equivalent
one in a transition handshake circuit results in an equivalent handshake circuit.

Two classes of phase reductions are studied in some detail: 2-phase and 4-
phase reductions. The associated handshake refinements are called 2-phase and
4-phase refinements respectively.

2-phase refinements

The simplest handshake refinement is based on the phase reduction obtained by
ignoring the distinction between up and down transitions.

174 Handshake circuits ____. VLSI circuits

Definition 7.11 (2-phase reduction)

0. Let t be a handshake trace in Afl. The 2 -phase re duet: on of t, denoted by
r/J2 · t, is defined by:

(h · t = if t=E ---t E

0 t =cT u ---t e r/J2·U

0 t = cl u ---t e r/J2·U

fi

1. Let P be a transition-handshake process. r/J2 · P is the handshake process
obtained by applying the 2-phase reduction to all trac~s of P.

0

The following theorem is hardly a surprise.

Theorem 7.12

r/J2 is a phase reduction.

0

rp2 is total and is clearly a bijection. lts inverse wiJl be calleql the 2-phase hand­
shake refinement of a handshake process. The 2-phase handshake refinements of
a number of handshake components are given next.

Example 7.13

0. CON·(a0 ,b•) =#[aj 0
: br-;a ! 0

: b!•]

1. SEQ· (a0
, b• , e•) =#[a re: (b j •; er-); a! 0 : (b ! • ; c! •)]

0

2. REP·(a0 ,b•) = aj 0 : #[bj•;b ! •]

3. MIX· (a0
, bo, e•) = M(o,o),

where
M(O,O) =[a j o: e j •; M(l,O)

M(l,O) =[a! 0 : cl•; M(O ,O)

M(ü, I) =[a j o: cl•; Mo,I)

M(I , I) = [a ! 0 : e r-; M(ü,I)

b j 0
: ej•; M(o,l)]

b j 0
: cl•; M(I,I)]

b! o: cl•; M(O,O)]
b! 0 : er•; Mo ,0)]

Handshake refinement 175

The above mixer in particular is considerably more complicated than the MIX
component of Example 4.3. The 2-phase refinements of directed components
such as variables, multiplexers and adders are distinctly more complex than the
above mixer.

The handshake protocol that results from 2-phase refinement is also known as
2-cycle signaling or non-return-to-zero signaling [Sei80]. The good news about
2-phase refinement is that it results in handshake circuits in which components
interact by the minimum number of transitions possible. Consequently , these
circuits are potentially as fast and energy-efficient as possible. The bad news is
that circuits sensitive to voltage transitions tend to be significantly larger than
circuits sensitive to voltage levels [Sei80]. This overhead in circuit size may
reduce the speed and power benefits considerably.

The advantages of 2-phase refinements are likely to dominate in the case of
off-chip communication and, to a lesser extent, for long-distance on-chip com­
munication.

4-phase refinements

4-phase refinements form practical alternatives to 2-phase refinements. The re­
sulting handshake protoeals are known as Muller signaling, 4-cycle signaling
or return-to-zero signaling [Sei80]. The essence of 4-phase refinements is that
handshakes are implemented by a signaling sequence of four communications.
A first form is based on complete 4-phase reduction :

Definition 7.14 (complete 4-phase reduction)

Let (A t , T) be a transition handshake process, and let C = OA T Ul A l (C
consists of the first and fourth phases of a 4-phase handshake). The complete

4 -phase reduction of (At , T), denoted by cP4c· (At, T) , is defined only for (At, T)
that satisfy

('t:/t : t E T: SUC · (t , tT) ç iAt u C)

and results in the handshake process

(A, {t : t E T 1\ suc · (t , tT) Ç C : c/Jz · (tjC)})

0

Complete 4-phase reduction is based on the concealment of symbols in the com­
plement of C, viz. OA l U l A l. The restrietion on the domaio of cP4c excludes
transition handshake processes that become quiescent while capable of doing

176 Handshake circuits ----7 VLSI circuits

I
an output in the complement of C. The reduction selects · nly those traces for
projection on C that have successors in C.

Theorem 7.15

cP4c is a phase reduction.

D

In contrast to c/J2, the 4-phase reduction is not a bijection. The complete
4-phase handshake refinement of a handshake process is usually not unique.
Examples of complete 4-phase expansions of some handshake components are
given below.

Example 7.16

D

0. The two-phase connector is suitable in a four-phase setting as well . Alter­
natives are

and

1. A suitable four-phase version of the sequencer is

An alternative is

2. A four-phase repeater can be identical to the two-phase version.

3. The four-phase MIX is remarkably simple compared to the two-phase ver­
sion:

An important property of complete 4-phase refinement is that the wires of
a port are in their initia! states after the completion of each handshake. In
most cases the circuits are therefore simpler than their 2-phase counterparts. An

Handshake refinement 177

obvious disadvantage is the doubling of the number of transitions, with associated
penalties in power consumption and computation time. The latter disadvantage
can be relaxed somewhat by adopting the following alternative 4-phase reduction:

Definition 7.17 (quick 4-phase reduction)

Let (At, T) be a transition handshake process, and let C = OA T u lA T (With
this choice, C cönsists of the first and second phases of a 4-phase handshake).
The quick 4-phase reduction of (At, T), denoted by c/J4q · (At, T) , is defined in
the same way as c/J4c. taking the difference in symbol set C into account.

0

Theorem 7.18

cp4q is a phase reduction.

0

cp4q is not a bijeetion and a associated handshake refinement is therefore not
unique. Quick 4-phase refinements tend to be faster than complete 4-phase refine­
ments, because the environment does not need to participate in the return-to-zero
transitions. The price for this gain in speed is that the circuits tend to be more
complex, because after output transition a 1 T the component must be receptive
for ao 1 while possibly engaging in other handshakes.

Mixed forms of complete and quick 4-phase refinements may be considered,
with the objective of taking the best of both worlds: quick 4-phase refinement
when the speed gain is substantial and the overhead in circuit complexity is
acceptable, and complete 4-phase refinement in all other instances. Of course,
such mixed refinments must be based on a proper phase reduction. A useful
transition handshake component to convert a complete 4-phase refinement into a
quick one on a single-port basis is the quick-return linkage 1•

Example 7.19 (quick-return linkage)

The transition handshake component QRL- (a0
, b•) is defined as

0 1 In [Udd84] attributed to C.L. Seitz.

178 Handshake circuits ----; VLSI circuits

Component QRL is a quick 4-phase handshake refinement f a connector. Ob­
serve that alo and b t• are coupled as in CON, and that a l1 and b 1• can occur
independently as in PAR.

Transferrers

Realizations of handshake components using 4-phase handsh~ke refinements lead
to reasonably efficient VLSI circuits. The current Tangram cEmpiler (cf. Chapter
8) uses the complete 4-phase handshake refinement for all harrshake components,
except for the transferrer. Reeall that transferrers are introducf d abundantly in the
compilation of Tangram programs. The behavior of a transfyrrer with activation
port a0

, input b• and output c• is defined by (assuming apptopriate declarations
of a, b, c and x):

A complete 4-phase refinement is:

Other 4-phase refinements have in common that the b an~ c handshakes are
strictly sequentia!, requiring costly storage of the incoming value between the
communications bl•?x and cr-Lr.

A transition handshake component with a behavior similar to the transferrer,
and with an extremely cheap circuit realization is (cf. Sectioh 7.5) :

The reductions in cost and delays have been achieved by Ç::reating an overlap
between the b and the c handshake. It turns out that, with few exceptions, this
handshake refinement of the transferrer is allowed in the compiled handshake
circuits. This cao be checked for each syntax/compilation fule that introduces
transferrers. Exceptions are assignments of the form x := E in which E depends
on the value of x. Forthese so-called auto assignments (e.g. i := i + 1) we have
to accept the more expensive handshake refinement.

7.4 Message encoding

In the previous section we assumed a One-Hot encoding of d~ta: toeach symbol
in the two symbol sets of a port we assigned a wire. A set öf 16 symbols then
requires 16 wires. On the other hand, 16 wires may eneode as many as 2 16

Message encoding 179

(= 65536) values. This suggests ample room for impravement over One-Hot
encoding. Our prime interest is in encodings that preserve the delay-insensitive
nature of the communication among handshake components. [Ver88] presents a
definition and an overview of these so-called "delay-insensitive codes". In this
section we repeat this definition and link it to the most popular delay-insensitive
code: the double-rail code, also known as the dual-rail code.

A code is a pair (I, C), where I is a finite set of indexed wires, and C is
a set of subsets of I: the code words. The size of I is called the length of the
code, and the size of C is called the code's size. A One-Hot code of size n has
length n.

The implementation of port (Op, lp) requires a code for both Op and lp. In
most cases, ho wever, at least one of these two sets is a singleton (code size = I),
and a single wire suffices (code length = 1).

A code word is an element of C and indicates along which wires a transition
will be sent for the transmission of the corresponding message. Not all code
words are suitable for delay-insensitive communication. For instance, the empty
set is useless, because the receiver would not be able to detect its arrival.

Definition 7.20

A code (I , C) is delay insensitive when [Ver88] when

0/x, y : x E CA y E CA x Ç y : x = y)

0

That is, when no code word is contained in another code word. This property
allows the receiver to detect the arrival of a message. After a transition has
arrived on each wire of a code word, the receiver can detect that it has received
a complete message.

The concatenation of codes (I , C) and (J, D) with I n J = 0 is the code
(I U J, CD) , where CD is defined by

{x ,y: x E C Ay E D: x U y }

The concatenation of two delay-insensitive codes is also delay-insensitive.
The well-known Double-Rail code [Sei80] can now be introduced as the

concatenation of n (disjoint) One-Hot codes of length 2. Using 16 wires, a
Double-Rail code of 8 wire pairs eneodes 28 (=256) code words, which is a clear
impravement over the 16 code words of the One-Hot code. Arrival detection
of Double-Rail encoded messages is simple, so is the conversion from and to

180 Handshake circuits ----. VLSI circuits

(delay-sensitive) Single-Rail codes. These properties makl Double-Rail codes
fairly popular in the design of delay-insensitive and other s lf-timed circuits.

However, compared with clocked circuits, in which a tr sition of the clock
announces the arrival of a message, Double-Rail codes are ather wasteful. For
a given code size, the overhead in number of wires is I 00 , wttich is consider­
able in a technology where costs are dominated by wires. Ot er delay-insensitive
codes [Ver88] have considerably less overhead. However, heir use in the real­
ization of handshake circuits is constrained by:

• the Jack or excessive costs of circuits for arithmetic with such codes,

• the size of encoding and decoding circuits near storade elements, and

• the delays involved in encoding and decoding. I
For off-chip and long-distance on-chip communication these overheads of coding
and decoding may nevertheless be worthwhile.

When wire delays can be sufficiently controlled, de!ay-sensitive codes become
attractive for circuit realization. With n wires, a code of size 2n- 1 can be
implemented, in which one wire is used to signa! the arrival of a message. Of
course, the delay along that wire must exceed the delay in each of the n - I other
wires. This is sometimes called a data-bundling constraint [Sut89]. In practice
this requires suftleient control over the spatial layout of handshake components
and the connecting wires, introduetion of additional delays or a combination of
both. Conversion circuits from and to Double-Rail codes are given in [Sei80].

7.5 Handshake components ---+ VLSI circuits

The previous sections show how the specificatien of a handshake component can
be refined by:

0. reducing receptiveness (depending on the camponent's context),

I. refining handshakes, and

2. encoding messages.

These refinements result in the specificatien of a circuit in 1terrns of transitions
on individual input and output wires. The next step is to r decompose such a
specificatien into a circuit of available VLSI primitives such as inverters and
NAND gates. Methods for these decompositions are emerging ([Mar89,Ebe89,
MBM90,JU91]), with different choices in and emphases on:

Handshake components --+ VLSI circuits 181

0. the handshake protocol chosen,

1. the available VLSI primitives,

2. the degree of delay-insensitivity.

In this section we review decompositions of a few handshake components into
circuits of so-called VLSI operators.

VLSI operators and (isochronie) forks

The behavior of a VLSI operator is defined by the Boolean values of the output
wire(s) in terrns of present and past values of the inputs. The behavior of a
monadic (single output) operator is specified by a pair of so-called production
rules [Mar89]

F f---+ zT
G f---+ zl

F and G are Boolean expressions called the guards of the operator. The identifiers
in F and G are the inputs of the operator. z is the output of the operator. z T
and z 1 are shorthand for z := true and z := false respectively. The production
rule F f---+ z T can be read as "when F holds z becomes true".

The guards of an operator are required to be mutually exclusive, i.e. -.F V

-.G must hold at any time. Furtherrnore, the guards have to be stable, i.e.
once a guard evaluates to true, it has to remain true until the completion of the
corresponding output transition. Stability of the guards is not a property of the
operator: it must be satisfied by the environment of the operator. The same holds
for the mutual exclusion of the guards of operators for which -.F V -.G is not a
tautology.

An input transition denotes the change of an input variable. An input transi­
tion is productive if it causes an output transition, and void otherwise. The time
between a productive input transition and the corresponding output transition may
be arbitrary (i.e. positive and fini te).

An operator is called "combinational" if F vG is a tautology, and "sequentia!"
or "state-holding" otherwise.

Some examples of operators are given below. They wil! return in later ex­
amples.

182 Handshake circ its ____, VLSI circuits

Example 7.21

D

0. An inverter is specil1ed by

-,a !-----; zT
a !-----; z!

1. The familiar AND operator is specified by

al\b !-----; zT
-,a V ---,b !-----; z!

2. Similarly, the OR operator is specified by

a v b !-----; zT
-,a 1\ ---,b !-----; z!

a 1----{>- z

3. The previous three operators are combinational operators. A well-known
example of a sequentia! operator is the Muller-e element:

Note that this specification allows two successive transitions on an input,
provided stability of the guards.

eMOS implementations of VLSI operators are discussed in [Mar89,vB91]. An
example of a eMOS circuit for a Muller-e element is depicted in Figure 7.0. It
consists of a Majority circuit with it output z fed back to o~e of its inputs. Note
that during the (dis-)charging of wire y two paths of transistors pull together.

VLSI operators may be connected by (point-to-point) wires. Wires themselves
may be regarded as VLSI operators:

a !-----; zT
-,a !-----; z!

However, since VLSI operators may have arbitrary delays themselves, there is
no point in introducing extra variables here. Therefore we treat wires as single
variables.

When a value is to be transmitted to the inputs of two operators a FORK
operator must be used . The FORK operator has two outputs, both following the
input:

Handshake components ---+ VLSI circuits 183

vdd

a-1

z

b-j

vss

Figure 7.0: A CMOS circuit fora Muller-e element. Wires with the same label
are connected. vdd and vss denote the power and ground rail respectively ..

a-<:
The comma between the output transitions expresses concurrency: the two events
may occur in either order and no assumption is made about the time duration
between these events. (Simultaneous occurrence of both events caooot be ex­
pressed in the model). In implementation technologies where wire delays may
dominate other delays (such as CMOS) it turns out to be necessary to represent
the outputs of the fork by two distinct variables.

A network of VLSI operators and forks is said to be delay insensitive if
it functions correctly under arbitrary and possibly varying delays in operators
and wires. This rather extreme class of asynchronous circuits has the additional
advantage that it simplifies the layout: delays introduced by wires do oot affect
the behavior of the circuit. Unfortunately, the class of (purely) delay-insensitive
circuits constructed from operators and wires only is small and oot very interesting
from a practical view point (cf. [BE90] and [Mar90]).

The "weakest possible compromise" [Mar90] with respect to delay insensitiv­
ity seems to be a forking wire with constraints on the arrival times of transitions
at the ends of the fork: the isochronie fork. An isochronie forks is a special case
of the FORK operator. Below we present two types of isochronie forks. An
asymmetrie isochronie fork guarantees that one output transition occurs before
the other, as expressed by the semicolon:

184

a 1--7 y T;z T
-,a 1--7 yl; z l

Handshake circuits - VLSI circuits

·-<:
In circuit diagrams such forks are indicated by a '<' at the fast end . A symmetrie
isochronie fork guarantees that both output transitions occ~r at the same time:
the narnes of the outputs are simply aliases for the same variable. In circuit
diagrams such forks are indicated by a '=' near the fork.

The above classification of isochronie forks is a coars one. By requiring
different timing behaviors for up- and down-going transitio .s finer classifications
can be obtained. Isochronie forks must he applied with cautïon and implemented
with care [vB92].

Networks of VLSI operators and (isochronie) forks are speed independent
[Mil65 ,Rem91].

A useful auxiliary circuit for the realization of complete 4-phase transition
handshake components is the S-element [vB92] . An S-element has as port struc­
ture a0 u b• , and can be specified by the transition handshake process

A possible circuit realization of the S-element in terms of VhSI operators is given
below.

Initially, ao =ai = bo = b1 =fa/se and z = true. The forks connected to ao and b1
are both isochronie. In [Mar89] the circuit is called a Q-element. The D-element
of [BM88] behaves similarly, but is not strongly initializable (cf. Section 7.6),
whereas the S-element is .

Circuit realizations for some handshake components

The circuit realizations of the handshake components below are all based on
complete 4-phase refinements (cf. Example 7.13).

Handshake components ~ VLSI circuits 185

Example 7.22

0. A circuit realization of a connector consists of wires only:

1. A repeater consists of a NOR and an inverter. Output a 1 is connected to
ground and will not be involved in any transition.

2. A circuit for the sequencer is based on the S-element.

So~ L ~~ JL· __ j-l ___ , :

3. The PAR component can for instanee be realized as:

4. A circuit for the non-receptive mixer is:

186 Handshake circuits __. VLSI circuits

0

The fork connected to c1 is isochronie.

5. An undirected 10/N can be realized by

6. A Boolean transferrer can be realized by wires only, provided that the b
and c handshakes may overlap (cf. Section 7.3).

bo ~ t.:_ co
b1 :false co :false

b1 : true co: true

For an n-bit transferrer (n > 1) the above transferrer can be extended by
adding n - 1 wire pairs from port b to port c.

7. The circuit below is that of a Boolean variabie with a single read port.
Transition a 1 T acknowledges a write action; transitionboT is a read request.

ao :false
b1 :false

bo

ao :true
b1 : true

The circuit of a 2-bit variabie can be realized by two 1-bit variables, a
fork connected to the two read-request inputs, and a Muller-C element that
joins the write-acknow1edgements (with inputs and outputs appropriately
labeled).

The presented circuit solutions are not claimed to be optima!. Clever combi­
nations of operators on the transistor level often yield interesting savings. The
circuits of Example 7.22 are sufficient to realize the optimized handshake circuit
of the two-place buffer of Example 1.4.

/nitialization 187

7.6 Initialization

When a VLSI circuit is connected to a power supply, the circuit generally does
not proceed to an initial state by itself. Ij the circuit becomes quiescent after
some time, the resulting state may not even be reachable from an initia! state.
Also, the circuit may start oscillating (di verging), even when its specification
does not allow for such oscillations.

So, we have a circuit-initialization problem: how to force a VLSI circuit into
its initia! state. This problem is not specific to self-timed or other asynchronous
circuits. In clocked circuits, this problem is solved by the introduetion of addi­
tional reset circuitry. This circuitry can be used to force a well-chosen subset
of all wires into their initial states. This strategy is also applicable to the VLSI
circuits studied in this chapter. Nevertheless, we develop a different strategy
that avoids the need for additional circuitry and that builds on the properties of
compiled handshake circuits.

First we take stock of the properties of handshake components and circuits
that will be used:

• The initia! state of handshake components is passive: only an input event
can cause a handshake component (and hence a handshake circuit) to leave
the initia! state (cf. 3.19).

• Handshake components and handshake circuits have the initial-when-closed
property. Hence, a handshake circuit is in its initia! state if and only if all
its ports (both internat and external) are also (cf. 3.19).

• The environment of a handshake circuit has only control over the inputs
of the extemal ports of that handshake circuit.

It must be stressed that the behavior of the VLSI circuit after power-on
cannot be analyzed within the model for handshake circuits, since all kinds of
interterenee may occur. Fortunately, we are not interested in this behavior; we
only want a guarantee that the circuit will arrive in an initia! state within a finite
and predictabie amount of time.

The initialization properties of handshake circuits will be analyzed in terms
of the binary relation ~ between symbol sets.

Definition 7.23 (initializes)

Let B and C be a symbol sets. B ~ C (pronounced as "B initia! i zes C ") is a
binary relation with the following properties:

I88 Handshake circuits ---+ VLSI circuits

0. C ç B ::::} B rv. C

2. B rv. C 1\ D rv. E ::::} B u C rv. D u E

0

The following properties follow immediately from the defi ition of rv. .

Property 7.24

0. From 0 we can see that rv. is reflexive, i.e. B rv. B.

I. Tagether with I we conclude that rv. is a preorder.

2. Combining 0 and I yields B rv. C 1\ B Ç D ::::} D "f C .

3. Altematively, B rv. C 1\ D Ç C ::::} B rv. D .

4. Finally, combining 0 and 2 yields B rv. C ::::} B rv. .& U C .

0

Our aim is to develop a rv. relation on (UP : P E H : aP) for handshake circuit
H, given such relation for the constituent handshake components.

Definition 7.25 (weak initializability)

0

0. A handshake component P is weakly initializable if it is passive, initial­
when-closed and iP rv. oP. On ground of Property 7.24.4 the latter is
equivalent to iP rv. aP .

I. A handshake circuit H is weakly initializable if its constituent handshake
components are and i(eH) rv. o(eH) , where eH denotes the extemal port
structure of H (cf. Definition 3.8).

Clearly, a weakly initializable handshake component can be forced into its initia!
state by making all inputs initia!.

Example 7.26

All circuits of Example 7.22 are weakly initializable.

D

/nitialization 189

Unfortunately, requiring all handshake components to be weakly initializable
(Definition 7.25.0) is not sufficient to make a handshake circuit weakly initializ­
able (Definition 7.25.1). In order to make handshake circuits weakly initializable,
additional provisions are required. We first examine a simpte strategy that is ef­
fectively and efficiently applicable to undirected handshake circuits. A more
general, but also more elaborate strategy is sketched next.

A simple initialization strategy

Definition 7.27 (strong initializability)

0

0. A weakly initializable handshake component P is strongly initializable if
iP0

'""-+ oP• .

1. Accordingly, a weakly initializable handshake circuit H is strongly initial­
izable if its constituent handshake components are and i(eH)0

'""-+ o(eHt .

Example 7.28

All circuits of Example 7.22 except the transferrer are strongly initializable.

0

The next theorem expresses that strong initializability is preserved under
parallel composition, provided that the associated activity graph is acyclic.

Definition 7.29 (activity graph)

An activity graph is a directed graph. The actiVIty graph associated with a
handshake circuit has one node for each handshake component and one are for
each channel, directed from the active port to the passive port of that channel.

0

Theorem 7.30 (initialization)

Let H be a handshake circuit whose associated activity graph is acyclic and

190 Handshake circ its ___, VLSI circuits

whose constituent handshake components are strongly init alizable. Then H is
weakly as well as strongly initializable.

Proof When circuit H is empty or a singleton, the th'eorem is trivia!. In
the case H consists of at least two components, it can be decomposed into two
non-empty subcircuits Ho and H 1 such that p0 Ho n p• H 1 += 0 (here we use the
acyclicity of H). We use the following abbreviations (seJ picture below):

• A 0 = (p0 Ho, 0)

• s• = (0, p• Ho\ p0 H,)

• c• = (0, p• Ho n p0 H,)

• co = (p• Ho n p0 H, , 0)

• Do = (P0 Ht \ p• Ho, 0)

• E• = (0, p• H,)

Note that pHo = (A, B U C) and pH, = (C U D , E) . Also, iC 0 = oe • and
oC 0 = ie• . Weak initializability of H is now proven by (the derivation uses
property 7.24.4 implicitly):

"-'+ { Ho is strongly initializable }

oB• u oe •

"-'+ { H, is weakly initializable; oe · = iC 0
}

oC0 U oD0 U oE•

"-'+ { oC0 = iC•; Ho is weakly initializablè }

OA0

Clearly, all symbols are initializable from the external inputs. Strong initializ­
ability which is proven similarly.

0

Testing 191

Theorem 7.31

Let T be a Tangram program. The activity graph associated C · T is acyclic.

Proof Can be checked easily from the diagrams that depiet the compilation
function in Chapter 6.

D

Weak initializability of a handshake circuit is suftkient for practical purposes.
Strong initializability allows the environment to postpone the initialization of the
active input wires until all passive outputs wires have become low. For the set of
undirected handshake components of Example 2.23 four-phase realizations can
be designed that are strongly initializable. The simpte strategy is then effective.
The time needed to initialize a handshake circuit is proportional to the length of
the longest directed path in the associated activity graph. In practice this amounts
to less than a micro second for current CMOS realizations.

A more general initialization strategy

For the handshake components needed for the implementation of Tangram strongly
initializable realizations exist (4-phase). However, fora few components weakly
initializable realizations exist, that are significantly cheaper than their strongly
initializable counterparts. These cheap variants often have properties that are use­
ful for more elaborate initialization strategies. For example, for TRFr- (a0

, &•, c•)
a very cheap 4-phase realization exists (cf. Example 7.22) that satisfies

This implies that port &• must be initialized before c• cao be initialized. Acyclicity
of the associated activity graph of a handshake circuit is then insuftleient for
weak initializability. However, depending on the initialization properties of the
components involved, specific classes of weakly initializable handshake circuits
may exist. It cao, for instance, be proven that with the above transferrer, compiled
handshake circuits of full Tangram are still weakly initializable.

7.7 Testing

Introduetion

Fabrication of ICs introduces defects on the surface of the IC, such as spurious
blobs of metal, impurities in the oxide layers, silicon-crystal defects, and cracks

192 Handshake circuits ----+ VLSI circuits

in wires. These defects cannot be avoided completely and h ve a density of a few
per cm2 of IC area. Unfortunately, they may cause malfunc ioning of the circuit.
The fraction of defect-free chips for a given IC technolog depends mostly on
the size of the chip and ranges from over 90 % for chips f a (ew mm2 to less
then 10 % fora large IC of, say, 2 cm2 .

The main purpose of testing is fault detection : the di rimination between
correctly manufactured circuits and faulty circuits. Anoth r purpose is that of
fault location [Fuj85]. This section only addresses the foffiljer.

An effective test procedure must make assumptions OJ!l how defects affect
the circuit behavior. The set of assumptions is common~y referred to as the
fault model. A popular fault model is the so-called stuck-aif fau1t model, which
models defects that prevent a wire to be pulled-up from a Ibw state (stuck-at 0)
or to be pulled-down from a high state (stuck-at 1). It must be noted that the
stuck-at model only addresses those wires that conneet logica! gates (cf. VLSI

I

operators, Section 7.5). More elaborate fault models also lnclude e.g. bridging
faults (spurious connections between two wires) and crosspoint faults (redundant
transistors) . Despite its limitations, the stuck-at model is widely used.

Testing of asynchronous circuits received little attention in literature. The
subject is suggested to be difficult ([Fuj85], page 81):

Test generation is much more difficult for asynchronoV!s circuits than
for synchronous circuits, because of races, hazards, or oscillations.

Also, the class of asynchronous circuits considered is usually restricted. Re­
cent work [DGY90,BM91,MH91] suggests that for asynchronous circuits that
are "sufficiently" delay insensitive, the prospects for testabiliity are fairly promis­
mg.

The purpose of this section is to show that testing of CMOS realizations of
handshake circuits is viabie and that the costs of testing qm be kept relatively
modest. First we address the issue of the generation of test traces: traces that
can be used to detect faults. This is based on the stuck-at model, restricted to
stuck-at faults on (gate) outputs. For a more general appro 'eh that also includes
stuck-at faults on inputs see [MH91].

Unfortunately, the length of a test trace or the time to execute a test trace
may grow exponentially with the size of the circuit. In ordJr to control the costs
of test-trace generation and execution, it is necessary to mt dify the circuit with
the objective to reduce these costs. This so-called testability enhancement will
be addressed at the handshake-circuit level and forms the second topic of this
section.

Testing 193

Both topics are treated informally and rather sketchy. This reftects the imma­
turity of the discipline of asynchronous-circuit testing and the presence of open
problems.

Test traces

Our analysis starts with consirlering only those wires that conneet handshake
components. Assume, withoutlossof generality, that all these wires are required
to be low at an initia! state of the circuit. Let a be such a wire, and let Q be
the handshake component for which a is an input wire. Stuck-at faults on wire
a may have quite different effects on the circuit behavior:

0. A stuck-at 0 on a does not interfere with the initialization of the circuit. (It
may even speed up the initialization procedure.) A subsequent ûp transition
a I, however, will never arrive at Q, as if it experiences an infinite delay.
Component Q can therefore not participate in any trace that involves a I.
In most cases (see below) this can eventually be observed extemally by
the inhibition of an output transition.

1. A stuck-at I on a prevents the correct initialization of Q and hence of the
circuit. Unfortunately, this stuck-at may have the same effect on Q as a
(premature) up transition on a. In genera!, not much can be said about the
response of Q to such a premature transition. We assume, however, that
Q is not able to participate in a subsequent handshake that involves a 1.

In either case, the handshake circuit cannot participate in a trace that contains
bothar and al.

An internat test trace is defined as a trace in W · H that causes each channel
wire to make an up and a down transition. An external test trace, or test trace
for short, is a trace t E (eH)H that satisfies:

(Vu : (u I eH) = t : u is an intern al test trace)

The idea is that the behavior of a handshake circuit cannot display a test trace in
the presence of a stuck-at fault. Given this definition of test trace, three important
questions arise:

0. under which circumstances does a test trace exist?

1. how to compute a test trace?

2. can test traces be executed?

194 Handshake circuVts ----7 VLSI circuits
I

For many handshake circuits no test trace exists, as is revi~weq below. Fortu­
nately, for practical circuits escapes are often available. 1

0. Some wires never make a transition. For instance, wir 1 a 1 o.f the repeater in
Example 7.22. These wires are clearly redundant and should be removed.
In the sequel we assume that circuits are oot redunda t.

1. Sametimes a wire makes at most one transition. For instance, wire a0 of
the repeater of Example 7.22 makes at most one up-transition. There are
two ways to deal with this situation. One cao either relax the definition of
test trace and add circuitry to observe stuck-at faults on these wires, or one
cao modify the circuit such that it is able to execute a signaling sequence
with both transitions (see below under test enhancement).

2. Even if every wire cao make both transitions, oot all wires need to be
covered by a single trace. The way out here is to concatenate several
traces, linked with initialization steps into a single test trace.

3. Divergences cause special problems. The occurrence of a divergence cao
easily be observed in a CMOS realization of a handshake circuit, by roea­
suring the supply current in an (extemally) quiescent state. However, since
it is oot possible in all cases to identify the wires involved in a divergence,
a test trace may oot exist in a divergent circuit.

4. A more serious problem may be that of intemal nondeterminism. Some
forms of internal nondeterminism, such as the circuits! compiled from Tan­
gram programs with uninitialized variables, are relatively innocent. Other
forms of internal nondeterminism involve circuit redundancy. The result­
ing nondeterminism must then be restricted during test time. Clearly more
research is needed for testing intemally nondeterministic circuits.

In summary, a test trace does exist, provided that

• the circuit is oot redundant, non-diverging, and intem.ally deterministic;

• provisions are made to deal with wires that (would otherwise) make at
most one transition;

• re-initializations are allowed.

An undirected handshake channel is tested after the completion of a 4-phase
handshake. Testing of a double-rail encoded channel requires at least two 4-phase

Testing 195

handshakes, so that both wires of each wire pair make both transitions. But how
about the wires internat to the handsha.ke components?

It turns out that the handshake components of Example 4.35 can be realized
such that the internat wires are covered by a test trace that tests the external wires.
This also holds for the handshake components of Example 4.37, except for some
of the binary operators, such as adders. For adders an additional handshake is
necessary to fully cover the testing of the carry chain.

Given the above testability properties of handshake components, it is in many
cases straightforward to compute a test trace from the handsha.ke circuit and even
from the original Tangram program.

Example 7.32

D

0. Example of a test trace for BUFz(a, c) (cf. Figure 1.4):

This trace tests a ripple buffer of arbitrary capacity! The test time can be
reduced by changing the order of c• !0 and a•?I .

1. A test trace of WAG(a, c) (cf. Figure 1.5) is

In order to test the two parallel paths in the handshake circuit, twice as
many communications are required in comparison with the test trace of
BUFz(a, c).

Note that a test trace also detects multiple stuck-at faults on outputs. Masking
of one fault by another fault cannot occur.

Test-trace execution

Can a test trace be executed? That is, is it possible to force a correctly manu­
factured IC to display the behavior specified by the test trace? In a strict sense,
this is seldomly possible, because of reordering of output transitions. If the ques­
tion is interpreled "modulo reordering", there still is a problem: that of extemal
nondeterrninism.

For instance, the first N outputs of an N-place shift register (cf. Section 1.3)
are unkown at test time. The resulting nondeterrninistic behavior is relatively

196 Handshake circuits ___. VLSI circuits

innocent, because the communication behavior at the port evel is not affected.
More erratic forrns of extemal nondeterrninism are hard t handle by existing
test equipment.

Given an executable test trace, ICs can be tested. An I is .free of stuck-at
faults, if the complete test trace can be executed, The costs ' f testing are largely
determined by the length of the test trace and the time nee ed to execute it. As
a rule, shorter traces require less test time.

Testability enhancement

Testability enhancement of a circuit involves the modification of the circuit with
the purposes of

• reducing the length or execution time of a test trace;

• establishing the existence of a test trace.

Consider the duplicator chain of Example 3.24, consisting df N duplicators:

Completion of the handshake through port ao requires 2N handshakes through
port a N. Clearly, the time to execute a test trace of the duplicator chain grows
exponentially with the circuit size. The problem is not as artificial as it may
seem: a watch is basically a set of counters that can be realized with duplicator
chains. The circuitry that counts leap years must then also be tested!

The explosion in test time can be avoided by cutting the chain into two parts,
more or less equal in size, and to test them independently. This can be realized
by inserting a mixer and a break component B.

t

The behavior of component B is defined by (with m a locaJ Boolean variable)

m := false; #[[t 0
: m := -,m

I C
0

: if m ----> skip IJ -,m ----> d• fi
]

Testing 197

Variabie m records whether B is in test mode . Initially, B is not in test mode.
A handshake through t sets B in test mode, and a second handshake through t
resets m. If B is in test mode, communications through c0 are simply absorbed.
lf B is in not in test mode it acts like a connector.

The effect of B halfway in the duplicator chain is dramatic. The front sub­

ehaio of length N div 2 can be tested in test mode in 2<N div 2l time units. The
back subchain of length N - (N div 2) can be tested in normal mode roughly
in the same amount of time. This results in an overall reduction by a factor of

2<N div 2)-1.

In general, insertion of mixers and breaks makes it easier to obtain test traces
in a systematic way. As illustrated above, it may also reduce the test time
significantly.

An example of testability enhancement of the second kind, viz. one that
helps to establish the existence of a test trace, is the following. A repeater
can be equipped with a passive port that is used to (re-)set the repeater in test
mode, similar to the break component in the duplicator chain. By modifying the
behavior of the repeater such that in test mode it behaves like a connector, the
wires connected to the passive port of the repeater can conveniently be tested. As
a bonus, most handshake circuits will then in test mode complete the handshake
through port !> 0

•

198 Handshake circul s ____. VLSI circuits

Chapter 8

In practice

Handshake circuits and the associated compilation method from CSP-based lan­
guages were conceived during 1986 at Philips Research Laboratories. A first
IC (7000 transistors) was designed using experimental tools to manipulate and
analyze handshake circuits (then called "abstract circuits") and to translate them
into standard-cell netlists. The IC realized a subfunction of a graphics processor
[SvB88] and proved "first-time-right" (September 1987). Extensive measure­
ments hinted at interesting testability and robustness properties of this type of
asynchronous circuits [vBS88].

Encouraged by these early results the emphasis of the research shifted from
the design of the graphics processor to VLSI programming, compilation methods
and tooi design. Generalization and systematization of the translation method
resulted in an experimental silicon compiler during spring 1990 [vBKR*91].

A second test chip has been designed and verified during the autumn of 1991.
In addition to some test structures, the IC contains a simple processor, including
a four-place buffer, a 100-counter, an incrementer, an adder, a comparator, and a
multiplier in the Galois Field G F(28) . The Tangram program was fully automati­
cally compiled into a circuit consisting of over 14 thousand transistors. Extensive
testing and mearsuring demonstrated functional and structural correctness over a
supply-voltage range from 1.2 Volt to 7.5 Volt.

Current work on the compiler aims at extending its input language Tan­
gram [Sv88*9l,KvBB*92] and improving the efficiency of the generated cir­
cuits. Most of the theory reported in this thesis evolved in conjunction with the
work on the method and tools. This final chapter reports some of our practical
experiences with VLSI programming and silicon compilation. It concludes with
an appraisal of asynchronous circuits.

199

8.0 VLSI programming and compilation

Experiences with VLSI programming and compilation wil! e presented from a
programmer's viewpoint After an overview of the design tools, a benchmark
program (that of a Compact Disc error decoder) is used to ill strate various VLSI
programming and compilation issues.

Tooi overview

circuit
stalistics

B

cell
library

VLSI programroer

Tangram
program

A

handshake
circuit

E

netlist

F *

VLSI
layout

silicon foundry

c

G

timed
trace

D *

VHDL
circuit

Figure 8.0: Overview of the main Tangram-compilation tools. Boxes denote
design representations, arrows denote tools.

An overview of the design tools is depicted in Figure 8.0. Design represen­
tations are shown as boxes, tools as arrows. Arrows labeled with an asterisk

VLS/ programming and campi/ation 201

denote commercially available tools. The main Tangram-compilation tools are:

• A: a translator from Tangram to handshake circuits (text format);

• B: an analyzer of handshake circuits that produces statistics at the levels
of handshake circuits, CMOS circuits and layout;

• C: a converter of handshake circuits into VHDL [LSU89] descriptions;

• D: a VHDL simulator that produces a trace with detailed timing informa­
tion;

• E: a generator that expands the handshake circuit into a netlist of standard
cells;

• F: a standard-cell layout package that performs placement of the standard
cells and cell-to-cell routing accordjng to the netlist;

• G: a test trace generator (under development) .

The vehicle

The benchmark for this chapter is a simple error decoder with application in
Compact Disc players (cf. Section 0.0). A precise description of this function
can be found in [KvBB*92]. A global description of the error decoder is the
following. The decoder receives code words of 32 symbols (of 8 bit), of which
four are designated as parity symbols. These parity symbols allow for the correc­
tion of two erroneous symbols. The benchmark program can only locate single
errors. Por each code word the decoder produces an error status (0, 1 or more
errors) and, in the case of a single error, an error location and an error value.
The actual correction is not performed by the decoder. Code words arrive at a
rate of one per 70 p,seconds.

VLSI programming

A Tangram program for the decoder can be found in [KvBB*92]. Schematically
it can be described by

#[x:= input(a); s := syndrom e(x); e := search(s); c!e]

The incoming code word (through port a) is stored in variabie x by function
input. Function syndrome then computes the syndrome of x, which is stored

202 In practice

in s (a tuple of four symbols). The syndrome contains the error inforrnation in
an implicit form . Function search makes this information explicit in variabie e,
using a linear search. The number of steps in this search varies between 0 (for
correct words) and 32 (in the case of more than one error); Finally, the error
information is output through port c. An important improvement on the above
program is obtained by computing the syndrome "on the fty ' and thus avoiding
the costly storage of the incoming code word.

For the detailed program of the decoder the subset of Tangram of Chapter
5 is insuftkient The applied arithmetic in the Galois Fi~ld GF(28) requires
provisions for the definition of the appropriate types and associated operations.
These provisions include tuple construction and selection, type casting, and type
fitting (SvBB*91]. The structure of the program benefits from function and
procedure definitions. Sharing of a number of these procedures (cf. Section 1.5)
avoids duplication of circuitry with hardly a penalty in performance.

The program text consists of 68 lines, divided over three paragraphs that
are more or less equal in size. The first paragraph contains type and function
definitions for the Galois Field arithmetic. The second paragraph consists of
declarations of variables, functions and procedures and the third paragraph is the
detailed version of the above command.

The transparency of the translation method plays an important role in YLSI
programming. As the coarse performance can be read directly from the Tangram
text, the selection of the above algorithm may be justified at an early stage. Also
the choice of the amount of parallelism in the syndrome computation and in the
error search is guided by the observation that most elementary operations in the
Galois Field are very cheap.

Simple analysis (KvBB*92] shows that the decoder takes in the worst case
about 20 J-LSeconds per codeword, which clearly suffices. In the case of stricter
performance requirements, the following program for the decoder may be con­
sidered:

#[x := input(a); s := syndr ome(x); b!s]

11 #(b?r; e := search(r); c!e]

It consists of two parallel processes: one for computing the syndrome and one for
searching the error. The type of the internal channel b is a tuple of four symbols.
The resulting forrn of pipelining is akin to that of the ripple buffer in Section 1.1.
The throughput of the above program is approximately twice as large compared
with the first decoder program. Aspects of a more detailed comparison of both
decoder programs recur below.

VLSI programming and compilation 203

Compilation to handshake circuits

The compilation of Tangram programs has been implemenled according to an
extension of the method of Chapter 6. The compiler translates directly to com­
plete 4-phase handshake circuits, and many of the optimizations of Section 7.1
and 7.2 are included. The compiler generates a handshake circuit in a simple
textua1 format.

The compiler uses the handshake components of Examples 2.23 and 4.37.
The extensions of Tangram mentioned above require only a few extra handshake
components.

The compiled decoder consists of 523 handshake components, including 174
connectors. The pipelined version contains 741 handshake components, of which
244 are connectors .

Simulation

Additional confidence in the correctness of a Tangram program can be gained
from simulation of the compiled handshake circuit. We have based our simu­
lation tools on a commercially available VHDL simulator. A simple program
translates the handshake circuit into an equivalent VHDL architecture [LSU89].
Together with a library of VHDL models for the various handshake components
this provides access to simulation tools used in main-stream VLSI design. A
major advantage over a specific handshake-circuit simulator is that the above
setup also allows interfacing to other circuits, including clocked ones, within the
VHDL framework.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

input 11111111111111111111111111111111 11111111111111111111111111111111

s := .. I I

search I 111 I I I 111 I 111 I lil 1111 I 11 I I 11 111

output I I

Figure 8.1: Timing diagram of the standard error decoder. The time scale is in
microseconds.

Both decoder programs have been simulated with input ports connected to
data files containing several code words . By inspeetion of the files connected to
the output ports the correct functional behavior was verified. An alternative to

204 In practice

file l/0 is to model the environment by a Tangram progra · and to inspeet the
data transferred along intemal channels.

In addition to functional verification, simulation proves useful in analyzing
the detailed timing behavior of the compiled circuit. The YIHD~ models of the
handshake circuits have been characterized with regard to timing, based on the

I
timing of its constituent operators and conservative estimations of the average
wire capacitances. An interactive post processor of the generhted timing data has
been used to generate the timing diagrams Figures 8.1 and S.2.

Figure 8.1 displays the timing behavior of the standard d~coder.. The square
dots are actually short line segments, each indicating a handshàke interval, marked
from the first phase to the fourth phase. The top line shows the handshakes of
the input port, 32 per code word. The second line depiets an intermediate step
between the input phase and the search. The third line shows the search: for the
first code word (with two errors) the search takes 32 steps, , and for the second
code word (correct) 0 steps. The output of the error inf<?rmation is on line
four. An incorrect code word takes at most 12 J.LSeconds, a correct word about 6
f.LSeconds.

The timing diagram of the pipelined error decoder in Figure 8.2 is markedly
different. The same channels have been monitored as in the standard decoder,
with the intermediate step replaced by the intemal communic:ation along channel
b. It is clearly visible that the input of the second code word is in parallel with
the error search of the first code word.

The throughput of the pipelined decoder is indeed twice that of the standard
decoder, viz. one code word per 6 J.LSeconds. (The simul~tion interval of 17
f.LSeconds in the timing diagram of Figure 8.2 left thus ple~ty of room for the
decoding of a third code word.) The elapsed time for an incorrectable code word
has also improved, because less overhead is involved in the sharing of procedures.

0 1 2 3 4 5 6 7 8 9 10 11 12 1~ 14 15 16 17

input 11 11111111111111.11111111111111111

b I I I

search 11111111111111111111111111111111

output I I I

I

Figure 8.2: Timing diagram of the pipelined error decoder. The time scale is in
microseconds.

VLSI programming and campi/ation 205

For critica! designs, the timing model may be too consèrvative. Significant
improvements, however, can only be obtained when the handshake circuit is
"back annotated" with wiring capacitances from the layout (cf. simulation of
power consumption at the end of this section).

VHDL simulation provides detailed feedback, but is too slow for heavy work.
The simulation of large Tangram programs and large input files , as required for
e.g. digital video signa! processing, requires more powerlul simulation tools. A
salution may be to compile Tangram code directly to VHDL, or to an ordinary
programming language such as C or Pascal. At the expense of the accuracy of
the timing information, several orders of magnitude may be gained in simulation
speed.

Circuit statistics

Comparison of different VLSI programs and optimization of the chosen program
with regard to layout area requires feedback about circuit and layout costs. Un­
fortunately, the automatic generation of relatively smalllayouts may take several
hours. Larger layouts may involve interactive floorplanning and optimization,
and their generation may then take a few days or weeks, or even Jonger.

A quick form of feed back is a tab ie of statistics computed from the handshake
circuit. These statistics include the area covered by standard cells, but ignores the
wiring area, which is sametimes a serious limitation. Excerpts from the statistics
generated for the standard decoder are displayed in Table 8.0.

The first paragraph reports the MOS transistor count and the area occupied
by the standard cells. These quantities are detailed by function, based on the role
of the handshake component in the computation (e.g. sequencer: contra!, mixer:
communication, binary operator: logic, and variable: memory). These functional
profiles vary considerably from one Tangram program to another.

The second paragraph presents the standard cell counts. It is confined to the
six most frequently used cells, accounting for about two thirds of the transistors
and cel! area.

The third paragraph gives an estimation of the area of the standard-cell part
of the layout. Here it is assumed that the routing channels occupy the same area
as the standard cells. For this example this is quite accurate, as we shall see
later.

The pipelined decoder counts 11376 transistors and 989 cells, occupying a
cell area of 1.5 mm2. The estimated core area is 3.0 mm2 , which will turn out
to be rather optimistic.

206 In practice

Part #MOS Ts ce ll re a (rnm"2]

Decoder 7292 [100.0 %] [100.0 %]
contro l 1010 [1 3 . 9 %] [1 3.0 %]
commun i cation 938 [12.9 %] [15. 3 %]
l og i c 2772 [38.0 %] [27.0 %]
memory 2568 [35.2 %] 0.415 [44.5 %]

Ce ll s #cells #MOSTs

Decoder 610 [100.0 % l 7292 [100.0 %]
C2 26 [4.3 % l 312 [4.3 %]
C3 37 [6 .1 % l 444 [6.1 %]
EQL 122 [20.0 % l 2440 [33.5 %]
OR2 1 30 21. 3 % l 780 [10.7 % l
s 34 5.6 %] 612 [8. 4 % l
VAR 1 54 8.9 %] 8 6:4 [11. 8 %]

estimated co re area 1. 9 mm "2
estimated transistor dens it y: 39 16 mm " - 2

Table 8.0: Circuit statistics for the standard decoder.

The problem here is how to take the wiring area into account, without laying
out the complete circuit. The ratio core-area/cell-area has been observed to vary
between 1.8 and 3. Conclusion: statistics are helpful with the selection among
alternatives and the tuning of a final program, but layout generation is necessary
for an accurate assessment of the circuit size of a VLSI program.

Layout generation

The generation of a layout from a handshake circuit involves two steps. First
the handshake circuit is expanded into a netlist of standard ~ells. These standard
cells are then placed and interconnected according to the con(:lectivity information
described in the netlist

We have developed a library of twenty-odd standard c,ells. Most standard
cells implement a single VLSI operator; some implement a qombination of a few

VLS/ programming and compilation 207

Figure 8.3: Layout of the standard error decoder.

operators in order to economize on layout area.
The expansion of handshake components also resolves their parameters (e.g.

word width, number of read ports). Placement and routing are performed by
commercially available layout tools.

Figure 8.3 shows a layout of the standard error decoder, synthesized fully
automatically from the Tangram program. The core area (standard cells + inter­
cell routing) measures 2.2 mm2 in a 1.2 J.L double-metal CMOS process.

A layout of the pipelined error decoder is shown in Figure 8.4. The difference
between the measured core area (4.0 mm2

) and the estimated core area (3 .0 mm2)

is visible in the relatively wide routing channels. This is partly a consequence
of the 32 x 2 wires for realizing channel b. Both layouts contain 55 pads: 22
inputs, 31 outputs, 1 power and 1 ground.

208 In practice

Figure 8.4: Layout of the pipelined error decoder.

VLSI programming and compilation 209

Simulation of energy consumption

In addition to circuit size and circuit speed, energy consumption is a third
cost/perlormance indicator. The energy consumed and dissipated by the decoder
is analyzed next.

The number of steps in the error search varies from 0 to 32. The total time to
decode a word by the standard decoder varies correspondingly between 6 and 12
fLSeconds (cf. Figure 8.1). We may therefore ex peet to find a variation in energy
consumption as well (cf Section 0.1).

By good approximation the energy consumption of a static CMOS circuit can
be calculated by summing over all wires the quantity lf CV2 , where N is the
number of transitions on that wire, C the capacitance of the wire (including that
of the transistor gates connected to it), and V the supply voltage. Accurate values
of all capacitances can be extracted from the layout. The number of transitions
can be obtained for given input stimuli by means of switch level simulation. The
above summation then yields the energy required for the computation. Division
by the specified (or simu1ated) computation time results in an indication for the
power consumption of the circuit.

0.4 14

power average

[Walt[0.35 12 power

[m Wa11[

0.3
10

0.25

0.2

0 .15

0. 1

0.05

0

12 16 20

lime (microseconds]

Figure 8.5: Power consumption of the standard error decoder for an incorrectable
code word.

Results of such simulations are given in Figures 8.5 and 8.6. The spikiness has

210 In practice

no physical meaning, but is characteristic for event-drive~ simulations, which
condense all energy of simultaneously occurring transitions into a single time

instant. ~
Figure 8.5 shows the simulation results for an incorrec ble codeword. The

two main phases, viz. input with on-the-fty syndrome comp tation (32 steps) and
error search (again 32 steps) are clearly visible. The circpit activity after the
search includes output of the error information. Then the ci~cuit is quiescent: no
power is consumed until a next code word is offered. No energy is dissipated in
clock distribution or in a controller that issues "skip" instructions.

The smooth curve represents the average power: the energy consumed so far
divided by the elapsed time. The power consumption is 2.5. mWatt, assuming a
rate of one incorrectable code word per 70 J.LSeconds.

0.4 12

power average

[Watt] 0.35

0.3

power

l
10

[mWatt]

0.25

0.2

0. 15

0.1

0.05

0

0 12 \6 20

time [microsecondsl

Figure 8.6: Power consumption of the standard error decoder for a correct code
word.

For correct code words, quiescence is reached soon after the syndrome compu­
tation , as shown in Figure 8.6. The power consumption is then only I .2 m Watt,
assuming a rate of one correct code word per 70 J.LSeconds. This example nicely
shows that asynchronous circuits consume energy only when and where needed.

I

Appraisal of asynchronous circuits 211

Test-trace generation

A test trace consisting of 3 code words (with 0, I and 2 errors) has been verif'ied to
test for all stuck-at faults in both decoders. The trace has been generated by hand0

from the Tangram program text. The transparent compilation rules and some
simple properties of the circuit realizations of the handshake components made
this a feasible task. The fault coverage was checked by switch-level simulation.
It may be interesting to note that a single code word covers already 97 % of the
possible stuck-at faults.

8.1 An appraisal of asynchronous circuits

In Chapter 7 we have seen that handshake circuits are most naturally realized
by asynchronous circuits. However, the overwhelming majority of today's VLSI
circuits are synchronous. Are there good reasoos to educate and train a new gen­
eration of designers in designing asynchronous circuits and VLSI programming?
It is hard to teil. The balance of pros and cons is mixed. This section aims at
reviewing this balance.

Research on asynchronous circuits is booming. With few exceptions, this
research is carried out in academie research institutes. We may expect significant
progress in the understanding of these circuits, and we may hope for further
improvements in their cost and performance. Synchronous-circuit design has a
respectable tradition of several decades, whereas asynchronous circuit design is
making its first steps along the leaming curve. The appraisal below is therefore
only a 1992 snapshot.

A major problem in camparing asynchronous and synchronous circuits is
the large variety in their characteristics and realizations. For both synchronous
and asynchronous circuits there exist different architectures, different (detailed)
timing disciplines and different building blocks. Quantitative camparisoos are
therefore hard to make.

The following aspects will be reviewed: ease of design, circuit speed, robust­
ness, testability, circuit size, and energy consumption.

Ease of design

A clock is an artefact. It has been introduced to solve timing problems at the
circuit level, viz. the controlled usage of latehes and the avoidanee of critica!

0Marly Roncken's

212 In practice

I
races. By the evaJution of VLSI circuits, the clock gradually · ecame an important
system-level design issue.

A choice for a single clock frequency in a VLSI syst m has many reper­
cussions on the modularity of the system, as well as on it performance. In a
synchronous circuit there is an excess of synchronization among subcircuits,
viz. at the end of each clock period. In an asynchron us circuit synchro­
nization is reduced to its (functional) minimum. This lea s to a high degree
of modularity, allowing modules to be designed and opti~ized independently
[Sei80,Sut89,MBM90]. One of the earliest projects in hard*"are design that ad­
dressed the issue of modularity is that of 'Macro modules' ~OSC67].

Furthermore, there is no need to design the circuits forl the basic functions
(shifting, addition, multiplication, etc.) under the restrietion that they can be
'evaluated' well within the clock period. In an asynchronous circuit, the slow­
ness of a multiplier may be compensated by a fast shift or transfer step in a
computation.

Problems with clock distribution and clock skew are of course absent in
asynchronous circuits. A gain in design productivity is also expected from VLSI
programming and compilation techniques described in this thesis.

Circuit speed

Less synchronization among subcircuits makes circuits faster. Consider for in­
stance two parallel processes, one that perfarms an addition foliowed by a multi­
plication, the other perfarms both operations in the opposite order. (Symbolically:
"(+; *) 11 (*; +)".) Furthermore, let the time required for a multiplication m be
considerably Iarger than the time required for an addition a. Asynchronous ex­
ecution of this process requires m + a time units. Synchronization of the two
parallel processes at the semicolon, as happens in clocked circuits, increases this
to 2m time units.

Asynchronous circuits also allow one to take advantage of the data-dependenee
of computation times. A well-known example is that of the -n-bit parallel adder
in [Sei80]. The average addition time is proportional to the average carry-ripple
path (O(Iog n)), whereas the worst case addition time is proportional ton. In syn­
chronous circuits an O(log n) response time can only be obtained with additional
carry-acceleration circuits. Then the worst-case and average7case performances
are equal.

Circuit speed has been an important motivation for asynohronous circuits in
[KTT*88,KTT*89,MBM90].

The asynchronous circuits realized from handshake circuits have another

Appraisa/ of asynchronous circuits 213

speed advantage that sterns from the extreme form of control distribution. e.g. a
sequencer that activates two transferrers avoids the large timing overheads com­
mon to central controllers.

Although the number of synchronizations is smaller in asynchronous circuits,
their explicit nature has its price. Especially in complete four-phase signaling,
the associated overheads may easily outweigh the above advantages for regular
computations. Quick four-phase refinements and perhaps two-phase refinements
may help here.

Robustness and reliability

Insensitivity to delay seems to relate to insensitivity to variations in IC-processing
parameters and operating conditions. These issues have hardly been researched,
and will only be touched upon by means of a few examples.

A decrease in the width of the polysilicon tracks in a CMOS circuit yields
faster transistors (shorter channels) and slower wires (higher resistance). In syn­
chronous circuits this may result in violations of the set-up and hold times of
the latches. In speed-independent circuits however, variations in the widths of
polysilicon tracks may influence the circuit's performance, but not its correct
operation.

Measurements of our test silicon [vBS88] showed a high degree of robustness
with respect to variations in power supply voltage. A large self-inductance in
the power-supply wires caused the supply voltage to drop below 0 volt for brief
periods of time, without affecting the functional correctness of the circuit. In
[MBL *89] an asynchronous microprocessor is reported to operate with a supply
voltage in the range of 0.35 to 7 Volt.

On a related note, it has been reported that fundamental reliability problems
that come with the synchronization of independently clocked circuits [Ano73,
CM73] can be avoided in delay-insensitive circuits [Sei80]. The occurrence
of glitches (the occurrence of a metastable state) does not lead to anomalous
behavior, because subsequent computations are simply delayed until metastability
has been resolved.

Testability

There are indications that the testing of asynchronous circuits is feasible. It is
even expected that speed-independent circuits may be simpler to test, because
stuck-at faults can be observed through deadlock [BM9l,MH91]. This feature
also highly simplified the generation of tests for our grapbics chip [v BS88] and

214 In practice

the decoder of Section 8.0. The progress in research towards utomatic generation
of test traces is nevertheless slow. This presumably reflects that this problem is,
"combinatorially speaking", a hard one.

Circuit area

In most cases the layout area is dominated by circuits that store, communicate
or process data; circuitry for control covers usually less th n 15 % of the area
(cf. the statistics of the decoder in Section 8.0). With D+ ble-Rail encoding,
which requires two wires per bit, we may then not expect tcl obtain circuits that
can compete in silicon area. Wh at should we think of this roughly 100 % area
overhead?

Firstly, there are campensa ti ons. Availability of two wires per bit simplifies
some operations: e.g. the Boolean complement is obtained by simply crossing
the two wires. Also, as we have seen with the shift registers in Section 1.3,
slave latehes can be saved selectively, whenever allowed by the performance
requirements. Another farm of compensation is realized by the extreme farm
of control distribtition intrinsic to the applied farm of syntax-directed translation.
This leads to fewer and shorter wires. An example of an inciÇental compensation
is the absence of carry acceleration circuitry for applications where the average
throughput matters.

Secondly, other delay-insensitive codes that require less wires may be con­
sidered (cf Section 7.4) . Clever eneader and decoder circuits may reduce the
casts of (de-)multiplexing, synchronizing and long-distance qommunications.

Thirdly, and presumably most significantly, campromises with regard to de­
lay insensitivity are required to arrive at competing circuits. Natura! candidates
for first experiments in this respect are: aff-ehip communicatiön, Random-Access
Memories (RAMs) and Read-Only Memories (ROMs). Exi~ting standards and
the availability of well-engineered embedded memories ma.fe it impractical to
insist on delay-insensitive circuit realizations in these cases. In many ICs the in­
put/output circuitry (including bonding pads) tagether with thy memories account
for well over half the circuit area.

Single-rail encoding for the remaining circuitry has been proposed in [Sut89].
Ultimately this may result in circuits that are even smaller than their synchronous
counterparts. Avoidanee of interference (cf. Sec ti on 0.1), ho wever, requires delay
circuitry [KTT*88,KTT*89] or completion detection by using alternative circuit
techniques [MBM90]. On a more speculative note, it ma~ be interesting to
investigate circuit techniques that eneode three states in a single wire.

Appraisal of asynchronous circuits 215

Unfortunately, campromises with regard to delay insensitivity may jeopardize
testability and complicate layout design.

Finally, VLSI programming and automatic silicon compilation allow the de­
signer to construct and compare many alternative solutions for the specification
at hand. By exploring a large portion of the 'solution space' he may expect to
find cheaper designs compared with current VLSI-design methods.

Energy consumption

Self-timed circuits consume potentially less energy than clocked circuits 1• There
are several reasons for this. Absence of interference (see Section 0.1) and other
transient phenomena such as hazards make each transition productive.

Also, there is no dissipation in clock signals. In high-throughput applications,
such as in video-signa! processing, the distribution of a high-frequent clock may
account for well over 20 % of the total power consumption.

Furthermore, control distribution leadstoa high degree of locality, thus avoid­
ing the power consumption in central controllers and the long wires from and to
these controllers.

Viewed differently, one may say that a self-timed circuit only consumes
energy where and when needed. The circuit compiled from a Tangram procedure
or function consumes no energy when it is not invoked. The error decoder
of Section 8.0 consumes energy only during the first 12 J.LSeconds of the 70
J.LSeconds available. For correct code words the required energy is even only half
that required for incorrect code words.

To what extent these potential advantages can be realized highly depends on
the chosen handshake refinements and data encoding.

As a rule, energy savings increase with a decrease in regularity of the com­
putation. Error decoding, where the work load depends on the correctness of the
code words, is a nice example of an irregular computation. Circuits that stand
by for most of the time, but have to respond to exceptional conditions represent
another example (e.g. a processor triggered by key-board inputs).

This observation concludes both the appraisal of asynchronous circuits and
the last chapter of this monograph.

1 Here we assume a circuit technology without static dissipation, such as CMOS.

216 In practice

Appe11dix A

Delay insensitivity

Introduetion

In [Udd84,Udd86,Ebe89,UV88] the notions delay insensitivity, independent al­
phabet and absence of computation interference have been defined for directed
processes. In this section we investigate to what extent these notions apply to
handshake processes.

Definition A.O (directed process)

A directed process T is a triple (iT, oT, tT), in which iT and oT are disjoint sets
of symbols and tT is a non-empty, prefix-closed subset of (iT u oT)* .

0

A handshake process is not a directed process: the alphabet of a handshake pro­
cess has more structure and the trace set is not prefix closed. However, to every
handshake process P there corresponds a directed process, viz. (iP, oP, tP So) .

All port structures in this appendix have no intemal ports.

Composability

Composability of traces captures the notion that symbols communicated between
processes arrive no earlier than they were sent. Consider directed processes P
and Q such that iP = oQ and oP = iQ. Let s E tP and t E tQ. Composability
restricts the way how the pair (s, t) may evolve from (E, E). Let a E iQ (and
therefore a E oP). Then E is composable to a, but the converse is not true,

217

218 Appendix A

because a must be sent by P befare it can be received bï Q. Similarly, for
b E oQ, we have b composable to E. Also, trace s is com ·osable to ta if s is
composable to t and a is on its way, i.e. ten· (tI a) < le · (sf a) . With this
introduetion we have prepared ourselves for the following d finition.

Definition A.l (composability)

D

0. Let I and 0 be two disjoint sets of symbols. Cu,oJ is the smallest binary
relation on (I U 0)* such that for all symbols a E I, ymbols b E 0 , and
traces s ,t E (JUO)*: I

E C(l,O) E = true
E Cu ,o) tb E cu,o) t
sa c(/,0) E s C(l,O) E

s C(l,O) ta = s C(l,O) t 1\ len · (tja) < len· (sfa)
s b c(l ,O) t = s C(l,O) t 1\ len · (tfb) > len · (sfb)
sa c(l ,O) tb = sa c(l,O) t V s C(l ,O) tb

Sets I and 0 contain the input and output symbols respectively. When
(I , 0) are clear from the context, Cu,oJ wiJl be shortened to C.

1. Let A be a port structure. c A is a re lation on AH andl is defined by

s CA t = S C (ÎA ,OA) t

r.e. the restrietion of C to AH.

Relation Cu,oJ is the converse of the composable relation introduced by [Udd84,
UV88]. Relation c is a preorder on AH. Consequently, we shall write se
to denote the composability ciosure of S and (c)· S to denote the composability
closedness of S (cf. Sec ti on 2.1). Both operators are lifted to handshake structures
in the obvious way. The composability relation plays a central role in much of
the theory on delay insensitivity. We shall therefore first analyze a number of its
properties.

property A.2

Let A be a port structure.

0. s, tE AH 1\ a E iA 1\ s C ta ::::} ta E A H

1. s , tE AH 1\ b E oA 1\ sb Ct ::::} s b E A H

D

Delay insensitivity 219

Relations r and c are related by:

Property A.3

For s, t E AH we have s rA t = s CA t 1\ (#8 = #t), where #t denotes the bag
of symbols of trace t.

D

Another way of relating r and c is suggested by "welcoming the traveling
symbols":

Property A.4

For port structure A and t, u E AH we have:

u ct = 3t',u'
(#~ = #Cu liA) \ #CtliA)) 1\ (#~ = #(t!OA) \ #cu!OA))
uu' r tt'

Proof We derive:

u ct

= { Property A.2.0; definition of c }

(3t' : #t' = #CuliA) \ #CtliA) : u C tt')

= { Property A.2.1; definition of c }

(3t', u': (#t' = #<uliA) \#<triAl) 1\ (#u'= #ct iOA) \ #cuiOA)): uu' C tt')

= { Property A.3, using len· uu' = len· tt' }

(3t', u': (#t' = #(ujiA) \#<triAl) 1\ (#u'= #ctiOA) \ #cuiOA)): uu' r tt')

D

Relations c, r and x are related in a remarkable way for prefixed closed handshake
structures, as shown in the next theorem.

Theorem A.S

For handshake structure S, such that (::;) · S we have:

(c)· S = (r)· S 1\ (x)· S

220 Appendix A

Proof Let t E tS and u E (pS)H. We derive for LHS Ç= HS

tEtS 1\ u ct

= { Property A.4 }

(3t', u' : t E (iA)* 1\ u E (oA)* : u u' r tt' 1\ t E tS)

=} { (x)· S }

(3t', u' : t E (iA)* 1\ u E (oA)* : u u' r tt' 1\ tt' E tS)

=} { (r) · S ; calculus }

(3u' : u' E (oS)* : uu' EtS)

=} { (:S)· s }
(3u' : u' E (oS)* : u E tS)

=} { calculus }

u EtS

LHS =} RHS follows readily from the definitions of c , r and x .

D

Corollary A.6

Por handshake process P we have (c)· pS. .

D

Equipped with the above property of handshake processes we are ready to analyze
the delay insensitivity of handshake processes.

Delay insensitivity

Delay insensitivity of directed processes has been defined in many ways [Udd84,
Udd86,Ebe89,UV88]. The cited definitions ar~ all provably equivalent.

Delay insensitivity

Definition A.7 (delay insensitive)

0. A directed process (I, 0 , T) is delay insensitive if

'ïls,t,a
sETI'dET

221

(a E I 1\ s C(l,O) ta =? ta E T) 1\ (b E 0 1\ sb C(l,O) t =? sb E T)

D

)

(Cf. Definition 23 and Lemma 5 in [UV88]; reeall the reversal of the
arguments with respect to their definition of C .)

1. A handshake process is delay insensitive if the corresponding directed pro­
cess is.

Theorem A.S

Handshake processes are delay insensitive.

Proof Let P be a handshake process and s, t E tP~ .

Case a E iP. We derive:

a E iP 1\ s C ta

::::} { Property A.2 }

ta E AH

::::} { tactl\(c)·P~ }

ta E tP~

Case b E oP. We derive:

a E oP 1\ sb Ct

=? { Property A.2 ; Definition of C }

sb E AH 1\ sb ct

=? { (c)·P~ }

sb E tP~

D

222 Appendix A

In [Udd84) the notion of independenee of a symbol set ~s introduced. It is
nice to view a handshake process as a directed process in which a port forms
the 'unit' of independence. Independenee of a symbol set C' with respect to P
embodies the notion that if an input symbol is allowed to occllr in p r c it is also
allowed to occur in P.

Definition A.9 (independent alphabet) I
0. Let P be a delay-insensitive directed process and C a set of symbols such

that C Ç (iP U oP). C is independent with respect to F if:

0

('is, a: sE tP 1\ a E (C niP): (sa fC E tPfC) =

1\ (Vs, a :sEtP/\aE (Cn iP):(safC E tPfC)

(sa E tP))
(sa E tP))

where the complement of C with respect to (iP U oP) is denoted by C.

1. Let P be a handshake process and A a port structure spch that A Ç pP.
A is independent with respect to P if aA is independe:nt with respect to
the directed process corresponding to P.

Hardly surprising, given the receptiveness of handshake processes, we arrive at
the following theorem.

Theorem A.lO

For handshake process P and port structure A such that A Ç pP, we have: A is
independent with respect to P.

0

Computation interference

The justilkation of the definition of parallel composition of handshake processes
relies on the absence of interference. Interference may manifest itself in two
forms [vdS85): transmission interference and computation int~rference. Trans­
mission interference occurs when more than one transition is on its way along
the same link. The restrietion to handshake traces excludes this: form of interfer­
ence right from the start. The absence of computation interferehce in handshake
circuits requires some elaboration.

Delay insensitivity 223

Definition A.ll (computation interference)

0

0. Directed processes P and Q are connectable if and only if the sets iP n iQ
and oP n oQ are empty.

1. Let H be a finite set of delay-insensitive directed processes, such that ele­
ments of H are pairwise connectable. H is free of computation interference
if [Ebe89) .

(Vt, P, a : t E W · H 1\ P E H 1\ a E oP : ta I pP E tP =? ta E W · H)

2. Handshake circuit H is free of computation interference if the set of cor­
responding directed processes is.

Theorem A.l2

Handshake circuits are free of computation interference.

0

A similar result has been suggested in Property 4.10 of [vdS85). Absence of
computation interference in handshake circuits follows directly from the recep­
tiveness of handshake processes. If output a may occur for some component P
after trace t, trace ta will be in W · H, either because a is extemal, or because
there is another component that is receptive for a.

224 Appendix A

Appendix B

Failure semantics

Introduetion

In Chapter 5 we have developed a handshake semantics for Tangram. An alterna­
tive semantics for Tangram can be based on failure processes [BHR84]. Failure
processes form the underlying model of CSP [Hoa85], and are the basis for a
well-established theory for CSP, including a powerful calculus [RH88].

The availability of two distinct semantics for the same program notation
suggests several questions, including:

0. Is the handshake-process semantics consistent with the failure semantics?
If so, in what sense?

1. Can VLSI programroers use calculi that are based on failure semantics?

The last question is of obvious practical significance.
This appendix starts with a description of failure processes. By means of

a simple example it is shown that an embedding of failure processes into all­
active handshake processes does not exist. A more subtle approach is chosen to
link handshake semantics and failure semantics are linked, resulting in positive
answers to the above questions.

Failure processes

This subsection describes a process model based on failures. The description
below is rather concise; for a more extensive treatment the reader is referred to
[BHR84], [BR85] and [Hoa85].

An alphabet structure defines an alphabet as a set of communications.

225

226 Appendix B

Definition B.O (alphabet of an alphabet structure)

Let A be an alphabet structure.

0

and V ETA· a.

1. The alphabet of A is the set of all communications o A and is denoted
by aA.

Note that an alphabet is finite, on account of the finite numbf r of ports and the
finiteness of types. In CSP a communication is an event in ~hich a process cao
engage. An alphabet is the set of all communications of interest. The actual
occmTence of a communication is regarded as an instantaneous (atomie) event
without duration.

Traces on aA are used to record the communication events in which a process
has engaged up to some moment in time. The linear ordering of events in a
trace assumes that the simultaneous occulTenee of two events cao be ignored.
When simultaneity of two events is important, as with the ynchronization of
two processes, it will be represented by a single communicatibn.

Definition B.l (failure structure)

0

0. A failure structure is a pair (A, F), where A is an alphabet structure and
F the so-called failure set: a re lation between (aA)* and P · (a A) .

1. Elements of F are called failures. Let (t, X) with t E (aA)* and X E
P · (a A) be such a failure. Then t is referred to as its trace and X as its
refusal set.

2. Let S be a failure structure. Then AS denotes its alphabet structure and
fS denotes its failure set. aS is a shorthand for a(AS).

Definition B.2 (failure process)

A failure process is a failure structure (A, F) that satisfies the following condi­
tions:

0. (E, 0) E F

Faiture processes 227

1. (st, X) E F ==> (s, 0) E F

2. (s, Y) E FA X Ç Y ==> (s , X) E F

3. (s,X)EF A x E aP=> (s,XU{x})EF V (sx,0) E F

0

This is essentially the definition of [BHR84], restricted to finite alphabets. A
quote from [Hoa85] explains the idea behind failures (page 129):

"If (s, X) is a failure of [process] P, this means that P cao engage in
the sequence of events recorded by s, and then refuse to do anything
more, in spite of the fact that its environment is prepared to engage
in any of the events of X."

The four conditions have the following implications.

0. A processis a non-empty failure structure; failure (E, 0) represents its initia!
state.

1. If trace st cao be observed, trace s must be observable as well.

2. lf X cao be refused then all subsets of X cao be refused.

3. After any trace, a particular communication may happen, cao be refused,
or bath.

[BR85] and [Hoa85] present "an improved failures model for communicating
processes". The impravement consists of the possibility to distinguish among
various farms of deadlock. The improved model is more powerful and supports
a slightly more elegant algebra. For brevity ' s sake, this impravement is oot
included in this thesis.

Definition B.3 (maxima! failures)

Let F be a failure set. The maximalfailures of F , denoted by Max· F , is defined
as

{ t, R : (t , R) E FA • (3R' : (t, R') E F : R c R') : (t , R)}

0

On account of Definition 8.2.2 we may conclude that the failure set of a failure
process is fully characterized by its maximal failures. The set of all failure
processes with alphabet structure A is denoted by flr·· A.

228 Appendix 8

With each Tangram program a failure process cao be asslciated, by means of
a mapping F: from Tangram to TI.rA. For details of such a mapping we refer
to [Hoa85].

The following example provides the failure processes t ~at correspond to a
number of elementary Care Tangram programs. They are lncluded as illustra­
tion and for later reference. For brevity's sake only the maximal failures are
enumerated.

Example 8.4

0. Synchronization on a. The failures of (a-)·a are:

{(c,0), (a, {a})}

I. Extension of a with port b. The failures of (a-,b-)·a are:

{(c, {b}), (a, {a,b})}

2. Sequentia! composition of a and b. The failures of (a-, b-) · (a; b) are:

{(c, {b}),(a,{a}), (ab, {a,b})}

3. Parallel composition of a and b. The failures of (a-, b-)·(a 11 b) are:

{(c,0), (a, {a}), (b, {b}), (ab, {a,b}), (ba,{a,b})}

4. In tema! choice between a and b. The failures of (a-, b-) · (a 11 b) are:

{(c,{a}),(c,{b}), (a, {a,b}), (b, {a,b})}

5. Extemal choice between a and b. This does oot correspond to any Care
Tangram. A possible syntaxis (a-,b-)·[a I b], with failures:

{(c,0), (a,{a,b}), (b,{a,b})}

6. Intemal choice between a; b and b; a. The failures of (q-, b-) · (a; b n b; a)
are:

{(c,{a}), (c,{b}), (a,{a}), (b,{b}), (ab,{a,b}), (ba,{a,b})}

Faiture processes 229

D

7. Extemal choice between a; band b; a. The failures of (a-, b-) · [a; bIb; a]

are:
{(c, 0) , (a, {a}), (b,{b}) ,(ab,{a,b}), (ba, {a, b})}

The remaioder of this section is used to discuss the structure of TI.r A. For
more background, appreciation and proofs, the reader is referred to earlier cited
materiaL

Failure processes with the same alphabet structure can be ordered.

Definition B.S (refinement order)

Let Pand Q be failure processes with alphabet structure A .

D

0. P refines to Q, denoted by P Ç Q, iffP ;2 fQ. Process Q has less failures
than P and is therefore better.

I. Process CHAOS· A is defined as (A, (aA)* x P · (aA)) .

2. An (ascending) chain is an infinite sequence (i : 0 ::; i : Pi) of processes
such that Pi Ç Pi+l .

Clearly, (TI_rA, Ç) is a partial order. According to [BR85], (f1_rA , Ç) is also
a CPO, with CHAOS· A as least element and (U i: 0::; i: Pi) as limit of chain
(i : 0 :S i : Pi) .

Example B.6

In the following refinements S Ç T is a shorthand for F · S Ç F · T , where S
and T are Care Tangram programs.

0. (a- ' b-)·(a n b) ç (a- ' b-)·a

1. (a-, b-)·(a;bnb;a) C (a-,b-) ·(a;b)

2. (a - ,b-)·(a;bnb;a) C (a -, b-)·(a 11 b)

3. (a-,b -)·[a;blb;a] = (a- , b-)·(allb)

D

230 Appendix B

Embedding of failure processes into handshake prolsses

We are looking for a mapping from failure processes to handshake processes that
preserves the 'essential' properties of the original processesl. By this we mean
that the mapping must respect ordering and that the image of ~ll failure processes
must be equally rich in structure. Such a mapping is called r embedding: .

Definition B.7 (embedding) I
Let [be a function from CPO X to CPO Y. Function [is an embedding [DP90]
of X into Y if:

D

o. E. P n E. P E. (P n Q)

1. E. P u E. P = E. (P u Q)

2. p = Q = [0 p = [0 Q

The following property of an embedding follows immediately.

Property B.8

An embedding is order preserving, i.e. P Ç Q ::::} [. P Ç ![· Q .

D

Our search for such an embedding starts with camparing a few refinements in the
two process models. In the domain of failure processes we have (cf. Example
B.6.2):

a; b n b; a Ç a 11 b

A similar refinement in the domain of handshake processes, however, does not
hold:

a•;b•nb•;a• ~ a•llb•

The left-hand side requires the handshakes through a• and &• to exclude each
other in time. The parallel composition at the right hand side ~ however, has e.g.
aoboa 1 b 1 as quiescent trace.

The above example shows that a mapping basedon rt (cf.l Section 5.3) is not
order preserving, and hence not an embedding. It also suggests that there does
not exist an embedding from failure processes to all-active handshake processes.

Failure processes 231

However, in the space of all-passive processes we do have (cf. B.6.2)

Moreover, as with failure processes we have (cf. B.6.3):

Both examples show that order of passive handshakes is masked by reordering.
Because of this masking effect there is less distinction in the space of all-passive
processes than in the space of all-active processes. This insight will be elaborated
along two different lines that will meet at the end of this appendix:

• handshake expansion: an embedding of failure processes into the set of
all-passive handshake processes, and

• passivation: a transformation of an all-active process into an all-passive
process .

Handshake expansion

Handshake expansion is a mapping from failure structures to handshake struc­
tures. Handshake expansion is also defined for alphabet structures, traces, refusal
sets and failures.

Definition B.9 (handshake expansion)

0. The handshake expansion of alphabet structure A , denoted by [· A is the
port structure defined by

(E· A) 0 = {a: a E p?A: a0 ?TA· a} U {a: a E p!A : a0 !TA · a}
(E· At = 0

Note that all ports are chosen to be passive.

1. The handshake expansion of trace t with respect to alphabet structure A,
denoted by [· (t , A), is defined by

E·(c,A)
[. (a:v t,A)

= é

= if
D
fi

a E p!A
aEp?A ---)

---) ao a, : v E · (t, A)
ao: v a, E·(t,A)

232 Appendix B

0

2. The handshake expansion of refusal set X with respect lto alphabet structure
A, denoted by E ·(X, A), is defined as the symbol set

{a , v : a E p? A 1\ a: v E X : ao: v} U {a : a E p! 1\ a E X : ao}

These symbols are received, but refused in the sen e that they are not
acknowtedged.

3. The handshake expansion of a faiture (t, X), with resp ct to atphabet struc­
ture A, denoted by E · ((t , X) , A), is defined as the ha dshake-trace set

{u: #u= E· (X , A): E · (t , A)u}r

where #u denotes the bag of symbols of trace u. Actually, u is a permu­
tation of E · (X, A).

4. The handshake expansion of faiture structure (A, F), denoted byE· (A, F)
is defined as the handshake structure

(E· A,{f: f E F: E· (f,A)})

The crux of the above definition is in the handshake expansioh of a faiture (t , X)
(cf. Definitoin B.9.3). The postfix u corresponds with refl)Jsal set X. If the
environment continues with handshakes through all ports in X (by sending the
corresponding - -symbols) the state resulting after tu is quiescent.

The following property is helpfut in understanding function E.

Property B.IO

Let f and g be faitures defined on atphabet structure A. Then

f =I g =? E · (f, A) n E · (g, A)= 0

0

Theorem B.ll

Let A be an alphabet structure and let P E TI.r A. Then:

0. E is an embedding;

Faiture processes 233

1. [· P is a handshake process;

2. [.CHAOS· A= CHAOS·[. A;

3. [is continuous;

4. Hence, [· <Ih··A) is a CPO.

D

The definition of [ignores the issue of successful tennination. Extending [
to such a more comprehensive process model is relatively straightforward. Given
such an extended embedding, equalities such as

can easily be verified.

Passiva ti on

[. (P;Q) = E· P;[· Q
[. (P 11 Q) = [. P 11 [. Q

E· #[P] = #[E· P]

Another way to obtain an all-passive process is to conneet passivators to the
active ports of a handshake process. The following definition is restricted to
all-active processes with undirected ports only. Extension to general handshake
processes is straightforward.

Definition B.12 (passivation)

The passivation of an all-active handshake process P, denoted by 1r· P, is defined
as

where I· P denotes the t-renaming of P defined in Definition 6.0.

0

The effect of passivation is illustrated by the following example.

Example B.13

(ta•; tb• n tb•; ta•) 11 #[ta0
: a0

] 11 #[lb0
: b0

] = (a0
; b0 n b0

; a0
)

D

234 Appendix B

Let T be a Tangram program. The following theorerp expresses that the
passivation of H · T equals the handshake expansion of :F· 'J'.

Theorem B.14

1ro1i = [o:F

0

An important corollary is obtained when this theorem is combined with the com­
pilation theorem. Graphically this corollary is illustrated in Fïgure B.O.

Corollary B.lS

7r 0 11 0 c = [>* 0 [0 :F

0

Tangram
programs

c

handshake
circuit

:F

r>* o H

11

failure
processes

~E
all1passive
handshake

process

V: all-active
handshake

process

Figure B.O: Failure processes related to handshake circuits.

Corollary B.l5 may be applied as follows. We call two all-active processes
P and Q 1r-equivalent if their passivations are identical. Let the behaviors of two
compiled handshake circuits G and H be 1r-eqûivalent. Then there does not exist
any third compiled handshake circuit that can distinguish G from H when it is
connected to them by passivators. Under such circumstances, the designer may
use the all-passive semantics of Tangram, as obtained by 1r ? H. The existence

I

of the embedding [then demonstrates that the VLSI program:mer canthen apply
programming laws that arebasedon a failure semantics of Tangram (cf. [RH88]).

Bibliography

[Ano73]

[BE90]

[BHR84]

[BM88]

[BM91]

[BR85]

[Bro89]

Anonymous. Science and the citizen. Scientific American,
228:43-44, 1973.

J.A. Brzozowski and J.C. Ebergen. On the Delay-sensitivity of
Gate Networks. Technica! Report 90/5, Eindhoven University of
Technology, 1990.

S.D. Brookes, C.A.R. Hoare, and A.W Roscoe. A Theory
of Communicating Sequentia! Processes. Joumal of the ACM,
31(3):560-599, 1984.

Steven M. Burns and Alain J. Martin. Synthesis of Self-Timed
Circuits by Program Transformation. In G.J. MiJne, editor, The
Fusion of Hardware Design and Verification, pages 99- 116. El­
sevier Science Publishers B.V., 1988.

Peter Beerel and Teresa Meng. Semi-Modularity and Self­
Diagnostic Asynchronous Control Circuits. In Carlo H. Sequin,
editor, Proceedings of the 1991 University of California!Santa
Cruz Conference, pages 103- 117. The MIT Press, 1991.

S.D. Brookes and A.W. Roscoe. An Improved Failures Model
for Communicating Sequentia! Processes. In Proceedings NSF­
SERC Seminar ofConcurrency, pages 281-305. Springer-Verlag,
1985.

R.W. Brockett. Smooth Dynamica! Systems which Realize
Arithmetical and Logica] Operations. In Hendrik Nijmeijer and
Johannes M. Schumacher, editors, Three Decades of Mathemat­
ica! Systems Theory: A Collection of Surveys at the Occasion of
the 50th Birthday of J.C. Willems, pages 19-30. Springer-Verlag,
1989.

235

236

[Bro90]

[BS89]

[CM73]

[DGY90]

[Dij75]

[Dij76]

[Dil89]

[DP90]

[DS90]

[Ebe89]

[Elf76)

Bibliography

Geoffrey M. Brown. Towards Truly Dela~-Insensitive Circuit
Realizations of Process Algebras. In Ger~int Jones and Mary
Sheeran, editors, Designing Correct Circu~ts, pages 120-152.
Workshops in Computing. Springer-Verlag, [990.

Erik Brunvand and Robert Sproull. Transla ing Concurrent Pro­
grams into Delay-Insensitive Circuits. In IEEE International
Conference on Computer Aided Design; Digest of Technica/ Pa­
pers, pages 262-265. IEEE Computer Society Press, 1989.

T.J. Chaney and C.E. Mol nar. Anomalous ijehavoir of Synchro­
nizer and Arbiter Circuits. IEEE Transactions on Computers,
C-22(4):421-422, 1973.

Ilana David, Ran Ginosar, and Michael Yoel •. Self-Timed is Self­
Diagnostic. Technica! Report, University of Utah, 1990.

E.W. Dijkstra. Guarded commands, nondeterminacy and the
forma! derivation of programs. Communic'(Uions of the ACM,
18:453-457, 1975.

E.W. Dijkstra. A Discipline of Programming . Prentice Hall,
1976.

David L. Dill. Trace Theory for Autornalid Hierarchical Veri­
fication of Speed-Independent Circuits. An ACM Distinguished
Dissertation, MIT Press, 1989.

B.A. Davey and H.A. Priestley. lntroduction' to Lattices and Or­
der. Cambridge Mathematica/ Textbooks, Cambridge University
Press, 1990.

Edsger W. Dijkstra and Care! S. Scholten. Predieale Calculus
and Program Semantics. Springer-Verlag, 1990.

Jo C. Ebergen. Translating Programs into De,_,lay-lnsensitive Cir­
cuits. CWI Tract 56 (Centre for Mathernaties and Computing
Science, Amsterdam), 1989.

Joost Elfers. Tangram; the Ancient Chinese $hapes Game. Pen-
guin Books, 1976.

1

Bibliography 237

[Fuj85] Hideo Fujiwara. Log ie Testing and Design for Testability . The
MIT Press, 1985.

[Hoa78] C.A.R. Hoare. Communicating Sequentia! Processes. Communi­
cations of the ACM, 21(8):666-677, 1978.

[Hoa85] C.A.R. Hoare. Communicating Sequentia! Processes. Series in
Computer Science, Prentice-Hall International, 1985.

[INM89] INMOS Limited, editor. Occam 2 Programming Manual. Series
in Computer Science, Prentice-Hall International , 1989.

[JHJ89] Mark B. Josephs, C.A.R. Hoare, and He Jifeng. A Theory of
Asynchronous Processes. manuscript, 1989.

[Jon85] B. Jonsson. A model and proof system for asynchronous net­
works. In Proc . 4th ACM Symposium on Principlesof Distributed
Computing , pages 49-58. ACM, 1985.

[Jos90] M.B. Josephs. Receptive Process Theory. Computing Science
Note 90/8, Eindhoven University of Technology, 1990.

[JU91] Mark B. Josephs and Jan Tijmen Udding. An Algebra for Delay­
Insensitive Circuits. In DIMACS Series in Discrete Mathernaties
and Theoretica! Computer Science, pages 147-175. Volume 3.
AMS-ACM, 1991.

[Kal86] Anne Kaldewaij . A F ormalism for Concurrent Processes. PhD
thesis, Eindhoven University of Technology, 1986.

[Kes91a] J.L.W. Kessels. Designing Counters with Bounded Response
Time. In W.H.J. Feijen and A.J.M van Gasteren, editors, C.S.
Scholten dedicata: van oude machines en nieuwe rekenwijzen,
pages 127-140. Academie Service, Schoonhoven The Nether­
lands, 1991.

[Kes91b]

[KR89]

J.L.W. Kessels. The Systematic Design of a Systolic RSA Con­
verter. In Proc . Workshop on Correct Hardware Design Method­
ologies, pages 243-260. 1991.

Anne Kaldewaij and Martin Rem. A derivation of a sys­
tolic rank order filter with constant response time. In J.L.A.

238

[KS90]

[KTT*88]

[KTT*89]

Bibliography

van de Snepscheut, editor, Mathernaties ofl Program Construc­
t ion, pages 281-296. Volume 375 of Lectur Notes in Computer
Science. Springer-Verlag, 1989.

J.L.W. Kessels and F.D. Schalij. VLSI Programming for the
Compact Disc Player. Science of Com uter Programming,
15:235-248, 1990.

Shinji Komori, Hidehiro Takata, Toshiyukii Tamura, Fumiyasu
Asai, Takio Ohno, Osamu Tomisawa, Tetsuo Yamasaki, Kenji
Shima, Katsuhiko Asada, and Hiroaki Tèrada. An Elastic
Pipeline Mechamism by Self-Timed Circuits. IEEE Journat of
Solid-State Circuits, 23(1):111-117, 1988.

Shinji Komori, Hidehiro Takata, Toshiyuki Tamura, Fumiyasu
Asai, Takio Ohno, Osamu Tomisawa, Tetsl)o Yamasaki, Kenji
Shima, Hiroaki Nishikawa, and Hiroaki Terada. A 40-MFLOPS
32-bit Floating-Point Processor with Elastic Pipeline Scheme.
IEEE Journat of Sotid-State Circuits, 24(5):1341-1347, 1989.

[KU91] Anne Kaldewaij and Jan Tijmen Udding. Rank Order Filters and
Priority Queues. manuscript, 1991.

[KvBB*92] Joep Kessels, Kees van Berkel, Ronan Burgess, Marly Roncken,
Ronald Saeijs, and Frits Schalij. A Tangram Program for Error
Decading in the Compact Disc Player. In IProceedings of the
European Design Automation Conference, pages-. 1992.

[KZ90] Anne Kaldewaij and Gerard Zwaan. A systolic design for ac­
ceptors of regular languages. Science of Computer Programming,
15:171-184, 1990.

[LSU89] Roger Lipsett, Carl Schaefer, and Cary Ussery. VHDL: Hard­
ware Description and Design. Kluwer Academie publishers,
1989.

[LvMvdW*91] P.E.R. Lippens, J.L. van Meerbergen, A. van der Werf, W.F.J.
Verhaegh, B.T. McSeeney, J.O. Huisken, and O.P. McArdle.
PHIDEO: A Silicon Compiler for High Spebct Algorithms. In
Proceedings of the European Design Automation Conference,
pages 436-441. 1991.

Bibliography 239

[Mar85a] Alain J. Martin. Compiling Communicating Processes into
Delay-lnsensitive VLS/ Circuits. Technica! Report, Califor­
nia Institute of Technology, Department of Computer Science,
Pasadena CA 91125, USA, 1985.

[Mar85b] Alain J. Martin. The Design of a Self-Timed Circuit for Dis­
tributed Mutual Exclusion. In Henry Fuchs, editor, Chapel Hili
Conference on VLS/, pages 245-260. 1985.

[Mar89] Alain J. Martin. Programming in VLSI: From Communicating
Processes to Delay-Insensitive Circuits. In C.A.R. Hoare, editor,
UT Year of Programming ; lnstitute on Concurrent Programming.
Addison-Wesley, 1989.

[Mar90] Alain J. Martin. The Limitations to Delay-Insensitivity in Asyn­
chronous Circuits. In William J. Dally, editor, Sixth MIT Confer­
ence on Advanced Research in VLSI, pages 263-278. MIT Press,
1990.

[MBL*89] Alain J. Martin, Steven M. Burns, T.K. Lee, Drazen Borkovic,
and Pieter J. Hazewindus. The First Asynchronous Micropro­
cessor: The Test Results. In Computer Architecture News,
pages 95-110. Volume 17. MIT Press, 1989.

[MBM90]

[McK65]

[MH91]

[Mil65]

[Mis84]

Teresa H.-Y. Meng, Robert W. Broderson, and David G. Messer­
schmitt. A Clock-Free Chip Set for High-Sampling Rate Adap­
tive Filters. Journat of VLSI Signa/ Processing, 1(4):345-365,
1990.

W.M. McKeeman. Peephole Optimization. Communications of
the ACM, 8:443-444, 1965.

A la in J. Martin and Pi eter J. Hazewindus. Testing Delay­
Insensitive Circuits. In Carlo H. Sequin, editor, Proceedings
of the 1991 University of California!Santa Cruz Conference,
pages 118-132. The MIT Press, 1991.

Raymond E. Miller. Switching Theory Volume 11: Sequentia/ Cir­
cuits and Machines. John Wiley & Sons Inc., 1965 .

J. Misra. Reasoning about networks of communicating processes.
1984. Presented at INRIA Advanced Nato Study Institute on

240

[Mis87]

[NvBRS88]

[OSC67]

[Phi90]

[Rem81]

[Rem87]

[Rem91]

[RH88]

[Sei80]

[Sei84]

Bibliography

Logies and Models for Verification and Spe ification of Concur­
rent Systems, La Colle-sur-Loupe, France.

F.C. Mish et al. Webster' s Ninth New Cdllegiate Dictionary.
Merriam-Webster Inc., 1987.

Cees Niessen, C.H. (Kees) van Berkel, Martin Rem, and
Ronald W.J.J. Saeijs. VLSI Programming a d Silicon Compila­
tion; A Novel Approach from Philips Resea eh. In Proceedings
of the 1988 IEEE Int . Conf on Computer De ign: VLSI in Com­
puters & Processors, pages 150-151. 1988. I

S.M. Omstein, M.J. Stucki, and W.A. Clark~ A Functional De­
scription of Macromodules. In Sprint Joint Computer Confer­
ence, pages 337-355. AFIPS, 1967.

Philips Components. lntegrated Circuits Data Handbook; Ra­
dio , audio and associated systems; Bipolar, Mos; CA3089 to
TDA15JOA. Philips Components, 1990.

Martin Rem. The VLSI Challenge: Complexity Bridling. In
John P. Gray, editor, VLSI 81, pages 65-74. Academie Press,
1981.

Martin Rem. Trace Theory and Systolic Corhputations. In J.W.
de Bakker et al., editor, PARLE Parallel Architectures and Lan­
guages in Europe, pages 14-33. Volume 258 of Leefure Notes in
Computer Science, Springer-Verlag, 1987.

Martin Rem. The Nature of Delay-Insensiüve Computing. In
Graham Birtwistle, editor, IV Higher Order Workshop, Banff
1990, pages 105-122. Springer-Verlag, 1991.,

A.W. Roscoe and C.A.R. Hoare. The Laws of OCCAM Pro­
gramming. Theoretica/ Computer Science, 6~ : 177-229, 1988.

Charles L. Seitz. System Timing. In C.A. Mead and L.A. Con­
way, editors, Introduetion to VLSI Systems, chapter 7. Addison­
Wesley, 1980.

Charles L. Seitz. Concurrent VLSI Architec~ures . IEEE Trans­
actions on Computers, C-33(12):1247-1265, 1984.

Bibliography 241

[SM77] Ivan. E. Sutherland and Carver A. Mead. Microelectronics and
Computer Science. Scientific American, 237(9):21 0-228, 1977.

[Sut89] Ivan Sutherland. Micropipelines. Communications of the ACM,
32(6):720-738, 1989.

[SvB88] Ronald W.J.J. Saeijs and C.H. (Kees) van Berkel. The Design
of the VLSI Image-Generator ZaP. In Proceedings of the 1988
IEEE Int. Conf. on Computer Design: VLSI in Computers & Pro­
cessors, pages 163-166. 1988.

[SvBB*91] Frits Schalij, Kees van Berkel, Ronan Burgess, Joep Kessels,
Marly Roncken, and Ronald Saeijs. What makes Tangram
a general-purpose VLSI-programming language? manuscript,
1991 .

[Udd84] Jan Tijmen Udding. Classification and Composition of Delay­
Insensitive Circuits. PhD thesis, Eindhoven University of Tech­
nology, 1984.

[Udd86]

[UV88]

[vB91]

[vB92]

[vBKR*91]

[vBRS88]

Jan Tijmen Udding. A forma! model for defining and classifying
delay-insensitive circuits and systems. Distributed Computing,
1(4):197- 204, 1986.

Jan Tijmen Udding and Tom Verhoeff. The Mathernaties of Di­
rected Specifications. Technica] Report WUCS-88-20, Dept. of
C.S., Washington Univ., St. Louis, MO, 1988.

C.H. van Berkel. Beware the isochronie fork. Technica] Re­
port UR 003/91, Philips Research, 1991.

Kees van Berkel. Beware the isochronie fork. Integration, the
VLSI journal, 13(2):, 1992.

Kees van Berkel, Joep Kessels, Marly Roncken, Ronald W.J.J.
Saeijs, and Frits Schalij. The VLSI-programming language Tan­
gram and its translation into handshake circuits. In Proceedings
of the European Design Automation Conference, pages 384-389.
1991.

C.H. (Kees) van Berkel, Martin Rem, and Ronald W.J.J. Saeijs.
VLSI Programming. In Proceedings of the 1988 IEEE Int.

242

[vBS88]

[vdS85]

[Ver88]

[Ver89]

[WD89]

Bibliography

Conf. on Computer Design: VLSI in Computers & Processors,
pages 152-156. 1988.

C.H. (Kees) van Berkel and Rona1d W.J.J. $aeijs. Compilation
of Communicating Processes into Delay-Insensitive Circuits. In
Proceedings of the 1988 IEEE Int. Conf. on Computer Design:
VLSI in Computers & Processors, pages 157 162. 1988.

Jan L.A. van de Snepscheut Trace Theor} and VLSI Design.
Volume 200 of Leefure Notes in Computer Science, Springer-
Verlag, 1985. I
Tom Verhoeff. Delay-insensitive codes - n overview. Dis­
tributed Computing, 3:1-8, 1988.

Tom Verhoeff. Persona1 communications. 1989. Eindhoven
University of Technology.

R. Woudsma and A. Delaruelle. The Design of DSP Compo­
nents for the CD Digital Audio System using Silicon Compilation
Techniques. In Proceedings of IEEE Custom /ntegrated Circuits
Conference, pages 20.4.1-20.4.5. 1989.

G lossary of Symbols

Sets

Notation
s s.
(:::;)· B
B 'V>C

Traces

Notation
E

len· t
s :::; t
st
B *
tfB
#t

Meaning
:::;-closure of set B
B is :::;-closed
B initializes set C

Meaning
empty trace
length of trace t
s is a prefix of t
concatenation of traces s and t
set of all traces over alphabet B
projection of t on B
bag of symbols in t

Ports, port structures and port definitions

Notation
ap
Op
lp
Ao
A•
iA
oA

Meaning
symbol set of port p
0 symbols of p
1 symbols of p
passive ports of port structure A
active ports of A
input symbols of A
output symbols of A

243

Definition
2.0
2.0
7.23

Definition
2.7
2.7
2.7
2.7
2.7
2.7
A.3

Definition
2.3
2.3
2.3
2.3
2.3
2.4
2.4

244 Glossary of Symbols

ao

a0 ?T
a 0 !T
a•
a•?r
a•!r
A
eA
A~B

AMB
AUB
A\B
C>o

passive nonput port (structure) a
passive input port (structure) a of type T
passive output port (structure) a of type T
active nonput port (structure) a

active input port (structure) a of type T
active output port (structure) a of type T
reftection of A
extemal port structure of A
A and B are connectable
A and B are conformant
pairwise union of A and B
pairwise set difference of A and B
passive port 'go'

Handshake traces and handshake-trace sets

Notation Meaning
closed · t all handshakes in handshake trace t are closed
AH set of handshake traces over port structure A
s rAt s reorders t w.r.t. A
s r t s rA t with A obvious from context
Er r-closure of handshake trace set B
(r)· B B is r-closed
s XA t s is an input extension of t w.r.t. A
s x t s XA t with A obvious from context
Ex x-closure of B
(x)· B B is x-closed
SCAt s is composable with t w.r.t. A
set s CA t with A obvious from context
Be c-closure of B
(c)· B B is c-closed

Handshake structures

Notation
pS
tS

Meaning
port structure of handshake structure S
handshake-trace set of S

2.5
2.5
2.5
2.5
2.5
2.5
3.0
3.8
3.0
4.12
2.3
2.3
5.6

Definition
2.26
2.8
2.14
2.14
2.0
2.0
2.17
2.17
2.0
2.0
A.l
A.1
2.0
2.0

Definition
2.10
2.10

G/ossary of symbols

SUC· (t, S)

pas· (t, S')

Pas · S
ajrer· (t, S)
div· S
SCT
Sn T

successor set of trace t in S
t is passive in S
passive restrietion of S
handshake structure after t

divergences of S
S refines to T
union of S and T

S u T intersection of S and T
(U i : 0 ~ i : S') limit of chain (i : 0 ~ i : S')

S w T weave of S and T
S b T blend of S and T
S 11 T parallel composition of S and T

Handshake processes

Notation
P Ç RQ
P S RQ
</> · p
<1>2 . p
</>4c · P
</>4q. p
1f·P

Meaning
P refines to Q in the context of R
P strongly refines to Q in the context of R
phase reduction of P
2-phase reduction of P
comple te 4-phase reduction of P
quick 4-phase reduction of P
passivation of P

Handshake circuits

Notation
J><JH
eH
W·H
B ·H
II·H

Meaning
handshake circuit H is connectab1e
external port structure of H
weave of H
blend of H
parallel composition of the components of H

245

2. 11
2.11

2.11
2.25

3.10
2.29
2.34
2.36

2 .37
3 .3
3.8
3.14

Defin ition
7.1

7.5
7. 10

7. ll
7. 14
7.17
B.1 2

Definition
3.20
3.21
3.2 1
3.21
3.21

246 Glossary of Symbols

Sequentia! handshake processes

Notation Meaning Defin ition

skip, stop 4.9
ao passive handshake through port a 4.9
a• active handshake through a 4.9
P Ç Q sequentia! handshake process p ren nes to Q 4.4
PUQ intersection of P and Q 4.6
P II Q P in parallel with connectable Q 4.1 0

••
P II Q all-active P in parallel with all-active Q 5.5
(A)·P P extended with port structure A 4.1 5
j[A I PJI P with A concealed 4.1 8
P n q nondeterministic choice between P and Q 4.5, 4.21
P;Q P followed by Q 4.23
#N[P] N -fold repetition of P 4.26
#[P] infinite repeti tion of P 4.28
(Lo : p P enclosed by a 0 4.30
[P I Q] choice between guarded processes P and Q 4.33
I>* . p repeatable go of P 5.7

a a function 6.22

Alphabet structures

Notation Meaning Definition
pA ports of alphabet structure A 5.0
p?A input ports of A 5.0
p! A output ports of A 5.0
vA variables of A 5.0
v?A read ports of A 5.0
v!A write ports of A 5.0
TA type function of A 5.0
A M B A and B are conformant 5.2
A UM B conformant union of A and B 5.2
A\M B conformant difference of A and B 5.2
ANB A and B are connectable 5.2
AU1><1 B connectable un ion of A and B 5.2
7-f. . A port structure of A 5.3
l · A l-renaming of A 6.0

Glossary of symbols

I'· A
E·A

r-renaming of A
handshake expansion of A

Core Tangram

Notation Meaning

a synchronization port

skip
stop
CL synchronization on CL

(A)·S S extended with alphabet structure A
SnT nondeterministic choice between S and T
S;T S foliowed by T
#AfS'] N-fold repetition of S
#[SJ infinite repetition of S
S 11 T S in parallel with T

I[A I -"11 S with A concealed

l- S l-renaming of S
T· S r -renaming of S
c.s handshake circuit of S
:FS failure process of S

Failure structures

Notation

AS
fS
S ÇT
E· S

Meaning
alphabet structure of failure structure S
failure set of S
S refi nes to T
handshake expansion of S

6.0
8.9

247

Definition

5.1
5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.4
6.0
6.0
6.20
in 8

Definition

B.l
B.l
8 .5
8 .9

Index

active port 47

activity graph 189
adder 32
after 66
alphabet 47

alphabet structure 124

conformant 125
connectable 125

type compatible 125
architecture 12

asymmetrie fork 183
asynchronous circuits 10

biput port 48
blend b 83

broadcast 20, 33, 40
buffer

1-place 18

2-place 19
handshake circuit 20, 22, 25
wagging 20

chain 70, 229

choice I 11 3
circuit area 11, 2 14
circuit speed 11 , 2 12
c losed trace 66
code 179

delay insensitive 179
Double-Rail 179

code concatenation 179

248

combinational operator 18 1
compatible 47

complete 4-phase reduction 175
complete partial order 72

composability C c 218
composabi lity closed 2 18
composability ciosure 218
computation interference 223
concealment I 07
connectable 78
connectable l><l 92
conneetion diagram 89

continuous 70
Core Tangram

command 133
program 135

CPO 72
CSP 16

delay insensitive 10, 183, 221
directed process 2 17
distributivity 75
divergences div 84

dynamic nondeterminism 74

enelosure 112
energy consumption 11 ,209, 215
extension I 06
external port 47
external pon structure 83

faiture process 226

Index

failure structure 226
FIR tilter 3 3

go 135
greatest common divisor 36
guarded selections 43

handshake circuit 17, 92
handshake components 92
handshake expansion 231, 232
handshake expansion H I33
handshake process 57
handshake refinement 174

<P 173
handshake structure 50

after 66
intersection u 70
union n 69

handshake trace 50

independent alphabet 222
infinite repetition III
initial-when-closed 69
initialization I87
initiaiizes "'* I87
input 47
input extension 56
input port 48
interference 7
intemal port 47
intersection U I 0 I
isochronie fork 9, 183

layout 206
limit 70

maximal failures 227
median filter 34
modulo-N counter 37
Muller-e element 182

249

mutual exclusion of guards I8I

N-fold repetition III
nondeterministic composition n I 0 I,

I08
nonput port 48

OCCAM I6
order preserving 68
output 48
output port 48

parallel composition 11 86, I 04
passivation 233
passivator 64
passive 52
passive in (pas) 52
passive port 47
passive restrietion Pas 52

peephole optimizations I69
permanent sequentia! process 99
phase diagram 8
phase reduction I73

<h 174
<P4c 175
</J4q I77

port 46
active 47
biput 48
definition 124
input 48
nonput 48
output 48
passive 47

port definition 48
port name 48
port set 46
port structure 47

compatible 47
conformanee M 105

250

connectability ~ 78
difference 47
reftection 79
union 47

power consumption 209
prefix 49

closed 50
ciosure 50

prefix closed 50
prefix ciosure 50
preorder 44
preorder closed 45
preorder ciosure 45
production rule 181
productive transition 181
proper port set 4 7
proper transition 8

quantified expression 43
quick-return linkage 177
quick 4-phase reduction 177

receptive 56
refinement 229
refinement Ç 67, 101
reftection 79
reliability 213
renaming 141
reorder r B r 53
reorder closed 54
reorder ciosure 54
repeatable go 135
robustness 213

self-timed I 0
sequentia! composition ; 109
sequentia! handshake process 98
sequentia! operator 181
sequentia! process 99
set construction 44

shift register 26
ripple 28
wagging 29

silicon compilation 2
simuiatien 203 I
stability of guards1 181
state graph 58 I
static nondetermi ism 74
stalistics 205
strong initializability 189

Index

strong refinement in context 170
successar set suc 52
symmetrie fork 184
systems on silicon I

Tangram 17
choice 38
command 18
composite command 127
expression 32, 130
guarded command 34, 36, 129
primitive command 126
program 126

testability 11, 211 , 213
testing 191
transferrer 178
trans i ti on 6, 181
transition handshake process 172

VLSI operator 181
void transition 181

weak initializability 188
weave w 80
wire 182

Samenvatting

Het proefschrift handelt over het ontwerpen van digitale VLSI schakelingen. De
volgende ontwerpaanpak wordt hierbij verondersteld:

• een ontwerper beschrijft zijn systeem in een geschikte programmeertaal;

• een zogenaamde siliciumcompiler vertaalt dit programma in een VLSI
schakeling.

De keuze van de programmeertaal is bepalend voor het toepassingsgebied, het
gemak van ontwerpen en de efficiëntie van het resultaat. In het proefschrift wordt
de taal Tangram geïntroduceerd als een algemeen toepasbare VLSI-programmeer­
taal. Tangram is gebaseerd op Communicating Sequentia! Processes (CSP). De
geschiktheid van de taal wordt beargumenteerd en geïillustreerd aan de hand
van een aantal voorbeelden in Hoofdstuk 1. Hoofdstuk 5 beschrijft een preciese
definitie van Tangram.

Bij het vertalen van Tangram programma's naar VLSI circuits spelen zoge­
naamde handshake circuits een centrale rol. Een handshake circuit is een netwerk
van elementaire asynchrone bouwstenen die onderling communiceren volgens een
handshake protocol. Een theorie over handshake circuits vormt het hart van het
proefschrift. Deze theorie omvat:

• een procesmodel ("handshake-processen") waarin de gedragingen van hand­
shake circuits, de bijbehorende bouwstenen, en Tangram programma's kun­
nen worden vastgelegd (Hoofdstuk 2),

• een bijbehorende algebra (Hoofdstuk 4),

• een analyse van eigenschappen van handshake circuits, zoals vertragings­
ongevoeligheid (Hoofdstuk 3 en Appendix A), en

• een inbedding van CSP-processen gebaseerd op een zogenaamde failure­
semantiek in handshake-processen (Appendix B).

251

252 Samenvatting

De vertaling van Tangram programma's naar handshake fircuits is gedefini­
eerd als een recursieve functie, gestructureerd volgens de Tapgram-grammatica.
Voor de kern van Tangram wordt een precies gedefinieerde Fquivalentie tussen
Tangram programma's en door vertaling verkregen handshak!e circuits bewezen
in Hoofdstuk 6.

Van de afbeelding van handshake circuits naar asynchrone VLSI circuits wor­
den een aantal aspecten schetsmatig behandeld in Hoofdstuk : (peephole) opti­
malisaties, handshake protocollen, waardecoderingen, circuit-mitialisatie en test­
baarheid.

In een afsluitend hoofdstuk wordt ingegaan op enige prclktische ervaringen
met het ontwerpen van VLSI systemen in Tangram en het a~tomatisch vertalen
van deze programma's naar VLSI layouts middels een bij Ph~lips Research ont­
wikkelde siliciumcompiler. Deze compiler is gebaseerd op dd in het proefschrift
behandelde methode. Hoofdstuk 8 behandelt tevens een aantal voor- en nadelen
van asynchrone schakelingen, mede aan de hand van gepubliceerde resultaten
van derden.

Curriculum vitae

Op 15 juni 1956 werd ik geboren in Leimuiden. Na in 1974 het diploma
Atheneum B behaald te hebben aan het Bonaventura College te Leiden, be­
gon ik de studie Elektrotechniek aan de Technische Hogeschool Delft, thans TU
Delft. Het afstuderen vond plaats in de vakgroep Netwerktheorie onder leiding
van prof. P. Dewilde met als onderwerp "Automatic Integrated Circuit Layout
Verification; Boolean Operations on IC masks". In 1980 studeerde ik met lof af.

Sindsdien ben ik werkzaam bij het Philips Natuurkundig Laboratorium te
Eindhoven. Na een aantal jaren onderzoek te hebben verricht aan computeronder­
steuning bij VLSI-layoutontwerp, verschoof mijn interesse en werk in de richting
van parallelle berekeningen, asynchrone schakelingen en siliciumcompilatie. On­
derzoek op deze gebieden heeft onder leiding van prof. M. Rem geleid tot deze
dissertatie.

253

Stellingen

behorende bij het proefschrift

Handshake circuits:

an intermediary between

communicating processes and VLSI

van

Kees van Berkel

Eindhoven
6 mei 1992

0. Omdat asynchrone schakelingen alleen aktief zijn op plaat~en en tijden dat
het nodig is, en bovendien geen energie verspillen aan rabes en klokdis­
tributie, zijn ze potentieel zuiniger mer energie.

[Lit.] Hoofdstuk 8 van dit proefschrift.

1. Een nacking arbiter (ook wel non-blocking arbiter genoemd' wordt gespeci­
ficeerd door het handshake proces

(a0 !bool & b0 !bool).
I [x a, xb : var bool
I xa, xb := true, true

ll

; #[[a0 !xb; xa := xa =I xb
I b0 !xa; xb := xb =/x a
]

[Lit.] Mark. B. Josephs and Jan Tijmen Udding. Delay;-insensitive
circuits: an algebraic approach to their design. In Con­
Cur'90; Theories of Concurrency: Unification an~ Extension,
pages 343-366. Volume 458 of Lecture Notes in Computer Sci­
ence. Springer-Verlag, 1990.

2. Ten behoeve van de correcte implementatie van isochrone vorken is het be­
langrijk de spreiding in logische drempelspanningen van VLSI operatoren
beperkt te houden. Sequentiële VLSI operatoren gerealiseerd met behulp
van een zogenaamde trickle inverter [0] vertonen een inherent grote sprei­
ding. VLSI operatoren met uniforme logische drempelspanningen kunnen
worden gerealiseerd volgens [1].

[0]

[1]

Alain J. Martin. Programming in VLSI: From Compmnicating
Processes to Delay-lnsensitive Circuits. In C.A.R. Höare, editor,
UT Year of Programming; /nstitute on Concurrent Prqgramming,
Addison-Wesley, 1989. I
Kees van Berkel. Beware the Isochronie Fork. Verschijnt in
/ntegration, the VLSI journal, 13(2), 1992.

3. Een sequentiële VLSI-operator gespecificeerd door de protluktieregels:

F --t zT
G --t zl

kan worden ontleed in een combinatorische operator gespecificeerd door:

F V (z" A --,Q) --t z' T
G V (--,z" A --,F) --t z' l

en een isochrone vork met ingang z' en uitgangen z en z".

[Lit.] C.H. van Berkel. Beware the isochronie fork. Teehoical Re­
port UR 003/91, Philips Research, 1991.

4. Het gebruik van dynamische circuits bij de realisatie van vertragingsonge­
voelige schakelingen leidt tot een interessante reductie in circuitafmetingen.

5. Het terugmeldcircuit van de schrijfpoort van een 1-bit VAR component kan
met slechts 2 NMOS transistoren worden gerealiseerd.

[Lit.] C.H. van Berkel and R.W.J.J. Saeijs Latch with write acknowl­
edge. NL. Patent Application 9000544, 1990.

6. Het toepassen van inverse logica (false correspondeert met de voedings­
spanning en true met 0 Volt) bij de CMOS realisatie van 4-fase handshake
componenten levert een aantrekkelijk voordeel op in schakelsnelheid.

7. Voor een gegeven schermgrootte kan het rasteren van orthogonale rechthoe­
ken in "constante tijd" worden uitgevoerd. Met hedendaagse CMOS tech­
nologie kan dit bovendien ruim binnen 1 p., seconde.

[Lit.] C.H. van Berkel and R.H.W. Salters. Box addressable memory
with decision tree. US. Patent 4845678.

8. Door de afwezigheid van globale synchronisatie en door de vergaande
mogelijkheden voor gedistribueerde besturing leent CSP zich bij uitstek
voor het beschrijven van flexibele productiesystemen zoals kanban.

[Lit.] Ronald W.J.J. Saeijs and C.H. (Kees) van Berkel. The Design
of the VLSI Image-Generator ZaP. In Proceedings of the 1988
IEEE Int. Conf on Computer Design: VLSI in Computers &
Processors, pages 163-166, 1988.

[Lit.] R.J. Schönberger, Japanese Manufacturing Techniques, Nine
Hidden Lessans in Simplicity, The Free Press, New York, 1982.

9. De mogelijke rol van de wiskunde in VLSI ontwerp, ontwerpmethoden en
ontwerpgereedschappen wordt overschat door wiskundigen en informatici
en onderschat door electrotechnici en VLSI ontwerpers.

10. Het is kenmerkend voor de eenvoud van het Nederlandse belastingstelsel
dat het aangiftebiljet A de laatste 10 jaar 10keer is gewijzigd.

