EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Handshake circuits : an intermediary between communicating
processes and VLSI

Citation for published version (APA):

Berkel, van, C. H. (1992). Handshake circuits : an intermediary between communicating processes and VLSI.
[Phd Thesis 2 (Research NOT TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische
Universiteit Eindhoven. https://doi.org/10.6100/IR372904

DOI:
10.6100/IR372904

Document status and date:
Published: 01/01/1992

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR372904
https://doi.org/10.6100/IR372904
https://research.tue.nl/en/publications/06e9bea5-1380-4fc5-b26a-a77aef43d688

Handshake circuits:

an intermediary between

communicating processes and VLSI

Handshake circuits:

an intermediary between

communicating processes and VLSI

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,
op gezag van de Rector Magnificus,
prof. dr. J.H. van Lint,
VOOr een commissie aangewezen
door het College van Dekanen
in het openbaar te verdedigen

op woensdag 6 mei 1992 om 16.00 uur

door

Cornelis Hermanus van Berkel

geboren te Leimuiden

Acknowledgements

The work presented here grew out of the project “VLSI programming and silicon
compilation” being conducted at Philips Research Laboratories Eindhoven since
1986. This project combines the research efforts of Ronan Burgess, Joep Kessels,
Marly Roncken, Ronald Saeijs, Frits Schalij and myself. Together we defined
the VLSI-programming language Tangram, built a silicon compiler, developed
interesting demonstrators, and tested functional silicon. This thesis could only
be written on the fertile ground of this inspiring and pleasant cooperation.

I am grateful to the management of Philips Research Laboratories, in partic-
ular to Theo Claasen and Eric van Utteren, for their support of the project, the
provision of a very stimulating working environment, and their encouraging me
to write this thesis.

Special thanks go to Cees Niessen. Numerous illuminating, critical, stimu-
lating, and curious discussions with him helped me in choosing directions and
setting priorities.

I am indebted to Martin Rem who supervised the work on this thesis. He also
helped me in focusing this thesis on handshake circuits and separating essential
issues from side issues. Also, his active interest in the topic provided a constant
source of inspiration and motivation.

A number of people have given me substantial constructive criticism on all
or parts of a draft version of this thesis. For their help I would like to thank Jos
Baeten, Ronan Burgess, Ton Kalker, Joep Kessels, Frans Kruseman Aretz, Ad
Peeters, Marly Roncken, Frits Schalij, and Kees Vissers.

Finally, this thesis could not have been built without TEX and I&TgX, for
which I thank Donald Knuth and Leslie Lamport.

Contents

0 Introduction

0.0 VLSIsystems
0.1 VLSIcircuits v v
0.2 Overview of this thesis

1 Introduction to Tangram and handshake circuits

1.0 Introduction
1.1 Some simple Tangram programs
1.2 Some simple handshake circuits
1.3 Cost-performance trade-offs
1.4 More examples
1.5 Epilogue

2 Handshake processes

2.0 Introduction
2.1 Notational conventions
2.2 Handshake structures
2.3 Handshake processes
2.4 The complete partial order (J[[-A,C)
2.5 Nondeterminism

3 Handshake circuits

3.0 Introduction
3.1 Parallel composition
3.2 Handshake circuits

4 Sequential handshake processes

4.0 Introduction A
4.1 Sequential handshake processes
42 Processcalculus
43 Examples Lo Lo
4.4 Directed communications

41
41
42
46
51
67
73

Chapter O

Introduction

This thesis is about the design of digital VLSI circuits. Whereas LSI circuits
perform basic functions such as multiplication, control, storage and digital-to-
analog conversion, VLSI circuits contain complex compositions of these basic
functions. In many cases all data and signal processing in a professional or
consumer system can be integrated on a few ¢m? of silicon. Examples of such
“systems on silicon” can be found in

Compact Disc (CD) players,

Compact Disc Interactive (CDI) players,
Digital Compact Cassette (DCC) players,
Digital Audio Broadcast (DAB) receivers,
cellular radios and mobile telephones,
High-Definition TeleVision (HDTV) sets,
digital video recorders,

display processors,

car-navigation systems,

image processors, and

digital test and measurement systems.

1

2 Introduction

These systems generally process analog as well as digital signals, but the digital
circuits dominate the surface of an IC. The memory needed for storing interme-
diate results often covers a significant fraction of the silicon area.

Systems on silicon tend to become more complex and tend to increase in
number. The increase in complexity follows from advancements in VLSI tech-
nology, and the rapid growth of the number of transistors integrated on a single
I[C. The constant reduction of the costs of integration makes|integration econom-
ically attractive for an increasing number of systems. Also, ithe rapid succession
of generations of a single product increases the pressure on design time. The
ability to integrate systems on silicon effectively, efficiently, and quickly has thus
become a key factor in the global competition in both consumer and professional
electronic products. This recognition has lead to a quest for design methods and
tools that increase design productivity and reduce design times.

At Philips Research a number of approaches to this goal are being investi-
gated [WD89,NvBRS88,LvMvdW*91]. One of these, viz. “VLSI programming
and compilation to asynchronous circuits” forms the background of the research
reported in this thesis. The central idea is that of viewing VLSI design as a pro-
gramming activity, and thereby capitalizing on the achieveiments in computing
science with regard to complexity bridling [Sei80,Rem8&1,vdS85,Mar&9].

VLSI programming assumes a VLSI-programming language that provides
the programmer with a suitable abstraction from the VLSI technology and circuit
techniques. This abstraction allows systems on silicon to be designed by system
(e.g. digital audio) specialists without detailed involvement of IC specialists.
Ideally, this avoids the costly, time-consuming and error prone transfer of design
data from system specialists to VLSI-circuit specialists. The degree of abstraction
is constrained by the required cost and performance of the résulting IC. A VLSI
programming language is thus a compromise between programming convenience
and silicon efficiency.

The automatic translation of VLSI programs into VLSI circuits is often called
~ silicon compilation. This thesis proposes a compilation scheme that results in
asynchronous circuits. This relatively uncommon circuit style has specific ad-
vantages with regard to system modularity and IC power consumption.

The central contribution of this thesis is that of kandshake circuits: an in-
termediary between VLSI programs and VLSI circuits. A handshake circuit is a
network of asynchronous components connected by point-to-point channels along
which components interact by means of handshake signaling. The role of an in-
termediary is generally that of separation of — more or less orthogonal — concerns.
This introductory chapter continues with taking stock of these concerns and ends
with an overview of this thesis.

VLSI systems 3

First we shall have a closer look at a particular system on silicon: a Compact
Disc Decoder IC. This example shows the variety in interfaces, protocols and
data types involved in system design.

The next section examines the VLSI medium by means of the mainstream
VLSI technology CMOS. A computation will be viewed in terms of voltage
transitions on wires. Differences between synchronous and asynchronous circuits
are explained by discussing how to deal with the phenomenon called interference.

The final section contains a roadmap to this thesis and positions the handshake
circuits as an intermediate form between VLSI programs and VLSI circuits.

0.0 VLSI systems

One of the key modules of the Compact Disc (CD) player is its chip set. Other
key modules are: a laser-optical pick-up, a turn table, and a user interface con-
sisting of a key-board and a display. Typically, the chip set consists of a servo
controller, a decoder, a digital filter, a digital-to-analog converter, a DRAM, and
a micro processor [Phi90]. There is a tendency towards single-chip solutions.
The decoder has been selected to illustrate a number of issues relevant to VLSI
programming.

The main function of the decoder is to convert the digital signal from the
optical disc into a digital (stereo) audio signal. The block diagram of the decoder
in Figure 0.0 has been adapted from [Phi90]. The main parts of the interface of
the decoder are:

e clock: crystal oscillator input (11.2896 MHz),
e A: bit stream from the optical pick-up (average bit frequency: 4.32 MHz),

e B: disc-motor control signal, pulse-width modulated (88.2 kHz, duty factor
ranges from 1.6 % - 98.4 %),

e (" interface to external DRAM of 16k x 4 bit (12 clock cycles for a single
read or write access),

e D: bit serial output of stereo samples (2 x 16 bit) with an error flag per
sample in parallel (rate: clock/4 ~ 2.82 MHz),

E: subcode signal to external microprocessor (bit-serial, in bursts of 10 bit
at 2.82 MHz; one handshake per burst).

VLSI systems 5

The main submodules of the decoder are (with reference to Figure 0.0):

e Demodulator: extracts a clean digital signal and a clock signal from the
disc signal. This digital signal is then demodulated and converted into
frames of 32 symbols of 8 bit, error flags and subcode information. The
rate of the extracted clock signal follows the rotation speed of the disc.
This clock is local to the Demodulator.

e Subcoding processor: accumulates subcode words of 96 bit, performs a
cyclic redundancy check (CRC), and sends the corrected word (80 bit) to
an external microprocessor on an external clock.

e RAM interface: controls the traffic “Demodulator — RAM — Error cor-
rector — RAM — Error corrector”. The external RAM is used for two
distinct purposes: that of a first-in first-out queue (FIFO) to buffer the ir-
regularly produced data from disc, and that of a store for de-interleaving
the symbol stream.

o Motor-speed controller: controls the speed of the disc motor based on the
degree of occupancy of the FIFO.

e Error corrector: corrects the code words according to Cross Interleaved
Reed-Solomon Code (CIRC) with a maximum of 2 x 2 errors per frame of
32 symbols.

o [nterpolator/Muter: converts symbols in stereo audio samples, interpolates
single errors and mutes in the presence of two or more successive erroneous
samples.

These submodules operate in parallel. It is therefore hard to describe the behavior
of the decoder in a traditional imperative programming language (such as Pascal,
C or Fortran). The behavior of each submodule, however, can be conveniently
described in such a language extended with appropriate primitives for input and
output.

This describes exactly the idea of Communicating Sequential Processes (CSP)
as proposed by Hoare in [Hoa78], and forms the basis of the VLSI-programming
language Tangram Y developed at Philips Research.

0Tangram is the name of an ancient Chinese puzzie [EIf76]. It consists of a few, simple forms
(five triangles of three different sizes, one square and one parallelogram), a simple composition rule
(forms may not overlap), and allows the construction of a large variety of intricate and fascinating
shapes. This view on design also shaped our VLSI-programming language Tangram.

VLSI circuits 7

individual transistors or combinations of transistors may be part of more than
one path.

Generally, the situation in which both a pull-up path and a pull-down path
compete in charging and discharging a wire is avoided, or at least restricted to
a very short duration. For longer durations this form of short-circuit dissipation
may form a considerable power drain.

When a wire.is neither pulled up nor pulled down (it “floats”), its potential
may not be constant due to charge leakage. A circuit is szatic if it has the property
that its wires never float. If the floating of wires is essential for the operation of
a circuit, the circuit is called dyrnamic.

Interference

So far, it was tacitly assumed that voltage transitions are complete, i.e. they
proceed all the way from the ground to the supply voltage or vice versa. But
what if the (dis-)charging of a wire is interrupted? Figure 0.1 depicts two wires
a and b and an nMOS transistor n.

ground

t —

Figure 0.1: Interference occurs e.g. when wire a is discharged during the dis-
charging of b.

When wire a has a high potential, the nMOS transistor forms a conducting
path between wire b and ground. Assume that b is being discharged through
n, and the potential on a drops to the ground level: the discharging of b is
interrupted. Wire b is discharged partially and its potential is somewhere between
the ground and the supply voltage. In such a situation, the transition on a is said
to interfere with the transition on b. The transistors controlled by b may or may
not have changed their state of conductance, and may or may not be involved in
(dis-)charging other wires, et cetera. If b is subsequently recharged, the effect of
this “runt” pulse on other wires critically depends on sizes of currents, capacitors,

VLSI circuits 11

Cost and performance issues

A 1991 CMOS transistor is less than 10 pm? in area. This would allow for
a packing density of over 100,000 transistors per mm?. The densest practical
circuits are embedded memories with about 10,000 transistors per mm?. The
average density in other VLSI circuits is almost an order of magnitude below
this number. The almost two orders of magnitude difference between possible
and practical transistor density is caused by wires. A quick glance at any VLSI
circuit layout shows that wires dominate the circuit area and therefore production
costs. The area of an IC is still a most critical resource: 20 % area overhead in
a competitive market is considered a serious handicap, and 50 % area overhead
is usually acceptable only for prototype circuits, or for small series.

The time it takes to (dis-)charge a wire is proportional to its capacitance,
and, for a given width, this is proportional to its length. For average wires this
is about 1 nanosecond. For longer wires this may exceed 10 nanoseconds. The
switching time of a transistor is well below 1 nanosecond. Clearly, the wires
determine the operating speed of a VLSI circuit.

For a given power-supply voltage, the energy consumed by a single event is
proportional to the capacitance of the wire on which it occurs. Consequently,
the energy required for a computation depends on the number of events and the
lengths of the wires involved. For a given set of events the wires determine
the energy consumption of a circuit. More and more often these systems on
silicon end up in portable products such as walkmans and notebooks. Efficient
usage of battery power is then an important design consideration. Asynchronous
circuits potentially consume less energy, because there is no energy used for
clock distribution and no energy is wasted in interference.

In summary: wires dominate concerns for cost and performance in every
respect. The wires determine the area, the computation time and the energy
consumption [SM77,Sei84]. Every VLSI design method, existing or novel, must
acknowledge this fact.

Testing

The VLSI fabrication process is extremely complicated. For moderately sized
circuits the yield is about 50 %, i.e. 50 % of the manufactured circuits function
correctly. For complex circuits in an advanced technology the yield may well
be below 10 %. To make things worse, for larger circuits the yield decreases
exponentially with the circuit area. This has two important consequences: circuit
area is a most critical resource and there is a fest problem.

Overview of this thesis 13

Tangram program

powerful primitives,
simple compositions,
abstraction,
sharing

handshake
circuit

data encoding,
timing discipline,
handshake protocol,
initialization, testing,
circuit style, technology

VLSI circuit

Figure 0.5: Handshake circuits: a separation of VLSI programming and VLSI
circuits concerns.

attention, as they make VLSI programming different from (and also more difficult
than) traditional computer programming.

The body of this thesis is a theory for handshake circuits. The key notion
is that of handshake process. A handshake process is a mathematical object that
describes a handshake-communication behavior. This handshake behavior may
be that of the components of a handshake circuit (Chapter 2).

A handshake circuit is a set of handshake processes that satisfy a simple
composition rule (Chapter 3). The behavior of the handshake circuit is defined
through parallel composition ‘||’ of its constituent components, and is, again, a
handshake process. In Appendix A the delay insensitivity of handshake circuits
is related to the theory reported in the literature.

Chapter 4 develops a calculus for handshake processes. This calculus allows
concise descriptions of behaviors of handshake components.

In Chapter 5 a precise definition of Tangram is given. For a subset of Tan-

Chapter 1

Introduction to Tangram
and handshake circuits

1.0 Introduction

This thesis pursues a programming approach to the design of digital VLSI circuits.
In such an approach the VLSI-system designer constructs a program in a suitable
high-level programming language. When he is satisfied with his program the
designer invokes a so-called silicon compiler which translates this program into
a VLSI-circuit layout.

The choice of the programming language is a crucial one, for it largely
determines the application area, the convenience of design, and the efficiency of
the compiled circuits. A good VLSI-programming language

0. is general purpose in that it allows the description of all digital functions;

1. encourages the systematic and efficient design of programs by abstracting
from circuit, geometry and technology details;

2. allows the automatic translation into efficient VLSI circuits and test pat-
terns.

‘Below follows a motivation for these requirements.

0. A wide range of applications is required to justify the investment in tools
and training.

1. A major gain in design productivity can be expected by designing in a pow-
erful high-level language. Furthermore, system designers do not need to

15

Introduction 17

a €
—_— P —
b 'y
Y d
¢ f
Q R (—

Figure 1.0: Communicating Sequential Processes.

One of the attractions of CSP is that it allows arbitrary numbers of processes
of arbitrary complexity. The table below gives an impression of what can be
realized in a single 100,000 transistor IC in terms of communicating processes.
For a single IC the product of the degree of parallelism and the grain size (size
of each process, measured e.g. in number of transistors) is more or less constant.

degree of # processes | # transistors | example
parallelism / process

sequential 1 100k | microprocessors
coarse-grained 10 10k | digital audio (CD)
fine-grained 100 1k | systolic arrays

So far the notion “process” has been used rather loosely. In the sequel it
is used to denote the set of observable communication behaviors of an object,
irrespective of how the object is organized internally. The behavior of a network
of processes can also be described as a single process. A program is an alternative
way to define a process.

This thesis uses Tangram as a VLSI programming language. Tangram has
been developed at Philips Research. It is based on Hoare’s CSP [Hoa85] and
includes Dijkstra’s guarded-command language [Dij75].

The translation of Tangram programs into VLSI circuits has so-called hand-
shake circuits as an intermediary. Handshake circuits are networks of elementary
asynchronous processes that communicate according to a handshake protocol.
These elementary processes are called handshake components. The translation
of Tangram programs into handshake circuits requires a modest set of different
handshake components. The translation method is highly transparent, which al-
lows the VLSI programmer to infer cost and performance of the compiled circuit

Some simple Tangram programs 19

where a:v denotes the communication of value v through port a. Such a finite
sequence of communications is called a trace.
A slightly more interesting program is that of two-place buffer BUF,(a, ¢):

(a?W & !W)-|[b: chan W | (BUF(a,b) || BUF\(b,c))]|

This two-place buffer is a cascade of two instances of BUF}. The output of the
first instance is connected to the input of the second. Both instances operate in
parallel, as denoted by ‘||’. Cascades of instances of BUF, are called “ripple
buffers”.

4

— | BUF (a,b) BUF (b, ¢) |—»

The internal communication along channel b has two aspects. Firstly, it requires
simultaneous participation of sender and receiver. In other words, the output
action of the left BUF; and the input action of the right BUF| form a single
communication action. Secondly, a communication has the effect of the assign-
ment action xr := xl, where xl and xr are aliases for the variable z in the left
and right buffer instance respectively.

Communications along b are concealed by the scope brackets around the
declaration of channel b. The communication behavior of BUF;(a,c) is more
interesting than that of BUF|(a, ¢). In addition to all the traces of the one-place
buffer (with their output port renamed), a trace such as:

a:3 a:9 ¢:3 ¢:9 a:0 ¢:0

may be observed. True to its name, the two-place buffer allows the number of
input communications to exceed the number of output communications by two.
A quite different program is TEE(a, b, ¢) :

(@?W & bIW & c\W)-(BUF\(a, b) || BUF (b, c))

It is a two-place buffer where the intermediate channel b is not concealed, but
declared as an output port:

BUF (b, ¢) —

A

— BUF(a,b)

Some simple handshake circuits 21

Figure 1.1: Handshake circuit for BUF|(a, b).

is the activation port of the handshake circuit. The environment activates the
buffer by a request along t>. Only in the case of a terminating program, which
BUF)(a,b) is not, does the handshake circuit acknowledge termination through
the same port.

The handshake component labeled with a semicolon is a sequencer. Once
activated along c it sequentially performs handshakes along d and e, before it
returns an acknowledgement along c. It implements the semicolon that sepa-
rates the input and output commands in the Tangram program. Unless explicitly
indicated otherwise, the activation of the two active ports is counter-clockwise.

The component labeled with a ‘#” implements infinite repetition and is there-
fore called a repeater. Once activated along > it repeatedly executes handshakes
along c, causing the repeated activation of the sequencer. The repeater never re-
turns an acknowledgement along ©>.

Component z is a variable. A value can be written into z by sending it
along channel wz. The acknowledgement along wax signals completion of the
write action. Similarly, reading the variable starts by sending a request along rx
(against the direction of the arrow). Component z responds by sending the most
recently written value.

The two components labeled with a T are so-called transferrers. A request
along d results in an active fetch of a value along a; this value is subsequently
passed actively along wz. The left transferrer implements a?x and the right
transferrer implements b!z.

Observe that the structure of the handshake circuit of BUF(a,b) clearly

Some simple handshake circuits 23

Figure 1.3: Expanded handshake circuit for BUF;(a, ¢).

constructing the corresponding handshake circuit.

Such a syntax-directed translation may incur inefficiencies where subcircuits
are combined in a way that only depends on their syntactic relation. Such ineffi-
ciencies can be removed by replacing small subcircuits by equivalent but cheaper
subcircuits. This form of substitution is known as peephole optimization. One
form of peephole optimization can be applied to the buffer of Figure 1.3: the
result is shown in Figure 1.4. The component labeled ‘e’ is again a synchronizer.

The handshake components introduced so far all implement Tangram primi-
tives. Given the relatively small number of such primitives, the set of handshake
components is modest in size. By providing an “equivalent” VLSI circuit for
each handshake component and by wiring them according to the structure of
the handshake circuit a VLSI circuit can be obtained. The circuits for many
handshake components are simple and fixed. For handshake components such
as variables and transferrers the circuit structure depends on the number of bits
required to encode the relevant data types.

Handshake circuits are clockless. All synchronization is explicit by means
of handshake actions between neighboring components. The scheduling problem
of assigning a time slot to every primitive action is thus avoided. Furthermore,

Cost-performance trade-offs 25

the transferrer connected to its active side to be activated by either of the two
handshake components connected to its active ports.

These mixers make the wagging implementation of the two-place buffer more
expensive in area than the ripple implementation.

Figure 1.5: Optimized handshake circuit for WAG(a, ¢). The numbers near the
sequencers indicate the order of activation.

1.3 Cost-performance trade-offs

The programs for BUF;(a, c) and WAG(a, ¢) in Section 1.1 are functionally iden-
tical. The corresponding handshake circuits of Figures 1.4 and 1.5, however,
differ considerably. In general, a range of Tangram programs can be designed
that satisfy a single functional specification. The corresponding compiled circuits
will differ in cost and performance. The best Tangram program is then the one
that results in the smallest compiled circuit that satisfies the specified performance
requirements.

Cost-performance trade-offs 27

4

— SRa(a,b) SRn(b,) —

Figure 1.6: SR(ar+n)(a, ¢) composed of two shift registers with a smaller capacity.

For the construction of an N-place shift register a well-known cascade prop-
erty of shift registers is used (see Figure 1.6):

|[b: chan W | SRy(a,b) || SRn(b, 0] = SRv+vy(a, ©)

A realization for SRy(a,b) can now be obtained by cascading N instances of
SRA. This solution will be denoted by A .

Note that AV is capable of producing N outputs before doing its first input.
Moreover, after these initial /N outputs the behavior is that of an N-place buffer.
On closer inspection, is AV really an implementation of SRy (a, b)?

It depends. If the environment relies on the alternation of b and a communi-
cations then definitely not. If the environment enforces this alternation, AN is an
acceptable realization. In order to avoid further confusion, the first requirement
of the specification of SRy(a,b) is redefined as: the following composition must
not deadlock:

SRn(a,b) || |lz,y: var W | #[b2z || aly]]

Note that the specification is relaxed to the extent that the ith input and the th
output may occur concurrently.

What can be said about the performance of AN? After its first output, the
last cell in the cascade is ready to do an input: “it is vacant”. This vacancy
then propagates backwards to the input of A" and it takes N — 1 successive
internal assignments before an input action can occur. The cycle time is therefore
proportional to /V. The time an 8-bit assignment takes will be chosen as a time
unit. A reasonable value for this time unit in current VLSI CMOS technologies
is 25 nanoseconds. For an 8-place 8-bit shift register the cycle time is then 8 time
units, or 200 nanoseconds. It depends on the performance requirements whether
200 nanoseconds are acceptable or not.

The cost of AN is modest. It takes only N variables, which is obviously a
lower bound for SR y(a, b).

Cost-performance trade-offs 29

Still faster realizations

One may wonder whether C¥ is the fastest possible shift register. Equivalently, is
two time units the minimum cycle time? By putting two shift registers in parallel,
and by serving them alternatingly, faster shift registers can be constructed (see
Figure 1.7). Shift registers based on this structure will be referred to as wagging
shift registers. In order to keep matters simple, NV is restricted to even values.

SRD(a, c,€) de-interleaves the incoming sequence by sending the incoming
values alternatingly along ¢ and e:

(@?W & c!W & e!W)-|[z,y : var W | #[(c!z || a?y); (ely || a?z)]]|

SRE(d, f,b) interleaves the incoming sequences by receiving inputs alternatingly
along d and f:

(W & fIW & BIW)-|[z,y: var W | #{(blz || d2y); (Bly || £22)]]]

SR(Nj2-1y(c, d)

c d
a b
—— SRD(a,c,e) SRE(, f,b) —
e f

SR(n/2-1(e, f)

Figure 1.7: The wagging shift register.

Both SRD and SRE have a cycle time of one unit, measured at the input and
output respectively. Unfortunately, due to some additional overhead in control
and data routing, the real cycle time is somewhat larger. For 8-bit messages 30
nanoseconds is realistic.

For the two parallel shift registers ripple implementations can be used, e.g.
composed of SRA and SRC cells. A regular communication behavior is obtained
by taking identical cell sequences for SR(y/2_1)(c,d) and SR(n/2-1y(e, f).

More examples 31

mately a quarter of a nanoJoule. A reasonable measure for the energy consump-
tion of a ripple buffer is then the number of moves made by a single message
from input to output, viz. K + N. The power consumption of A8 running close to
its maximum speed (5 Mhz sample rate) will then be approximately 10 mWatt,
For C? at 20 Mhz this amounts to 80 mWatt. Wagging solutions, on the other
hand, are markedly economic in their energy consumption, because the path tra-
versed by a message is only half in length compared to that of ripple solutions.
For instance, a message takes five moves to ripple through A3. At 20 Mhz this
results in a power consumption of 25 mWatt. Of course, more accurate esti-
mates for size, timing and power need to be provided by the silicon compiler and
simulation tools.

These concerns for cost and performance make VLSI programming differ-
ent from and also more difficult than conventional programming. Especially
high-performance systems (e.g. digital video systems) may require detailed per-
formance analysis. But also for low-performance systems (e.g. digital audio
systems) with critical requirements on silicon area, balancing the performance of
subsystems is important.

From a VLSI-circuit perspective, these asynchronous shift registers also pro-
vide an interesting insight. A" requires one latch per section per bit whereas
a master-slave flipflop requires two. In principle, no solution based on master-
slave flipflops can beat A" in circuit size. Mimicking the behavior of AY with
synchronous circuits requires complex timing/control circuitry,

Although the sample rate of A% is low, the vacancy travels at maximal speed
from output to input. With a few SRC cells, the internal timing behavior becomes
highly irregular. This form of irregularity is hard to capture in clocked circuits.

In complex VLSI systems the different input and output ports often have dif-
ferent sample rates. Sometimes the samples are offered or consumed irregularly
in time. Even if these rates are constant and identical, this need not be so for in-
ternal channels. Certain subcomputations have data-dependent processing times,
or are invoked at irregular intervals, e.g. for handling exceptional situations. In
such situations the absence of a clock opens new architectural possibilities and
trade-offs.

1.4 More examples

Buffers and shift registers are not very interesting from a data-processing point of
view: the sequence of output message is basically a copy of the sequence of input
messages. This section introduces Tangram constructs by which more interesting

More examples 33

1. the adder forks this request to its active inputs;
2. the input values arrive at the inputs of the adder;

3. their sum is output along the output.

A simple FIR filter

A Finite Impulse Response (FIR) filter is a process with a single input and a
single output. The input and output communications strictly alternate, starting
with an input. For a FIR filter of order NV the output values are specified as
follows. The value of the ith output, 7 > V, is generally a weighted sum of the
N most recent input values. The N weights are generally referred to as the filter
coefficients. The first /N output values are left unspecified.

A very simple FIR filter of order N can now be constructed by connecting
ADD with a shift register:

(a?W & bIW)-|[b: chan W | ADD(a,b,c) || SRn(a,b)]|

The ith output, ¢ > N, is the sum of the ¢th input and the input with index
1 — N. This composition is depicted in Figure 1.10. Clearly, the input channel
a 1s connected to both ADD and SR. In general, any number of receivers may
be connected to a channel. The connected receivers must all participate in each
communication along that channel. This is anothetr example of broadcast. There
may be at most one sender.

Y

SR n(a, b) ADD(a,b,c) —

Figure 1.10: A simple FIR filter constructed from SR n(a, b) and ADD(a, b, c).

A more general FIR filter program is discussed in [vBRS88], in which the
degree of parallelism is parameterized. The program is a linear systolic array of
N div M cells, where M is a measure of the grain size of the parallelism. If
M = N the program is sequential and requires a single multiplier. The other
extreme solution is M = 1: an array of NV cells guarantees maximum throughput,
but requires N multipliers.

More examples 35

reader may try for instance an if-then-else command to replace the above selection
command to convince himself.

The handshake circuit for the if fi section of the median filter program is
depicted in Figure 1.11. The write ports of the variables are left unconnected.
After an activation along > the selection command is executed in two phases.

Figure 1.11: Handshake circuit for the if fi section of the median filter.

In the first phase the if component actively collects the disjunction of the
guards. The component labeled ‘ [| * passes on a request on its output to both
its Boolean inputs; upon the reception of these Booleans their disjunction is
transmitted along its output. Note that the guards are evaluated in parallel.

The effect of the second phase depends on the collected disjunction of the
guards. If this value equals false, the if component remains passive and the
circuit deadlocks. If the value equals true, as is always the case for the median
filter, component if activates the topmost [] component. This component
activates the circuit corresponding to an input from which it received the value
true. In this solution the nondeterminism is resolved in the [] component.

This implementation scheme works for an arbitrary number of guards. When
the [| components are organized according to a binary tree, the computation of

More examples 37

Note that the communication behavior of GCD is identical to that of ADD.
The handshake circuits have the same external ports, viz. an activation port, two
input ports and one output port. The fact that GCD contains an iterative algorithm
is completely hidden for the user of the circuits. The proposed method of com-
piling Tangram programs into handshake circuits leads to a form of distributed
control. Information is kept local, with the associated advantages of shorter wires
and minimum timing overhead.

Modulo-N counters

The modulo-N counter is presented to introduce the choice command. There
are two ways in Tangram by which the environment can influence the future
course of action of a program. Firstly, the environment may select the value to
send through an input port. The incoming value is stored in a variable and may
subsequently occur in the guards of a guarded command. The input value may
thus determine the future pattern of communications and computations.

Secondly, the environment may have the choice among a set of ports through
which it may synchronize or communicate. The binary form of this choice is
exemplified by the program CE (a, b, ¢, d) (CE is an acronym for Count Even, as
will become clear later):

(a & b& c & d)-#llc;a;a | d;b]]

LY

Operator ‘;” binds more strongly than The environment is repeatedly of-
fered the choice between a synchronization on ¢ or on d. These two commands
act as guards in the choice command. For each ¢, process CE performs two
synchronizations on a; for each d, it performs only one synchronization on b.

Using the choice command, a program for a modulo-/N counter will be con-
structed (/N > 1). The program has two external synchronization ports, a and b.
A modulo-N counter repeatedly performs NV synchronizations on a followed by
a single on b. Let this behavior be denoted by

c|’

#[#N[a]; b]
The simplest counter is a modulo-1 counter C1:
#[a; b]
For even values of NV the modulo-/V counter can be written as

#[#Ma;al; b

Epilogue 39

Figure 1.12: Handshake circuits for CE (a, b, ¢, d) and CO (a, b, ¢, d).

constant (e.g. the number of pixels in a video line, the number of samples in a
block, or the number of bits in a word). For this reason the construct #N[S] is
part of Tangram and means: repeat S exactly /N times. The implementation of
this construct contains a handshake circuit composed of the cells of Figure 1.12.

This section on choice and counters ends on a less fortunate note. It turns
out that the full implementation of the choice construct is fairly complicated. It
was decided nof to include its treatment in this thesis.

1.5 Epilogue

The programs and handshake circuits of this chapter give an impression of Tan-
gram and its compilation into handshake circuits. The following remarks place
the preceding experiments in a wider perspective.

Full Tangram

The programs of this chapter were written in a subset of Tangram. The main
omissions of this chapter are

e functions and procedures;

e the data type constructors tuple and array;

Chapter 2

Handshake processes

2.0 Introduction

A handshake is a means of synchronization among communicating mechanisms.
In its simplest form it involves two mechanisms connected by a pair of so-called
links, one for sending signals and one for receiving signals. The sending of a
signal and the reception of a signal are atomic actions, and constitute the possible
events that may occur between the mechanisms.

A signal sent by one mechanism is bound to arrive at the other mechanism,
after a finite, non-zero amount of time. Hence, this form of communication is
asynchronous; the sending and the arrival of a signal correspond to two distinct
events. It is assumed that a link allows at most one signal to be on its way.
Consequently, a signal sent must arrive at the other end of the link before a next
one can be sent. When the traveling time of a signal along the link is unknown,
the only way to know that a signal has arrived at the other side, is to be so
informed by the other mechanism via a communication along the other link.

Such a causally ordered sequence of events is called a handshake. The two
mechanisms involved play different (dual) roles in a handshake. One mechanism
has the active role: it starts with the sending of a request and then waits for
an acknowledgement. The other mechanism has the passive role: it waits for a
request to arrive and responds by acknowledging. A handshake realizes synchro-
nization among mechanisms; it can and will occur only if both mechanisms are
ready to participate.

Some useful terminology is introduced next. The pair of links forms a so-
called channel; the two terminals of a channel are called ports. This study only
considers channels with a fixed division of the passive and active roles during

41

Notational conventions 43

Guarded selection

An expression may have the form of a guarded selection as in:

if B() — E()
0 B - E

0 Byvoy — Eno
fi

Guarded expression B; — E; consists of guard B; and expression F;. A guard is
a Boolean expression. The order of the alternatives is irrelevant. In the guarded
selections of this thesis we shall see to it that at least one of the guards evaluates
to true, and that if both B; and B; evaluate to true expressions £; and E; have
the same value. For instance, the minimum of two integers, denoted by x min y
may be defined as

if <y — =z

I y<z — y

fi

The notation for guarded selection strongly resembles that of guarded commands
[DS90] (cf. the median filter in Section 1.4).

Quantified expressions

Universal quantification is a generalization of conjunction. Its format [DS90] is
(¥ dummies : range : term)

where

e “dummies” stands for an unordered list of local variables whose scope is
delineated by the parenthesis pair;

e “range” is a predicate that delineates the domain of the dummies; and
e “term’ denotes the quantified expression.

Similarly, existential quantification (with quantifier 3) is a generalization of dis-
junction. Quantification over an empty range yields the unit element of the
quantifier: true for vV and false for 3. When the range is evident from the context
it is usually omitted.

Notational conventions 45

Definition 2.0 (closure, closed)

0. For any subset B of A the <-closure of B in A, denoted by BZ, is defined

by
Bf={a:aeA/\(Elb:bEB:ajb):a}

This closure is also known as the downward closure of B.

1. B is called <-closed, denoted by (=)- B, if B =B=.
|

Operator = is indeed a closure operation, since ([DP90] page 36):

Property 2.1

0. BC B2 (extensive)
1. B2 =(B%)= (idempotent)
2. BCC = B*cCcC* (order preserving)

O

The closure operation binds more strongly than any other operation. As an
example of the proof style applied, we prove idempotence of the above closure
operation,

Proof of idempotency :

(B%)=

{ definition of <-closure }
{a:a€ AN@b:be BZ:a=<b):a}
{ definition of <-closure }

{atac AN@Eb:be{c:ice AN@EAd:deB:c<d):c}:a=b):a}

{ calculus }

{a:a€ AN@Eb:be ANEd:deB:b=xd)y:a=<b):a}
{ trading }

{a:acec ANGEbd:be ANdeEB:a<xbAb=d):a}

Il

{ < is reflexive and transitive }

Handshake structures 47

a

3. A port structure A is a pair (A°, A®), of port sets, such that A° U A® is a

proper port set. A° is called the passive port set of A and A°® the active
port set of A. Note that aA° M aA® need not be empty.

aA denotes the set of symbols of A, viz. aA° UaA®. Set aA is called the
alphabet of A.

. Elements of A°NA*® are the internal ports of port structure A, and elements

of (A°\ A®) U (A*\ A°) are the external ports of A.

. Port structures A and B are compatible if A°U A* U B° U B® is a proper

port set.

. The union of compatible port structures A and B, denoted by A U B, is

the port structure (A° U B°, A® U B®) .

. The difference of compatible port structures A and B, denoted by A \ B,

is the port structure (A°\ B°, A®\ B®).

The symbols ° and ® are used as postfix operators on port structures; they bind
more strongly than any other operator. If p is a passive port, Op is the set of the
input symbols of p and 1p the set of output symbols of p. For active ports this
is the other way around:

Definition 2.4 (input and output symbols)

Let A be a port structure and let ¢ € A. Then

0. ia denotes the set of input symbols of port a:

ia= if aec A° — 0a
[aeA®* — 1la
fi

. Operator i is lifted to port structures by iA =(Ua:a € A :ia).

2. oa denotes the set of output symbols of port a:

oa= if ac A° — 1la
I a€ A®* — 0a
fi

Handshake structures 49

ag :false and ag : true and the output symbol is a,, the acknowledgement
to an input.

. a®!Bool defines a port structure consisting of a single passive output port

of type Bool, viz. the port ({ao}, {a :false, a, :true}). The input symbol
ag denotes a request for an output. The output symbols are a, :false and
aj:true.

The alphabet of port structure A, denoted by aA, was defined as the set of
symbols that occur in the port definitions of port structure A. The symbols of
an alphabet are used to denote individual communications between a mechanism
and its environment. Finite symbol sequences are called traces.

Definition 2.7 (trace)

0.
1.

O

A trace is a finite sequence of symbols.

The empty trace is denoted by e.

. len- t denotes the length of t.

. The concatenation of traces s and ¢ is obtained by juxtaposition, as in st.

Trace s is called a prefix of ¢, denoted by s < ¢, if there exists a trace u
such that su=1¢.

. The set of all traces over alphabet B is denoted by B* .

. The projection of trace t on alphabet B, denoted by ¢[B , is defined by

elB =¢

(a)[B = if a¢gB — t[B
0 a€B — ai[B)
fi

If A is a port structure, ¢[A is used as a shorthand for ¢t[(aA) .

Sets of traces will be used to characterize mechanisms. Each trace records a
possible sequence of communication events in which a mechanism has engaged
up to some moment in time. Prefix order is a partial order on traces. Hence, in

Handshake processes 51

0. p°S =(pS)°
L. p*S=(pS)°*
2. aS=a(pS)
3.iS =i(p9)

4. 0S =o(pS)

2.3 Handshake processes

A handshake process will be defined as a handshake structure that satisfies five
conditions. Handshake processes are used to represent the external behavior
of a mechanism. Hence, handshake process (A,7T") has no internal ports, i.e.
A°N A® = (condition 0). Furthermore, trace set T is required to be non-empty
{(condition 1).

In addition to the absence of internal ports and the presence of at least one
handshake trace, three more conditions will be imposed, relating to progress,
insensitivity to delays, and readiness to accept further inputs.

So far, we clearly distinguished physical objects such as mechanisms and
events, from mathematical objects such as processes and symbols. Following
Hoare [Hoa85] and others, this distinction will be adhered to less strictly. When-
ever convenient, we use phrases such as “After process P has engaged in trace
t it is ready to accept input a”.

Quiescence

Let ¢ be a trace of handshake process P. After engaging in ¢, the environment
may be unable to obtain further output from P. Usually, this happens simply
because the behavior of P does not permit P to extend ¢ with any output symbol.
Even if ¢ can be extended with an output symbol, P may (nondeterministically)
choose not to do so, and remain idle. In either case, ¢ is called a quiescent
trace [Mis84,Jon85]. Process P may leave quiescence after the environment has
supplied further input.

A handshake process will be represented by its quiescent traces. The set of
all (observable) traces is then the prefix closure of the set of quiescent traces.
The quiescent-trace set of a handshake process must include the traces that have
no output successors, i.e. it must include all its passive traces.

Handshake processes 53

Proof We derive:

t € tss
{ suc-(t,S)CiSuUoS }

t€tSS A(pas-(t,S) V (Ja:a € 0S : ta € tS))

= { tPas-S CtS; S is a handshake structure }
tetS vV 3a:a€o0S:ta €SS A a¢gsuc (ta,S))

Repeating the last two steps for the remaining outputs in suc- (ta, .S) completes
the proof.

O

Reo'rdering

Let P be a handshake process and let ¢ be a an element of tP<. Assume that,
after engaging in t, the environment sends signals along links @ and b to P, in
" that order, and that P is ready to receive them, that is, tab is also in tP< .
When no assumptions are made about the delays involved, ¢ and b may arrive
in the opposite order. Under such circumstances it is reasonable to require that
tha is also tP<. Trace tba is said to reorder trace tab [Mis84,JHI89]. A similar
reordering must be allowed for two output symbols of P: for outputs ¢ and d,
trace tdc reorders tcd.

A slightly more subtle reordering is relevant when two symbols of opposite
direction are involved, say input a and output c. Suppose tca is an element of
tP<. Apparently the input a was not required by P in order to output c. When a
had experienced less delay it would have arrived before the output of c. Hence,
trace tac reorders tca, provided that both tac and tca are handshake traces. The
converse, tca reorders tac, does not hold, because input @ may be a prerequisite
for output c. A formalization of reordering of handshake traces is given by means
of a binary relation rg, where B is a port structure (B may have internal ports).

Definition 2.14 (reorders)

rp is the smallest binary relation on B with for all symbols a,b € (iB \ 0B),
all symbols ¢,d € (0B \ iB), and all symbols e € (iB N oB):

0. abrg ba

Handshake processes 55

Property 1 is a consequence of the judicious choice of the extension of r. Property
2 follows from 2.14.7, and Property 3 is a corollary of 2.

Proof of 4. Lett € tS< and u € (pS). We derive:
tetSSAurt

= { definition of <-closure }
Jv:.ve (aS)*:tvEtS)/\urt

= { definition of r; calculus }
(Fv:ve@S*:tvetS Auvr tv)

= {5}
(Fv:v e@S)*:uv €t9)

= { definition of <-closure }

u €tSS

Example 2.16

Implication (<) S = (<)- ST does not hold in general, as shown by the following
S. pS consists of two passive ports, viz. a® and b°. By definition, iS = {ao, bo}
and 0S = {a, b1 }. The trace set of S is given by tS = {agbo} <.

Obviously, we have (<)- S and agby € tS. Also, with u = bgag, we have
u € ST. However, prefix by of u is not an element of ST.

O

Condition 3 in the definition of a handshake process states that tP must be
closed under reordering. By Property 2.15.6, tP< is then reorder closed as well.

Receptiveness

A non-empty set of handshake traces that includes all its passive prefixes and
that is closed under reordering is a good candidate for the definition of handshake
processes. However, it turns out that certain operations on such handshake pro-
cesses, including parallel composition, are complicated in their definitions and
usage. A useful class of handshake processes with surprisingly simple properties
is obtained by imposing an additional requirement.

Handshake processes 57

Definition 2.19 (handshake process)

A handshake process is a handshake structure (A,7’) that satisfies the following
conditions:

0. A°NnA* =10 (no internal ports)
1. T#0 (non-empty trace set)
2. t(Pas- (A, T))CT (quiescence for passive traces)
3.(r)- T (reorder closed)
4. (x)- T+ : (receptive)

I'[- A denotes the set of all handshake processes with port alphabet A.

O

Like CSP, handshake-process theory has no notion of fairmess. Unlike CSP, there
is not a notion of divergence. Consequently, the various causes for quiescence
cannot be distinguished. In the sequel P and @ (possibly subscripted) denote
handshake processes. Unless stated otherwise, the word process is used as a
shorthand for handshake process.

For a port structure A the following generic processes are defined.

Definition 2.20

0. CHAOS- A is the least predictable handshake process. It can engage in a
handshake through any port at any time, and it can become quiescent at
any time:

CHAOS- A = (A, AT

1. STOP- A never engages in a handshake communication through any of its
ports. Nevertheless, it does not refuse any input through a passive port; it
simply does not respond to such an input:

STOP- A = (A, {e}X)

2. RUN- A is always willing to engage in a handshake through any of its ports:

RUN- A = Pas- CHAOS- A

58 Handshake processes

Note that CHAOS- (0,0) = RUN- (0,0) = STOP- (0,0) = ((0.0). {}). There is
only one process with the empty port structure, More examples of handshake
processes are presented next.

Example 2.21

0. Py is prepared to engage once in a handshake through «°:
(a®, {c.,apay, apaao})
[. P is prepared to engage once in a handshake through a®:
(a®. {ag,apay})

2. P, behaves like Fy: it participates in a handshake through «°, but it refuses
to acknowledge an input through 0°:

(a" L b°, {e} U {aga, }X 1)
which equals

(a® U, {e,bg
,agay, aga by, apboa, bpaga)
, apaya, aga aobo, agaibyag, agboa) ag, byaoarag})

1

Even for such a simple behavior as /% the number of traces becomes considerable
(11 quiescent traces!).

State graphs

A clarifying representation of handshake processes of modest complexity 1s the
state graph accompanied by a port structure. A state graph is a directed graph in
which arcs are labeled by symbols of the alphabet of the process. The nodes of
a state graph are partitioned into a set of guiescent nodes and a set of transient
nodes.

A non-empty subset of the nodes contains the so-called start nodes; often
there is exactly one start node. A path from a start node corresponds to the trace
that is obtained by listing the labels of the comsecutive arcs in the path. The
empty path corresponds to the empty trace. A path ending in a quiescent node
corresponds to a quiescent trace. Different paths corresponding to the same trace

Handshake processes 59

must either all end in quiescent nodes or all end in transient nodes. A state graph
is said to represent a handshake structure if the set of traces corresponding to the
paths that end in a quiescent node equals the set of quiescent traces (provided
that the accompanied port structures match as well).

The following conventions are used when drawing state graphs:

(. Quiescent nodes are depicted by open circles, and transient nodes by filled
ones.

. A start node is enclosed by a concentric circle.

2. To avoid clutter, a node is occasionally depicted more than once. These
multiple occurrences are labeled with a number unique to that node.

3. For clarity’s sake, a question mark (exclamation mark) is attached to labels
denoting input (output) symbols.

4. In some regularly drawn state graphs, the labeling of the arcs is incomplete.
Arcs forming two opposite sides of a rectangle are then assumed to have
the same label.

Example 2.22

0. Process P, of the previous example is depicted by the following state graph:

CLQ? (L]! (10?

1. Process Ps is prepared to engage once in a handshake through either o or
b°:
(@® U b°, {e} U{aoa, bob }x r

P contains 19 quiescent traces as depicted by:

60 Handshake processes

ap? ap! ap?

bo?

2. Process Py is like P, except that the choice between the two handshakes
is made by the process itself:

<a0 U b07 {57 g, bO} U {aOala bObl }x r >
P, contains 21 quiescent traces as depicted by:

ao? al! ao?

bo?

bﬂ

by?

Trace ag is a quiescent trace. If Py choses internally for a handshake
through b°, no progress ts made after trace ag. Similarly, Py may refuse
to complete a handshake through «°.

The handshake processes below occur in handshake circuits obtained by com-
pilation of Tangram programs. Each handshake process is identified by a name

Handshake processes 61

postfixed by a list of names enclosed by parentheses. From the names in the list
ports are constructed by means of port definitions. The ° and ® postfixes hint
at the activity of these ports. Substitution of a name by another name yields
an equivalent process, modulo renaming of the symbols. Alternatively, the pro-
cess descriptions may be regarded as function definitions with lists of names as
domain and processes as codomain.

Example 2.23

The handshake processes below specify the handshake components required for
the translation of the undirected subset of Tangram. Two examples, viz. NMIX
and NVAR describe non-receptive handshake structures. The directed handshake
components are presented in example 4.37. The behavior of most components is
represented by a state graph. The graphic symbol introduced for each component
will be used in handshake-circuit diagrams in later chapters. Let a, b and ¢ be
distinct names.

0. STOP- (a®) has port structure a°. It does not respond to a request through
port a°.

a
Q

ao?
oo (o

1. RUN- (a®) has port structure a°. It acknowledges a request through a° and
returns to its initial state.

ap?

al!

2. CON-(a®,b®) is a connector. It has port structure a°Ub® and each handshake
through a° encloses a handshake through b°.

Handshake processes 63

bo!

ag?

b?

Note that the handshake through port a is never completed.

7. PAR- (a°,b%, ¢*) has port structure a® U b®* U ¢®. A handshake through «°
encloses both a handshake through b* and one through ¢*, in parallel.

8. NMIX- (a°,b°,c*) has port structure a® U b° U ¢®. A handshake through c¢®
is enclosed by a handshake through either a°® or b°.

Note that NMIX - (a®,b°, ¢®) is not a handshake process, because it is not
receptive: for instance, trace ag may not be extended with bg. (NMIX
stands for Non-receptive Mixer; cf. Section 7.2.)

Handshake processes 65

O

port b°!Bool. In the state graph below, the symbol names ag :false, ag : true,
by :false and by :true are abbreviated by ay, as, by and b; respectively.

(z is used here as an instance name of the NVAR component; the type
of the ports is assumed to be clear from the context.) Note that the state
diagram has two initial states. The environment may start with a read
request. NVAR then chooses nondeterministically between the values false
and true.

For the same reason as NMIX, NVAR is not a handshake component: it
is not receptive. The receptive counterpart of NVAR is obtained by taking
input-extension closure of VAR followed by the reorder closure and the
passive restriction:

VARR, - (a°,b°) = (Pas-NVARp,, - (a°,b°)=)"

Process VAR tolerates a write request during read handshake and vice versa.

Note that all handshake processes of Example 2.23 are passive.

Pas and after

The passive restriction of P, denoted Pas- P, has been defined as a handshake
structure with port structure pP; the trace set of Pas- P contains those prefixes
of tP that have input successors only (see Definition 2.11). Pas is clearly idem-
potent, and the passive restriction of a handshake process cannot have an empty
trace set. Furthermore, it preserves receptiveness (Property 2.18.6). However,
Pas does not always preserve reorder closedness. Hence, Pas- P is in general
not a handshake process.

The complete partial order (I]-A,) 67

Example 2.28

With reference to Examples 2.22 and 2.23:
0. after- (agay, P») =STOP- (a® U b°)
1. after- (apay,RUN-a*) = RUN- a*® and

2. after- (agbobia), CON- (a®,b®)) = CON- (a®,b®)
d

2.4 The complete partial order (T]-A4, C)

In this section we analyze the structure of [[-A, i.e. the set of all processes
with port structure A. All processes in this section have port structure A. For
convenience, CHAOS- A will be abbreviated to CHAOS. This section follows the
lead of [BHR84,Hoag&5].

Refinement order

First we introduce an order relation C among handshake structures.

Definition 2.29 (refinement)

Let S and T be handshake structures. S refines to T, denoted by § C T, if
tS O tT .

O

Let P and () be handshake processes. Paraphrasing Hoare ([Hoa85], page 132)
we may say that P C () now means that () is equal to P or better in that it is
less likely to become quiescent. () is more predictable than P, because if () can
do something undesirable, P can do it too; and if) can become quiescent, so
can P. CHAOS can do anything at any time, and can become quiescent at any
time. True to its name, it is the least predictable and controllable of all handshake
processes; or in short the worst. Refinement C is clearly a partial order on []-A,
with CHAQOS as least element.

Expression P C () can also be read as “P specifies Q”, “Q) satisfies P”,
or “Q implements P”. One of the main reasons to choose a nondeterministic
specification, is to allow the implementor to select the cheapest or otherwise most

The complete partial order ([]-A,C) 69

Property 2.32

0. Let < be a preorder on traces. Then the <-closure on handshake structures
is order preserving.

1. Corollary: prefix closure, reorder closure and input-extension closure are
order preserving.

d

A property of handshake processes that proves useful in the implementation
of handshake components and handshake circuits is the following.

Definition 2.33 (initial when closed)

A handshake process P is initial-when-closed if for all closed traces t € tP< we
have

P C after- (t, P)
O

When a closed trace of such a process has been observed, we may assume that
the process is in an initial state. All processes of Example 2.23 are initial-when-
closed. None of the processes of Example 2.22 are.

The complete partial order

The greatest lower bound of a set of handshake processes is obtained by taking
the union of the respective trace sets.

Definition 2.34 (union)

The union of handshake structures S and 7', denoted by S M T, is defined as
(A, tSULT) .

a

Property 2.35

If P and @) are handshake processes, then P11() is also a handshake process.
O

In Section 2.5 we shall interpret P M () as the nondeterministic composition of
processes I” and). The least upper bound of a set of handshake processes does

The complete partial order (T]-A,C) 71

1. Let < be a preorder on traces. Then the <-closedness is continuous.

2. Corollary: prefix closedness, reorder closedness and input-extension closed-
ness are continuous.

Proof of 1 (i ranges over the natural numbers). We derive:

te i S;)

{ definition of limit }
(ViteS;)
{ S; are closed under < }

VMizo(Wu:u=<t:uecs)

= { calculus }
NVu:u=<t:(Viuels))
= { definition of limit }

NMu:u=t:ueci:5))

Example 2.40

The =<-closure is not continuous in general. Consider for instance the chain (7 :
0<i:5:), with S; =(a® {j:1<j:(apa)}). Then (s :: Sl-s) = (a°, (a®)¥)
and (Ui : S;)S = (a°,0) .

t

The following property claims continuity for two specific preorders on traces.

Property 2.41
0. r-closure is continuous.
1. x-closure is continuous.

Proof of 0. Let (: 0 < ¢:.5;) be a chain and let ¢ be a trace of (LI :: S{) .
Furthermore, let U; be the set {u TuES;Atru: u} . Note that U; depends on
t. Clearly, (z : 0 < ¢ :Uj) is also a chain. We derive:

Nondeterminism 73

Corollary 2.44

Partial order ([]-A, C) is a complete partial order with CHAOS- A as least element
and (Uz:0<i: F,)aslimitof chains (:0<i: F).

a

Property 2.45
For chain (¢ : 0 <7:5;) we have forall j: P, C(Ui:0<14:5;).
O

One reason why we took all the trouble to prove that ([[-A,C) is a CPO, is
that the least fixpoint for equations of the form P = F'- P, with F' a continuous
function, can be constructed straightforwardly within a CPO. This allows the
definition of handshake processes by means of recursion. Recursive process
definitions will be discussed in Chapter 4.

2.5 Nondeterminism

In contrast with CSP, the maximal elements of the partial order C are not neces-
sarily deterministic. Nondeterministic behavior may exhibit itself in two forms:

0. a process may have the choice of doing an output or becoming quiescent;

1. a process may choose between two outputs, where the choice for one of
the outputs disables the other.

This is formalized below.

Definition 2.46 (deterministic handshake process)

Handshake process (A, T') is deterministic if for all distinct output symbols a and
b:

0.tacTS = t¢gT

l.taeTS A the TS = tabe TS

Nondeterminism 75

Nondeterministic composition

Process P1Q (“P or Q) behaves exactly like P or like). The choice between
P and @ is nondeterministic.

Property 2.50

0. Nondeterministic composition is idempotent, order preserving, commuta-
tive, associative, distributive and continuous.

1. PNQ C P.
O

If a process is specified by P M @, the implementor is free to select either P or
@ as implementation. For order preserving F' we obviously have

F(PNQ) C F-PNF-Q
A stronger property of functions on handshake processes is [BHR84] is distribu-
tivity:
Definition 2.51 (distributivity)

0. A function F' from handshake processes to handshake processes is distribu-
tive if
F(PNQ)=F-POF-Q
1. A function of two or more arguments is called distributive if it is distributive
in each argument separately.

O

Distributive functions are clearly order preserving. Nondeterministic composition
is distributive, since

PN@QMR) = (PAQ)N(PMR)

Example 2.52

0. Let < be a preorder on traces. Then the <-closure on handshake structures
is distributive.

1. Corollary: prefix closure, reorder closure and input-extension closure are
distributive,

Chapter 3

Handshake circuits

3.0 Introduction

The most interesting operation on handshake processes is parallel composition.
Parallel composition is defined only for connectable processes. Connectability
of handshake processes captures the idea that ports form the unit of connection
(as opposed to individual port symbols), and that a passive port can only be
connected to a single active port and vice versa. A precise definition will be
given later.

The communication between connectable handshake processes is asynchro-
nous: the sending of a signal by one process and the reception of that signal by
another process are two distinct events. Asynchronous communication is more
complicated than synchronous communication, because of the possible occurrence
of interference. The concept of interference with respect to voltage transitions
has been mentioned in Section 0.1. Interference with respect to symbols occurs
when one process sends a symbol and the other process is not ready to receive it.
The receptiveness of handshake processes and the imposed handshake protocol
exclude the possibility of interference, thus yielding a relatively simple definition
for parallel composition.

Another complication is, however, the possibility of divergence: an un-
bounded amount of internal communication, which cannot be distinguished ex-
ternally from deadlock. From an implementation viewpoint divergence is unde-
sirable: it forms a drain on the power source, without being productive.

The external behavior of the parallel composition of connectable P and)
will be denoted by P || (), which is again a handshake process. Both internal and
external behavior of the parallel composition of two processes will be analyzed

77

Parallel composition 79

2. The reflection of port structures A, denoted by A, is defined by:

(A°, A%) = (A%, A%)
O

Connectability and reflection enjoy the following obvious properties.

Property 3.1
0. AXO
1. AKB = BX A
2.aAnaB=0 = AXB
3. AMA
4. A=A

Example 3.2
0. a° X a°
1. a®?bool ™M a®!bool
2. P X CHAOS-pP
3. SEQ-(a®, 0%, c*) X MIX- (b°,c°,d®)
4. MIX- (a°,b°,¢*) M SEQ-(c°,d®, e®)

In the sequel P and () are connectable handshake processes. Now we are
ready to analyze the interaction between P and (). Let C' be the set of internal
ports, viz. (p°PNp*Q)uU(p*P Np°Q) , let port p € C', and let a be an element
of ap , such that ¢ € (iP NoQ) . Furthermore, let ¢t € tP< and u € tQ<, and let
this pair of traces specify the current state.

In general, t[C #u|C , because symbols sent by one process need not have
arrived at the other process yet. Even if all sent symbols have arrived, ¢ and u
may differ due to reordering. Assume that event ¢ may occur next as an output

Parallel composition 81

Property 3.5
Let R and S be connectable handshake structures.
0. () BN ()5S = (9 (RwS)
1. (r)-RA()-8 = () RwWS)
2. (x)-RAKX)-S = X)(RwS)
Proof
0. cf. Property 1.17 in [vdS85].
1. Let rg, rs and rgg denote r pgr, r ps and r prups respectively. We

derive:

tet(RwS) A srpst
= { Definition 3.3 (weaving) }

tfaR € tR A t[laS €tS A srpst
= { Property 2.15.2 (twice) }

t[aR € tR A s[aRrggst[aR A t[aS €tS A s[aSrgst[aS
= { Property 2.15.1 (twice) }

tfaR € tR A s[]aRrpt[]aR A t[]aS e€tS A s[aSrg t[aS
= { Rand S are reorder closed }

s[aR €tR A s[aS € tS
= { definition of weaving }

sct(Rw)S)

2. Similar to 1.

O

Property 3.6
Let R and S be connectable handshake structures.

0. ttRw S)S C t(RSwSS)

Parallel composition 83

quiescent if and only if both components are. This makes the weave an attractive
composition operator. However, the weave of two processes is not a handshake
process, because of its internal ports. By concealing the internal ports and pro-
jection of the quiescent traces of the weave on the external ports, we obtain a
handshake structure that represents the externally observable behavior of a par-
allel composition, in most cases. This form of parallel composition is known as
blending [vdS85].

Definition 3.8 (blending; external port structure)

0. The blend of handshake processes P and (), denoted by P b @, i s defined
as

(P wQ)fe(pP UpQ)

where e(pP U pQ is the external port structure, defined next.

1. The external port structure of port structure A, denoted by e A, is the port
structure A \ A, which is equivalent to (A°\ A°®, A*\ A°) (cf. Definition
2.3).

O

Unfortunately, the blend of two handshake processes is not a handshake process
in general, as shown by the following example.

Example 3.9

Consider the parallel composition of REP- (a®,b®) and RUN- b°. The former
includes the traces ¢, agbg and agbgb by, the latter includes ¢, boby and bybbob;.

The handshake structure REP- (a®,b®*) w RUN- b° contains exactly one trace,
viz. €. No other trace is quiescent: after trace ag processes REP- (a°,b®) and
RUN- b° “play ping pong” indefinitely. Concealment of b has of course no effect
on this trace set. However, the resulting blend (a® {¢}) is not a handshake
process, because it is not receptive. Trace ag does occur, and is quiescent as far
as the environment is concerned. If we ignore handshakes along b, we apparently
must accept (a®, {e,ap}) as the behavior of REP- (a®,b*) || RUN- b°.

O
The occurrence of an unbounded sequence of internal events is known as infinite

chatter (cf. [vdS85] page 52) or infinite overtaking (cf. [Hoa85] page 80). The
traces that lead to such a bothersome state of affairs are called divergences.

Parallel composition

Theorem 3.12

Let P and Q be handshake processes. Then
t(PSwQS) = M(PwQ) U div(PSwQS)S

Proof by mutual set inclusion.

Case (H(PwQ) Udiv(PSwQS)S C t(PSwQS).

t € (t((P w Q) Udiv-(PS w Q<)<
= { prefix closure distributes over U; Property 3.11.0 }
te (P wQ)S U t(PSwQS)S)
{ tS C tS<; weaving is monotonic }
t € t(PSwQS)s
{ Property 3.5.0 }
t € t(P< w QS)

Case t(PSwQS) C ((PwQ) U div(P<w Q)<
Let trace t € t(P< w Q<) and let predicate X, be defined as

85

tet(PwQ)S V (Ju:u € (PUOQR)* A tuet(PSwQS):n<len u)

Predicate X holds trivially. Using Property 3.7 it follows that (Vn : 0 < n ;

Xn = Xn+1) Hence, by induction, we have (¥n : 0 < n : X,) Equivalently:

tet(PwQ)S

VIWVn:0<n:Gu:u € 0OPUMQ* A tu € t(PSwQS):n<len u))

The second term brings us very close to the definition of div (cf. Definition
3.10). However, u ranges over all outputs and not exclusively over internal

symbols. Fortunately, the number of external outputs in u is finite, because of

handshaking and the finite number of ports involved. Hence, as far as the second

term is considered, ¢ is a prefix of a divergence of P< w Q< . Q.e.d.

O

Parallel composition

1. We derive:

true

= { tP and tQ are non empty }
€ €tPS A e €tQs

= { definition of blend }

e € t(P< b PS)
{ Property 3.15 }

e €t(P || Q=

= { calculus }

t(P Q) #0

2. We derive:

tPas- (P || Q)
= { Property 2.12 }
tPas- (P || Q)<
= { Property 3.15 }
tPas- (P< b Q<)
{ Property 3.6.1 }
t(Pas- P< b Pas- Q<)
= { Property 2.12 (twice) }
t(Pas- P b Pas- Q)

M

- { P and Q are quiescent for passive traces; property of b }
t(PbQ)

€ { property of || }
(P [l Q)

Hence, P || Q is quiescent for passive traces.

87

Parallel composition 89

Property 3.17

0. Parallel composition is commutative, associative, distributive and continu-
ous.

1. CHAOS- (,0) || P = P.
[

In the remainder of this thesis, examples involving parallel composition are
free of infinite overtaking. Parallel composition then reduces to the conceptually
simpler blending.

The way two processes are connected can be pictured by means of a con-
nection diagram. These diagrams are also a convenient means to display the
connectivity pattern of handshake circuits (see e.g. the circuits of Section 1.2).
In a connection diagram, processes are drawn as circles with their ports drawn as
small circles attached to their periphery. Passive ports are represented by open
circles, active ports by filled ones. A channel is represented by a line connect-
ing exactly one passive port to one active port of two distinct processes. The
direction of a channel is represented by an arrow indicating the direction of data
transport (when applicable).

Example 3.18
The parallel compositions below refer to handshake processes of Example 2.23.

0. The parallel composition of two connectors connected *‘tail to head” is
again a connector:

CON-(a°,b%) || CON- (b°,¢*) = CON- (a®, c*)

1. Connecting a connector to a process has the effect of renaming the port it
connects to:

REP- (a®,b%) || CON- (b°,¢*) = REP- (a®,c*)

o

90 Handshake circuits

2. A port of a handshake process can effectively be concealed by connecting
it to a RUN component:

JOIN- (a°,b°,¢®) || RUN- (¢®) = PAS- (a®,b°)

Also:
SEQ-(a®,b%,¢c*) | RUN-(c°) = CON- (a°,b*)

a

3. An active port can be turned into a passive port by connecting it to a
passivator:
RUN- a® || PAS- (a®,b%) = RUN- b°

@ - @

4. A duplicator can be constructed from a sequencer and a mixer:

SEQ- (a®,b%,c*) || MIX- (b°,¢°,d®) = DUP- (a°,d®)

Parallel composition 91

A duplicator can also be constructed from a PAR component and a mixer:

PAR- (a®,b%,c®%) || MIX- (b°,c°,d®%) = DUP- (a®, d®)

b
It is interesting to compare the respective weaves, Trace aghgcodg is a trace
of PAR- (a®,0%,¢%) w MIX- (b°,¢°,d®) but not of SEQ- (a°,b%,¢*) w MIX.

(b°,¢°,d*®). For trace apbpdg the converse is true: it is quiescent only in
the sequencer based duplicator.

However, these differences in internal behavior are concealed to the exter-
nal observer.

5. Nondeterminism is not preserved under parallel composition:

OR- (a®,b%,¢*) || MIX- (b°,¢°,d*) = CON- (a°. d*)

6. Another realization of CON-(a®, d*) is suggested by:
PAR- (a°,0°%,c®) || JOIN- (0°,c°,d®%) = CON- (a°, d®)

In Chapter 6 we shall recognize examples 0, 1, 4 and 6 as instances of property
6.23. Each of the above examples can also be viewed as a substitution or rewrite
rule: the composition at the left-hand side of an equality may be replaced by
the component at the right-hand side. These substitutions therefore also suggest
optimizations of handshake circuits (cf. Section 7.1).

O

We conclude this section with two properties of parallel composition that
prove useful for the initialization of handshake circuits (Section 7.6).

92 Handshake circuits

Property 3.19

0. The property “being paséive” is preserved under parallel composition, that
is, P || Q is passive if P and @) are passive.

1. The property initial-when-closed is preserved under parallel composition.

3.2 Handshake circuits

Handshake circuits at last!

Definition 3.20 (handshake circuit)
0. A handshake circuit is a finite connectable set of handshake processes.

1. Let H be a finite set of handshake structures. I is connectable, denoted
by XH, if all handshake structures are pairwise connectable, that is:

MH = (V$,T7:ScHATCcHASHT:SNXT)

]

In particular, the empty set and the singleton set are handshake circuits. Note that
the required connectability excludes “broadcast” among handshake processes:
a port may occur in the port structures of at most two processes of a given
handshake circuit. Consistent with the terminology of Chapter 1 we shall refer
to the handshake processes of a handshake circuit as its handshake components.,

Most of the operators of the previous section can be generalized to handshake
circuits in a straightforward fashion.

Definition 3.21

0. The external port structure of handshake circuit H, denoted by eH, is the

port structure
eUP:PecH:pP)

I. HS={P:P¢c H:PS<}
2. W.-H=(w P:PcH:P)

Handshake circuits 93

3. BBH=(b P:P€c H:P)
4. ||'H=(| P:P€eH:P)
O
The first definition relies on

AXB ABNXCACKA = e(AUuBYXC

The last three definitions rely on the associativity and commutativity of weaving,
blending, and paralle] composition, as well as on the existence of a null element
CHAOS - (9,0) for all three operators. Many of the properties of the previous
section generalize similarly:

Corollary 3.22
For handshake circuit H we have:

0.div-(W-HS=0 = W -H)S=W-(HS)

1. div-(W-HS)=0 = |[-H=B-H
2. eH =p(||-H)

3. ||-H is a handshake process.

4. (|- H)= =||-H=

The following properties relate to the set nature of a handshake circuit.

Property 3.23

0. 0 is a handshake circuit. Since STOP- (0, }) is the unit of parallel compo-
sition of handshake processes, we have ||-0 = STOP- (0, 0) .

1. Let H and I be handshake circuits, such that X(H U I). Then HU [is a
handshake circuit, and

e(Hul) =e(eHuel)
|-<HUD =(|-H) || (I-D

Handshake circuits 95

For each handshake through a we may expect 2" handshakes through port
b. With N =90 and a rate of one handshake through b per nanosecond, it
takes approximately 10'® seconds to complete a single handshake through
a®. This is about the estimated life time of the universe, and may present a
slight problem for the testing of a VLSI circuit that implements this chain
(see Section 7.7).

Chapter 4

Sequential handshake
processes

4.0 Introduction

So far the quiescent trace set of a handshake process was specified in one of the
following forms: by enumeration, by a predicate, by a state graph, or by parallel
composition of other handshake processes.

For many handshake processes neither of the above forms may be convenient.
An example of such a process is the process that first behaves like P and then,
“after successful termination of P”, behaves like). Of course, such sequential
composition of the handshake processes P and @ requires a notion of successful
termination of a process. A sequential handshake process is a handshake process
in which that notion is incorporated.

The aim of this chapter is to develop a model for sequential handshake pro-
cesses and a calculus for these processes. An important application of this calcu-
lus is the description of the handshake components required for the compilation
of Tangram. Another application is the semantics of Tangram itself.

4.1 Sequential handshake processes

A sequential handshake process is a handshake process, of which a subset of the
quiescent traces is designated as traces that lead to successful termination. In a
sequential composition these so-called ferminal traces can act as antecedents to
traces of the subsequent sequential handshake process.

97

Sequential handshake processes 99

be omitted in “sequential handshake process”. In the remainder of this section
P and @ denote sequential handshake processes. The following property shows
their relation to (non-sequential) handshake processes.

Property 4.1

0. If (A, T,U) is a sequential handshake process then (A, 7 U UXT) is a
handshake process.

1. Corollary: if (A, T, D) is a sequential handshake process then (A,T) is a
handshake process.

O

These properties inspire the following definition.

Definition 4.2 (permanent sequential process)

0. A sequential handshake process is permanent if its set of terminal traces is
empty.

1. A handshake process (A, T) is said to correspond to the permanent se-
quential process (A, T,), and vice versa.

a

When P is a permanent sequential process, and no confusion can arise, we will
sometimes use P as if it is a handshake process and omit the phrase “the hand-
shake process corresponding to”. In particular, permanent sequential processes
will be used to define the behavior of handshake components and handshake
circuits.

In [Hoa85] terminal traces are appended with a symbol 4/, indicating suc-
cessful termination. A clear advantage of such an encoding is the absence of
the need to introduce another process model. To some extent, this advantage
is eroded when the extra rules that govern the use of 1/ have to be taken into
account. Moreover, the recording of the terminal traces in a separate set will pay
off in the definitions of the various operators on sequential processes.

For a port structure A the following generic sequential processes are defined.

Sequential handshake processes 101

The CPO of sequential handshake processes

The set of sequential handshake processes with port structure A, denoted by
>°-A, can be analyzed in a way similar to our analysis of []-A. The respective
definitions, properties and theorems then bear close resemblance. In this subsec-
tion we rephrase the more significant results of Section 2.4 in terms of sequential
processes. All sequential processes in this subsection have port structure A. First
we introduce a partial order relation C among sequential processes.

Definition 4.4 (refinement)

Let P and @ be sequential processes with the same port structure. P refines to
Q, denoted by P C @, if

tP Dt and uP Du@
O

Again, P C () may be read as P refines to (), P specifies (), or ¢) implements
P. The least element in this order is CHAOS- A . A function from > -Ato > -A
is order preserving if it preserves refinement ordering.

Definition 4.5 (nondeterministic composition)

The nondeterministic composition of P and), denoted by P M@ , is defined as
(A, tP UtQ,uP UuQ) .

a

P Q@ is the greatest lower bound of P and () in the partial order (3°-A,C) .
Later M will be generalized to sequential processes with unequal port structures.
A function from > - A to > - A is distributive if it distributes over nondeterministic
composition.

Definition 4.6 (intersection)

The intersection of P and), denoted by P L1 Q) , is defined as
(A, tP NtQ,uP NuQ)
]

The intersection of two sequential processes is generally not a sequential process.

Process calculus 103

Un:0<n: F* CHAOS)

C { CHAOS C Q and F is order preserving }
Un:0<n: F™ Q)

= { @Q is a fixpoint }
Wn:0<n:qQ)

= { calculus. }

Q

]

An application of this fixpoint theorem is given in the next section.

4.2 Process calculus

This section develops a calculus for sequential handshake processes. It is re-
stricted to sequential processes with undirected ports, thereby excluding input
and output of data. Extensions to this calculus, including data communication
and assignments, are described informally in Section 4.4. The calculus includes
the following operations: parallel composition, extension, concealment, nonde-
terministic composition, sequential composition, N-fold repetition, infinite rep-
etition, enclosure, and choice. The choice of the operators is inspired by the
syntax of Tangram.

Basic sequential processes
The following definition introduces four basic sequential processes.
Definition 4.9 (stop, skip, ¢°, and «*)
Let a be a name.
0. stop = STOP-(0,0) = ((0,0),{c},0)
1. skip = SKIP- (0,0) = ((0,0),0,{e})
2. a® = (a°{e}, {aoar})

3. a* = (a* {ao}, {aoa1})

Process calculus 105

Conformant port structures

Connectability of port structures is a requirement for the parallel composition of
(sequential) handshake processes. In such a composition, two processes may only
share the opposite side of a channel. If sequential processes share the same side
of a channel, a different requirement is imposed on the respective port structures:
they must be conformant.

Definition 4.12 (conformance)

Port structures A and B are conformant denoted by A ~ B, if
0. A and B are compatible, and
1. A°NB*=0and A°NB°=0.

Two handshake structures are conformant if their respective port structures are.
Conformance of sequential processes is defined similarly.

O

Conformance is related to connectability by the following property.

Property 4.13
Ans B = AXB
a

Conformance enjoys the following obvious properties.

Property 4.14
0. Amv B=BmA.

1. BCA = Bn A.Consequently, A 2a @ and A~ A .

2. pANpB=0 A A and B are compatible = A m B.
O

Extension

Some relations and operations on processes are defined only for processes with
equal port structures. Under such circumstances, the extension of the port struc-
ture of a process may be useful. The extension of P with conformant port

Process calculus 107

Concealment

Concealment of a subset of the ports of sequential process P has the effect that
handshakes through these concealed ports occur without participation of the en-
vironment, and are even invisible to the environment. This concealment may
have the effect of hiding unbounded sequences of handshakes through the con-
cealed ports. These possible divergences are taken into account in the following
definition. '

Definition 4.18 (concealment)

Let A 20 pP . The behavior of P with A concealed, denoted by |[A | P]|, is
defined as
(B, (tP Udiv- (pP U A, tP<))[B,uP[B)

where B=pP \ A.
O

Concealment enjoys the following properties.

Property 4.19

Let A and B be port structures and P a sequential process such that A, B and
pP are mutually conformant. Then

0. |[[A | P]] is a sequential process.

1. |[[A]| P]|=|[ANpP | P]

o]

A TIB | Pl =[[AU B | Pl

[~

. |[(0,0) | P1| =P
O

The following property is helpful in translating Tangram programs into handshake
circuits.

Property 4.20

Let A be a port structure and P a permanent sequential process, such that
A 2o pP . Then
|[A| P]|=P || RUN- (AN pP)

Process calculus 109

Definition 4.23 (sequential composition)

0. Let P and () be handshake processes with port structure A. The sequential
composition of P and @ is denoted by P;4 & , and defined as

(A,tP U (uP;tQ)", (uP;u@)")
where the sequential composition of trace sets V and W is defined by

ViWw={v,w:veVAaweW: :vw}

1. Let P and @ be handshake processes with conformant port structure. The
sequential composition of P and @ is denoted by P; @ , and defined as

PP 54 (pP)-Q
where A =pP UpQ .
O

Note that if pP = pQ we have P ;ppQ = P;Q.

Property 4.24
0. P;Q is a sequential process.
1. Sequential composition is associative and distributive.
2, skip; P = P = P;skip

3. stop; P = stop

4. P;stop = (pP,tPUuPXT () | which is clearly permanent.

|

The next property finds application in the definition of infinite repetition.

Property 4.25

Sequential composition is continuous in both operands, that is
Ui:0<1:P3@Q) = (Ui:0<i:)@

and

ui:0<1: P;Qy) P,ui:0<4:Q5)

Process calculus 111

Definition 4.26 (N-fold repetition)

Let N be a natural number. The N-fold repetition of P is denoted by #N[P],
and defined as

if N=0 — SKIP-pP

0 N>0 — P;#N-—D[P]

fi

Property 4.27
Let P be a sequential processes and let NV be a natural number.
0. #N[P] is a sequential process.
1. Finite repetition is continuous.
2. #N[stop] =stop , for N > 0.
3. #N[skip] = skip .
O
Finite repetition is not distributive, i.e. in general we do not have
#N[P N Q] = #N[P] N #N[Q]

Sequential process #/N[P M Q] may choose between P and Q) at every step of
the iteration; in the case of #N[P] M #N[Q)] this choice is made only once. The
latter is a refinement of the former.

Infinite repetition

The infinite repetition of P behaves like an infinite sequential composition of
sequential process P, schematically suggested by P; P; P;

Definition 4.28 (infinite repetition)

The infinite repetition of P is denoted by #[F] and defined as the least fixpoint
of F, where F' is defined by F- X = P; X .

O

This fixpoint is the limit of the chain (z : 0 < ¢ : #{[P]; CHAOS-pP) as explained
in Section 4.1.

Process calculus 113

3. a® :stop = STOP- a°

4, a®:0°: P = b°:a°: P . In particular, a® : b° = b°:a°.

a

The last property, which may come somewhat as a surprise, is a direct conse-
quence of the reordering in Definition 4.30.

Choice

Consider the conformant sequential processes a°; P and b°; Q) . Sequential pro-
cesses of this form are called guarded processes. We are interested in a sequential
process that either behaves like a°; P or like 6°; Q) , such that the environment
may choose between the two sequential processes by either offering ag or by.
This is quite different from a°; P M 4°; Q) , in which the choice between the
operands of M is made nondeterministically.

The above choice is denoted by [a® P | b°;Q] , and behaves like the se-
quential process a®; P Mb° @, except that traces ap and by are not quiescent.
The choice construct can be generalized by allowing an enclosures as guarded
processes. Recall that an enclosure is a sequential process of the form a° : P |
This brings us to the following definitions.

Definition 4.32 (guarded process)

A guarded process is a sequential process that can be written as b°; P or as
b° : P . Port b° is called the guard of the guarded process.

O
Recall that b° = b°;skip = b°:skip.
Definition 4.33 (choice)

Let P and Q be two conformant guarded processes, with disjoint guards p and q.
If P is an enclosure we require p ¢ p°F and similarly for @ and ¢. The choice
between P and Q is denoted by [P | Q] , and defined as

where A=pPUpQ .
O

Directed communications 115

5. DUP- (a°,b®) = #a° : (b% b))

6. REP- (a°,b*) = (a°: #[b°))

7. PAR-(a°,6%,¢®) = #[a®: (b° || c*)]

8. MIX-(a®,b°,¢®) = #[[a®:c®|b°:c]]
9. PAS- (a°,b°) = #[a°: b°]

10. JOIN- (a°,0°,c®) = #[a®: b°: c°]

11. COUNTy-(a®,b%) = #[a® : #N[b*]]

0

In Chapter 2 we have established the above components to be initial-when-closed,
meaning that for each closed trace ¢ in P< the process after-(t, P) is a refinement
of P itself. The property initial-when-closed can be checked syntactically, as
shown by the next property.

Property 4.36

A sequential handshake process that can be written in the form #[a® : P] or in
the form #[a® : P | b° : Q] is permanent. The corresponding (non-sequential)
handshake process is both passive and initial-when-closed.

O

Note that (a°)-stop can also be written as #[a® : stop]. As a matter of fact, all
handshake components required for the compilation of Tangram can be written
in one of the two forms of Property 4.36.

4.4 Directed communications

With the calculus introduced so far we can only specify sequential processes with
undirected ports. The handshake circuits obtained by the translation of Tangram
programs also require handshake components with input and output ports, such
as VARp /- (a®,b°) in Example 2.23. This section extends the calculus of the
previous section to sequential handshake processes that communicate data. These
extensions are introduced informally and applied to the specification of handshake
components.

Directed communications 117

Sequential process do B — P od repeatedly behaves as P, as long as B
evaluates to true. In particular do false — P od behaves like SKIP- (pP) and
do true — P od behaves like #[P].

Examples

The handshake processes below illustrate the above extensions. Together with the
handshake processes of Example 2.23 they form a complete list of all handshake
components required for the compilation of Tangram programs.

Example 4.37

0.

STOP (2. 1y- (a®) accepts any input a:v, with v € T', but does not respond
to it: '

STOP('],T) - (a°)

(&)

STOP- (a°?T)

. STOP(1y- (a°) does not respond to a request for a value in 7',

STOP .1y (a°)

O

STOP- (a°!T)

. RUN¢ 1y- (a®) repeatedly responds to any input through a of type T" with

the acknowledgement a;:

RUN(?’T)- (a°)

O

RUN- (a°7T)

. RUNu 1)- (a°) repeatedly responds to ag by an output of the form a; : v,

with v € T, and is clearly static nondeterministic:

RUNq 1)- (a®)

O

RUN- (a°'T)

With C a constant, CST-¢ (a°) repeatedly responds to input ap with output
ay:C. Process CST-¢ (a°) may be regarded as a deterministic refinement
of RUN¢ 1) (a®), provided that the value of C isin T'.

Directed communications 119

10.

11.

B[N(EI,U,V)' (aoab.ac.) b a
(@2 UDV),b°?U,c*?V)- ¢
[[x: varU & y: varV
| a®W(xOy) : (b7 || c*?7y)
1]
1
Examples of binary operators are ‘V’, ‘A’, ‘=", ‘<’, ‘47, ‘=" and ‘x’.

MIX g1y (a®,b°,c®) is one of the two generalizations of MIX- (a®,b°,c®)
that will be considered. Incoming values of type T through ports a®°?T and
b°?T are passed through c*!7". The subsequent acknowledgement through
c®!T is routed to the origin of the last message. MIX(1)- (a°,b°, c®) may
be called a multiplexer.

MIX 1y (a°,b°,c®) a

(a°7T, 5°7T, c*! T)-
#[|[x: var T | [a®?2 : c®lz | b°%x : c*lx]]|]

o

MIX @ Ty (a®,b°, c*) is the other generalization of MIX-(a®, b°,c*®). Requests
through o°!T and b°!T are passed through ¢*?T. The subsequent value
input through ¢*?77 is passed through the output port where the request
came from. An appropriate name for this process is demultiplexer.

MIXo 1) (a®,b°,c®) A
(a®!1T, 62T, c*7T)- b
#[|[x: var T | [a®lz : 2 | b1z : c*7x]]|]

If a multiplexer is considered as the data driven generalization of the mixer,
the demultiplexer is to be considered as its demand driven generalization.

12. JOIN 1y- (a°, b°, c*) generalizes the JOIN- (a°,b°, c*) in a demand driven

way. Requests through a and b are joined before the request is passed
through c¢. The incoming data through c is forked through ¢ and b.

JOINp 1y (a°,b°,¢c*) a

o

(@°\T,6°1 T, c*?T)-#[|[x : var T | a®lz : 6%z @ c*?2]|]

Directed communications 121

17.

18.

Component DO (a®, b®, c*®) responds to an ag by an active input of a Boolean
value through b*?Bool. If this value equals true, an active ¢®* comes next,
followed by another active input through 6*?Bool. This repeats until the
value false arrives. When the value false arrives, the component returns to
its initial state after an a;.

DO- (a°,b%,c®)

(a®, 6*?bool, c®)-
#[a® : [z : var bool | b*?z; dox — c*;b6°?2 od]|]

BAR-(b°,c°, 1b°,1c®, 7%, rc®) is the most complex component for more than
one reason. Firstly, it has as many as 6 ports, organized in three pairs (b, ¢),
(Ib,lc) and (rb,rc). Secondly, it combines two more or less independent
behaviors, from which the environment can choose. Its behavior is best
explained by the restricted form in which it will be used in compiled
Tangram programs: as a 2-phase behavior.

Phase 0 starts with a request for a Boolean output through b. This request is
forked through b and rb. The disjunction of the incoming Boolean values
is then returned through b. Let z and y denote these incoming Boolean
values.

Phase 1 starts with a request through ¢°. Depending on the values of x
and y, the component responds with an active handshake through lc (if
x = true), or with an active handshake through rc (if y = true). If both x
and y are true, the choice between lc and rc¢ is nondeterministic. If both
values are false the subsequent behavior is left unspecified.

BAR- (b°,c°,1b%,1c®, rb®, rc*)

= [b
(6°!bool, ¢°, [b*7bool, Lc*, 7b* Tbool, rc*)- le b
|l z,y: var bool re :
| # [b°NxVvy) %7 || rb*y) b
| c® cifz =l Jy—reth
]
1

1l

Chapter 5

Tangram

5.0 Introduction

Tangram is a VLSI-programming language based on CSP. The main construct
of Tangram is the command. Commands are either primitive commands, such as
a?z and x := z + 1, or composite commands, such as R; S and R || S, where R
and S are commands themselves.

Execution of a command may result in a number of communications with
the environment through external ports. Another form of interaction with the
environment is the reading from and writing into external variables. A Tan-
gram program is a command without external variables, prefixed by an explicit
definition of its external ports.

Not all compositions of commands are valid in Tangram. For instance, in
a sequential composition the two constituent commands must agree on the in-
put/output direction of their common ports. Also, two commands composed in
parallel may not write concurrently into a common variable. Section 5.1 defines
the syntax of Tangram, including these composition rules. The meaning of each
command is described informally.

For a subset of the Tangram commands the handshake-process denotations
are given in Section 5.3. This subset is referred to as Core Tangram.

5.1 Tangram

The main syntactic constructs of Tangram are program, command, guarded-
command set, and expression. With each construct we will associate a so-called
alphabet structure: a set of typed ports and variables.

123

Tangram 125

2. a!T =(0.{a},0,0,{(a,T)}), an output port of type 7.
3. 2:T=(0,0,{z},{z},{(x,])}), a variable of type T.
O

The following definition introduces a few notions that are useful when com-
posing Tangram commands and expressions. Let, for the remainder of this chap-
ter, A and B be alphabet structures.

Definition 5.2 (relations and operations on alphabet structures)

0. A and B are type compatible if common names are either ports or variables
in both alphabet structures, and if these common names are of the same
type, iLe. if

PANVB=0) A (pBNVvA=0D)
AN (Aa:a€cANeB:74-a=Tg a)

1. A and B are conformant, denoted by A ~ 3, if they are type compatible
and if their common ports agree in direction:

Arn B= A and B are type compatible
A (P?ANP!B=0) A (p?BNplA=0)

2. The conformant union of two conformant alphabet structures A and B is
denoted by A Upn B, and is defined as the componentwise union of A and
L.

3. The conformant difference of two conformant alphabet structures A and 55
is denoted by A \na B, and is defined as componentwise set difference of
Aand B.

4. A and B are connectable, denoted by A X B, if they are type compatible,
have no common output ports, and variables with write access of one
structure do not occur in the other structure:

AXB= A and B are type compatible
A (PIANP!B=0) A (vVANVIB=0) A (VIANVB =0)

5. The connectable union of two conformant alphabet structures A and B is
denoted by A Uw B, and is defined as componentwise union of A and 3,
except for p?(A Uy B):

p?(AUx B) = (p?AU p?B)\(p!AU p!B)

i.e. the output ports dominate.

Tangram 129

e (D)-S extends the alphabet structure of S by the port definitions of D.
(D)-S is not prepared to engage in any communication through the ports
AD \pn AS; otherwise it behaves like S.

Of the binary command operators, the semicolon binds the strongest, followed by
‘||’ and then ‘I7°. As usual, the bracket pair ‘(" and ‘)’ may be used to overrule
this priority rule..

Guardeg commands

The selection and repetition commands are listed in the table below. They intro-
duce so-called guarded-command sets [Dij75], a third syntactic category next to
programs and commands. Let B be a Boolean expression, S a command, and
let G and I be guarded-command sets.

construct | Alphabet structure | rule
Commands

ifGfi | AG

do God | AG

Guarded-commands sets

B— S ABUpn AS AB m AS
G| H AG upn Al AG v AH

e The execution of a selection command with a guarded-command set G
depends on the value of BB - G, the disjunction of the guards of G:

BB -0 = false
BB - (B — S) = value of B
BB -(GJH) = BB-GV BB-H

If BB - G evaluates to false, the behavior of the selection command is left
unspecified: for instance, it may stop. Otherwise, the selection command
behaves like one of the commands of the guarded-command set for which
the guard evaluates to true.

e do G od is Tangram’s guarded repetition command. As long as BB - G
evaluates to frue, one of the commands for which the guard evaluates to
true is selected for execution. When BB - G evaluates to false, do G od
terminates successfully. Accordingly, do od is equivalent to skip.

Tangram semantics 131

that handshake-process denotation. In this section we investigate the semantics
of Tangram in terms of (sequential) handshake processes.

There are two viable approaches to obtain a handshake-process denotation of
a Tangram program:

0. the direct approach in which a sequential handshake processes is associated
with each Tangram command;

1. the indirect approach comprising a denotation in terms of an existing
process model (such as the well-known synchronous failures/divergences
model of CSP) and a mapping from that model to handshake processes.

The direct approach is pursued in this thesis, and is discussed next. The indirect
approach is discussed in Appendix B.

Direct approach

We want to associate a sequential handshake process with each Tangram com-
mand. An issue with far-reaching consequences is the choice between a passive
or an active implementation for each Tangram port. Tangram itself does not give
much of a clue to this, except that choice favors passive ports (see Section 4.2),
and read/write accesses to external variables must be through active ports (cf.
VAR in Example 2.23).

Also connectability requirements in the case of parallel composition have to
be considered in the choice between passive or active port implementations. Note
e.g. that a Tangram command without output ports is connectable to itself, which
is obviously not true for a (sequential) handshake process. Another complication
is that broadcast in Tangram (i.e. common ports are not concealed with parallel
composition) has no counterpart in sequential handshake processes.

We shall ignore the latter complications for a while and first consider two
simple strategies:

e directed mappings, viz. inputs passive and outputs active, or vice versa;

e uniform mappings, viz. the all-passive mapping (all ports implemented
passively) or the all-active mapping (all ports implemented actively).

Both strategies are viable. Directed mappings have the advantage that directed
point-point channels do not give rise to connectability violations. However, a
provision has to be made for undirected channels and broadcast in Tangram. The
directed mapping “inputs active and outputs passive” results in cheaper circuits
than the other directed mapping [Mar§9].

Core Tangram 133

is then defined in terms of sequential handshake processes. With ™ as only value,
the Tangram distinction between input and output disappears. Also, the concept
of storage is no longer meaningful. Alphabet structures in Core Tangram have
the form:

(p?A4,0,0,0,{"}) .

Consequently, an alphabet structures does not contain more information than
a set of port names. Also, the notions type compatibility, conformance and
connectability of alphabet structures become void: all alphabet structures are
both conformant and connectable. For the remainder of this section alphabet
structures contain input ports only, all of type {~}. Note also that the syntactic
categories expression and guarded-command set are meaningless when Val = {7 }.

Definition 5.3 (port structure of an alphabet structure)

Let A be a alphabet structure of the form (p?A,0,0,0,{ " }). The handshake
expansion of A, denoted by H- A, is defined as

(Ua:a€p?A:a®)
O

Clearly, (H- A)° = @ . The next definition gives the sequential handshake-process
denotations for Core Tangram commands.

Definition 5.4 (Core Tangram commands)

Let a be a name, D a list of port definitions, /V a natural number, and S and
T Core Tangram commands. The ten commands of Core Tangram and their
sequential handshake-processes denotations are enumerated below.

0. H-skip = skip

1. 'H-stop = stop

2. H-a = a°

3. H-((D)-S) = (H-D)-(H-5)
4. H-(SNT) =H-S 11 H-T
5. H-(S;T) =H-S; H-T

6. H-(#N[S]) = #N[H- 5]

Core Tangram 135

where weaving of trace sets is used as in Definition 3.14.

2. where PS is the s closure of P, based on the preorder s on handshake
traces:
sst = (Fu:u€@OP) :su=t)

s 1s a prefix of ¢ that can be extended to ¢ with outputs only.
O

Now that we have defined the parallel composition of connectable Tangram com-
mands. we can complete the definition of the semantics of Core Tangram.

Definition 5.6 (Core Tangram program)

A Core Tangram program is an extension command of the form (D)-S, such that
AS CAD.

O

In Chapter 6 we also use the “repeatable go” of H-T.

Definition 5.7 (repeatable go)

Let P be a sequential handshake process. The repearable go of P, denoted by
>*- P, is the sequential handshake process

#>°: P

where port name [> is pronounced as “go”.

O

Consider >*-H-T. The environment may start the execution of T by sending
a . If T terminates successfully >*- H-T will reply with a > (. After event
>, the handshake process is ready for another execution of 7". Note also that
>*- H- T is passive and initial-when-closed.

Function H defines a semantics for Tangram. We shall refer to this semantics
as handshake semantics of Tangram, Extending H to full Tangram relies on the
extension of the calculus in Chapter 4. In Chapter 6 we assume that 1 has been
extended to cover all Tangram.

Chapter 6

Tangram — handshake
circuits

6.0 Introduction

The topic of this chapter is the translation of Tangram programs into handshake
circuits. Let T be a Tangram program. In Chapter 5 we have defined the meaning
of T as the handshake process H-T. The translation to handshake circuits is
presented as a mathematical function C, from the set of Tangram programs to
the set of handshake circuits. Thus, C-T is a handshake circuit, and handshake
process ||- C- T is the behavior of that circuit. Function C will be designed such
that
p*H-T = ||-C-T

where p>* P was defined as #[>° : P] (cf. Definition 5.7). That is, the translation
preserves all the nondeterminism of the program. From a practical viewpoint it
1s sufficient to realize

p>H-T C [|-C-T

in which the behavior of the handshake circuit is a refinement of the handshake
behavior of the Tangram program. It may be expected that this relaxed form
results in cheaper handshake circuits. The advantage of defining the most nonde-
terministic handshake circuit of 7T is that many alternative translation functions
that synthesize more deterministic circuits can readily be derived from it. Some
of these alternatives will be indicated.

The translation function C has been described briefly and incompletely in
[vBKR*91]. A predecessor of the translation method [vBRS88] is organized

137

Compilation function 139

When R and S have ports in common, the translation of R; S is only slightly
more complicated. Given the disjoint nature of the compiled subcircuits, a “glue”
component is required to give both K and S access to a single external port. A
mixer for each common port, together with proper renaming of the involved
ports, results in the desired handshake circuit. In the circuit below, it is assumed
that command R has ports a and b and that command S has ports b and c.

The general translation of Tangram commands of the form R; S is described
later. The significance of the above suggested approach is that the compilation
function can now be applied recursively to R and S independently. The required
port renaming will be made more precise later.

Section 6.1 presents the translation of Tangram programs in a semiformal
manner. For each Tangram production rule (cf. Section 5.1) a corresponding
compilation rule is defined, supported by a graphical version of it and an opera-
tional interpretation. The required handshake components have been introduced
in Examples 2.23, 4.35, and 4.37.

The aim of Section 6.2 is to formalize the discussed equivalence between
Tangram programs and the corresponding handshake circuits in the Compilation
Theorem. The scope of the Compilation Theorem is restricted to Core Tangram,
as a consequence of similar restrictions in H and the handshake calculus in
Section 4.2.

6.1 Compilation function

The translation of Tangram into handshake circuits is defined by means of com-
pilation function C. The syntax-directed organization of C makes it necessary
to include all syntactic categories of Tangram in the domain of C, viz. program,
command, guarded-command set, and expression. The application of C to an
element of each of these categories results in a handshake circuit. The port struc-

Compilation function 141

In the presentation of the compilation function C the grouping of syntactic
constructs of Chapter 5 is followed. The order of these groups is slightly different
for didactical purposes. Before defining C for all of Tangram’s production rules,
the technical issue of renaming of ports must be dealt with.

Renaming

The translation of composite Tangram commands such as R; S results in a hand-
shake circuit consisting of the sub-circuits C- R and C- S, and some “glue”
circuitry. Part of this glue circuitry is required to deal with ports common to
both C- R and C-S. The introduction of glue components makes it necessary
to introduce new names for specifying the interconnections. This requires a sys-
tematic way of renaming the activation ports and the common ports of R and S.
The names introduced by such a renaming may not clash with existing names.
A simple and effective renaming that avoids clashes is to modify ai/l names in R
and S by prefixing the name with a fixed character string.

Definition 6.0 (renaming)

0. Let n be a name. ['n is the [-renaming of n and equals [n, i.e. the character
string n prefixed with the letter [.

1. Let A be an alphabet structure. [- A is the alphabet structure A with all
port and variable names [-renamed.

2. Let T be a Tangram command. [- T is the command 7" with all occurrences
of port and variable names [-renamed.

3. Let P be a handshake component. [- P is the handshake component P
with all occurrences of symbol names [-renamed. A similar renaming also
applies to handshake circuits.

4. The r-renaming is defined similarly.

0

The following properties of renaming are frequently used.
Property 6.1

- and r- renaming commute with

0. Tangram operators and H (when applied to commands),

Compilation function 143

1. Let A be an alphabet structure. Stop- A is the handshake circuit

{e:cec?A :STOP@ .- (c*)}
U {c:ceclAd :STOPq -, (c°)}

Concealment

In the translation of |[B | S]|, ports and variables of B have to be treated dif-
ferently. Ports can simply be connected to appropriate RUN components (cf,
Property 4.20). Variables to which S has both read and write access are imple-
mented by VAR components of the appropriate type. Variables to which S has
either read or write access are connected to appropriate RUN components as well,
in order to avoid dangling write or read ports of VAR components.

C-11B|S]|

The handshake components stemming from B are collected into a Run term.

Definition 6.3
0. C-|[B]|Sl=Run-(BNAS)U C-S
1. Let A be an alphabet structure. Run- A is the handshake circuit

{z:2€ev?ANVIA VAR, - (wz®,rz°)}

U {z:2zev?A\VIA :RUN(., (wz°)}
U {z:z€viA\V?A :RUN@, (r2°)}
U {c:cep?d :RUN¢ 1y (c)}
U {c:ceplA :RUN@ -y ()}

Compilation function 145

2. Let A be an alphabet structure. Con; - A is the handshake circuit

{c:cec?A :CONpr,y- (I, c*)}
U {c:c€clA :CONgr) (Ic°)}

Similarly for Con, - A.

Nondeterministic choice

The translation for Tangram commands of the form R1.S closely resembles that
of sequential commands. Since R and S are never activated concurrently, a Mix
term takes care of the common ports.

C-(RMS)

Definition 6.5

C-(RNS) = {OR-(>°,I>°,r>*)} U Mix- (AR,AS)

0 u l-C-RUr C-8

The OR component nondeterministically selects between the activation of the
subcircuits {- C- R and r- C-S. An alternative compilation rule, which reduces
nondeterminism and avoids the costly Mix-term, is

C-(RNS) = C-R

Compilation function 147

Repetition

The two forms of repetition in Tangram are simply included in the definition of
C. A Con term makes the renaming of the repeated command consistent with
earlier commands.

C-(#1SD

C-#NI[SD

Definition 6.7
0. C-(#N[S]) = {COUNTN-(>°,[1>*)} U Con, -AS U |- C- S

1. C-(#[S])={REP-(>°,ID>®*)} U Con -AS U [- C-S

Guarded commands

Selection

Each selection or guarded repetition contains a set of guarded commands. Let G
be a guarded-command set. Given C- G the translation of a selection command

is depicted by

Compilation function 149

C-(B—95)

A guarded-command set with at least two elements can be decomposed into
two nonempty guarded-command sets. In Tangram such a set is denoted by
connecting the component sets with a * [] ’. The circuit C: (G [| H) contains the
subcircuits - C-G and - C- H. A BAR component implements the Tangram * [] °.
Common ports and variables of guarded-command sets G and H are accessed
through a Mix term.

C-(G H)

Compilation function 151

C-(do od) C-(doGod)

After activation through ©>°, the do component inputs a Boolean through [5®
and, if true, handshakes through [>®. This is repeated until false arrives. Then
the do component returns in its initial state after a >].

Definition 6.10
0. C-(do od)={RUN-(p>°)}

1. C-(doGod)={DO (>°16° 1%} U Con -AG U I- C-G

Primitive commands
Input

The circuit of C- (a?z) is depicted by

Compilation function 153

Synchronization

The synchronization command a is implemented by connecting the activation
port >° to port a®.
>

Definition 6.14
C-a={CON-(>°,a%)}
O

Skip and stop

The translations of skip and stop are self-evident.

> >
C- skip C- stop

Definition 6.15
0. C-skip={RUN-(1>°)}
1. C-stop = {STOP- (1>°)}

Expressions

Expressions form the last syntactic category left to consider for compilation to
handshake circuits.

Compilation function 155

The Join term reduces to a Con term.

Definition 6.17
C-(OF)={UN@g,rz) (e°,le")} U Con -AE U |- C-FE
O

Constants

The handshake circuit for a constant expression is self-evident.
: e
c-C

Definition 6.18

C. C = {CST-¢ ()}
O

Variables

The expression 2 translates to a simple connector. Recall that the declaration of
variable = yields a VAR component with read port rz°.

rTr e

Definition 6.19
Cx= {CON(?,TI)- (e°, 7“$')}
O

This concludes the translation of Tangram commands into handshake circuits.
Examples of compiled handshake circuits can be found in Chapter 1. The circuits
of Figures 1.1, 1.2, 1.3, 1.9, and 1.11 can be obtained by applying C to the
corresponding Tangram programs or commands. The circuits of Figures 1.4 and

Compilation theorem

where (in alphabetic order):

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

and:

20.
21.
22.
23.

24.

0

CON- (a°, b*)

= #[a® : b*]

COUNTN - (a°,b%) = #[a® : #N[b°]]

JOIN- (a°,b°, c*)

MIX- (a®,b°,c®)
OR-(a°,b%,¢*)
PAR- (a®,b%,c®)
REP- (a°, b')-
RUN- (a®)
SEQ- (a°,b%,c*)
STOP- (a°)

Run- A
Stop- A
Cony - A
Mix- (A, B)

Join- (A, B)

=#[a® : b° : c*]

=#[[a®:c® | b° 1 c*]]

=#a®: (b* M c*)]

=#[a® : (b || ¢*)]

=(a° : #[b°])

= #{a°]

= #{a® : (0%)]

= (a°)-stop

={a:a € A:RUN-(a°)}

={a:a € A:STOP- (a®)}

={a:a€ A:CON-(la°,a®)}

Cony - (A\ B)UCon, - (B \ A)
U {a:a€ ANB:MiX- (la®°,7a° a®)}

Cony - (A\ B)U Con, - (B \ A)
U {a:a€ ANB:JOIN-(la® ra°,a%)}

One of the central theorems of this thesis is the compilation theorem.

Theorem 6.21

(compilation theorem)

Let 7" be a Core Tangram program. Then

>H-T = ||-C-T

157

Compilation theorem 159

2. o-function F' is permanent if its image consists exclusively of permanent
sequential processes.

O

Function B>* is an example of a o-function. In general, a o-function is partial.
For instance, function F, F'- X = X; P, is defined only if X is conformant
with P. The definition of o-functions can be extended to include the complete
handshake calculus. Such extensions are not relevant to our current purposes.

Property 6.23 (separation)

0. Command separation. Let P be a sequential process and let F' be a per-
manent o-function, such that F' does not interfere with pP or a°. Then

F-P=F-qa* || #{a°: P]

The non-interference requirement on F' guarantees that F'- a® and #[a° :
P] are connectable. This separation property is similar in intent to the
“decomposition rule” of [Marg9].

1. Con separation. Let P be a sequential process such that p°P = 0, and
let @ € p*P. Furthermore, let F' be a o-function, such that F' does not
interfere with pP or la. Then

F-P=F-(a:=la)-P || CON-(la®,a®)

where (a := la)- P denotes the sequential process P with all occurrences
of symbols of port a [-renamed. Consequently,

F-P=F-l-P || Con -pP
Again, non-interference of F' with pF or la assures connectability.

2. Mix separation. Let P and () be conformant sequential processes, with
p°P = p°Q = 0 and let a € p*P N p*Q. Furthermore, let ' be a o-
function, such that F' does not interfere with pP, pQ, la, or ra (to assure
connectability in the decomposition below). Then

F-(P;Q)=F -((a:=la)- P;(a:=ra) Q) || MIX-(la®,Ta’,a®)
Consequently,

F-A(PiQ)=F-(I P;r- Q) || Mix-(pP,pQ)

Compilation theorem 161

Proof of the compilation theorem

The proof of the compilation theorem is by structural induction over Core Tan-
gram, and follows the command order of Definition 6.20. The proofs for the
three primitive commands skip, stop and a°® are skipped. The syntactic cate-
gory program is not treated separately, since a program is a just an extension
command.

Most proof cases refer to one or more separation properties. Of course,
it is then a part of the proof obligations to verify that a proper o-function is
involved. In particular, the non-interference of the o-function with its argument
or with the freshly introduced ports must be checked. From the simplicity of
the applied renaming scheme, non-interference can be easily established, and
hence the connectability of the sub-circuits introduced by the separation step is
guaranteed.

Case command S;T
>*-H-(S5;T)

{ H distributes over ; }
>*-(H-S; H-T)

= { Mix separation }
(- H-S; r-H-T) || Mix-(aS,aT)
= { command separation (twice) }
D-(l%rp®) || L p*H-S || r-D*H-T || Mix-(aS,aT)
= { induction hypothesis }
D -(Up%re®) || E-C-S) || @]|]-C-T) || Mix-(aS,aT)
= { rewrite; definition of SEQ }
[|-{SEQ-(>°,I>*,r1>*)} U Mix-(aR,aS) u l- C-S U r C-T)
{ definition C }
I|- C-(S;T)

Case command ST : similar to command S;T .

Case command #[S]

- H- #S])

Compilation theorem 163

Case command |[B | S]]

> H-|[B | S]]

{ property of concealment }
>*-H-|[BnaS | Sl
{ 'H “distributes over” concealment }

D*- |[H-(BnaS) | H-S]|

{ concealment commutes with enclosure and repetition }

I[H-(BNaS)| - H- S|

{ property 4.20 of non-terminating processes }
>*-H-S || RUN-H-(BNaS)

{ induction hypothesis }
I-C-S || RUN-H-(BNaS)

{ rewrite; definition of Run }
[{-:(C-S U Run-H-(BNabY))

{ definition C }
I-C-|[B | S]]

il

Case command (B)-S : similar to command |[B | S]] .
O

Chapter 7

Handshake circuits — VLSI
circuits

7.0 Introduction

Handshake circuits are proposed as an intermediary between communicating pro-
cesses (Tangram programs) and VLSI circuits. Chapter 6 describes the translation
of Tangram programs into handshake circuits. This chapter is concerned with the
realization of handshake circuits as efficient and testable VLSI circuits. First we
observe that the fine-grained parallelism available in VLSI circuits matches the
fine-grained concurrency in handshake circuits nicely. The mapping of handshake
circuits to VLSI circuits can therefore be relatively direct.
A rather naive mapping is suggested by the following correspondence:

0. a channel corresponds to a set of wires, one per symbol;
1. an event with name a corresponds to a voltage transition along wire a;

2. each handshake component corresponds to a VLSI circuit that satisfies the
specification at the transition level.

There is no doubt that the above mapping can result in functional circuits. In
general, however, the resulting circuits will be prohibitive in size, poor in perfor-
mance, probably hard to initialize, and impractical to test for fabrication faults.
Concerns for circuit size, performance, initialization and testability will therefore
be recurring themes in this chapter.

A full treatment of all relevant VLSI-realization issues is beyond the scope
of this thesis. Issues that directly relate to (properties of) handshake circuits have

165

Peephole optimization 167

In many instances a subcircuit may be replaced by a cheaper subcircuit with
an “almost equal” behavior. Such substitutions are allowed if their effect on the
external behavior of the circuit cannot be observed by any possible environment.
This form of optimization wiil be called refinement in context.

Definition 7.1 (refinement in context)

Let P, @ and R be handshake processes, such that pP = p@ and pP X pR .
Process P refines to Q) in the context of R, denoted by P Cr @ , if

PIIR C QIR
O

The following properties are given without proof.

Property 7.2
0. PCRr P
1. PCrQ A QCRrT = PLCgr T (Hence, Cp is a preorder.)

2. PLcraose @ = PLA

3. If pR = pP, the defining expression of refinement in context can be rewrit-
ten as

tPNtR 2 tQNtR

Example 7.3

Three examples with practical interest are given below. We assume that the
context A is a handshake circuit, such that for refinement P Cy) the circuit
P U H can be obtained by compilation of a Tangram program. Several of these
substitutions may be applied in succession.

0. The following refinement in context has been applied to the circuit of
Figure 1.3 in order to obtain that of Figure 1.4.

Non-receptive handshake components 169

This optimization has been applied in order to obtain the handshake circuit
of Figure 1.11.

The above form of local optimization will be called peephole optimization by
analogy to optimizations in conventional compilers that generate machine code
[McK65]. By scanning over a handshake circuit and looking at a local subcircuit
(with a bounded diameter), as if through a peephole, one can find opportunities
for improvements by substitution. It is characteristic of peephole optimization
that an improvement may spawn opportunities for additional improvements.

7.2 Non-receptive handshake components

By Definition 2.19 handshake processes are required to be receptive. The main
advantage of this requirement is the relatively simple definition of parallel com-
position of handshake processes (Definition 3.14), which guarantees absence of
computation interference (Theorem A.12).

Unfortunately, the requirement of receptiveness tends to make the circuit real-
izations of handshake processes more costly. In particular, the constant readiness
for inputs through passive ports requires gates or latches to “shield” or remember
input transitions for later processing. Moreover, the choice construct requires an
arbiter circuit to arbitrate between transitions through the guard inputs. A non-
receptive implementation of choice is deterministic and arbitration can therefore
be avoided (cf. the MIX and NMIX components of Example 2.23).

In this section we investigate the conditions under which a (receptive) hand-
shake component may be replaced by a non-receptive component without taking
the risk of computation interference. The scope of the following (re-)definition
is restricted to the current section.

Definition 7.4

0. A handshake process is a handshake structure that satisfies all conditions
of 2.19 except for condition 2.19.4.

1. A receptive handshake processes is a handshake process that also satisfies
condition 2.19.4. All other handshake processes are non-receptive.

d

Let P be a handshake process, and let t € tP< and a € iP, such that ta € (aP).

Non-receptive handshake components 171

Property 7.6
0. Strong refinement in context is a preorder (cf. 7.2).

1. For receptive handshake processes P,) and R we have

PERQ = PLCRrQ

Example 7.7

The relation
MIX- (8°,¢°,d%) Cr NMIX- (8°,¢c°,d®)

is a strong refinement for
R € {OR-(a®,b%,c®%) , SEQ- (a®,b%,c®) , STOP- {b°,c"}}

but not for
R € {PAR- (a°,b%,c%) , RUN- {b*,c*}}

O

A nice property of strong refinement in context is that it does not introduce inter-
ference. The following theorem assumes that the domain of parallel composition
(cf. Definition 3.14) is extended to handshake processes.

Theorem 7.8

If P || Ris free of interference and P @ then @ || R is also free of interference.

O

Remember that if P and R are both receptive, absence of interference is guar-
anteed. In particular, a component in a handshake circuit and its environment
are receptive. If this component is e.g. a MIX component it may be replaced
by an NMIX on account of Example 7.7, provided that the environment avoids
overlaps of the handshakes through the mixer’s passive ports. The MIX compo-
nents introduced in the compilation function of Chapter 6 are all placed in such
a restricted environment. Consequently:

Handshake refinement 173

Handshake action p T° assumes both wires pg and p; to be low, and, after
successful termination, leaves both wires high. Similarly, action p |° assumes
both wires to be high, and leaves both wires low, provided successful termina-
tion. This suggests that we can still use the handshake calculus of Chapter 4,
provided that the described process satisfies the rule of alternation of up and
down transitions.

In this section we investigate various ways to implement a handshake process
by a transition handshake process. The central notion is that of phase reduction.

Definition 7.10 (phase reduction)

A phase reduction is a partial function ¢ : [],-A — []-A that satisfies:
0. ¢ is surjective
L ¢-(PNQ)=¢ PN¢-Q
2.0 (PUQ)=0¢-PUP-Q

3.0(P||@=0¢-P ¢ Q
O

Let R = ¢ Q. Then R is said to be the phase reduction of (). Alternatively, ¢ will
be called a handshake refinement of R. A phase reduction is a homomorphism
on account of 7.10.1 and 7.10.2.

Transition handshake processes P and Q) are equivalent if ¢- P = ¢- (). This
equivalence is actually a congruence, and is the kernel of ¢ (cf. [DP90] page
116).

Let P, @) and R be transition handshake processes. On account of 7.10.3 we
conclude P || R and @ || R are equivalent if P and @ are equivalent. More
generally, the replacement of a transition handshake component by an equivalent
one in a transition handshake circuit results in an equivalent handshake circuit.

Two classes of phase reductions are studied in some detail: 2-phase and 4-
phase reductions. The associated handshake refinements are called 2-phase and
4-phase refinements respectively.

2-phase refinements

The simplest handshake refinement is based on the phase reduction obtained by
ignoring the distinction between up and down transitions.

Handshake refinement 175

The above mixer in particular is considerably more complicated than the MIX
component of Example 4.3. The 2-phase refinements of directed components
such as variables, multiplexers and adders are distinctly more complex than the
above mixer.

The handshake protocol that results from 2-phase refinement is also known as
2-cycle signaling or non-return-to-zero signaling [Sei80]. The good news about
2-phase refinement is that it results in handshake circuits in which components
interact by the minimum number of transitions possible. Consequently, these
circuits are potentially as fast and energy-efficient as possible. The bad news is
that circuits sensitive to voltage transitions tend to be significantly larger than
circuits sensitive to voltage levels [Sei80]. This overhead in circuit size may
reduce the speed and power benefits considerably.

The advantages of 2-phase refinements are likely to dominate in the case of
off-chip communication and, to a lesser extent, for long-distance on-chip com-
munication.

4-phase refinements

4-phase refinements form practical alternatives to 2-phase refinements. The re-
sulting handshake protocols are known as Muller signaling, 4-cycle signaling
or return-to-zero signaling [Sei80]. The essence of 4-phase refinements is that
handshakes are implemented by a signaling sequence of four communications.
A first form is based on complete 4-phase reduction:

Definition 7.14 (complete 4-phase reduction)

Let (A¢,T) be a transition handshake process, and let C = 0A T U1A | (C
consists of the first and fourth phases of a 4-phase handshake). The complete
4-phase reduction of (A4, T'), denoted by ¢ac- (A¢, T'), is defined only for (A, T)
that satisfy

(Vt:teT: suc (t,4T) C iAs UC)

and results in the handshake process
(A{t:t €T A suc- (4,tT) C C: ¢y- ([O)})

0

Complete 4-phase reduction is based on the concealment of symbols in the com-
plement of C, viz. 0A| U 1A7T. The restriction on the domain of ¢4, excludes
transition handshake processes that become quiescent while capable of doing

Handshake refinement 177

obvious disadvantage is the doubling of the number of transitions, with associated
penalties in power consumption and computation time. The latter disadvantage
can be relaxed somewhat by adopting the following alternative 4-phase reduction:

Definition 7.17 (quick 4-phase reduction)

Let (A, T) be a transition handshake process, and let C =0A T U 1A7 (With
this choice, C' consists of the first and second phases of a 4-phase handshake).
The quick 4-phase reduction of (A, T), denoted by ¢aq- (A, T), is defined in
the same way as ¢4, taking the difference in symbol set C' into account.

O

Theorem 7.18

®aq 1s a phase reduction.

O

$aq 1s not a bijection and a associated handshake refinement is therefore not
unique. Quick 4-phase refinements tend to be faster than complete 4-phase refine-
ments, because the environment does not need to participate in the return-to-zero
transitions. The price for this gain in speed is that the circuits tend to be more
complex, because after output transition a; T the component must be receptive
for ap | while possibly engaging in other handshakes.

Mixed forms of complete and quick 4-phase refinements may be considered,
with the objective of taking the best of both worlds: quick 4-phase refinement
when the speed gain is substantial and the overhead in circuit complexity is
acceptable, and complete 4-phase refinement in all other instances. Of course,
such mixed refinments must be based on a proper phase reduction. A useful
transition handshake component to convert a complete 4-phase refinement into a
quick one on a single-port basis is the quick-return linkage .

Example 7.19 (quick-return linkage)

The transition handshake component QRL- (a°, b®) is defined as

#(a 1% 61%);(al®l] 61%)]

O 'In [Udd84] attributed to C.L. Seitz.

Message encoding 179

(= 65536) values. This suggests ample room for improvement over One-Hot
encoding. Our prime interest is in encodings that preserve the delay-insensitive
nature of the communication among handshake components. [Ver88] presents a
definition and an overview of these so-called “delay-insensitive codes”. In this
section we repeat this definition and link it to the most popular delay-insensitive
code: the double-rail code, also known as the dual-rail code.

A code is a pair (I,C), where I is a finite set of indexed wires, and C' is
a set of subsets of I: the code words. The size of I is called the length of the
code, and the size of C is called the code’s size. A One-Hot code of size » has
length n.

The implementation of port (0p, 1p) requires a code for both 0p and 1p. In
most cases, howevér, at least one of these two sets is a singleton (code size = 1),
and a single wire suffices (code length = 1).

A code word is an element of C' and indicates along which wires a transition
will be sent for the transmission of the corresponding message. Not all code
words are suitable for delay-insensitive communication. For instance, the empty
set is useless, because the receiver would not be able to detect its arrival.

Definition 7.20
A code (I,C) is delay insensitive when [Ver88] when
Ve,y:2€CAyeCAxCy:.z=y)

]

That is, when no code word is contained in another code word. This property
allows the receiver to detect the arrival of a message. After a transition has
arrived on each wire of a code word, the receiver can detect that it has received
a complete message.

The concatenation of codes (I,C) and (J, D) with I N J = 0 is the code
(I U J,CD) , where CD is defined by

{z,y:zeCAryeD:zUy}

The concatenation of two delay-insensitive codes is also delay-insensitive.

The well-known Double-Rail code [Sei80] can now be introduced as the
concatenation of n (disjoint) One-Hot codes of length 2. Using 16 wires, a
Double-Rail code of 8 wire pairs encodes 28 (=256) code words, which is a clear
improvement over the 16 code words of the One-Hot code. Arrival detection
of Double-Rail encoded messages is simple, so is the conversion from and to

Handshake components — VLSI circuits 181

0. the handshake protocol chosen,
1. the available VLSI primitives,
2. the degree of delay-insensitivity,

In this section we review decompositions of a few handshake components into
circuits of so-called VLSI operators.

VLSI operators and (isochronic) forks

The behavior of a VLSI operator is defined by the Boolean values of the output
wire(s) in terms of present and past values of the inputs. The behavior of a
monadic (single output) operator is specified by a pair of so-called production
rules [Mar89]

F — 27

G — z|

F and G are Boolean expressions called the guards of the operator. The identifiers
in " and G are the inputs of the operator. z is the output of the operator. z T
and z | are shorthand for z := true and z := false respectively. The production
rule F'— 27T can be read as “when F' holds z becomes true”.

The guards of an operator are required to be mutually exclusive, i.e. =F V
=G must hold at any time. Furthermore, the guards have to be siable, i.e.
once a guard evaluates to true, it has to remain frue until the completion of the
corresponding output transition. Stability of the guards is not a property of the
operator: it must be satisfied by the environment of the operator. The same holds
for the mutual exclusion of the guards of operators for which =F'V =G is not a
tautology.

An input transition denotes the change of an input variable. An input transi-
tion is productive if it causes an output transition, and void otherwise. The time
between a productive input transition and the corresponding output transition may
be arbitrary (i.e. positive and finite).

An operator is called “combinational” if VG is a tautology, and “sequential”
or “state-holding” otherwise.

Some examples of operators are given below. They will return in later ex-
amples.

Handshake components — VLSI circuits 183

vdd

2N

Figure 7.0: A CMOS circuit for a Muller-C element. Wires with the same label
are connected. vdd and vss denote the power and ground rail respectively..

a — yl,27

o = oylzl
z

The comma between the output transitions expresses concurrency: the two events
may occur in either order and no assumption is made about the time duration
between these events. (Simultaneous occurrence of both events cannot be ex-
pressed in the model). In implementation technologies where wire delays may
dominate other delays (such as CMOS) it turns out to be necessary to represent
the outputs of the fork by two distinct variables.

A network of VLSI operators and forks is said to be delay insensitive if
it functions correctly under arbitrary and possibly varying delays in operators
and wires. This rather extreme class of asynchronous circuits has the additional
advantage that it simplifies the layout: delays introduced by wires do not affect
the behavior of the circuit. Unfortunately, the class of (purely) delay-insensitive
circuits constructed from operators and wires only is small and not very interesting
from a practical view point (cf. [BE90] and [Mar90]).

The “weakest possible compromise” [Mar90] with respect to delay insensitiv-
ity seems to be a forking wire with constraints on the arrival times of transitions
at the ends of the fork: the isochronic fork. An isochronic forks is a special case
of the FORK operator. Below we present two types of isochronic forks. An
asymmetric isochronic fork guarantees that one output transition occurs before
the other, as expressed by the semicolon:

Handshake components — VLSI circuits 185

Example 7.22

0. A circuit realization of a connector consists of wires only:
aoJ Ial
bo by
1. A repeater consists of a NOR and an inverter. Output a; is connected to
ground and will not be involved in any transition.

1"

ag

2. A circuit for the sequencer is based on the S-element.

ag ap
by J T—cl

e So

by — ——

3. The PAR component can for instance be realized as:

ag a)
((%

by — Ci

c ¢l

Initialization 187

7.6 Initialization

When a VLSI circuit is connected to a power supply, the circuit generally does
not proceed to an initial state by itself. [f the circuit becomes quiescent after
some time, the resulting state may not even be reachable from an initial state.
Also, the circuit may start oscillating (diverging), even when its specification
does not allow for such oscillations.

So, we have a circuit-initialization problem: how to force a VLSI circuit into
its initial state. This problem is not specific to self-timed or other asynchronous
circuits. In clocked circuits, this problem is solved by the introduction of addi-
tional reset circuitry. This circuitry can be used to force a well-chosen subset
of all wires into their initial states. This strategy is also applicable to the VLSI
circuits studied in this chapter. Nevertheless, we develop a different strategy
that avoids the need for additional circuitry and that builds on the properties of
compiled handshake circuits.

First we take stock of the properties of handshake components and circuits
that will be used:

e The initial state of handshake components is passive: only an input event
can cause a handshake component (and hence a handshake circuit) to leave
the initial state (cf. 3.19).

e Handshake components and handshake circuits have the initial-when-closed
property. Hence, a handshake circuit is in its initial state if and only if all
its ports (both internal and external) are also (cf. 3.19).

e The environment of a handshake circuit has only control over the inputs
of the external ports of that handshake circuit.

It must be stressed that the behavior of the VLSI circuit after power-on
cannot be analyzed within the model for handshake circuits, since all kinds of
interference may occur. Fortunately, we are not interested in this behavior; we
only want a guarantee that the circuit will arrive in an initial state within a finite
and predictable amount of time.

The initialization properties of handshake circuits will be analyzed in terms
of the binary relation ~» between symbol sets.

Definition 7.23 (initializes)

Let B and C be a symbol sets. B ~» C (pronounced as “B initializes C”) is a
binary relation with the following properties:

Initialization 189

Unfortunately, requiring all handshake components to be weakly initializable
(Definition 7.25.0) is not sufficient to make a handshake circuit weakly initializ-
able (Definition 7.25.1). In order to make handshake circuits weakly initializable,
additional provisions are required. We first examine a simple strategy that is ef-
fectively and efficiently applicable to undirected handshake circuits. A more
general, but also more elaborate strategy is sketched next.

A simple initialization strategy

Definition 7.27 (strong initializability)

0. A weakly initializable handshake component P is strongly initializable if
iP°~» 0P°.

1. Accordingly, a weakly initializable handshake circuit H is strongly initial-
izable if its constituent handshake components are and i(e H)® ~» o(e H)*® .

Example 7.28

All circuits of Example 7.22 excepr the transferrer are strongly initializable.

O

The next theorem expresses that strong initializability is preserved under
parallel composition, provided that the associated activity graph is acyclic.

Definition 7.29 (activity graph)

An activity graph is a directed graph. The activity graph associated with a
handshake circuit has one node for each handshake component and one arc for
each channel, directed from the active port to the passive port of that channel.

O

Theorem 7.30 (initialization)

Let H be a handshake circuit whose associated activity graph is acyclic and

Testing 191

Theorem 7.31

Let T be a Tangram program. The activity graph associated C-T is acyclic.

Proof Can be checked easily from the diagrams that depict the compilation
function in Chapter 6.

O

Weak initializability of a handshake circuit is sufficient for practical purposes.
Strong initializability allows the environment to postpone the initialization of the
active input wires until all passive outputs wires have become low. For the set of
undirected handshake components of Example 2.23 four-phase realizations can
be designed that are strongly initializable. The simple strategy is then effective.
The time needed to initialize a handshake circuit is proportional to the length of
the longest directed path in the associated activity graph. In practice this amounts
to less than a micro second for current CMOS realizations.

A more general initialization strategy

For the handshake components needed for the implementation of Tangram strongly
initializable realizations exist (4-phase). However, for a few components weakly
initializable realizations exist, that are significantly cheaper than their strongly
initializable counterparts. These cheap variants often have properties that are use-
ful for more elaborate initialization strategies. For example, for TRF - (a®, 6%, c*)
a very cheap 4-phase realization exists (cf. Example 7.22) that satisfies

ia? ~ 0 A 1b° ~ 0c® A ic® ~ 0a°

This implies that port 6* must be initialized before ¢® can be initialized. Acyclicity
of the associated activity graph of a handshake circuit is then insufficient for
weak initializability. However, depending on the initialization properties of the
components involved, specific classes of weakly initializable handshake circuits
may exist. It can, for instance, be proven that with the above transferrer, compiled
handshake circuits of full Tangram are still weakly initializable.

7.7 Testing

Introduction

Fabrication of ICs introduces defects on the surface of the IC, such as spurious
blobs of metal, impurities in the oxide layers, silicon-crystal defects, and cracks

Testing 193

Both topics are treated informally and rather sketchy. This reflects the imma-
turity of the discipline of asynchronous-circuit testing and the presence of open
problems.

Test traces

Our analysis starts with considering only those wires that connect handshake
components. Assume, without loss of generality, that all these wires are required
to be low at an initial state of the circuit. Let a be such a wire, and let () be
the handshake component for which a is an input wire. Stuck-at faults on wire
a may have quite different effects on the circuit behavior:

0. A stuck-at 0 on a does not interfere with the initialization of the circuit. (It
may even speed up the initialization procedure.) A subsequent up transition
a1, however, will never arrive at (), as if it experiences an infinite delay.
Component @) can therefore not participate in any trace that involves a T.
In most cases (see below) this can eventually be observed externally by
the inhibition of an output transition.

1. A stuck-at 1 on a prevents the correct initialization of () and hence of the
circuit. Unfortunately, this stuck-at may have the same effect on () as a
(premature) up transition on a. In general, not much can be said about the
response of () to such a premature transition. We assume, however, that
@ is not able to participate in a subsequent handshake that involves a |.

In either case, the handshake circuit cannot participate in a trace that contains
both a7 and a|.

An internal test trace is defined as a trace in W- H that causes each channel
wire to make an up and a down transition. An external test trace, or test trace
for short, is a trace t € (eH)¥ that satisfies:

(Vu : (u[eH) =t : u is an internal test trace)

The idea is that the behavior of a handshake circuit cannot display a test trace in
the presence of a stuck-at fault. Given this definition of test trace, three important
questions arise:

0. under which circumstances does a test trace exist?
1. how to compute a test trace?

2. can test traces be executed?

Testing 195

handshakes, so that both wires of each wire pair make both transitions. But how
about the wires internal to the handshake components?

It turns out that the handshake components of Example 4.35 can be realized
such that the internal wires are covered by a test trace that tests the external wires.
This also holds for the handshake components of Example 4.37, except for some
of the binary operators, such as adders. For adders an additional handshake is
necessary to fully cover the testing of the carry chain.

Given the above testability properties of handshake components, it is in many
cases straightforward to compute a test trace from the handshake circuit and even
from the original Tangram program.

Example 7.32
0. Example of a test trace for BUF2(a, ¢) (cf. Figure 1.4):
>°:(a®?0; c®0; a®?1; c*!1)
This trace tests a ripple buffer of arbitrary capacity! The test time can be
reduced by changing the order of ¢*!0 and a*?1 .
1. A test trace of WAG(a, c) (cf. Figure 1.5) is
B> (a®?0; c®0; a®?0; c®10; a®?1; c*'1; a®?1; ')

In order to test the two parallel paths in the handshake circuit, twice as
many communications are required in comparison with the test trace of
BUF;(a, c).

Note that a test trace also detects multiple stuck-at faults on outputs. Masking
of one fault by another fault cannot occur,

Test-trace execution

Can a test trace be executed? That is, is it possible to force a correctly manu-
factured IC to display the behavior specified by the test trace? In a strict sense,
this is seldomly possible, because of reordering of output transitions. If the ques-
tion is interpreted “modulo reordering”, there still is a problem: that of external
nondeterminism.

For instance, the first V outputs of an /V-place shift register (cf. Section 1.3)
are unkown at test time. The resulting nondeterministic behavior is relatively

Testing 197

Variable m records whether B is in test mode . Initially, B is not in test mode.
A handshake through ¢ sets B in test mode, and a second handshake through ¢
resets m. If B is in test mode, communications through ¢® are simply absorbed.
If B is in not in test mode it acts like a connector.

The effect of B halfway in the duplicator chain is dramatic. The front sub-
chain of length N div 2 can be tested in test mode in 2% 91V2) {ime units. The
back subchain of length N — (NN div 2) can be tested in normal mode roughly
in the same amount of time. This results in an overall reduction by a factor of
(N div2)—-1

In general, insertion of mixers and breaks makes it easier to obtain test traces
in a systematic way. As illustrated above, it may also reduce the test time
significantly. ‘

An example of testability enhancement of the second kind, viz. one that
helps to establish the existence of a test trace, is the following. A repeater
can be equipped with a passive port that is used to (re-)set the repeater in test
mode, similar to the break component in the duplicator chain. By modifying the
behavior of the repeater such that in test mode it behaves like a connector, the
wires connected to the passive port of the repeater can conveniently be tested. As
a bonus, most handshake circuits will then in test mode complete the handshake
through port >°.

Chapter 8

In practice

Handshake circuits and the associated compilation method from CSP-based lan-
guages were conceived during 1986 at Philips Research Laboratories. A first
IC (7000 transistors) was designed using experimental tools to manipulate and
analyze handshake circuits (then called “abstract circuits”) and to translate them
into standard-cell netlists. The IC realized a subfunction of a graphics processor
[SvB88] and proved “first-time-right” (September 1987). Extensive measure-
ments hinted at interesting testability and robustness properties of this type of
asynchronous circuits [vBS88].

Encouraged by these early results the emphasis of the research shifted from
the design of the graphics processor to VLSI programming, compilation methods
and tool design. Generalization and systematization of the translation method
resulted in an experimental silicon compiler during spring 1990 [vBKR*91].

A second test chip has been designed and verified during the autumn of 1991.
In addition to some test structures, the IC contains a simple processor, including
a four-place buffer, a 100-counter, an incrementer, an adder, a comparator, and a
multiplier in the Galois Field GF(28). The Tangram program was fully automati-
cally compiled into a circuit consisting of over 14 thousand transistors. Extensive
testing and mearsuring demonstrated functional and structural correctness over a
supply-voltage range from 1.2 Volt to 7.5 Volt.

Current work on the compiler aims at extending its input language Tan-
gram [SvBB*91 KvBB*92] and improving the efficiency of the generated cir-
cuits. Most of the theory reported in this thesis evolved in conjunction with the
work on the method and tools. This final chapter reports some of our practical
experiences with VLSI programming and silicon compilation. It concludes with
an appraisal of asynchronous circuits.

199

VLSI programming and compilation 201

denote commercially available tools. The main Tangram-compilation tools are:
e A: a translator from Tangram to handshake circuits (text format);

e B: an analyzer of handshake circuits that produces statistics at the levels
of handshake circuits, CMOS circuits and layout;

e (: a converter of handshake circuits into VHDL [LSU89] descriptions;

D: a VHDL simulator that produces a trace with detailed timing informa-
tion;

E: a generator that expands the handshake circuit into a netlist of standard
cells;

F: a standard-cell layout package that performs placement of the standard
cells and cell-to-cell routing according to the netlist;

e (: a test trace generator (under development).

The vehicle

The benchmark for this chapter is a simple error decoder with application in
Compact Disc players (cf. Section 0.0). A precise description of this function
can be found in [KvBB*92]. A global description of the error decoder is the
following. The decoder receives code words of 32 symbols (of 8 bit), of which
four are designated as parity symbols. These parity symbols allow for the correc-
tion of two erroneous symbols. The benchmark program can only locate single
errors. For each code word the decoder produces an error status (0, 1 or more
errors) and, in the case of a single error, an error location and an error value.
The actual correction is not performed by the decoder. Code words arrive at a
rate of one per 70 pseconds.

VLSI programming

A Tangram program for the decoder can be found in [KvBB*92]. Schematically
it can be described by

#[x = nput(a); s:=syndrome(x);, e :=search(s); cle]

The incoming code word (through port a) is stored in variable z by function
input. Function syndrome then computes the syndrome of x, which is stored

VLSI programming and compilation 203

Compilation to handshake circuits

The compilation of Tangram programs has been implemented according to an
extension of the method of Chapter 6. The compiler translates directly to com-
plete 4-phase handshake circuits, and many of the optimizations of Section 7.1
and 7.2 are included. The compiler generates a handshake circuit in a simple
textual format.

The compiler uses the handshake components of Examples 2.23 and 4.37.
The extensions of Tangram mentioned above require only a few extra handshake
components.

The compiled decoder consists of 523 handshake components, including 174
connectors. The pipelined version contains 741 handshake components, of which
244 are connectors.

Simulation

Additional confidence in the correctness of a Tangram program can be gained
from simulation of the compiled handshake circuit. We have based our simu-
lation tools on a commercially available VHDL simulator. A simple program
translates the handshake circuit into an equivalent VHDL architecture [LSU89].
Together with a library of VHDL models for the various handshake components
this provides access to simulation tools used in main-stream VLSI design. A
major advantage over a specific handshake-circuit simulator is that the above
setup also allows interfacing to other circuits, including clocked ones, within the
VHDL framework.

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17
input ERRREEGERODECECOEADDROCERARIRARD LLRERRELRLRRIRERRRRRIRIREIRNESE]]
S =.. 1 1
search RN R N NI R R R RN R TR AT
output ' '

Figure 8.1: Timing diagram of the standard error decoder. The time scale is in
microseconds.

Both decoder programs have been simulated with input ports connected to
data files containing several code words. By inspection of the files connected to
the output ports the correct functional behavior was verified. An alternative to

VLSI programming and compilation 205

For critical designs, the timing model may be too conservative. Significant
improvements, however, can only be obtained when the handshake circuit is
“back annotated” with wiring capacitances from the layout (cf. simulation of
power consumption at the end of this section).

VHDL simulation provides detailed feedback, but is too slow for heavy work.
The simulation of large Tangram programs and large input files, as required for
e.g. digital video. signal processing, requires more powerful simulation tools. A
solution may be to compile Tangram code directly to VHDL, or to an ordinary
programming language such as C or Pascal. At the expense of the accuracy of
the timing information, several orders of magnitude may be gained in simulation
speed.

Circuit statistics

Comparison of different VLSI programs and optimization of the chosen program
with regard to layout area requires feedback about circuit and layout costs. Un-
fortunately, the automatic generation of relatively small layouts may take several
hours. Larger layouts may involve interactive floorplanning and optimization,
and their generation may then take a few days or weeks, or even longer.

A quick form of feed back is a table of statistics computed from the handshake
circuit. These statistics include the area covered by standard cells, but ignores the
wiring area, which is sometimes a serious limitation. Excerpts from the statistics
generated for the standard decoder are displayed in Table 8.0.

The first paragraph reports the MOS transistor count and the area occupied
by the standard cells. These quantities are detailed by function, based on the role
of the handshake component in the computation (e.g. sequencer: control, mixer:
communication, binary operator: logic, and variable: memory). These functional
profiles vary considerably from one Tangram program to another.

The second paragraph presents the standard cell counts. It is confined to the
six most frequently used cells, accounting for about two thirds of the transistors
and cell area.

The third paragraph gives an estimation of the area of the standard-cell part
of the layout. Here it is assumed that the routing channels occupy the same area
as the standard cells. For this example this is quite accurate, as we shall see
later.

The pipelined decoder counts 11376 transistors and 989 cells, occupying a
cell area of 1.5 mm?. The estimated core area is 3.0 mm?2, which will turn out
to be rather optimistic.

Appraisal of asynchronous circuits 211

Test-trace generation

A test trace consisting of 3 code words (with 0, 1 and 2 errors) has been verified to
test for all stuck-at faults in both decoders. The trace has been generated by hand®
from the Tangram program text. The transparent compilation rules and some
simple properties of the circuit realizations of the handshake components made
this a feasible task. The fault coverage was checked by switch-level simulation.
It may be interesting to note that a single code word covers already 97 % of the
possible stuck-at faults.

8.1 An appraisal of asynchronous circuits

In Chapter 7 we have seen that handshake circuits are most naturally realized
by asynchronous circuits. However, the overwhelming majority of today’s VLSI
circuits are synchronous. Are there good reasons to educate and train a new gen-
eration of designers in designing asynchronous circuits and VLSI programming?
It is hard to tell. The balance of pros and cons is mixed. This section aims at
reviewing this balance.

Research on asynchronous circuits is booming. With few exceptions, this
research is carried out in academic research institutes. We may expect significant
progress in the understanding of these circuits, and we may hope for further
improvements in their cost and performance. Synchronous-circuit design has a
respectable tradition of several decades, whereas asynchronous circuit design is
making its first steps along the leaming curve. The appraisal below is therefore
only a 1992 snapshot.

A major problem in comparing asynchronous and synchronous circuits is
the large variety in their characteristics and realizations. For both synchronous
and asynchronous circuits there exist different architectures, different (detailed)
timing disciplines and different building blocks. Quantitative comparisons are
therefore hard to make.

The following aspects will be reviewed: ease of design, circuit speed, robust-
ness, testability, circuit size, and energy consumption.

Ease of design

A clock is an artefact. Tt has been introduced to solve timing problems at the
circuit level, viz. the controlled usage of latches and the avoidance of critical

“Marly Roncken’s

Appraisal of asynchronous circuits 213

speed advantage that stems from the extreme form of control distribution. e.g. a
sequencer that activates two transferrers avoids the large timing overheads com-
mon to central controllers.

Although the number of synchronizations is smaller in asynchronous circuits,
their explicit nature has its price. Especially in complete four-phase signaling,
the associated overheads may easily outweigh the above advantages for regular
computations. Quick four-phase refinements and perhaps two-phase refinements
may help here.

Robustness and reliability

Insensitivity to delay seems to relate to insensitivity to variations in IC-processing
parameters and operating conditions. These issues have hardly been researched,
and will only be touched upon by means of a few examples.

A decrease in the width of the polysilicon tracks in a CMOS circuit yields
faster transistors (shorter channels) and slower wires (higher resistance). In syn-
chronous circuits this may result in violations of the set-up and hold times of
the latches. In speed-independent circuits however, variations in the widths of
polysilicon tracks may influence the circuit’s performance, but not its correct
operation.

Measurements of our test silicon [vBS88] showed a high degree of robustness
with respect to variations in power supply voltage. A large self-inductance in
the power-supply wires caused the supply voltage to drop below 0 volt for brief
periods of time, without affecting the functional correctness of the circuit. In
[MBL*89] an asynchronous microprocessor is reported to operate with a supply
voltage in the range of 0.35 to 7 Volt.

On a related note, it has been reported that fundamental reliability problems
that come with the synchronization of independently clocked circuits [Ano73,
CM73] can be avoided in delay-insensitive circuits [Sei80]. The occurrence
of glitches (the occurrence of a metastable state) does not lead to anomalous
behavior, because subsequent computations are simply delayed until metastability
has been resolved.

Testability

There are indications that the testing of asynchronous circuits is feasible. It is
even expected that speed-independent circuits may be simpler to test, because
stuck-at faults can be observed through deadlock [BM91,MH91]. This feature
also highly simplified the generation of tests for our graphics chip [vBS88] and

Appraisal of asynchronous circuits 215

Unfortunately, compromises with regard to delay insensitivity may jeopardize
testability and complicate layout design.

Finally, VLSI programming and automatic silicon compilation allow the de-
signer to construct and compare many alternative solutions for the specification
at hand. By exploring a large portion of the ‘solution space’ he may expect to
find cheaper designs compared with current VLSI-design methods.

Energy consumption

Self-timed circuits consume potentially less energy than clocked circuits'. There
are several reasons for this. Absence of interference (see Section 0.1) and other
transient phenomena such as hazards make each transition productive.

Also, there is no dissipation in clock signals. In high-throughput applications,
such as in video-signal processing, the distribution of a high-frequent clock may
account for well over 20 % of the total power consumption.

Furthermore, control distribution leads to a high degree of locality, thus avoid-
ing the power consumption in central controllers and the long wires from and to
these controllers.

Viewed differently, one may say that a self-timed circuit only consumes
energy where and when needed. The circuit compiled from a Tangram procedure
or function consumes no energy when it is not invoked. The error decoder
of Section 8.0 consumes energy only during the first 12 pseconds of the 70
useconds available. For correct code words the required energy is even only half
that required for incorrect code words.

To what extent these potential advantages can be realized highly depends on
the chosen handshake refinements and data encoding.

As a rule, energy savings increase with a decrease in regularity of the com-
putation. Error decoding, where the work load depends on the correctness of the
code words, is a nice example of an irregular computation. Circuits that stand
by for most of the time, but have to respond to exceptional conditions represent
another example (e.g. a processor triggered by key-board inputs).

This observation concludes both the appraisal of asynchronous circuits and
the last chapter of this monograph.

'Here we assume a circuit technology without static dissipation, such as CMOS.

Appendix A

Delay insensitivity

Introduction

In [Udd84,Udd86,Ebe89,UVE8] the notions delay insensitivity, independent al-
phabet and absence of computation interference have been defined for directed
processes. In this section we investigate to what extent these notions apply to
handshake processes.

Definition A.0 (directed process)

A directed process T is a triple (iT', 07, tT"), in which iT and oT are disjoint sets
of symbols and tT is a non-empty, prefix-closed subset of (iT"U oT)* .

a

A handshake process is not a directed process: the alphabet of a handshake pro-

cess has more structure and the trace set is not prefix closed. However, to every

handshake process P there corresponds a directed process, viz. (iP,0P,tP<) .
All port structures in this appendix have no internal ports.

Composability

Composability of traces captures the notion that symbols communicated between
processes arrive no earlier than they were sent. Consider directed processes P
and @ such that iP = 0@ and oP =iQ. Let s € tP and ¢ € tQ). Composability
restricts the way how the pair (s,t) may evolve from (g,¢). Let a € i@ (and
therefore @ € oP). Then ¢ is composable to a, but the converse is not true,

217

Delay insensitivity 219

Relations r and c¢ are related by:

Property A.3

For s,t € AH we have srat = scatA(#s =#), where #; denotes the bag
of symbols of trace ¢.

O

Another way of relating r and c¢ is suggested by “welcoming the traveling
symbols™:

Property A.4
For port structure A and t,u € A¥ we have:

wet = (3,
(¥ = #eyria \ Furia) A # = #aoa) \ #ufon)
:ouu it
)
Proof We derive:

uct

{ Property A.2.0; definition of ¢ }

{ Property A.2.1; definition of ¢ }
Q' u’ s (e = Hey gy \Hariag) A B = Hejon \ #ufon) s uu’ e tt)
= { Property A.3, using len- uu’ =len-tt' }
3t u: #y = #(ufiA) \#(t[iA)) A(#y = #(t[OA) \#(ufOA)) cuu' T tt')

O

Relations ¢, r and x are related in a remarkable way for prefixed closed handshake
structures, as shown in the next theorem.

Theorem A.5

For handshake structure S, such that (<)- S we have:

- S=@-5 N X)-S

Delay insensitivity 221

Definition A.7 (delay insensitive)

0. A directed process (I,0,T) is delay insensitive if

(Vs, t,a
seT ANteT
(aelANsCyuota=tac HNGeEONsbCrot=sbeT)

)

(Cf. Definition 23 and Lemma 5 in [UV88]; recall the reversal of the
arguments with respect to their definition of C .)

1. A handshake process is delay insensitive if the corresponding directed pro-
cess Is.

Theorem A.8

Handshake processes are delay insensitive.
Proof lLet P be a handshake process and s,t € tP< .

Case a €iP. We derive:

a€iPAsCta

= { Property A2 }
ta e AH

= { tactA(e) PS }
ta € tP=

Case b€ oP. We derive:

acoPAsbC1

= { Property A.2 ; Definition of C }
sbe A nsbet

= { (© P}
sb e tPs

Delay insensitivity 223

Definition A.11 (computation interference)

0. Directed processes P and () are connectable if and only if the sets iP NiQ
and oP N o) are empty.

1. Let H be a finite set of delay-insensitive directed processes, such that ele-
ments of H are pairwise connectable. H is free of computation interference
if [Ebe89] .

(Vt,P,a:te W-HAP € HAa€oP :ta[pP €tP = tac W-H)

2. Handshake circuit H is free of computation interference if the set of cor-
responding directed processes is.

Theorem A.12

Handshake circuits are free of computation interference.

O

A similar result has been suggested in Property 4.10 of [vdS85]. Absence of
computation interference in handshake circuits follows directly from the recep-
tiveness of handshake processes. If output a may occur for some component P
after trace t, trace ta will be in W- H, either because a is external, or because
there is another component that is receptive for a.

Appendix B

Failure semantics

Introduction

In Chapter 5 we have developed a handshake semantics for Tangram. An alterna-
tive semantics for Tangram can be based on failure processes [BHR84]. Failure
processes form the underlying model of CSP [Hoa85], and are the basis for a
well-established theory for CSP, including a powerful calculus [RH88].

The availability of two distinct semantics for the same program notation
suggests several questions, including:

0. Is the handshake-process semantics consistent with the failure semantics?
If so, in what sense?

1. Can VLSI programmers use calculi that are based on failure semantics?

The last question is of obvious practical significance.

This appendix starts with a description of failure processes. By means of
a simple example it is shown that an embedding of failure processes into all-
active handshake processes does not exist. A more subtle approach is chosen to
link handshake semantics and failure semantics are linked, resulting in positive
answers to the above questions.

Failure processes

This subsection describes a process model based on failures. The description
below is rather concise; for a more extensive treatment the reader is referred to
[BHR84], [BR85] and [Hoa85].

An alphabet structure defines an alphabet as a set of communications.

225

Failure processes 227

1. (st, X) e F=(s,0) € F

2. 5, YYEFAXCY = (s, X)eF

3. (s, XVeFANz€aP= (s, XU{z})eF V (sz,0) e F
O

This is essentially the definition of [BHR84], restricted to finite alphabets. A
quote from [Hoa85] explains the idea behind failures (page 129):

“If (s, X) is a failure of [process] P, this means that P can engage in
the sequence of events recorded by s, and then refuse to do anything
more, in spite of the fact that its environment is prepared to engage
in any of the events of X.”

The four conditions have the following implications.

0. A process is a non-empty failure structure; failure (¢, @) represents its initial
state.

1. If trace st can be observed, trace s must be observable as well.
2. If X can be refused then all subsets of X can be refused.

3. After any trace, a particular communication may happen, can be refused,
or both.

[BR85] and [Hoa85] present “an improved failures model for communicating
processes”. The improvement consists of the possibility to distinguish among
various forms of deadlock. The improved model is more powerful and supports
a slightly more elegant algebra. For brevity’s sake, this improvement is not
included in this thesis.

Definition B.3 (maximal failures)

Let F be a failure set. The maximal failures of F, denoted by Max- F, is defined
as
{t,R:{t, Ry ¢ FA-BR : {t, R) e F: RC R'): (t,R)}

O
On account of Definition B.2.2 we may conclude that the failure set of a failure

process is fully characterized by its maximal failures. The set of all failure
processes with alphabet structure A is denoted by []r-A.

Failure processes 229

7. External choice between a; b and b; a. The failures of (a™,67)-[a; b | b; a]
are:

{(e,0), (a,{a}), (b, {b}), (ab, {a, b}), (ba, {a,b})}

The remainder of this section is used to discuss the structure of [[-A. For
more background, appreciation and proofs, the reader is referred to earlier cited
material.

Failure processes with the same alphabet structure can be ordered.

Definition B.5 (refinement order)
Let P and @ be failure processes with alphabet structure A.

0. P refines to @), denoted by P C @, if fP D fQ). Process @ has less failures
than P and is therefore better.

1. Process CHAOS- A is defined as (A, (aA)* x P-(aA)) .

2. An (ascending) chain is an infinite sequence (¢ : 0 < 7 : F;) of processes
such that P, C Py, .

a

Clearly, ([[£-A,C) is a partial order. According to [BR85], ([[#-4,C) is also
a CPO, with CHAOS- A as least element and (L7 : 0 < ¢: P;) as limit of chain
(t:0<2: P).

Example B.6

In the following refinements S C T is a shorthand for 7- S T F-T , where S
and T are Core Tangram programs.

0. (@”,b")-(ab) T (a™,b7)a
L (@,07)(a;bMb;a) T (a™,b7)-(a;b)
2. (a7, 67)(a;bNba) T (a™,07)-(a]|b)

3. (@7, 07)[a;b | bra]l = (a7,07)(al]b)

Failure processes 231

However, in the space of all-passive processes we do have (cf. B.6.2)
a%b°mb%a® T a® || b°
Moreover, as with failure processes we have (cf. B.6.3):
[a®;b° | % a°] = a° || b°

Both examples show that order of passive handshakes is masked by reordering.
Because of this masking effect there is less distinction in the space of all-passive
processes than in the space of all-active processes. This insight will be elaborated
along two different lines that will meet at the end of this appendix:

e handshake expansion: an embedding of failure processes into the set of
all-passive handshake processes, and

e passivation: a transformation of an all-active process into an all-passive
process.
Handshake expansion

Handshake expansion is a mapping from failure structures to handshake struc-
tures. Handshake expansion is also defined for alphabet structures, traces, refusal
sets and failures.

Definition B.9 (handshake expansion)

0. The handshake expansion of alphabet structure A, denoted by £- A is the
port structure defined by

(& A)° {a:a€p?A:a®?rg-alU{a:a€pld:a®lry a}
€A =0

Note that all ports are chosen to be passive.

1. The handshake expansion of trace t with respect to alphabet structure A,
denoted by £- (¢, A), is defined by

£ (g, A) =g

E(a:vt,A) = if aep!lA — ag a:v € (t, A)
0 a€p?4 — ag:v a; € (t,A)
fi

Failure processes 233

1. £ P is a handshake process;
2. £-CHAOS- A=CHAOS-¢- A,
3, £ is continuous;

4. Hence, £- (J]£-A) is a CPO.

The definition of £ ignores the issue of successful termination. Extending £
to such a more comprehensive process model is relatively straightforward. Given
such an extended embedding, equalities such as

E-(P;Q) = &£ PE-Q
E(P|l@Q) = &-PlEQ
E-#[P] = #[&-P)

can easily be verified.

Passivation

Another way to obtain an all-passive process is to connect passivators to the
active ports of a handshake process. The following definition is restricted to
all-active processes with undirected ports only. Extension to general handshake
processes is straightforward.

Definition B.12 (passivation)

The passivation of an all-active handshake process P, denoted by 7 P, is defined
as

P || (J|]a:a€p®P:PAS- (la° a®)
where [- P denotes the [-renaming of P defined in Definition 6.0.

O
The effect of passivation is illustrated by the following example.
Example B.13

(la®; 1b* 1 1b%;1a®) || #la® : a®] || #[16° : B°1 = (a®;b° N b°;a°)
O

Bibliography

[Ano73]

[BESO]

[BHR84]

[BM&8]

[BM91]

[BR85]

[Bro89]

Anonymous. Science and the citizen. Scientific American,
228:43-44, 1973.

J.A. Brzozowski and J.C. Ebergen. On the Delay-sensitivity of
Gate Networks. Technical Report 90/5, Eindhoven University of
Technology, 1990.

S.D. Brookes, C.A.R. Hoare, and A.W Roscoe. A Theory
of Communicating Sequential Processes. Journal of the ACM,
31(3):560-599, 1984.

Steven M. Burns and Alain J. Martin. Synthesis of Self-Timed
Circuits by Program Transformation. In G.J. Milne, editor, The
Fusion of Hardware Design and Verification, pages 99-116. El-
sevier Science Publishers B.V., 1988.

Peter Beerel and Teresa Meng. Semi-Modularity and Self-
Diagnostic Asynchronous Control Circuits. In Carlo H. Sequin,
editor, Proceedings of the 1991 University of CalifornialSanta
Cruz Conference, pages 103-117. The MIT Press, 1991,

S.D. Brookes and A.W. Roscoe. An Improved Failures Model
for Communicating Sequential Processes. In Proceedings NSF-
SERC Seminar of Concurrency, pages 281-305. Springer-Verlag,
1985.

R.W. Brockett. Smooth Dynamical Systems which Realize
Arithmetical and Logical Operations. In Hendrik Nijmeijer and
Johannes M. Schumacher, editors, Three Decades of Mathemat-
ical Systems Theory: A Collection of Surveys at the Occasion of
the 50th Birthday of J.C. Willems, pages 19-30. Springer-Verlag,
1989.

235

Bibliography

[Fuj8s]

[Hoa78]

[Hoa85]

[INME&9]

[JHJI89]

[Jon&5]

[Jos90]

[JU91]

[Kal86]

[Kes91a]

[Kes91b]

[KR89]

237

Hideo Fujiwara. Logic Testing and Design for Testability. The
MIT Press, 1985.

C.A.R. Hoare. Communicating Sequential Processes. Communi-
cations of the ACM, 21(8):666-677, 1978.

C.A.R. Hoare. Communicating Sequential Processes. Series in
Computer Science, Prentice-Hall International, 1985.

INMOS Limited, editor. Occam 2 Programming Manual. Series
in Computer Science, Prentice-Hall International, 1989.

Mark B. Josephs, C.A.R. Hoare, and He Jifeng. A Theory of
Asynchronous Processes. manuscript, 1989.

B. Jonsson. A model and proof system for asynchronous net-
works. In Proc. 4th ACM Symposium on Principles of Distributed
Computing, pages 49-58. ACM, 1985.

M.B. Josephs. Receptive Process Theory. Computing Science
Note 90/8, Eindhoven University of Technology, 1990.

Mark B. Josephs and Jan Tijmen Udding. An Algebra for Delay-
Insensitive Circuits. In DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 147-175. Volume 3.
AMS-ACM, 1991.

Anne Kaldewaij. A Formalism for Concurrent Processes. PhD
thesis, Eindhoven University of Technology, 1986.

JIL.W. Kessels. Designing Counters with Bounded Response
Time. In W.H.J. Feijen and A.J.M van Gasteren, editors, C.S.
Scholten dedicata: van oude machines en nieuwe rekenwijzen,
pages 127-140. Academic Service, Schoonhoven The Nether-
lands, 1991.

J.L.W. Kessels. The Systematic Design of a Systolic RSA Con-
verter. In Proc. Workshop on Correct Hardware Design Method-
ologies, pages 243-260. 1991.

Anne Kaldewaij and Martin Rem. A derivation of a sys-
tolic rank order filter with constant response time. In JL.A.

Bibliography

[Mar85a]

[Mar85b]

[Mar89]

[Mar90]

[MBL*89]

[MBMS0]

[McK65]

[MH91]

[Mil65]

[Misg4]

239

Alain J. Martin. Compiling Communicating Processes into
Delay-Insensitive VLSI Circuits. Technical Report, Califor-
nia Institute of Technology, Department of Computer Science,
Pasadena CA 91125, USA, 1985.

Alain J. Martin. The Design of a Self-Timed Circuit for Dis-
tributed Mutual Exclusion. In Henry Fuchs, editor, Chapel Hill
Conference on VLSI, pages 245-260. 1985.

Alain J. Martin. Programming in VLSI: From Communicating
Processes to Delay-Insensitive Circuits. In C.A.R. Hoare, editor,
UT Year of Programming, Institute on Concurrent Programming.
Addison-Wesley, 1989,

Alain J. Martin. The Limitations to Delay-Insensitivity in Asyn-
chronous Circuits. In William J. Dally, editor, Sixth MIT Confer-
ence on Advanced Research in VLSI, pages 263-278. MIT Press,
1990.

Alain J. Martin, Steven M. Burns, T.K. Lee, Drazen Borkovic,
and Pieter J. Hazewindus. The First Asynchronous Micropro-
cessor: The Test Results. In Computer Architecture News,
pages 95-110. Volume 17. MIT Press, 1989.

Teresa H.-Y. Meng, Robert W. Broderson, and David G. Messer-
schmitt. A Clock-Free Chip Set for High-Sampling Rate Adap-
tive Filters. Journal of VLSI Signal Processing, 1(4):345-365,
1990.

W.M. McKeeman. Peephole Optimization. Communications of
the ACM, 8:443—444, 1965.

Alain J. Martin and Pieter J. Hazewindus. Testing Delay-
Insensitive Circuits. In Carlo H. Sequin, editor, Proceedings
of the 1991 University of CalifornialSanta Cruz Conference,
pages 118-132. The MIT Press, 1991.

Raymond E. Miller. Switching Theory Volume I1: Sequential Cir-
cuits and Machines. John Wiley & Sons Inc., 1965.

J. Misra. Reasoning about networks of communicating processes.
1984. Presented at INRIA Advanced Nato Study Institute on

Bibliography

[SM77]

[Sut89]

[SvB88]

[SVBB*91]

[Uddg4]

[Udd86]

[UV88]

[vBI1]

[vB92]

[VBKR*91]

[VBRS88]

241

Ivan. E. Sutherland and Carver A. Mead. Microelectronics and
Computer Science. Scientific American, 237(9):210-228, 1977.

Ivan Sutherland. Micropipelines. Communications of the ACM,
32(6):720-738, 1989.

Ronald W.J.J. Saeijs and C.H. (Kees) van Berkel. The Design
of the VLSI Image-Generator ZaP. In Proceedings of the 1988
IEEE Int. Conf. on Computer Design: VLSI in Computers & Pro-
cessors, pages 163-166. 1988.

Frits Schalij, Kees van Berkel, Ronan Burgess, Joep Kessels,
Marly Roncken, and Ronald Saeijs. What makes Tangram
a general-purpose VLSI-programming language? - manuscript,
1991.

Jan Tijmen Udding. Classification and Composition of Delay-
Insensitive Circuits. PhD thesis, Eindhoven University of Tech-
nology, 1984.

Jan Tijmen Udding. A formal model for defining and classifying
delay-insensitive circuits and systems. Distributed Computing,
1(4):197-204, 1986.

Jan Tijmen Udding and Tom Verhoeff. The Mathematics of Di-
rected Specifications. Technical Report WUCS-88-20, Dept. of
C.S., Washington Univ., St. Louis, MO, 1988.

C.H. van Berkel. Beware the isochronic fork. Technical Re-
port UR 003/91, Philips Research, 1991.

Kees van Berkel. Beware the isochronic fork. Integration, the
VLSI journal, 13(2):, 1992.

Kees van Berkel, Joep Kessels, Marly Roncken, Ronald W.J.J.
Saeijs, and Frits Schalij. The VLSI-programming language Tan-
gram and its translation into handshake circuits. In Proceedings
of the European Design Automation Conference, pages 384-389.
1991.

C.H. (Kees) van Berkel, Martin Rem, and Ronald W.J.J. Saejjs.
VLSI Programming. In Proceedings of the 1988 IEEE Int.

Glossary of Symbols

Sets

Notation
B<
(£)-B
B~ C

Traces

Notation
€

len-t

s <t

st

B*

t[B

#e

Meaning
<-closure of set B
B is <-closed

B initializes set C

Meaning

empty trace

length of trace ¢

5 1is a prefix of ¢

concatenation of traces s and ¢
set of all traces over alphabet B
projection of ¢ on B

bag of symbols in ¢

Ports, port structures and port definitions

Notation
ap
Op
1p
AO
A.
iad
0A

Meaning

symbol set of port p

0 symbols of p

1 symbols of p

passive ports of port structure A
active ports of A

input symbols of A

output symbols of A

243

Definition
2.0

2.0

7.23

Definition
2.7
2.7
2.7
2.7
2.7
2.7
A3

Definition
2.3
2.3
2.3
2.3
2.3
2.4
24

Glossary of symbols

suc- (t,S)
pas-(t,S)
Pas- S
after- (t, S)
div- S
SCT
snT
SuT

successor set of trace ¢ in S
t is passive in S

passive restriction of S
handshake structure after t
divergences of S

S refines to T

union of S and T
intersection of S and T

U3:0<i:8) limitof chain (z:0<¢:5)

SwT
SbT
ST

weave of S and T
blend of S and T
parallel composition of S and T

Handshake processes

Notation
PCRrQ
PLRQ
¢ P
¢ P
(/545' P
d)4q' P
7 P

Meaning

P refines to @ in the context of R

P strongly refines to () in the context of R
phase reduction of P

2-phase reduction of P

complete 4-phase reduction of P

quick 4-phase reduction of P

passivation of P

Handshake circuits

Notation
XH

eH
W-H
B-H
I|-H

Meaning

handshake circuit H is connectable

external port structure of H

weave of H

blend of H

parallel composition of the components of H

245

2.11
2.11
2.11
2.25
3.10
2.29
2.34
2.36
2.37
3.3

3.8

3.14

Definition
7.1

7.5

7.10

7.11

7.14

7.17
B.12

Definition
3.20
3.21
3.21
3.2]
3.21

246 Glossary of Symbols

Sequential handshake processes

Notation Meaning Definition
skip, stop 4.9

a® passive handshake through port a 4.9

a® active handshake through a 4.9
P_Q sequential handshake process P refines to () 4.4
PUQ intersection of P and @ 4.6

Pl Q P 1n parallel with connectable () 4.10
Pl Q@ all-active P in parallel with all-active) 5.5
(A)-P P extended with port structure A 4.15

[[A " PJ P with A concealed 4.18
Piiq nondeterministic choice between P and () 4.5, 421
P.Q P followed by @ 4.23
#N[P] N-fold repetition of P 4.26

#[P) infinite repetition of P 4.28
a®: P P enclosed by a° 4.30

[P | Q] choice between guarded processes P and () 4.33

> - P repeatable go of P 5.7

o o function 6.22

Alphabet structures

Notation Meaning Definition
pA ports of alphabet structure A 5.0
p?A input ports of A 5.0
plA output ports of A 5.0
vA variables of A 5.0
v7A read ports of A 5.0
viA write ports of A 5.0
TA type function of A 5.0
Aon B A and B are conformant 5.2
AU B conformant union of A and B 5.2
A\mn B conformant difference of A and B3 5.2
ANXB A and B are connectable 5.2
AUy B connectable union of 4 and B 5.2
H-A port structure of A 5.3

[A [-renaming of A 6.0

Glossary of symbols

A
'14

o I

r-renaming of A
handshake expansion of 4

Core Tangram

Notation
o

skip
stop

a

(A)-S
snT
ST
#N[5]
#[5]
ST
(A] S)
LS
r-S
c-S
F-S

Meaning
synchronization port

synchronization on a

S extended with alphabet structure A
nondeterministic choice between S and T'
S followed by T

N-fold repetition of S

infinite repetition of S

S in parallel with T

S with A concealed

{-renaming of S

r-renaming of S

handshake circuit of S

failure process of S

Failure structures

Notation
AS

fS
SCT

£ S

Meaning

alphabet structure of failure structure S
failure set of .S

S refines to T’

handshake expansion of S

247

6.0
B.9

Definition
5.1
5.4
5.4
5.4
54
5.4
5.4
5.4
5.4
5.4
5.4
6.0
6.0
6.20
in B

Definition
B.l
B.1
B.5
B9

Index

active port 47

activity graph 189

adder 32

after 66

alphabet 47

alphabet structure 124
conformant 125
connectable 125
type compatible 125

architecture 12

asymmetric fork 183

asynchronous circuits 10

biput port 48
blend b 83
broadcast 20, 33, 40
buffer
I-place 18
2-place 19
handshake circuit 20, 22, 25
wagging 20

chain 70, 229
choice | 113
circuit area 11, 214
circuit speed 11, 212
closed trace 66
code 179
delay insensitive 179
Double-Rail 179
code concatenation 179

248

combinational operator 181
compatible 47
complete 4-phase reduction 175
complete partial order 72
composability C ¢ 218
composability closed 218
composability closure 218
computation interference 223
concealment 107
connectable 78
connectable X 92
connection diagram §9
continuous 70
Core Tangram

command 133

program 135
CPO 72
CSP 16

delay insensitive 10, 183, 221
directed process 217
distributivity 75

divergences div 84

dynamic nondeterminism 74

enclosure 112

energy consumption |1, 209, 215
extension 106

external port 47

external port structure 83

failure process 226

Index 249

failure structure 226 mutual exclusion of guards 181

FIR filter 33
N-fold repetition 111

go 135 nondeterministic composition 1 101,
greatest common divisor 36 108

guarded selections 43 nonput port 48

handshake circuit 17, 92 OCCAM 16 _

handshake components 92 order preserving 68

handshake expansion 231, 232 output 48
handshake expansion H 133 output port 48
handshake process 57

parallel composition || 86, 104
handshake refinement 174

passivation 233

¢ 173 passivator 64
handshake structure 50 ive 52

fter 66 passive

_a . 0 passive in (pas) 52

1nt§rsectlon 17 passive port 47

union M 69

passive restriction Pas 52
peephole optimizations 169
permanent sequential process 99
phase diagram 8

phase reduction 173

handshake trace 50

independent alphabet 222
infinite repetition 111
initial-when-closed 69

initialization 187 ¢ 174
initializes ~» 187 Pac 175
input 47 aq 177
input extension 56 port 46_
input port 48 active 47
interference 7 biput 48
internal port 47 definition 124
intersection L 101 input 48
isochronic fork 9, 183 nonput 43
output 48
layout 206 passive 47
limit 70 port definition 48
port name 48
maximal failures 227 port set 46
median filter 34 port structure 47
modulo-N counter 37 compatible 47

Muller-C element 182 conformance 2 105

Samenvatting

Het proefschrift handelt over het ontwerpen van digitale VLSI schakelingen. De
volgende ontwerpaanpak wordt hierbij verondersteld:

e cen ontwerper beschrijft zijn systeem in een geschikte programmeertaal;

e een zogenaamde siliciumcompiler vertaalt dit programma in een VLSI
schakeling.

De keuze van de programmeertaal is bepalend voor het toepassingsgebied, het
gemak van ontwerpen en de efficiéntie van het resultaat. In het proefschrift wordt
de taal Tangram geintroduceerd als een algemeen toepasbare VLSI-programmeer-
taal. Tangram is gebaseerd op Communicating Sequential Processes (CSP). De
geschiktheid van de taal wordt beargumenteerd en gefillustreerd aan de hand
van een aantal voorbeelden in Hoofdstuk 1. Hoofdstuk 5 beschrijft een preciese
definitie van Tangram.

Bij het vertalen van Tangram programma’s naar VLSI circuits spelen zoge-
naamde handshake circuits een centrale rol. Een handshake circuit is een netwerk
van elementaire asynchrone bouwstenen die onderling communiceren volgens een
handshake protocol. Een theorie over handshake circuits vormt het hart van het
proefschrift. Deze theorie omvat:

¢ cen procesmodel (“handshake-processen™) waarin de gedragingen van hand-
shake circuits, de bijbehorende bouwstenen, en Tangram programma’s kun-
nen worden vastgelegd (Hoofdstuk 2),

e een bijbehorende algebra (Hoofdstuk 4),

e een analyse van eigenschappen van handshake circuits, zoals vertragings-
ongevoeligheid (Hoofdstuk 3 en Appendix A), en

e cen inbedding van CSP-processen gebaseerd op een zogenaamde failure-
semantiek in handshake-processen (Appendix B).

251

Stellingen
behorende bij het proefschrift

Handshake circuits:

an intermediary between

communicating processes and VLSI

van

Kees van Berkel

Eindhoven
6 mei 1992

10.

en een isochrone vork met ingang 2z’ en uitgangen z en z”.

[Lit.] C.H. van Berkel. Beware the isochronic fork. Technical Re-
port UR 003/91, Philips Research, 1991.

. Het gebruik van dynamische circuits bij de realisatie van vertragingsonge-

voelige schakelingen leidt tot een interessante reductie in circuitafmetingen.

Het terugmeldcircuit van de schrijfpoort van een 1-bit VAR component kan
met slechts 2 NMOS transistoren worden gerealiseerd.

[Lit.] C.H. van Berkel and R.W.J.J. Saeijs Latch with write acknowl-
edge. NL. Patent Application 9000544, 1990.

Het toepassen van inverse logica (false correspondeert met de voedings-
spanning en true met 0 Volt) bij de CMOS realisatie van 4-fase handshake
componenten levert een aantrekkelijk voordeel op in schakelsnelheid.

. Voor een gegeven schermgrootte kan het rasteren van orthogonale rechthoe-

ken in “constante tijd” worden uitgevoerd. Met hedendaagse CMOS tech-
nologie kan dit bovendien ruim binnen 1 u seconde.

[Lit.] C.H. van Berkel and R.H.W. Salters. Box addressable memory
with decision tree. US. Patent 4845678.

. Door de afwezigheid van globale synchronisatic en door de vergaande

mogelijkheden voor gedistribueerde besturing leent CSP zich bij uitstek
voor het beschrijven van flexibele productiesystemen zoals kanban.

[Lit.] Ronald W.J.J. Saeijs and C.H. (Kees) van Berkel. The Design
of the VLSI Image-Generator ZaP. In Proceedings of the 1988
IEEE Int. Conf. on Computer Design: VLSI in Computers &
Processors, pages 163—166, 1988.

[Lit.] R.J. Schonberger, Japanese Manufacturing Techniques, Nine
Hidden Lessons in Simplicity, The Free Press, New York, 1982,

De mogelijke rol van de wiskunde in VLSI ontwerp, ontwerpmethoden en
ontwerpgereedschappen wordt overschat door wiskundigen en informatici
en onderschat door electrotechnici en VLSI ontwerpers.

Het is kenmerkend voor de eenvoud van het Nederlandse belastingstelsel
dat het aangiftebiljet A de laatste 10 jaar 10 keer is gewijzigd.

