205,509 research outputs found

    Periodic Time-Domain Nonlocal Nonreflecting Boundary Conditions for Duct Acoustics

    Get PDF
    Periodic time-domain boundary conditions are formulated for direct numerical simulation of acoustic waves in ducts without flow. Well-developed frequency-domain boundary conditions are transformed into the time domain. The formulation is presented here in one space dimension and time; however, this formulation has an advantage in that its extension to variable-area, higher dimensional, and acoustically treated ducts is rigorous and straightforward. The boundary condition simulates a nonreflecting wave field in an infinite uniform duct and is implemented by impulse-response operators that are applied at the boundary of the computational domain. These operators are generated by convolution integrals of the corresponding frequency-domain operators. The acoustic solution is obtained by advancing the Euler equations to a periodic state with the MacCormack scheme. The MacCormack scheme utilizes the boundary condition to limit the computational space and preserve the radiation boundary condition. The success of the boundary condition is attributed to the fact that it is nonreflecting to periodic acoustic waves. In addition, transient waves can pass rapidly out of the solution domain. The boundary condition is tested for a pure tone and a multitone source in a linear setting. The effects of various initial conditions are assessed. Computational solutions with the boundary condition are consistent with the known solutions for nonreflecting wave fields in an infinite uniform duct

    Non-linear vortex dynamics and transient effects in ferromagnetic disks

    Get PDF
    We report a time resolved imaging and micromagnetic simulation study of the relaxation dynamics of a magnetic vortex in the non-linear regime. We use time-resolved photoemission electron microscopy and micromagnetic calculations to examine the emergence of non-linear vortex dynamics in patterned Ni80Fe20 disks in the limit of long field pulses. We show for core shifts beyond ~20-25% of the disk radius, the initial motion is characterized by distortions of the vortex, a transient cross-tie wall state, and instabilities in the core polarization that influence the core trajectories.Comment: 11 pages, 3 figures, submitted to Phys. Rev. Let

    Optimal transient growth in thin-interface internal solitary waves

    Get PDF
    The dynamics of perturbations to large-amplitude Internal Solitary Waves (ISW) in two-layered flows with thin interfaces is analyzed by means of linear optimal transient growth methods. Optimal perturbations are computed through direct-adjoint iterations of the Navier-Stokes equations linearized around inviscid, steady ISWs obtained from the Dubreil-Jacotin-Long (DJL) equation. Optimal perturbations are found as a function of the ISW phase velocity cc (alternatively amplitude) for one representative stratification. These disturbances are found to be localized wave-like packets that originate just upstream of the ISW self-induced zone (for large enough cc) of potentially unstable Richardson number, Ri<0.25Ri < 0.25. They propagate through the base wave as coherent packets whose total energy gain increases rapidly with cc. The optimal disturbances are also shown to be relevant to DJL solitary waves that have been modified by viscosity representative of laboratory experiments. The optimal disturbances are compared to the local WKB approximation for spatially growing Kelvin-Helmholtz (K-H) waves through the Ri<0.25Ri < 0.25 zone. The WKB approach is able to capture properties (e.g., carrier frequency, wavenumber and energy gain) of the optimal disturbances except for an initial phase of non-normal growth due to the Orr mechanism. The non-normal growth can be a substantial portion of the total gain, especially for ISWs that are weakly unstable to K-H waves. The linear evolution of Gaussian packets of linear free waves with the same carrier frequency as the optimal disturbances is shown to result in less energy gain than found for either the optimal perturbations or the WKB approximation due to non-normal effects that cause absorption of disturbance energy into the leading face of the wave.Comment: 33 pages, 22 figure

    Efficiency improvement of the frequency-domain BEM for rapid transient elastodynamic analysis

    Full text link
    The frequency-domain fast boundary element method (BEM) combined with the exponential window technique leads to an efficient yet simple method for elastodynamic analysis. In this paper, the efficiency of this method is further enhanced by three strategies. Firstly, we propose to use exponential window with large damping parameter to improve the conditioning of the BEM matrices. Secondly, the frequency domain windowing technique is introduced to alleviate the severe Gibbs oscillations in time-domain responses caused by large damping parameters. Thirdly, a solution extrapolation scheme is applied to obtain better initial guesses for solving the sequential linear systems in the frequency domain. Numerical results of three typical examples with the problem size up to 0.7 million unknowns clearly show that the first and third strategies can significantly reduce the computational time. The second strategy can effectively eliminate the Gibbs oscillations and result in accurate time-domain responses

    Analysis of crosstalk and field coupling to lossy MTL's in a SPICE environment

    Get PDF
    This paper proposes a circuit model for lossy multiconductor transmission lines (MTLs) suitable for implementation in modern SPICE simulators, as well as in any simulator supporting differential operators. The model includes the effects of a uniform or nonuniform disturbing field illuminating the line and is especially devised for the transient simulation of electrically long wideband interconnects with frequency dependent per-unit-length parameters. The MTL is characterized by its transient matched scattering responses, which are computed including both dc and skin losses by means of a specific algorithm for the inversion of the Laplace transform. The line characteristics are then represented in terms of differential operators and ideal delays to improve the numerical efficiency and to simplify the coding of the model in existing simulators. The model can be successfully applied to many kinds of interconnects ranging from micrometric high-resistivity metallizations to low-loss PCBs and cables, and can be considered a practical extension of the widely appreciated lossless MTL SPICE model, which maintains the simplicity and efficienc

    A boundary integral equation method in the frequency domain for cracks under transient loading

    Get PDF
    Acknowledgments The financial support of the German Academic Exchange Service (DAAD), Engineering and Physical Sciences Research Council (EPSRC) and Advanced Research Collaboration (ARC) Programme (funded by the British Council and DAAD) is gratefully acknowledged.Peer reviewedPublisher PD
    corecore