2 research outputs found

    Towards goal-based autonomic networking

    Get PDF
    The ability to quickly deploy and efficiently manage services is critical to the telecommunications industry. Currently, services are designed and managed by different teams with expertise over a wide range of concerns, from high-level business to low level network aspects. Not only is this approach expensive in terms of time and resources, but it also has problems to scale up to new outsourcing and/or multi-vendor models, where subsystems and teams belong to different organizations. We endorse the idea, upheld among others in the autonomic computing community, that the network and system components involved in the provision of a service must be crafted to facilitate their management. Furthermore, they should help bridge the gap between network and business concerns. In this paper, we sketch an approach based on early work on the hierarchical organization of autonomic entities that possibly belong to different organizations. An autonomic entity governs over other autonomic entities by defining their goals. Thus, it is up to each autonomic entity to decide its line of actions in order to fulfill its goals, and the governing entity needs not know about the internals of its subordinates. We illustrate the approach with a simple but still rich example of a telecom service

    Initial Approach Toward Self-configuration and Self-optimization in IP Networks

    No full text
    The growing heterogeneity and scalability of Internet services has complicated, beyond human capabilities, the management of network devices. Therefore, a new paradigm called autonomic networking is being introduced to control, in an efficient and automatic manner, this complex environment. This approach aims to enhance network elements with capabilities that allow them to choose their own behavior for achieving high-level directives. This so called autonomic network element should be able to optimize its configuration, ensure its protection, detect/repair unpredicted conflicts between services requirements and coordinate its behavior with other network elements. In this paper, we present a research activity that investigates this new concept, and applies it to facilitate the configuration and the optimization of a multi-services IP network. This approach is a first step toward building a self-configured and self-optimized IP network that automatically supports the QoS requirements of heterogeneous applications without any external intervention. Different paradigms have been explored in order to model this behavior and to render network equipment autonomic. A laboratory prototype has been developed to highlight the autonomic behavior of the network to achieve heterogeneous QoS requirements of multimedia and data applications
    corecore