19 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 125

    Get PDF
    This special bibliography lists 323 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1974

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 218, April 1981

    Get PDF
    This bibliography lists 161 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1981

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 152, March 1976

    Get PDF
    This bibliography lists 252 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1976

    Developing a new generation of neuro-prosthetic interfaces: structure-function correlates of viable retina-CNT biohybrids

    Get PDF
    PhD ThesisOne of the many challenges in the development of neural prosthetic devices is the choice of electrode material. Electrodes must be biocompatible, and at the same time, they must be able to sustain repetitive current injections in a highly corrosive physiological environment. We investigated the suitability of carbon nanotube (CNT) electrodes for retinal prosthetics by studying prolonged exposure to retinal tissue and repetitive electrical stimulation of retinal ganglion cells (RGCs). Experiments were performed on retinal wholemounts isolated from the Cone rod homeobox (CRX) knockout mouse, a model of Leber congenital amaurosis. Retinas were interfaced at the vitreo-retinal juncture with CNT assemblies and maintained in physiological conditions for up to three days to investigate any anatomical (immunohistochemistry and electron microscopy) and electrophysiological changes (multielectrode array stimulation and recordings; electrodes were made of CNTs or commercial titanium nitride). Anatomical characterisation of the inner retina, including RGCs, astrocytes and Müller cells as well as cellular matrix and inner retinal vasculature, provide strong evidence of a gradual remodelling of the retina to incorporate CNT assemblies, with very little indication of an immune response. Prolonged electrophysiological recordings, performed over the course of three days, demonstrate a gradual increase in signal amplitudes, lowering of stimulation thresholds and an increase in cellular recruitment for RGCs interfaced with CNT electrodes, but not with titanium nitride electrodes. These results provide for the first time electrophysiological, ultrastructural and cellular evidence of the time-dependent formation of strong and viable bio-hybrids between the RGC layer and CNT arrays in intact retinas. We conclude that CNTs are a promising material for inclusion in retinal prosthetic devices

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 178

    Get PDF
    This bibliography lists 230 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1978

    Aerospace Medicine and Biology - A continuing bibliography with indexes

    Get PDF
    Annotated bibliography and indexes on Aerospace Medicine and Biology - Dec. 196

    Electrophysiological investigation of age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) affects 12.7 million people in Europe and North America (Klein et al., 1995 Klein et al. 1999). As a combination of decreasing birth rate and increasing longevity alter the demographic of the population, the impact of this disease can only increase. This places an immense burden, not only on the individuals afflicted by the condition, but on the financial resources of society as a whole. Unfortunately, treatment for AMD is still very restricted, and even our understanding of the pathogenesis of the disease is far from complete One concern in tackling the growing problem of AMD is that methods used in the assessment of the condition are limited, usually based on fundus appearance and visual acuity. The aim of this study was to develop a battery of electrophysiological tests which would be sensitive to the most subtle changes in retinal function in AMD. Such tests may aid diagnosis, provide a more sensitive measure of disease progression, and allow an early identification of phenotypic subtypes. Protocols were included for the recording of the focal rod ERG, the focal cone ERG, the S-cone ERG and the dynamic focal cone ERG, along with psychophysical tests of colour vision and dark adaptation. These tests were then applied to 31 subjects with ARM (12 with bilateral ARM, 11 with unilateral wet AMD and 8 with unilateral dry AMD), and 28 controls. In the analysis of ERG amplitudes a ratio of focal to full-field amplitude was introduced as a novel means of reducing intersubject variability in response. This was found to increase the accuracy of all tests in distinguishing between subject groups. The greatest separation between ARM and control groups was provided by the dynamic tests of visual function i.e. rod-cone break time of the dark adaptation function, and time constant of recovery of the dynamic focal cone ERG. The time to rod-cone break also showed potential in identifying subjects at increased risk of exudative retinal changes. Subjects were assigned to groups in this study on the basis of fundus appearance. However, individuals within each subject group showed a range of retinal function which belied the homogeneity of retinal signs. This raises the question of whether 'form' or 'function' should form the basis of classification and assessment of individuals with ARM and AMD.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Electrophysiological investigation of age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) affects 12.7 million people in Europe and North America (Klein et al., 1995 Klein et al. 1999). As a combination of decreasing birth rate and increasing longevity alter the demographic of the population, the impact of this disease can only increase. This places an immense burden, not only on the individuals afflicted by the condition, but on the financial resources of society as a whole. Unfortunately, treatment for AMD is still very restricted, and even our understanding of the pathogenesis of the disease is far from complete One concern in tackling the growing problem of AMD is that methods used in the assessment of the condition are limited, usually based on fundus appearance and visual acuity. The aim of this study was to develop a battery of electrophysiological tests which would be sensitive to the most subtle changes in retinal function in AMD. Such tests may aid diagnosis, provide a more sensitive measure of disease progression, and allow an early identification of phenotypic subtypes. Protocols were included for the recording of the focal rod ERG, the focal cone ERG, the S-cone ERG and the dynamic focal cone ERG, along with psychophysical tests of colour vision and dark adaptation. These tests were then applied to 31 subjects with ARM (12 with bilateral ARM, 11 with unilateral wet AMD and 8 with unilateral dry AMD), and 28 controls. In the analysis of ERG amplitudes a ratio of focal to full-field amplitude was introduced as a novel means of reducing intersubject variability in response. This was found to increase the accuracy of all tests in distinguishing between subject groups. The greatest separation between ARM and control groups was provided by the dynamic tests of visual function i.e. rod-cone break time of the dark adaptation function, and time constant of recovery of the dynamic focal cone ERG. The time to rod-cone break also showed potential in identifying subjects at increased risk of exudative retinal changes. Subjects were assigned to groups in this study on the basis of fundus appearance. However, individuals within each subject group showed a range of retinal function which belied the homogeneity of retinal signs. This raises the question of whether 'form' or 'function' should form the basis of classification and assessment of individuals with ARM and AMD
    corecore