11 research outputs found

    Inhibition-augmented trainable COSFIRE filters for keypoint detection and object recognition

    Get PDF
    The shape and meaning of an object can radically change with the addition of one or more contour parts. For instance, a T-junction can become a crossover. We extend the COSFIRE trainable filter approach which uses a positive prototype pattern for configuration by adding a set of negative prototype patterns. The configured filter responds to patterns that are similar to the positive prototype but not to any of the negative prototypes. The configuration of such a filter comprises selecting given channels of a bank of Gabor filters that provide excitatory or inhibitory input and determining certain blur and shift parameters. We compute the response of such a filter as the excitatory input minus a fraction of the maximum of inhibitory inputs. We use three applications to demonstrate the effectiveness of inhibition: the exclusive detection of vascular bifurcations (i.e., without crossovers) in retinal fundus images (DRIVE data set), the recognition of architectural and electrical symbols (GREC’11 data set) and the recognition of handwritten digits (MNIST data set)

    Delineation of line patterns in images using B-COSFIRE filters

    Get PDF
    Delineation of line patterns in images is a basic step required in various applications such as blood vessel detection in medical images, segmentation of rivers or roads in aerial images, detection of cracks in walls or pavements, etc. In this paper we present trainable B-COSFIRE filters, which are a model of some neurons in area V1 of the primary visual cortex, and apply it to the delineation of line patterns in different kinds of images. B-COSFIRE filters are trainable as their selectivity is determined in an automatic configuration process given a prototype pattern of interest. They are configurable to detect any preferred line structure (e.g. segments, corners, cross-overs, etc.), so usable for automatic data representation learning. We carried out experiments on two data sets, namely a line-network data set from INRIA and a data set of retinal fundus images named IOSTAR. The results that we achieved confirm the robustness of the proposed approach and its effectiveness in the delineation of line structures in different kinds of images.Comment: International Work Conference on Bioinspired Intelligence, July 10-13, 201

    Brain-Inspired Algorithms for Processing of Visual Data

    Get PDF
    The study of the visual system of the brain has attracted the attention and interest of many neuro-scientists, that derived computational models of some types of neuron that compose it. These findings inspired researchers in image processing and computer vision to deploy such models to solve problems of visual data processing. In this paper, we review approaches for image processing and computer vision, the design of which is based on neuro-scientific findings about the functions of some neurons in the visual cortex. Furthermore, we analyze the connection between the hierarchical organization of the visual system of the brain and the structure of Convolutional Networks (ConvNets). We pay particular attention to the mechanisms of inhibition of the responses of some neurons, which provide the visual system with improved stability to changing input stimuli, and discuss their implementation in image processing operators and in ConvNets.</p

    Brain-Inspired Computing

    Full text link

    Automatic determination of vertical cup-to-disc ratio in retinal fundus images for glaucoma screening

    Get PDF
    Glaucoma is a chronic progressive optic neuropathy that causes visual impairment or blindness, if left untreated. It is crucial to diagnose it at an early stage in order to enable treatment. Fundus photography is a viable option for population-based screening. A fundus photograph enables the observation of the excavation of the optic disc - the hallmark of glaucoma. The excavation is quantified as vertical cup-todisc ratio (VCDR). The manual assessment of retinal fundus images is, however, time-consuming and costly. Thus, an automated system is necessary to assist human observers. We propose a computer aided diagnosis system, which consists of localization of the optic disc, determination of the height of the optic disc and the cup, and computation of the VCDR. We evaluated the performance of our approach on eight publicly available data sets, which have in total 1712 retinal fundus images.We compared the obtained VCDR values with those provided by an experienced ophthalmologist and achieved a weighted VCDR mean difference of 0:11. The system provides a reliable estimation of the height of the optic disc and the cup in terms of the Relative Height Error (RHE = 0:08 and 0:09, respectively). Bland-Altman analysis showed that the system achieves a good agreement with the manual annotations especially for large VCDRs, which indicate pathology

    Brain-Inspired Computing

    Get PDF
    This open access book constitutes revised selected papers from the 4th International Workshop on Brain-Inspired Computing, BrainComp 2019, held in Cetraro, Italy, in July 2019. The 11 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They deal with research on brain atlasing, multi-scale models and simulation, HPC and data infra-structures for neuroscience as well as artificial and natural neural architectures

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise
    corecore