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Abstract The shape and meaning of an object can radically
change with the addition of one or more contour parts. For
instance, a T-junction can become a crossover. We extend
the COSFIRE trainable filter approach which uses a positive
prototype pattern for configuration by adding a set of negative
prototype patterns. The configured filter responds to patterns
that are similar to the positive prototype but not to any of
the negative prototypes. The configuration of such a filter
comprises selecting given channels of a bank of Gabor filters
that provide excitatory or inhibitory input and determining
certain blur and shift parameters. We compute the response
of such a filter as the excitatory input minus a fraction of
the maximum of inhibitory inputs. We use three applications
to demonstrate the effectiveness of inhibition: the exclusive
detection of vascular bifurcations (i.e., without crossovers)
in retinal fundus images (DRIVE data set), the recognition
of architectural and electrical symbols (GREC’11 data set)
and the recognition of handwritten digits (MNIST data set).
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1 Introduction

Recently, a novel trainable filter for object recognition has
been proposed in [5]. It is called combination of shifted fil-
ter responses or COSFIRE for brevity. A COSFIRE filter is
configured to be selective for a given local pattern by extract-
ing from that pattern characteristic properties of contour
parts (such as orientation) and their geometrical arrangement.
COSFIRE filters were demonstrated to be effective for detec-
tion of local patterns (keypoints) and recognition of objects
and achieve very good performance in various applications
[4,6,8,19,47,49,50]. They were also used in a multilayer
hierarchical approach [6].

Figure 1 shows some examples where a COSFIRE filter
of the type proposed in [5] may, however, not perform very
well. COSFIRE filters that are configured to be selective for
the patterns shown in the images in the top row of Fig. 1
also give strong responses to the images in the bottom row
of Fig. 1. This is because all contour parts of a pattern in
the top row are present, in the preferred arrangements, in the
corresponding image shown in the bottom row of Fig. 1. The
presence of additional contour parts, such as the diagonal bar
in Fig. 1a (bottom) or the extra stroke in Fig. 1b (bottom),
does not have influence on the response of the filter.

The COSFIRE method [5] was inspired by a specific type
of shape-selective neuron in area V4 of visual cortex. This
method, however, relies on contour parts that provide only
excitatory inputs. Thismeans that every involved contour part
detector contributes to enhance the response of a COSFIRE
filter.

There is neurophysiological evidence, however, that neu-
rons in different layers of the visual cortex receive also
inhibitory inputs [21]. For instance, neurons in the lateral
geniculate nucleus (LGN) have center-surround receptive
fields which have been modeled by difference-of-Gaussians
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(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Fig. 1 Examples of pairs of patterns that COSFIRE filters of the type
proposed in [5] are not able to distinguish. a Two traffic signs which
have the oppositemessages: permission and prohibition of turning right.
b Two Chinese characters that are translated into English as “big” and
“dog.” c Two music notes: quarter and eighth. d Two electrical sym-
bols: normal and light-emitting diodes. e Bifurcations and crossovers
in retinal fundus images. A COSFIRE filter that is trained to detect the
upper pattern in a pair of two will give a strong response to the lower
pattern too
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Fig. 2 Selectivity of a shape-selective neuron in the posterior infer-
otemporal cortex [13]. a The curvatures marked with circles evoke
excitation of the concerned cell, while b the curvature marked with
a dashed circle inhibits the activation of the cell. The bars specify the
strength of the response

(DoG) operators. A center-on DoG has an excitatory central
region with an inhibitory surround. Similarly, simple cells in
area V1, whose properties provided the inspiration for Gabor
filters [16,23], derivative of Gaussians [18] and CORF [3,7]
filters, have receptive fields that consist of inhibitory and
excitatory regions. Non-classical receptive field inhibition in
orientation-selective visual neurons provided the inspiration
for surround inhibition in orientation-selective filters [42]. It
has been shown to improve contour detection by suppress-
ing responses to textured regions. Moreover, shape-selective
neurons of the type studied in [13], located in the posterior
inferotemporal cortex, respond to complex shapes that are
formed by a number of convex and concave curvatures with
a certain geometrical arrangement. The presence of some
specific curvature elements can inhibit the response of such
a neuron. Figure 2 shows the response of a TEOneuron, stud-
ied in [13], which is excited by the encircled curvatures A, B
and C, but is inhibited by the dashed encircled curvature D.
The bar plots indicate the responses to the stimuli. Inhibition
is also thought to increase the selectivity of neurons [46].

Inhibition is an important phenomenon in the brain. It
facilitates sparseness in the representation of information

that may result in an increase in the storage capacity and
a higher number of patterns that can be discriminated [45].
End-stopped cells [12,22] in area V1 of visual cortex are
another example.

In this work, we add inhibition toCOSFIREfilters in order
to increase their discrimination ability. The inhibition that we
propose is learned in an automatic configuration process. We
configure an inhibition-augmented COSFIRE filter by using
two different types of prototype patterns, namely one positive
pattern and one ormore negative pattern(s), in order to extract
excitatory and inhibitory contour parts, respectively. Such a
filter can effectively detect patterns that are equivalent or
similar to the positive prototype, but does not respond to the
negative prototype(s).

The proposed inhibition-augmented filters can be used
in keypoint detection and object recognition. A large body
of work has been done in these areas, and many meth-
ods have been proposed [9,10,15,20,24,28,34–39,56,59].
The Hessian detector [10] and the Harris detector [20], for
instance, detect points of interest and are invariant to rota-
tion but not so much to scale. Scaling invariances of these
two operators can be achieved by applying them in a Lapla-
cian of Gaussian scale space [34], resulting in the so-called
Hessian–Laplace and Harris–Laplace detectors [36]. A point
of interest can be described by some local keypoint descrip-
tors, such as the scale-invariant feature transform (SIFT) [35],
the histogram of oriented gradients (HOG) [15], the image
descriptor GIST [39] and the gradient location and orien-
tation histogram (GLOH) [37]. Other keypoint descriptors
include the speeded up robust features (SURF) [9], which
is akin to SIFT but faster as it makes efficient use of inte-
gral images [56], the texture-based local binary patterns
(LBP) [38], textons [24,59] and the biologically inspired
local descriptor (BILD) [60], as well as the rotation invari-
ant feature transform (RIFT) descriptor [28]. None of these
methods employs inhibition.

Multiple keypoints can be used to represent bigger and
more complex patterns, such as complete objects or scenes.
In [32], a bag-of-visual-words approach was proposed to
describe an image or a region of interest with a histogram
of prototypical keypoints. This method is improved by
using spatial pyramids [29] or a random sample consensus
algorithm [25]. Other object recognition approaches use hier-
archical representations of objects, which have been inspired
by the visual processing in the brain. These include the
HMAX model [44], the object representation by parts pro-
posed in [17], neural networks [26] and the deep learning
approach [30].

These methods require many training examples to config-
ure models of objects of interest. When such detectors and
descriptors are trained, only positive examples are considered
without the inclusionof inhibitionmechanisms.The resulting
detectors and descriptors can detect objects that are similar
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to positive examples, but may also give strong responses to
objects that contain additional contour parts. For instance,
the detectors, which are trained by examples shown in the
top row of Fig. 1, will give strong responses to objects that
are equivalent or similar to the ones shown in the top row
of Fig. 1. They will, however, also give strong responses to
objects that are equivalent or similar to the ones in the bottom
row of Fig. 1. Therefore, it is difficult for these methods to
discriminate the pairs of patterns shown in Fig. 1a–f.

The rest of the paper is organized as follows. In Sect. 2,
we explain how an inhibition-augmented filter is configured
by given positive and negative prototype patterns. In Sect. 3,
we demonstrate the effectiveness of the proposed approach
in three applications. In Sect. 4, we discuss some aspects of
the proposed method, and finally, we draw conclusions in
Sect. 5.

2 Method

2.1 Overview

Figure 3a shows an input image containing a rectangle with
a vertical line inside it. Let us consider the two local pat-
terns encircled by a solid and a dashed line, which are shown
enlarged in Fig. 3b, c, respectively. The two solid ellipses
in Fig. 3b, c surround a line segment that is present in both
patterns, while the dashed ellipse surrounds a line segment
that is only present in Fig. 3c. We use these two patterns to
configure an inhibition-augmented filter that will respond to
the pattern shown in Fig. 3b, a line ending, but not to the
pattern shown in Fig. 3c, a continuous line.

We consider the line ending and the continuous line shown
in Fig. 3b, c as a positive and a negative prototype, respec-
tively. A positive prototype is a local pattern to which the

(a) (b) (c)

Fig. 3 a Synthetic input image (of size 300 × 300 pixels). The solid
circle indicates a positive prototype of interest (a line ending) while the
dashed circle indicates a negative prototype of interest (a continuous
line segment). The images in (b, c) show enlargements of the selected
positive and negative prototype patterns, respectively. The gray crosses
in (b, c) indicate the center positions of interest, and the ellipses illustrate
the orientation and location of the contour parts in the neighborhoods.
The solid ellipses represent line segments that are present in both proto-
types, while the dashed ellipse represents a line segment which is only
present in the negative prototype

inhibition-augmented filter to be configured should respond,
while a negative prototype is a local pattern towhich it should
not respond.

We use the positive and the negative prototypes to config-
ure two COSFIRE filters with the method proposed in [5].
Next, we look for and identify pairs of contour parts with
identical properties in the two filters. In Fig. 3, we use a solid
ellipse to indicate that the corresponding contour part is an
excitatory feature. We use a dashed ellipse to indicate the
contour part that is only present in the negative prototype,
and therefore, we consider it as an inhibitory feature.

The response of the inhibition-augmented filter is the dif-
ference between the excitatory input and a fraction of the
maximum of the inhibitory inputs. The resulting filter will
only respond to the patterns that are identical with or similar
to the positive prototype, but will not respond to images sim-
ilar to any of the negative prototypes. This design decision is
inspired by the function of a type of shape-selective neuron
in posterior inferotemporal cortex.

In the next subsections, we elaborate further on the con-
figuration steps mentioned above.

2.2 Gabor filters

The proposed inhibition-augmented filter uses as input the
responses of Gabor filters. We denote by gλ,θ (x, y) the
response of a Gabor filter, which has a preferred wavelength
λ and orientation θ , to a given input image at location (x, y).
We threshold the responses of Gabor filters at a given fraction
t1 (0 ≤ t1 ≤ 1) of themaximum response across all combina-
tions of values (λ, θ) and all positions (x, y) in the image.We
denote these thresholded response images by |gλ,θ (x, y)|t1 .
Figure 4a shows the intensity map of a Gabor function with
a wavelength λ = 6 and an orientation θ = 0. Figure 4b, c
shows the corresponding thresholded response images of this
Gabor filter |g6,0(x, y)|t1=0.2 to the input images in Fig. 3b,
c, respectively. Such a filter has other parameters, including
spatial aspect ratio, bandwidth and phase offset on which we
do not elaborate further here. We refer the interested reader

(a) (b) (c)

Fig. 4 a Intensity map (of size 21 × 21 pixels) of a symmetric Gabor
function with wavelength λ = 6 and orientation θ = 0. Light and dark
regions correspond topositive andnegative values of theGabor function,
respectively. b–c The thresholded (at t1 = 0.2) Gabor response images
(of size 30 × 30 pixels) to Fig. 3b, c, respectively
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(a) (b)

(c) (d)

Fig. 5 Configuration of two COSFIRE filters as proposed in [5].
Thresholded responses of a symmetric Gabor filter with λ = 6 and
θ = 0 to a the positive and b the negative prototypes are shown in
Fig. 3b, c, respectively. The cross markers indicate the centers of the
filter. We consider the dashed circles of given radii (here ρ ∈ {5, 14})
around the center of the pattern of interest. The black dots indicate the
positions of the local maxima of the Gabor responses along these cir-
cles. In each such point, we select the Gabor filter which gives this local
maximum response. c, d Structure of the resulting twoCOSFIREfilters.
The ellipses illustrate the wavelengths and orientations of the selected
Gabor filters, and their positions indicate the locations at which the
responses of these Gabor filters are taken with respect to the center. The
blobs represent the blurring functions that are used to provide some
spatial tolerance to these positions

to [5,27,41] for technical details and to an online implemen-
tation.1

2.3 Configuration of an inhibition-augmented filter

The configuration of an inhibition-augmented filter involves
two steps.

In the first step, we configure two separate COSFIRE fil-
ters with the method proposed in [5] to be selective for the
specified positive and negative prototypes that are shown in
Fig. 3b, c, respectively. Figure 5a, b shows the correspond-
ing superimposed thresholded responses of a bank of Gabor
filters (θ ∈ {0, π/8, . . . 7π/8} and λ ∈ {4, 4√2, 6, 6

√
2})

to the positive and negative prototypes. In this example, for
the configuration of a COSFIRE filter with a given proto-
type, we consider the Gabor responses along two concentric
circles with radii ρ ∈ {5, 14} pixels around the specified

1 http://matlabserver.cs.rug.nl.

point of interest. In Fig. 5c, d we illustrate the structures of
the resulting selected filters. The size and orientation of an
ellipse represent the preferred wavelength λ and orientation
θ of a Gabor filter that provides input to the COSFIRE filter.
The position of its center indicates the location at which we
take the concerned Gabor filter response.

We specify a COSFIRE filter by a set of four tuples in
which each four tuple represents a Gabor filter and the posi-
tions at which its response has to be taken. We denote by
Pf and N f the two COSFIRE filters, configured with the
patterns shown in Fig. 3b, c, respectively:

Pf =
{

(λ1 = 6, θ1 = 0, ρ1 = 5, φ1 = 3π/2),
(λ2 = 6, θ2 = 0, ρ2 = 14, φ2 = 3π/2)

}

and

N f =

⎧⎪⎪⎨
⎪⎪⎩

(λ1 = 6, θ1 = 0, ρ1 = 5, φ1 = π/2),
(λ2 = 6, θ2 = 0, ρ2 = 5, φ2 = 3π/2),
(λ3 = 6, θ3 = 0, ρ3 = 14, φ3 = π/2),
(λ4 = 6, θ4 = 0, ρ4 = 14, φ4 = 3π/2)

⎫⎪⎪⎬
⎪⎪⎭

In the second step,we formanewset S f by selecting tuples
from the sets Pf and N f as follows. We include all tuples
from the set Pf in the new set S f and add a new parameter
δ = +1 to indicate that the corresponding Gabor responses
of such tuples provide excitatory input to the inhibition-
augmented filter. We define a dissimilarity function, which
we denote by d(Pi

f , N
j
f ), of the distance between the loca-

tions indicated by the i th tuple in the set Pf and the j th tuple
in the set N f :

d(Pi
f , N

j
f ) =

{
1, if D > ζ

0, otherwise

D =
√

(ρi cosφi − ρ j cosφ j )2 + (ρi sin φi − ρ j sin φ j )2

(1)

where D is the Euclidean distance between the polar coordi-
nates (ρi , φi ) of tuple i in the positive set Pf and the polar
coordinates (ρ j , φ j ) of tuple j in the negative set N f . ζ is
the threshold, and we provide further details on the selection
of its value in Sect. 2.5.

We compute the pairwise dissimilarity values between one
tuple N j

f from N f and all tuples from Pf . If N
j
f is dissimilar

to all tuples in Pf , we include it to the new set S f and add
a tag δ = −1, which indicates that the corresponding Gabor
response provides an inhibitory input. We repeat the above
procedure for each tuple in set N f . With this process, we
ensure that a line segment that is present in both the posi-
tive and the negative prototypes in roughly the same position
gives an excitatory input. On the other hand, a line segment
that is only present in the negative prototype, i.e., it does
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not overlap with a line segment in the positive prototype,
provides an inhibitory input.

For the above example, we include the two tuples in set
Pf , which are illustrated by the two ellipses in Fig. 5c, in
the new set S f . We add to each of these two tuples a tag
δ = +1 to indicate that they provide excitatory input to the
inhibition-augmented filter. These two tuples are also present
in set N f . Then, we include in S f the other two tuples from
N f indicated by the two ellipses at the top of Fig. 5d with
a tag δ = −1 as we do not find any matches in Pf . For the
above example, this method results in the following set S f :

S f =

⎧⎪⎪⎨
⎪⎪⎩

(λ1 = 6, θ1 = 0, ρ1 = 5, φ1 = 3π/2, δ1 = +1),
(λ2 = 6, θ2 = 0, ρ2 = 14, φ2 = 3π/2, δ2 = +1),
(λ3 = 6, θ3 = 0, ρ3 = 5, φ3 = π/2, δ3 = −1),
(λ4 = 6, θ4 = 0, ρ4 = 14, φ4 = π/2, δ4 = −1)

⎫⎪⎪⎬
⎪⎪⎭

Figure 6 shows the structure of the resulting inhibition-
augmented filter that is represented by the set S f . The red
ellipses indicate Gabor filters that provide excitatory input,
and the blue ellipses indicate Gabor filters that provide
inhibitory input to the inhibition-augmented filter at hand.

For example, the second tuple in S f (λ2 = 6, θ2 =
0, ρ2 = 14, φ2 = 3π/2, δ2 = +1) corresponds to the ellipse
in the bottommost of Fig. 6. It describes a line segment with
a width of (λ2/2 =) 3 pixels in a vertical (θ2 = 0) ori-
entation at a position of (ρ2 =) 14 pixels to the bottom
(φ2 = 3π/2) of the point of interest. This tuple provides
excitatory (δ2 = +1) input to the inhibition-augmented fil-
ter. On the other hand, the last tuple in S f (λ4 = 6, θ4 =
0, ρ4 = 14, φ4 = π/2, δ4 = −1) corresponds to the top-
most ellipse in Fig. 6. It describes a similar line segment at
a position of (ρ2 =) 14 pixels to the top (φ4 = π/2) of the
point of interest and provides inhibitory (δ4 = −1) input to
the filter.

Fig. 6 Structure of an inhibition-augmented filter. The four ellipses
indicate the responses of four Gabor filters with the parameter values
specified by the set S f . The two red ellipses at the bottom represent the
excitatory input to this inhibition-augmented filter, while the two blue
ellipses at the top represent the inhibitory input (color figure online)

2.4 Configuration with multiple negative prototypes

In the above example,weconfigured an inhibition-augmented
filter to be selective for line endings by using one positive and
one negative prototype pattern. In practice, however, a posi-
tive pattern may be contained within multiple other patterns,
and thus, we may need multiple negative examples.

Figure 7a–c shows an example of three similar Chi-
nese letters that have completely different meanings and
are translated into English as “big,” “dog” and “extremely,”
respectively. The letter in Fig. 7a is also present in Fig. 7b, c,
but accompanied with additional strokes. Next, we demon-
strate how we configure an inhibition-augmented filter with
more than one negative prototype pattern. Here, we use the
letter image in Fig. 7a as our positive pattern of interest from
which we extract contour parts that provide excitatory input
to the resulting filter. The letter images in Fig. 7b, c are
used as negative prototype patterns from which we deter-
mine inhibitory contour parts.

First, we configure a filter Pf for the positive prototype
pattern in Fig. 7a as proposed in [5] that results in only exci-
tatory inputs. For this example, we consider three values
of the radius ρ (ρ = {0, 15, 33}) and we apply a bank of
Gabor filters with four wavelengths (λ ∈ {8, 8√2, 16}) and
eight orientations (θ ∈ {π i

8 | i = 0 . . . 7}). Then, we use the
procedure proposed in [5] to apply the filter Pf to both the
negative prototype patterns in Fig. 7b, c. For each negative
pattern, we determine the location at which the maximum
response is achieved by the filter Pf . We take the patterns
from Fig. 7b, c that surround these locations and use them to
configure two COSFIRE filters, which we denote by N f1 and
N f2 , respectively. Finally, we form a new set Sbig by select-
ing appropriate tuples from Pf , N f1 and N f2 as follows. We
include all tuples from set Pf in the new set Sbig with a tag
δ = +1 and compute the dissimilarity values between the
locations of the tuples in N fi (here i = 1, 2) and those in
set Pf by the method described in Sect. 2.3. The tuples in
N f1 and N f2 that are not similar to any of the tuples in Pf

are added to Sbig and marked as inhibitory parts with tags

(a) (b) (c) (d)

Fig. 7 a–c Images of three similar Chinese letters (of size 120 × 120
pixels). d Structure of the resulting filter Sbig that is configured by
using a the positive prototype and b, c the two negative prototypes. The
red ellipses represent the preferred wavelengths and orientations of the
Gabor filter responses that provide excitatory input to the concerned
filter Sbig, while the blue and green ellipses represent the Gabor filter
responses provide inhibitory input (color figure online)
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δ = −1 and δ = −2, respectively. These two different neg-
ative tags indicate that inhibitory contour parts are extracted
from two separate negative patterns.

Sbig =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(λ1 = 10, θ1 = π
4 ρ1 = 15, φ1 = 25π

16 , δ1 = +1),
. . .

(λ9 = 14, θ9 = 3π
8 , ρ9 = 33, φ9 = 27π

16 , δ9 = +1),
(λ10 = 12, θ10 = 3π

8 , ρ10 = 33, φ10 = 3π
16 , δ10 = −1),

(λ11 = 10, θ11 = π
4 , ρ11 = 33, φ11 = 3π

2 , δ11 = −2)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Figure 7d shows the resulting structure of the inhibition-
augmented filter Sbig, in which the red ellipses indicate
the tuples of the filter that provide excitatory input to the
inhibition-augmented filter, while the blue and green ellipses
indicate the tuples that provide inhibitory input.

2.5 Application of an inhibition-augmented COSFIRE
filter

In the following, we first explain how we blur and shift the
responses of the involvedGabor filters, and then, we describe
the functions that we use to compute the collective excitatory
input, the various collections of inhibitory inputs and the
ultimate filter output.

2.5.1 Blurring and shifting Gabor filter responses

We blur the Gabor filter responses in order to allow for
some tolerance in the positions at which their responses are
taken.We define the blurring operation as the weighted max-
imum of local Gabor filter responses. For weighting, we use
a Gaussian function Gσ (x, y), the standard deviation σ of
which is a linear function of the distance ρ from the center
of the COSFIRE filter:

σ = σ0 + αρ (2)

where σ0 and α are constants. The choice of the linear func-
tion in Eq. 2 is advocated for more detail in [5]. For α > 0,
the tolerance to the positions of the considered contour parts
increases with an increasing distance ρ from the center of
the concerned COSFIRE filter. We use values of α between
0 and 2, depending on the application.

Then, we shift all blurred Gabor filter responses so that
they meet at the support center of the inhibition-augmented
filter. This is achieved by shifting the blurred responses of a
Gabor filter (λi , θi ) by a distance ρi in the direction oppo-
site to φi . In polar coordinates, the shift vector is specified
by (ρi , φi + π). In Cartesian coordinates, it is (�xi ,�yi )
where �xi = −ρi cosφi , and �yi = −ρi sin φi . We denote
by sλi ,θi ,ρi ,φi ,δi (x, y) the blurred and shifted thresholded
response of a Gabor filter in position (x, y) that is specified
by the i th tuple (λi , θi , ρi , φi , δi ) in the set S f :

sλi , θi , ρi , φi , δi (x, y)
def=

max
x ′,y′ {

∣∣gλi ,θi (x − x ′ − �xi , y − y′ − �yi )
∣∣
t1
Gσ (x ′, y′)}

(3)

where −3σ ≤ x ′, y′ ≤ 3σ .
In order to prevent interference of inhibitory and excita-

tory parts of the filter, we restrict ζ (in Eq. 1) to be three times
the maximum standard deviation of any pair of tuples in Pf

and N f .

2.5.2 Response of an inhibition-augmented COSFIRE filter

We denote by rS f (x, y) the response of an inhibition-
augmented COSFIRE filter whichwe define as the difference
between excitatory response rS+

f
(x, y) and a fraction of the

maximum of the inhibitory responses r
S− j
f

(x, y).

rS f (x, y)
def= |rS+

f
(x, y) − η

n
max
j=1

{r
S− j
f

(x, y)}|t3 (4)

where S+
f = {(λi , θi , ρi , φi ) | ∀ (λi , θi , ρi , φi , δi ) ∈

S f , δi = +1}, S− j
f = {(λi , θi , ρi , φi ) | ∀ (λi , θi , ρi , φi , δi ) ∈

S f , δi = − j}, n = max |δi |, η is a coefficient that we call
inhibition factor and |.|t3 stands for thresholding the response
at a fraction t3 of its maximum across all image coordinates
(x, y).

We denote by rS+
f
and rS−

f
, the weighted geometric means

of all the blurred and shifted responses of the Gabor fil-
ters sλi ,θi ,ρi ,φi ,δi (x, y) that correspond to the contour parts

described by S+
f and S− j

f :

r
Sδ̂
f
(x, y)

def=
∣∣∣∣
( |Sδ̂

f |∏
i=1

(sλi ,θi ,ρi ,φi ,δi (x, y))
ωi

)1/Σ
|Sδ̂

f |
i=1 ωi

∣∣∣∣
t2

ωi = exp− ρ2i
2σ ′2 , 0 ≤ t2 ≤ 1 (5)

where |.|t2 stands for thresholding the response at a fraction
t2 of its maximum across all image coordinates (x, y). For
1/σ ′ = 0, the computation of the COSFIRE filter becomes
equivalent to the standard geometricmean.We refer the inter-
ested reader to [5] for more details.

Figure 8 shows an illustration of the application of an
inhibition-augmented filter that is selective for vertical line
endings pointing upwards. Figure 8d shows the output of
this filter, and the positions of the strongest local output are
marked by crosses in the input image. In this example, this fil-
ter only responds strongly at the locations where the positive
pattern is present.

Figure 9a shows a data set of line endings with different
line widths and orientations.We applied the same configured
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(a) (b) (c) (d)

Fig. 8 Illustration of the intermediate computations performed in an
inhibition-augmented filter that is selective to vertical line endings
pointing upwards. aWefirst convolve the input image (of size 300×300
pixels) with a Gabor filter which has a wavelength λ = 6 and an ori-
entation θ = 0. The three enframed inlay images illustrate (top two)
the enlarged positive and negative prototype patterns and (bottom) the
structure of the resulting inhibition-augmented filter. The red ellipses
represent the preferred wavelengths and orientations of the Gabor filters
that provide excitatory input to the concerned filter S f , while the blue
ellipses represent the channels of theGaborfilters that provide inhibitory

input. Then, b we blur and shift all thresholded (here t1 = 0.2) Gabor
responses appropriately. Next, c we compute two weighted geometric
means (here σ ′ = 11.89), one for the excitatory blurred and shifted
Gabor responses and the other one for the inhibitory input. Finally, d
we calculate the thresholded (here t3 = 0.4) output of the inhibition-
augmentedfilter by subtracting a fractionη (hereη = 1) of the inhibitory
response from the excitatory response. The localmaxima responses cor-
respond correctly to the three vertical line endings in the input images,
which are indicated by the cross markers (color figure online)

inhibition-augmented filter to the stimuli in this data set, and
the responses of this filter are rendered by a gray level shading
of the features (Fig. 9b). The maximum response is reached
for the feature that was used as a positive prototype in the
configuration process while it also reacts, with less than the
maximum response, to line endings that differ slightly in
scale and orientation. This example illustrates the selectivity
and the generalization ability of the proposed filter.

Moreover, in Fig. 10d–f we show the response images
of the filter Sbig, which we configured in Sect. 2.4, to
the corresponding patterns in Fig. 10a–c. The configured

inhibition-augmented filter correctly responds only to the
pattern shown in Fig. 10a but not to the ones in Fig. 10b, c.

2.6 Tolerance to geometric transformations

The proposed inhibition-augmented filter can achieve toler-
ance to scale, rotation and reflection by similar parameter
manipulation as proposed for the original COSFIRE filters
[5]. Figure 9c, d shows the rotation- and scaling- tolerant
responses of the inhibition-augmented filter that correspond
to the set of elementary features shown in Fig. 9a. We do not
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Fig. 9 a A systematically designed data set of line endings that vary
in orientation (in intervals of π/8) as well as in scale (the line width
ranges from 1 pixel to 5 pixels). The enframed feature is the same one
shown in Fig. 3bwhich is used as a positive prototype for configuring an

inhibition-augmented filter. The resulting filter is applied to all features
in the data set, and b the responses are rendered by shading the features
in gray. c Rotation-tolerant responses. d Rotation- and scale-tolerant
results

(a) (b) (c)

(d) (e) (f)

Fig. 10 a–c Images of three similar Chinese letters (of size 120 ×
120 pixels). d–f The response images of the resulting filter Sbig to the
corresponding images in (a–c). The filter responds to the letter shown
in (a), but does not respond to the letters shown in (b, c)

elaborate on these aspects here, and we refer the reader to [5]
for a thorough explanation.

3 Applications

In the following, we demonstrate the effectiveness of the
proposed inhibition-augmented filter in three practical appli-
cations: the detection of vascular bifurcations in retinal
fundus images, the recognition of architectural and electrical
symbols and the recognition of handwritten digits.

(b)(a)

Fig. 11 Example of a retinal fundus image from the DRIVE data set. a
Original image (of size 564×584 pixels) with filename 21_training.tif.
b Binary segmentation of vessels and background (also from DRIVE).
The red circles surround vessel bifurcations, blue squares surround
crossovers, and this labeling is part of the current work (color figure
online)

3.1 Detection of retinal vascular bifurcations

The retina contains cues of the health status of a person. For
instance, its vascular geometrical structure can reflect the
risk of some cardiovascular diseases such as hypertension
[53] and atherosclerosis [14]. The identification of vascular
bifurcations is one of the basic steps in such analysis. For a
thorough review on retinal fundus image analysis, we refer
to [1,40].

Figure 11 shows an example of a retinal fundus image and
its segmentation in blood vessels and background, both of
which are taken from theDRIVEdata set [48]. It contains 109
blood vessel features (81 bifurcations marked by red circles
and 28 crossovers marked by blue squares). A bifurcation-
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selective filter configured by the basic COSFIRE approach
[5] gives a response also to crossovers and therefore cannot
be used to exclusively detect bifurcations. The existingmeth-
ods that are used to distinguish bifurcations from crossovers
preprocess the binary retinal fundus images by morpholog-
ical operators, such as thinning. Then, they typically apply
template matching or connected component labeling, which
do not work very well for complicated situations, e.g., two
bifurcations that are close to each other can be detected as
a crossover. An overview of these methods can be found
in [2,11,52]. In the following, we illustrate how inhibition-
augmented filters that we propose can be configured to detect
only vascular bifurcations in retinal fundus images.

First, we select a bifurcation prototype from a given retinal
fundus image and use it as a positive example to config-
ure a COSFIRE filter Pf1 that is composed of excitatory
vessel segments. For the configuration of this filter, we use
three values of the distance ρ (ρ = {0, 5, 10}), threshold
value t1 = 0.2, t2 = 0.45, a bank of symmetric Gabor fil-
ters with eight orientations (θ ∈ {π i

8 | i = 0 . . . 7}) and

five wavelengths (λ ∈ {4(2 i
2 ) | i = 0 . . . 4}). Figure 12b,

e show an enlarged prototype and the corresponding filter
structure, respectively. Then, we apply the configured filter
Pf1 to all 20 training retinal fundus images (with filenames
from 21_manual1.gif to 40_manual1.gif) without tolerance
to rotation, scale and reflection transformations.We consider
the points that characterize crossover patterns and evoke suf-
ficiently strong responses (which is more than a fraction ε of
the maximum response to the positive pattern, here ε = 0.2).
We then use these patterns as negative prototypes. Figure
12a, c show two of the negative prototypes and the structures
of the resulting COSFIRE filters are shown in Fig. 12d, f. We
generate an inhibition-augmented filter S f1 by the method
proposed in Sect. 2.4. Figure 12d–i shows how two groups
of inhibitory line segments are automatically selected by the
proposed configuration procedure.

We repeat the above procedure by applying the filter Pf1
in reflection- and rotation-tolerant mode in order to findmore
negative patterns. Finally, the filter S f1 contains 19 groups of
inhibitory tuples.

The values of the inhibition factor η and the threshold
t3 are determined as follows. We apply the filter S f1 to the
20 training retinal fundus images and perform a grid search
to estimate the best pair of parameters η and t3. For η, we
consider the range of values [0, 5], and for t3 we consider
the range [0, 1], both of which are in intervals of 0.01. For
each combination of these two parameters, we calculate the
precision P and recall R. The corresponding harmonic mean
(2PR/(P + R)) reaches a maximum at an inhibition factor
η = 2 and threshold t3 = 0.29 when the precision P is at
least 90%. Here, the filter S f1 detects 30 bifurcations and
achieves 100% precision.

(a) (b) (c)

(d) (e) (f)

(i)

(g) (h)

Fig. 12 Examples of positive and negative prototype patterns. b A
positive prototype pattern, which is the feature of interest. a, cNegative
prototype patterns. d–f The structure of the filters that are selective for
the features in (a–c). g–h Two inhibition-augmented filters configured
by one positive and one negative prototype. i An inhibition-augmented
filter configured by one positive and two negative prototypes. The tuples
that are indicated by the red ellipses come from the positive pattern in
(b), and the tuples that are indicated by the blue and green ellipses come
from the negative patterns in (a, c), respectively (color figure online)

For the remaining bifurcations that are not detected by S f1 ,
we perform the following steps. We randomly select one of
the undetected bifurcations and use it as a new positive pro-
totype. Then, we use the same procedure as described above
to find the inhibitory parts of the new filter S f2 as well as
the corresponding inhibition factor η and threshold value t3.
The prototype pattern f2 is shown in Fig.13. By applying the
filters S f1 and S f2 (η(S f2) = 1.80, t3(S f2) = 0.37) together,
we correctly detect 42 correctly detected bifurcations and no
crossovers. We continue increasing the number of filters by
using vascular features that are not detected by the previ-
ously configured filters. For this given retinal fundus image,
we achieve 95% recall and 100% precision with only four
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f1 f2 f3 f4

Fig. 13 A set of four bifurcations ( f1 . . . f4) taken from the DRIVE
data set. These four bifurcations are extracted from the binary retinal
fundus image shown in Fig. 11b with filename 21_manual1.gif

Table 1 Optimal values of η

and t3
S f1 S f2 S f3 S f4

η 2.00 1.80 2.00 1.60

t3 0.29 0.22 0.29 0.14

Pr
ec
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n
(%

)

Recall (%)

Inhibition-augmented filters
Original COSFIRE filters

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 14 Precision–recall plots of the inhibition-augmentedmethod and
original COSFIRE method, indicated by the dashed and solid line,
respectively

filters, Fig. 13. Table 1 reports the values of the parameters
η and t3 that were determined with the grid search method
described above.

In order to evaluate theperformanceof proposed approach,
we apply the four inhibition-augmented filters to the 20 test
retinal fundus images in the DRIVE data set. We perform
two experiments with the four filters, the first one using the
fine-tuned inhibition factors η and the other one with η =
0. We change the value of the threshold parameter t3(S fi ) to
compute the precision P and recall R. For each filter, we alter
the threshold value t3(S fi ) by the same offset value (ranging
between −0.2 and 0.2 in intervals of 0.01) which results in
the P-R plots shown in Fig. 14. For the same value of recall,
the precision of the inhibition-augmented method is substan-
tially higher than that of the method without inhibition.

3.2 Recognition of architectural and electrical symbols

Recognition of hand-drawn or scanned architectural and
electrical symbols is an important application for the auto-
matic conversion to a digital representation which can
then be stored efficiently or processed by auto CAD sys-

(a) (b)

Fig. 15 Example of a a symbol that is contained within b another
symbol

Fig. 16 a,bStructures ofCOSFIREfilters configuredwith the positive
and negative prototype in Fig. 15a, b, respectively. c The structure of
the resulting inhibition-augmented filter obtained. The ellipses illustrate
the wavelengths and orientations of the selected Gabor filters, and their
positions indicate the locations atwhich their responses are used as input
to the concernedCOSFIREfilter. The blobswithin the ellipses represent
blurring functions that are used to provide some tolerance regarding the
preferred positions. Red and blue ellipses and blobs indicate Gabor
responses that provide, respectively, positive and negative inputs to the
inhibition-augmented filter (color figure online)

tems [43,51,55,58]. In the following, we illustrate how the
inhibition-augmented filter that we propose is effective for
such an application.

We evaluate the proposed approach on the Graphics
RecognitionContest (GREC’11) data set [54]. TheGREC’11
data set contains 150 different symbol classes, in which the
images are of size 256× 256 pixels. This data set consists of
three different sets of images, namely SetA, SetB and SetC.
SetA contains 2500 images from 50 symbol classes, SetB
comprises 5000 images from 100 classes, and SetC consists
of 7500 images from 150 classes. The three data sets contain
examples with different scale, rotation and various levels of
noise degradation.

In the following, we explain how the proposed inhibition-
augmented filters are configured to be exclusively selective
for specific symbol classes. Figure 15 shows two such exam-
ples of symbol images from the GREC’11 data set. All
contour parts of the symbol in Fig. 15a are contained in the
symbol in Fig. 15b.

For configuration, we do the following steps. First, we
consider amodel symbol, such as the one in Fig. 15a, as a pos-
itive prototype pattern to configure a COSFIRE filter without
inhibition. Figure 16a shows the structure of the resulting
filter. Then, we apply the configured filter in rotation- and
scale- tolerant mode to all the other 149 model images. We
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threshold the responses at a given fraction ε (ε = 0.3) of
the maximal filter response to the positive pattern used for
configuration. The other symbol images which evoke strong
responses to the filter are considered as negative prototype
patterns. For instance, the symbol shown in Fig. 15b is one
negative prototype for the pattern in Fig. 15a. The COSFIRE
filter structure that corresponds to the pattern in Fig. 15b is
shown in Fig. 16b. Next, we compare the structures shown in
Fig. 16a, b to identify contour parts to be used for inhibition.
In Fig. 16c, we show the structure of the resulting inhibition-
augmented filter, in which red and blue ellipses and blobs
indicate Gabor responses that provide, respectively, posi-
tive and negative inputs to the filter. In this implementation,
we consider a bank of Gabor filters with eight orientations
(θ ∈ {π i

8 | i = 0 . . . 7}) and two wavelengths (λ ∈ {10, 18}).
We use the empirically determined threshold values t1 = 0.2
and t2 = 0.5. For the blurring function, we use a fixed stan-
dard deviation σ = 4. In order to make sure that we extract
information from all the line segments of a given prototype,
we first use a large set of ρ values, and then, we remove
redundant tuples from the filters as follows. We compute the
pairwise dissimilarity proposed in Sect. 2.3 with parameter ζ
equal to three times the maximum standard deviation of any
pair of tuples and delete one tuple from the pair whose dis-
similarity value is 0. In this way, the corresponding blurring
maps of tuples do not overlap each other.

In order to determine the optimal value of the inhibition
factor η for such an inhibition-augmented filter, we perform
the following steps. First, we apply the filter to all 150 model
symbol images with different values of inhibition factor η

in a range between 0 and 10 in interval of 0.1. Then, for
each inhibition factor, we calculate the harmonic mean of
the precision2 and recall3 of this filter. Figure 17 shows the
harmonic mean of the concerned filter with different values
of inhibition factor. The optimal inhibition factor (η = 7.1)
is the minimum value of η that achieves the highest harmonic
mean. In Fig. 17, we indicate this point by a star marker.

We perform the same procedure on the remaining 149
symbols. We apply the resulting 150 inhibition-augmented
filters to the 150 symbol images. Figure 18a, b shows matri-
ces (of size 150 × 150) obtained using the COSFIRE filters
without inhibition (η = 0) and the inhibition-augmented
COSFIREfilters, respectively. The value of the element (i, j)
in each matrix is the maximum response of the filter con-
figured by symbol i to symbol image j . For each filter,
we compute the precision and recall. The average precision

2 We compute precision as the number of images to which the filter
correctly responds divided by the total number of images to which the
filter responds.
3 We compute recall as the number of images to which the filter cor-
rectly responds divided by the total number of images to which the filter
should respond.
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Fig. 17 Harmonic mean of the precision and recall for the filter shown
in Fig.16c with different values of inhibition factor η. The star indicates
the minimum inhibition factor (η = 7.1) that achieves the maximum
harmonic mean
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Fig. 18 Matrices (of size 150×150) obtained by a original COSFIRE
filters and b inhibition-augmented COSFIRE filters with the optimal
inhibition factors. The columns represent images, and the rows represent
filters which are configured from symbols. The elements of the matrices
are themaximumresponses of the configuredfilters to the images,which
are rendered as gray levels

achieved by the COSFIRE filters without inhibition is 48.0%
while the one for the inhibiton-based filters is 81.7%. The
recall for both methods is 100%. Compared to the results
of the original COSFIRE filters, the matrix obtained by the
inhibition-augmented filters is much sparser and the preci-
sion is significantly improved.

Before applying the configured filters to the test images
in SetA, SetB and SetC, we preprocess each image as fol-
lows. We compute the mean value of the intensities of all the
pixels in an image. For the images that have a mean inten-
sity value of at least 90% of the maximum, we apply the
morphological operations proposed in [19]. First, we dilate
the images by six line-shaped structuring elements of 6-
pixel length with different orientations ({0, π

6 , π
3 , . . . , 5π

6 }).
Then, we perform a thinning operation followed by six dila-
tions using line-shaped structuring elements of 4-pixel length
with equidistant orientations. Finally, we apply opening and
thinning followed by a dilation operation using a series of
line-shaped structuring elements of 4-pixel length in six ori-
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Table 2 Recognition rates (%) for the three data sets in the GREC’11
set [54]

SetA SetB SetC Average

Our proposed method 98.80 97.64 98.11 98.18

COSFIRE filters without
inhibition [5]

96.80 94.50 91.81 94.37

Spectra of shape context
[57]

92.96 90.70 89.79 90.62

Geometric matching [54] 94.76 91.98 85.88 89.39

entations. We do not preprocess the images that have a mean
value less than 90% of the maximum since most of them do
not lose part of their contour segments.

We apply the 150 inhibition-augmented filters to each pre-
processed image by using the proposed method in rotation-
and scaling-tolerant mode with parameters ψ = {π i

32 | i =
0, 1, . . . , 31} and v = {0.5, 0.6, . . . , 2.5}. A given image is
classified to the class of the positive prototype symbol by
which the inhibition-augmented filter that achieves the max-
imum response was configured. In Table 2, we compare the
results that we achieve with the existing methods on the three
data sets. The proposed approach achieves the best results in
all data sets.

3.3 Recognition of handwritten digits

Handwritten digit recognition is an important application in
optical character recognition (OCR) systems. Various bench-
mark data sets and approaches have been proposed, a review
of which is given in [33].

In this application, we use theMNIST data set [31] to eval-
uate the performance of our approach. The data set contains
60,000 training and 10,000 test digit images in gray scale of
size 28 × 28 pixels.4

For configuration, we randomly select 20 training images
from each digit class. We select a random location as the
point of interest to configure a COSFIRE filter in each image
from the same digit class. The local pattern around such a
point should provide at least four tuples to the resulting fil-
ter; otherwise, we select another random location. Then, we
apply this filter to all the other 180 training images from
different digit classes in order to identify negative proto-
types.We use the method described in Sect. 2 to configure an
inhibition-augmented filter. We repeat the above process for
all the 200 training digit images and configure 200 inhibition-
augmented filters. In this application, we use a bank of
antisymmetric Gabor filters with 16 equidistant orientations
(θ ∈ {π i

8 | i = 0 . . . 7}), one wavelength (λ = 2
√
2)

4 The MNIST data set is available online: http://yann.lecun.com/exdb/
mnist.
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Fig. 19 Plots show the recognition rates on the MNIST data set with
different numbers of filters by using the methods with and without
inhibition

and three values of ρ (ρ ∈ {0, 3, 8}), and threshold their
responses with t1 = 0.2, t2 = 0.99.

For the application process, we apply these 200 inhibition-
augmented filters to 60,000 training images by using the
proposed method. We take the maximum response of each
filter to these digit images and generate a matrix of size
60,000 × 200.

Next, we apply a wrapper method for feature selection
using support vector machines (SVMs) with a linear ker-
nel. We iteratively add the result of one filter, the one that
best improves the sevenfold cross-validation accuracy, and
stop the process until no more improvement is achieved.
This process results in 108 filters when the 200 inhibition-
augmented COSFIRE filters are applied (η = 1) and 111
filters when the 200 original COSFIRE filters are applied
(η = 0). Then, we use the inhibition-augmented and
non-inhibition-augmented training vectors with the selected
features to train two multi-class SVMs.

The plots in Fig. 19 show the recognition rates as a func-
tion of increasing number of selected filters. Themethodwith
inhibition achieves a recognition rate of 98.77% with 108
filters while the method without inhibition achieves 98.66%
with 111 filters. The inhibition-augmented training vectors
of 108 dimensions have 753,019 (11.62%) zero elements,
which is substantially greater than the 277,641 (4.17%) zero
elements in non-inhibition-augmented vectors of 111 dimen-
sions. In this application, the proposed inhibition-augmented
COSFIRE filters achieve better recognition rate with less
number of filters and with a much sparser representation.

4 Discussion

We proposed an inhibition-augmented COSFIRE approach
which uses a positive prototype and a set of negative proto-
types to configure a filter. The choice of negative prototypes
can be either manually specified by a user or automatically
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discovered by the system. For instance, the negative pro-
totype shown in Fig. 3, a complete line, is selected by the
user. For more complex situations, such as the recognition
of symbols and handwritten digits, it is more practical to use
an automated process. To discover negative prototypes, we
first apply the COSFIRE filter which is configured by a pos-
itive prototype pattern to all the other pattern images. The
ones which evoke strong responses to the filter are negative
prototype patterns.

The response of an inhibition-augmented filter is defined
as the difference between the excitatory input and a frac-
tion of the maximum of the inhibitory inputs. The inhibition
factor can be adjusted by changing the value of the para-
meter η. In the detection of vascular bifurcations and the
symbol recognition applications, we determine an optimal
value of η for each filter as the one that contributes to the
maximum harmonic mean on the training images. For the
other application, we set the same η value for all filters so
that none of them achieves a response to any of the negative
patterns.

In neurophysiology, there is an ongoing debate about what
kind of neural coding the brain uses to encode the represen-
tation of objects. The two extremes in the debate are the
grandmother cell theory (i.e., only one specific cell fires
for a given pattern) and population coding (i.e., a number
of neurons fire for a given pattern with different rates). In
the recognition of architectural and electrical symbols, the
proposed inhibition-augmented COSFIRE filters work in the
way that is similar to the grandmother cell theory. While in
the recognition of handwritten digits, they are similar to the
population coding. Both applications demonstrate that the
inhibition mechanism facilitates sparseness in the represen-
tation of information.

The computational cost of the configuration of a COS-
FIREfilterwith inhibition depends on the number of negative
prototype patterns and the bank of Gabor filters it uses. An
inhibition-augmented filter is configured in less than one sec-
ond for one positive and one negative prototype pattern with
the size of 512 × 512 pixels and a bank of Gabor filters of
eight orientations and five wavelengths. The computational
cost of the application of an inhibition-augmented filter is
proportional to the computations of the excitatory and inhibi-
tatory responses and their blurring and shifting operations.
For the detection of vascular bifurcations, a retinal fundus
image of size 564×584 pixels is processed in less than 20s by
four rotation- and reflection-tolerant inhibition-augmented
filters. And for the recognition of architectural and electri-
cal symbols, a symbol image of size 256 × 256 pixels is
processed in less than 30s by 150 inhibition-augmented fil-
ters without any rotation or scaling tolerances. For the third
application, a handwritten digit image of size 28× 28 pixels
is described by 200 inhibition-augmented COSFIRE filters
without any rotation or scaling tolerances in less than 5s.

We used a sequential implementation in MATLAB5 for all
experiments that run on the same standard 3GHz processor.

There are various possible directions for future research.
One direction is to apply the proposed inhibition-augmented
filters in other objection localization and recognition tasks,
as well as image classification. Another direction is to inves-
tigate a learning algorithm to determine the output function
by assigning different weights to inhibitory and excitatory
contour parts.

5 Conclusions

The proposed inhibition-augmented filters are versatile train-
able keypoint and object detectors as they can be trained
with any given positive and negative prototype patterns. We
demonstrated the effectiveness of the method with three
applications: detection of vascular bifurcations (i.e., without
crossovers) in retinal fundus images (DRIVEdata set), recog-
nition of architectural and electrical symbols (GREC’11 data
set) and the recognition of handwritten digits (MNIST data
set). The inclusion of the inhibition mechanism improves the
discrimination properties and the performance of COSFIRE
filters.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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Commons license, and indicate if changes were made.
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