39,281 research outputs found

    DyVOSE project: experiences in applying privilege management infrastructures

    Get PDF
    Privilege Management Infrastructures (PMI) are emerging as a necessary alternative to authorization through Access Control Lists (ACL) as the need for finer grained security on the Grid increases in numerous domains. The 2-year JISC funded DyVOSE Project has investigated applying PMIs within an e-Science education context. This has involved establishing a Grid Computing module as part of Glasgow Universityā€™s Advanced MSc degree in Computing Science. A laboratory infrastructure was built for the students realising a PMI with the PERMIS software, to protect Grid Services they created. The first year of the course centered on building a static PMI at Glasgow. The second year extended this to allow dynamic attribute delegation between Glasgow and Edinburgh to support dynamic establishment of fine grained authorization based virtual organizations across multiple institutions. This dynamic delegation was implemented using the DIS (Delegation Issuing) Web Service supplied by the University of Kent. This paper describes the experiences and lessons learned from setting up and applying the advanced Grid authorization infrastructure within the Grid Computing course, focusing primarily on the second year and the dynamic virtual organisation setup between Glasgow and Edinburgh

    A Shibboleth-protected privilege management infrastructure for e-science education

    Get PDF
    Simplifying access to and usage of large scale compute resources via the grid is of critical importance to encourage the uptake of e-research. Security is one aspect that needs to be made as simple as possible for end users. The ESP-Grid and DyVOSE projects at the National e-Science Centre (NeSC) at the University of Glasgow are investigating security technologies which will make the end-user experience of using the grid easier and more secure. In this paper, we outline how simplified (from the user experience) authentication and authorization of users are achieved through single usernames and passwords at users' home institutions. This infrastructure, which will be applied in the second year of the grid computing module part of the advanced MSc in Computing Science at the University of Glasgow, combines grid portal technology, the Internet2 Shibboleth Federated Access Control infrastructure, and the PERMS role-based access control technology. Through this infrastructure inter-institutional teaching can be supported where secure access to federated resources is made possible between sites. A key aspect of the work we describe here is the ability to support dynamic delegation of authority whereby local/remote administrators are able to dynamically assign meaningful privileges to remote/local users respectively in a trusted manner thus allowing for the dynamic establishment of virtual organizations with fine grained security at their heart

    Data privacy by design: digital infrastructures for clinical collaborations

    Get PDF
    The clinical sciences have arguably the most stringent security demands on the adoption and roll-out of collaborative e-Infrastructure solutions such as those based upon Grid-based middleware. Experiences from the Medical Research Council (MRC) funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project and numerous other real world security driven projects at the UK e-Science National e-Science Centre (NeSC ā€“ www.nesc.ac.uk) have shown that whilst advanced Grid security and middleware solutions now offer capabilities to address many of the distributed data and security challenges in the clinical domain, the real clinical world as typified by organizations such as the National Health Service (NHS) in the UK are extremely wary of adoption of such technologies: firewalls; ethics; information governance, software validation, and the actual realities of existing infrastructures need to be considered from the outset. Based on these experiences we present a novel data linkage and anonymisation infrastructure that has been developed with close co-operation of the various stakeholders in the clinical domain (including the NHS) that addresses their concerns and satisfies the needs of the academic clinical research community. We demonstrate the implementation of this infrastructure through a representative clinical study on chronic diseases in Scotland

    Single sign-on and authorization for dynamic virtual organizations

    Get PDF
    The vision of the Grid is to support the dynamic establishment and subsequent management of virtual organizations (VO). To achieve this presents many challenges for the Grid community with perhaps the greatest one being security. Whilst Public Key Infrastructures (PKI) provide a form of single sign-on through recognition of trusted certification authorities, they have numerous limitations. The Internet2 Shibboleth architecture and protocols provide an enabling technology overcoming some of the issues with PKIs however Shibboleth too suffers from various limitations that make its application for dynamic VO establishment and management difficult. In this paper we explore the limitations of PKIs and Shibboleth and present an infrastructure that incorporates single sign-on with advanced authorization of federated security infrastructures and yet is seamless and targeted to the needs of end users. We explore this infrastructure through an educational case study at the National e-Science Centre (NeSC) at the University of Glasgow and Edinburgh

    Grid Infrastructure for Domain Decomposition Methods in Computational ElectroMagnetics

    Get PDF
    The accurate and efficient solution of Maxwell's equation is the problem addressed by the scientific discipline called Computational ElectroMagnetics (CEM). Many macroscopic phenomena in a great number of fields are governed by this set of differential equations: electronic, geophysics, medical and biomedical technologies, virtual EM prototyping, besides the traditional antenna and propagation applications. Therefore, many efforts are focussed on the development of new and more efficient approach to solve Maxwell's equation. The interest in CEM applications is growing on. Several problems, hard to figure out few years ago, can now be easily addressed thanks to the reliability and flexibility of new technologies, together with the increased computational power. This technology evolution opens the possibility to address large and complex tasks. Many of these applications aim to simulate the electromagnetic behavior, for example in terms of input impedance and radiation pattern in antenna problems, or Radar Cross Section for scattering applications. Instead, problems, which solution requires high accuracy, need to implement full wave analysis techniques, e.g., virtual prototyping context, where the objective is to obtain reliable simulations in order to minimize measurement number, and as consequence their cost. Besides, other tasks require the analysis of complete structures (that include an high number of details) by directly simulating a CAD Model. This approach allows to relieve researcher of the burden of removing useless details, while maintaining the original complexity and taking into account all details. Unfortunately, this reduction implies: (a) high computational effort, due to the increased number of degrees of freedom, and (b) worsening of spectral properties of the linear system during complex analysis. The above considerations underline the needs to identify appropriate information technologies that ease solution achievement and fasten required elaborations. The authors analysis and expertise infer that Grid Computing techniques can be very useful to these purposes. Grids appear mainly in high performance computing environments. In this context, hundreds of off-the-shelf nodes are linked together and work in parallel to solve problems, that, previously, could be addressed sequentially or by using supercomputers. Grid Computing is a technique developed to elaborate enormous amounts of data and enables large-scale resource sharing to solve problem by exploiting distributed scenarios. The main advantage of Grid is due to parallel computing, indeed if a problem can be split in smaller tasks, that can be executed independently, its solution calculation fasten up considerably. To exploit this advantage, it is necessary to identify a technique able to split original electromagnetic task into a set of smaller subproblems. The Domain Decomposition (DD) technique, based on the block generation algorithm introduced in Matekovits et al. (2007) and Francavilla et al. (2011), perfectly addresses our requirements (see Section 3.4 for details). In this chapter, a Grid Computing infrastructure is presented. This architecture allows parallel block execution by distributing tasks to nodes that belong to the Grid. The set of nodes is composed by physical machines and virtualized ones. This feature enables great flexibility and increase available computational power. Furthermore, the presence of virtual nodes allows a full and efficient Grid usage, indeed the presented architecture can be used by different users that run different applications

    Security for Grid Services

    Full text link
    Grid computing is concerned with the sharing and coordinated use of diverse resources in distributed "virtual organizations." The dynamic and multi-institutional nature of these environments introduces challenging security issues that demand new technical approaches. In particular, one must deal with diverse local mechanisms, support dynamic creation of services, and enable dynamic creation of trust domains. We describe how these issues are addressed in two generations of the Globus Toolkit. First, we review the Globus Toolkit version 2 (GT2) approach; then, we describe new approaches developed to support the Globus Toolkit version 3 (GT3) implementation of the Open Grid Services Architecture, an initiative that is recasting Grid concepts within a service oriented framework based on Web services. GT3's security implementation uses Web services security mechanisms for credential exchange and other purposes, and introduces a tight least-privilege model that avoids the need for any privileged network service.Comment: 10 pages; 4 figure

    SIMDAT

    No full text
    • ā€¦
    corecore