1,159 research outputs found

    Toward End-to-End, Full-Stack 6G Terahertz Networks

    Full text link
    Recent evolutions in semiconductors have brought the terahertz band in the spotlight as an enabler for terabit-per-second communications in 6G networks. Most of the research so far, however, has focused on understanding the physics of terahertz devices, circuitry and propagation, and on studying physical layer solutions. However, integrating this technology in complex mobile networks requires a proper design of the full communication stack, to address link- and system-level challenges related to network setup, management, coordination, energy efficiency, and end-to-end connectivity. This paper provides an overview of the issues that need to be overcome to introduce the terahertz spectrum in mobile networks, from a MAC, network and transport layer perspective, with considerations on the performance of end-to-end data flows on terahertz connections.Comment: Published on IEEE Communications Magazine, THz Communications: A Catalyst for the Wireless Future, 7 pages, 6 figure

    Wireless Handheld Solution for the Gaming Industry

    Get PDF
    of the essential elements of success in the gaming industry is the requirement of providing exceptional customer service. Technology plays a significant role in bringing state of the art solutions that enhance the overall customer experience. Currently a guest must go through multiple steps and a variety of departments to simply resolve issues with their player accounts (loyalty programs), update customer profiles, book hotel and restaurant reservations, sign up for promotions, etc. In order to effectively take care of these customers in both a timely and efficient manner, a wireless handheld device is needed that employees can carry with them to resolve and address these concerns. This project is aimed at identifying the proper wireless infrastructure for the gaming environment and also the wireless handheld device, such as an Ultra Mobile PC (UMPC) to effectively and efficiently take care of customers

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Planning and realization of a WiFi 6 network to replace wired connections in an enterprise environment

    Get PDF
    WiFi (Wireless Fidelity) is a popular wireless LAN technology. It provides broadband wireless connectivity to all the users in the unlicensed 2.4 GHz and 5 GHz frequency bands. Given the fact that the WiFi technology is much easier and cost-efficient to deploy, it is rapidly gaining acceptance as an alternative to a wired local area network. Nowadays the Wireless access to data is a necessity for everyone in the daily life. Considering the last 30 years, the unlimited access to information has transformed entire industries, fueling growth, productivity and profits.The WiFi technology, which is governed by the IEEE 802.11 standards body, has played a key role in this transformation. In fact, thanks to WiFi, users can benefit of low cost access to high data rate wireless connectivity. The first version of the IEEE 802.11 protocol was released in 1997. IEEE 802.11 has been improved with different versions in order to enhance the throughput and support new technologies. WiFi networks are now experiencing the bandwidth-demanding media content as well as multiple WiFi devices for each user. As a consequence of this, WiFi 6, which is based on the IEEE 802.11ax standard, is focused on improving the efficiency of the radio link. However, there is a relatively modest increase in peak data rate too. In this thesis we have planned and realized a WiFi 6 network to replace wired connections in an enterprise environment. To do this the optimal access point placement problem has been taken into account, resulting in an improvement of the coverage. Subsequently, after the configuration from the controller, the performance of the new network has been tested in order to study if WiFi 6 can be used instead of wired connections.WiFi (Wireless Fidelity) is a popular wireless LAN technology. It provides broadband wireless connectivity to all the users in the unlicensed 2.4 GHz and 5 GHz frequency bands. Given the fact that the WiFi technology is much easier and cost-efficient to deploy, it is rapidly gaining acceptance as an alternative to a wired local area network. Nowadays the Wireless access to data is a necessity for everyone in the daily life. Considering the last 30 years, the unlimited access to information has transformed entire industries, fueling growth, productivity and profits.The WiFi technology, which is governed by the IEEE 802.11 standards body, has played a key role in this transformation. In fact, thanks to WiFi, users can benefit of low cost access to high data rate wireless connectivity. The first version of the IEEE 802.11 protocol was released in 1997. IEEE 802.11 has been improved with different versions in order to enhance the throughput and support new technologies. WiFi networks are now experiencing the bandwidth-demanding media content as well as multiple WiFi devices for each user. As a consequence of this, WiFi 6, which is based on the IEEE 802.11ax standard, is focused on improving the efficiency of the radio link. However, there is a relatively modest increase in peak data rate too. In this thesis we have planned and realized a WiFi 6 network to replace wired connections in an enterprise environment. To do this the optimal access point placement problem has been taken into account, resulting in an improvement of the coverage. Subsequently, after the configuration from the controller, the performance of the new network has been tested in order to study if WiFi 6 can be used instead of wired connections

    RF Localization in Indoor Environment

    Get PDF
    In this paper indoor localization system based on the RF power measurements of the Received Signal Strength (RSS) in WLAN environment is presented. Today, the most viable solution for localization is the RSS fingerprinting based approach, where in order to establish a relationship between RSS values and location, different machine learning approaches are used. The advantage of this approach based on WLAN technology is that it does not need new infrastructure (it reuses already and widely deployed equipment), and the RSS measurement is part of the normal operating mode of wireless equipment. We derive the Cramer-Rao Lower Bound (CRLB) of localization accuracy for RSS measurements. In analysis of the bound we give insight in localization performance and deployment issues of a localization system, which could help designing an efficient localization system. To compare different machine learning approaches we developed a localization system based on an artificial neural network, k-nearest neighbors, probabilistic method based on the Gaussian kernel and the histogram method. We tested the developed system in real world WLAN indoor environment, where realistic RSS measurements were collected. Experimental comparison of the results has been investigated and average location estimation error of around 2 meters was obtained

    Low-Complexity Multi-User MIMO Algorithms for mmWave WLANs

    Get PDF
    Very high throughput and high-efficiency wireless local area networks (WLANs) have become essential for today's significant global Internet traffic and the expected significant global increase of public WiFi hotspots. Total Internet traffic is predicted to expand 3.7-fold from 2017 to 2022. In 2017, 53% of overall Internet traffic used by WiFi networks, and that number is expected to increase to 56.8% by 2022. Furthermore, 80% of overall Internet traffic is expected to be video traffic by 2022, up from 70% in 2017. WiFi networks are also expected to move towards denser deployment scenarios, such as stadiums, large office buildings, and airports, with very high data rate applications, such as ultra-high definition video wireless streaming. Thus, in order to meet the predicted growth of wireless traffic and the number of WiFi networks in the world, an efficient Internet access solution is required for the current IEEE 802.11 standards. Millimeter wave (mmWave) communication technology is expected to play a crucial role in future wireless networks with large user populations because of the large spectrum band it can provide. To further improve spectrum efficiency over mmWave bands in WLANs with large numbers of users, the IEEE 802.11ay standard was developed from the traditional IEEE 802.11ad standard, aiming to support multi-user MIMO. Propagation challenges associated with mmWave bands necessitate the use of analog beamforming (BF) technologies that employ directional transmissions to determine the optimal sector beam between a transmitter and a receiver. However, the multi-user MIMO is not exploited, since analog BF is limited to a single-user, single-transmission. The computational complexity of achieving traditional multi-user MIMO BF methods, such as full digital BF, in the mmWave systems becomes significant due to the hardware constraints. Our research focuses on how to effectively and efficiently realize multi-user MIMO transmission to improve spectrum efficiency over the IEEE 802.11ay mmWave band system while also resolving the computational complexity challenges for achieving a multi-user MIMO in mmWave systems. This thesis focuses on MAC protocol algorithms and analysis of the IEEE 802.11ay mmWave WLANs to provide multi-user MIMO support in various scenarios to improve the spectrum efficiency and system throughput. Specifically, from a downlink single-hop scenario perspective, a VG algorithm is proposed to schedule simultaneous downlink transmission links while mitigating the multi-user interference with no additional computational complexity. From a downlink multi-hop scenario perspective, a low-complexity MHVG algorithm is conducted to realize simultaneous transmissions and improve the network performance by taking advantage of the spatial reuse in a dense network. The proposed MHVG algorithm permits simultaneous links scheduling and mitigates both the multi-user interference and co-channel interference based only on analog BF information, without the necessity for feedback overhead, such as channel state information (CSI). From an uplink scenario perspective, a low-complexity user selection algorithm, HBF-VG, incorporates user selection with the HBF algorithm to achieve simultaneous uplink transmissions for IEEE 802.11ay mmWave WLANs. With the HBF-VG algorithm, the users can be selected based on an orthogonality criterion instead of collecting CSI from all potential users. We optimize the digital BF to mitigate the residual interference among selected users. Extensive analytical and simulation evaluations are provided to validate the performance of the proposed algorithms with respect to average throughput per time slot, average network throughput, average sum-rate, energy efficiency, signal-to-interference-plus-noise ratio (SINR), and spatial multiplexing gain
    • 

    corecore