3,718 research outputs found

    Concrete Subsurface Crack Detection Using Thermal Imaging in a Deep Neural Network

    Get PDF
    The article discusses how impact actions, such as conflict and warfare, can negatively impact the structural integrity of concrete structures and how detecting hidden defects in concrete structures is difficult without expert knowledge. The paper presents a new technique that combines thermal imaging and artificial intelligence to detect hidden defects in concrete structures. The authors trained an AI model on simulated data and achieved a validation accuracy of 99.93%. They then conducted a laboratory experiment to create a dataset of concrete blocks with and without subsurface cracks and trained a new model, which achieved a validation accuracy of 100%. The article concludes that AI can detect hidden defects and subsurface cracks in concrete structures by classifying thermal images of concrete surfaces

    Depth estimation of inner wall defects by means of infrared thermography

    Get PDF
    There two common methods dealing with interpreting data from infrared thermography: qualitatively and quantitatively. On a certain condition, the first method would be sufficient, but for an accurate interpretation, one should undergo the second one. This report proposes a method to estimate the defect depth quantitatively at an inner wall of petrochemical furnace wall. Finite element method (FEM) is used to model multilayer walls and to simulate temperature distribution due to the existence of the defect. Five informative parameters are proposed for depth estimation purpose. These parameters are the maximum temperature over the defect area (Tmax-def), the average temperature at the right edge of the defect (Tavg-right), the average temperature at the left edge of the defect (Tavg-left), the average temperature at the top edge of the defect (Tavg-top), and the average temperature over the sound area (Tavg-so). Artificial Neural Network (ANN) was trained with these parameters for estimating the defect depth. Two ANN architectures, Multi Layer Perceptron (MLP) and Radial Basis Function (RBF) network were trained for various defect depths. ANNs were used to estimate the controlled and testing data. The result shows that 100% accuracy of depth estimation was achieved for the controlled data. For the testing data, the accuracy was above 90% for the MLP network and above 80% for the RBF network. The results showed that the proposed informative parameters are useful for the estimation of defect depth and it is also clear that ANN can be used for quantitative interpretation of thermography data

    Non-Contact Evaluation Methods for Infrastructure Condition Assessment

    Get PDF
    The United States infrastructure, e.g. roads and bridges, are in a critical condition. Inspection, monitoring, and maintenance of these infrastructure in the traditional manner can be expensive, dangerous, time-consuming, and tied to human judgment (the inspector). Non-contact methods can help overcoming these challenges. In this dissertation two aspects of non-contact methods are explored: inspections using unmanned aerial systems (UASs), and conditions assessment using image processing and machine learning techniques. This presents a set of investigations to determine a guideline for remote autonomous bridge inspections

    Low-cost deep learning UAV and Raspberry Pi solution to real time pavement condition assessment

    Get PDF
    In this thesis, a real-time and low-cost solution to the autonomous condition assessment of pavement is proposed using deep learning, Unmanned Aerial Vehicle (UAV) and Raspberry Pi tiny computer technologies, which makes roads maintenance and renovation management more efficient and cost effective. A comparison study was conducted to compare the performance of seven different combinations of meta-architectures for pavement distress classification. It was observed that real-time object detection architecture SSD with MobileNet feature extractor is the best combination for real-time defect detection to be used by tiny computers. A low-cost Raspberry Pi smart defect detector camera was configured using the trained SSD MobileNet v1, which can be deployed with UAV for real-time and remote pavement condition assessment. The preliminary results show that the smart pavement detector camera achieves an accuracy of 60% at 1.2 frames per second in raspberry pi and 96% at 13.8 frames per second in CPU-based computer

    Enhanced infrared sparse pattern extraction and usage for impact evaluation of basalt-carbon hybrid composites by pulsed thermography

    Get PDF
    Nowadays, infrared thermography, as a widely used non-destructive testing method, is increasingly studied for impact evaluation of composite structures. Sparse pattern extraction is attracting increasing attention as an advanced post-processing method. In this paper, an enhanced sparse pattern extraction framework is presented for thermographic sequence processing and defect detection. This framework adapts cropping operator and typical component extraction as a preprocessing step to reduce the dimensions of raw data and applies sparse pattern extraction algorithms to enhance the contrast on the defect area. Different cases are studied involving several defects in four basalt-carbon hybrid fiber-reinforced polymer composite laminates. Finally, comparative analysis with intensity distribution is carried out to verify the effectiveness of contrast enhancement using this framework

    Multimodal sensor fusion for real-time location-dependent defect detection in laser-directed energy deposition

    Full text link
    Real-time defect detection is crucial in laser-directed energy deposition (L-DED) additive manufacturing (AM). Traditional in-situ monitoring approach utilizes a single sensor (i.e., acoustic, visual, or thermal sensor) to capture the complex process dynamic behaviors, which is insufficient for defect detection with high accuracy and robustness. This paper proposes a novel multimodal sensor fusion method for real-time location-dependent defect detection in the robotic L-DED process. The multimodal fusion sources include a microphone sensor capturing the laser-material interaction sound and a visible spectrum CCD camera capturing the coaxial melt pool images. A hybrid convolutional neural network (CNN) is proposed to fuse acoustic and visual data. The key novelty in this study is that the traditional manual feature extraction procedures are no longer required, and the raw melt pool images and acoustic signals are fused directly by the hybrid CNN model, which achieved the highest defect prediction accuracy (98.5 %) without the thermal sensing modality. Moreover, unlike previous region-based quality prediction, the proposed hybrid CNN can detect the onset of defect occurrences. The defect prediction outcomes are synchronized and registered with in-situ acquired robot tool-center-point (TCP) data, which enables localized defect identification. The proposed multimodal sensor fusion method offers a robust solution for in-situ defect detection.Comment: 8 pages, 10 figures. This paper has been accepted to be published in the proceedings of IDETC-CIE 202

    Non-Destructive Techniques for the Condition and Structural Health Monitoring of Wind Turbines: A Literature Review of the Last 20 Years

    Get PDF
    A complete surveillance strategy for wind turbines requires both the condition monitoring (CM) of their mechanical components and the structural health monitoring (SHM) of their load-bearing structural elements (foundations, tower, and blades). Therefore, it spans both the civil and mechanical engineering fields. Several traditional and advanced non-destructive techniques (NDTs) have been proposed for both areas of application throughout the last years. These include visual inspection (VI), acoustic emissions (AEs), ultrasonic testing (UT), infrared thermography (IRT), radiographic testing (RT), electromagnetic testing (ET), oil monitoring, and many other methods. These NDTs can be performed by human personnel, robots, or unmanned aerial vehicles (UAVs); they can also be applied both for isolated wind turbines or systematically for whole onshore or offshore wind farms. These non-destructive approaches have been extensively reviewed here; more than 300 scientific articles, technical reports, and other documents are included in this review, encompassing all the main aspects of these survey strategies. Particular attention was dedicated to the latest developments in the last two decades (2000–2021). Highly influential research works, which received major attention from the scientific community, are highlighted and commented upon. Furthermore, for each strategy, a selection of relevant applications is reported by way of example, including newer and less developed strategies as well

    In-situ crack and keyhole pore detection in laser directed energy deposition through acoustic signal and deep learning

    Full text link
    Cracks and keyhole pores are detrimental defects in alloys produced by laser directed energy deposition (LDED). Laser-material interaction sound may hold information about underlying complex physical events such as crack propagation and pores formation. However, due to the noisy environment and intricate signal content, acoustic-based monitoring in LDED has received little attention. This paper proposes a novel acoustic-based in-situ defect detection strategy in LDED. The key contribution of this study is to develop an in-situ acoustic signal denoising, feature extraction, and sound classification pipeline that incorporates convolutional neural networks (CNN) for online defect prediction. Microscope images are used to identify locations of the cracks and keyhole pores within a part. The defect locations are spatiotemporally registered with acoustic signal. Various acoustic features corresponding to defect-free regions, cracks, and keyhole pores are extracted and analysed in time-domain, frequency-domain, and time-frequency representations. The CNN model is trained to predict defect occurrences using the Mel-Frequency Cepstral Coefficients (MFCCs) of the lasermaterial interaction sound. The CNN model is compared to various classic machine learning models trained on the denoised acoustic dataset and raw acoustic dataset. The validation results shows that the CNN model trained on the denoised dataset outperforms others with the highest overall accuracy (89%), keyhole pore prediction accuracy (93%), and AUC-ROC score (98%). Furthermore, the trained CNN model can be deployed into an in-house developed software platform for online quality monitoring. The proposed strategy is the first study to use acoustic signals with deep learning for insitu defect detection in LDED process.Comment: 36 Pages, 16 Figures, accepted at journal Additive Manufacturin
    corecore