
 

 

 

ABSTRACT 

 

 

 There two common methods dealing with interpreting data from infrared 

thermography: qualitatively and quantitatively. On a certain condition, the first 

method would be sufficient, but for an accurate interpretation, one should undergo 

the second one. This report proposes a method to estimate the defect depth 

quantitatively at an inner wall of petrochemical furnace wall. Finite element method 

(FEM) is used to model multilayer walls and to simulate temperature distribution due 

to the existence of the defect. Five informative parameters are proposed for depth 

estimation purpose. These parameters are the maximum temperature over the defect 

area (Tmax-def), the average temperature at the right edge of the defect (Tavg-right), the 

average temperature at the left edge of the defect (Tavg-left), the average temperature at 

the top edge of the defect (Tavg-top), and the average temperature over the sound area 

(Tavg-so). Artificial Neural Network (ANN) was trained with these parameters for 

estimating the defect depth. Two ANN architectures, Multi Layer Perceptron (MLP) 

and Radial Basis Function (RBF) network were trained for various defect depths. 

ANNs were used to estimate the controlled and testing data. The result shows that 

100% accuracy of depth estimation was achieved for the controlled data. For the 

testing data, the accuracy was above 90% for the MLP network and above 80% for 

the RBF network. The results showed that the proposed informative parameters are 

useful for the estimation of defect depth and it is also clear that ANN can be used for 

quantitative interpretation of thermography data. 
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ABSTRAK 

 

 

 Ada dua kaedah umum berkenaan dengan pengolahan data daripada 

termografi infra merah: secara kualitatif dan secara kuantitatif. Pada keadaan 

tertentu, kaedah pertama sudah mencukupi, tetapi untuk interpretasi yang tepat, 

kaedah kedua perlu digunakan. Lapuran ini mencadangkan kaedah untuk 

menganggar kedalaman kerosakan yang berada pada dinding sebelah dalam ketuhar 

petrokimia secara kuantitatif. Metod elemen terbatas (FEM) digunakan untuk 

pemodelan dinding banyak lapis dan untuk mensimulasikan taburan suhu yang 

terbentuk disebabkan kerosakan pada dinding dalaman. Lima parameter informatif 

dicadangkan untuk pengiraan kedalaman kerosakan. Parameter ini adalah suhu 

maksima pada kawasan kerosakan (Tmax-def), suhu purata pada sisi kanan kerosakan 

(Tavg-right), suhu purata  pada sisi kiri kerosakan (Tavg-left), susu purata pada sisi atas 

kerosakan (Tavg-top), dan suhu purata pada kawasan yang tidak rosak (Tavg-so). 

Rangkaian neural buatan (ANN) telah dilatih menggunakan parameter ini untuk 

pengiraan kedalaman kerosakan. Dua rangkaian neural Multi Layer Perceptron 

(MLP) dan Radial Basis Function (RBF) telah dilatih menggunakan pelbagai macam 

kedalaman kerosakan. ANN digunakan untuk mengira data kawalan dan data ujian. 

Hasil menunjukkan 100% ketepatan penganggaran kedalaman telah dicapai untuk 

data kawalan. Untuk data-data ujian, ketepatan adalah melebihi 90% untuk rangkaian 

neural MLP dan 80% untuk rangkaian neural RBF. Hasil ini membuktikan bahawa 

informatif parameter yang dicadangkan adalah berguna untuk pengiraan kedalaman 

kerosakan dan juga menunjukkan bahawa rangkaian neural dapat digunakan untuk 

interpretasi data termografi secara kuantitatif. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background 

 

 Infrared thermography (IRT) (Kaplan, 1993), (Maldague, 1993), 

(Gaussorgues, 1994), (Maldague, 2001) is one of many existing nondestructive 

testing techniques for preventive (PM) or predictive maintenance (PdM) (Mobley, 

1990), (Gardner, 1992), (Levitt, 2003). Among others, the popularity of IRT lies in 

its contactless, easy to interpret the thermal data, large area of inspection, and free 

from dangerous radiation. 

 

In the last few decades, IRT has gained much attention and has been 

successfully applied to the areas of electrical, mechanical, petrochemical, building 

and structures, material testing, industry, medical, and many others various 

applications (Kaplan, 1993) ranging from breast cancer detection (Qi et al., 2002) to 

SARS (severe acute respiratory syndrome) diagnosis (Wang et al., 2004), from 

aircraft inspection (D’Orazio et al., 2005) to buildings application (Lo and Choi, 

2004).  

 

 

1.1.1 Thermal Image 

 

The output data from IRT is temperature values which can also be viewed in 

an image form. This image is commonly known as thermal image or thermogram. 

Thermal image is captured using an infrared thermal camera or simply thermal 

camera (not to confuse with an infrared camera which is commonly applied for a 

night vision application). Essentially this device captures electromagnetic spectrum 

within infrared bands (0.78 – 1000 μm) (Figure 1.1). Therefore, unlike the intensity 
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image which lies within the visible light, a thermal image is a function of radiated 

energy of an inspected object (Kaplan, 1993). 
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Figure 1.1 Electromagnetic spectrum 

 

 

According to its working wavelength, thermal camera can be divided into two 

groups: short wave and long wave thermal cameras. A short wave (SW) camera 

operates in bands between 3 and 5 μm and a long wave (LW) camera operates in 

bands between 8 and 12 μm. The LW camera is of particular interest for measuring 

radiation from objects at room temperature (an example is for the detection of 

intruders by law enforcement agencies). The SW camera is best suited for warmer 

objects (an example is any process releasing CO2, such as combustion engines) 

(Maldague, 2001). 

 

Raw data captured by a thermal camera is in the form of temperature values. 

Thermal camera manufacturers usually have their own software to read this data and 

display them as a thermal image. When converting temperature values into thermal 

image, a pseudo-coloring or false-coloring technique (Chanda and Majumder, 2000) 

is used.  

 

Certain color level represents certain temperature values. In the software 

terminology, this color map is called palette. IRBIS and IRBIS Plus V2.2 (from 

InfraTec GmbH Dresden) has seven palettes: varioscan, varioscan printer,         

black  white, white  black, iron, blue  red, and stufen. While ThermaCAM 

Explorer 99 (from FLIR Systems) offers more various palettes: glowbow, grey, 

grey10, greyred, iron, iron10, medical, midgreen, midgrey, rain, rain100, rain900, 
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and yellow. Figure 1.2 shows a visible image along with its thermal image in several 

palettes from ThermaCAM Explorer 99. 

 

 

 
 

(a) (b) 

  

(c) (d) 

 

Figure 1.2 (a) Visible image with its thermal image (b) glowbow, (c) midgreen and 

(d) rain palette 

 

 

 

1.1.2 IRT Inspection Modes 

 

Based on how the thermogram is produced, there are two types of IRT: active 

and passive thermography. In active thermography, an external heat source is applied 

when capturing thermogram. One common heat source is a flash lamp or pulse 

generator. In a normal condition, the temperature gradient between the defective and 

nondefective (sound) area is undistinguishable. Immediately after applying the heat 

flash, the infrared thermal camera can record the difference between these two areas. 

In passive thermography, no external heat source is applied when capturing the 



4 

thermogram since the temperature difference between defective and sound area is so 

obvious already. Passive thermography is usually employed to a hot inspected object. 

Figure 1.3 shows configuration for these two modes of IRT. 
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Figure 1.3 IRT modes: (a) active thermography, (b) passive thermography 

 

 

1.1.3 IRT Applications in Petrochemical Industries 

 

One area where IRT has played an important role is in the petrochemical 

industries. This type of industry is categorized as a heavyweight industry with high 

investment cost, operational cost, and maintenance cost, along with high requirement 

for safety. Any problem found in running facilities should be detected earlier since 

breakdown of equipment will affect other equipments or even the entire operation of 

the plant. Maintenance should be scheduled properly and regularly because shutdown 

or startup equipment cannot be done suddenly as it is related to operational cost. 

Petrochemical site is a hazardous area, therefore entering this site should adhere to 

the safety standard. Because of these conditions the PdM and nondestructive 

evaluation (NDE) technique using IRT with its remote access capability have more 

advantageous over other PdM schemes.  

 

Several big petrochemical industry players such as BP Amoco (Nyholt, 

2000), Texaco (Ohliger and Alvarado, 2001) and Chevron Texaco (Ohliger, 2002) 

have taken the benefit of IRT technology. One example of a local petrochemical 

company that uses this technology in its predictive maintenance program is MTBE 

Malaysia Sdn. Bhd., located at Gebeng, Kuantan, Pahang, Malaysia. IRT inspection 
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in this company is still engaged by the third party service company. All thermal 

images used in this thesis have been provided by the courtesy of MTBE.  

 

Some other applications of IRT in petrochemical industries, refineries, or 

facilities are in the inspection of tanks (Sims, 2001), boilers (May, 2003), process 

vessels (Bonin, 2003), horsehead (beam) pump (Ohliger, 2003), lagged pipe (Willis, 

2004), furnace tube (LeClercq, 2003), refractory lined petroleum refinery equipment 

(Whitcher, 2004), and process heaters (Weigle, 2005). These various applications 

proved that IRT is a suitable tool for petrochemical industry inspection.  

 

 

1.1.4 Refractory Lined Equipments 

 

 Among inspections done in the petrochemical industries, inspection of 

refractory lined equipments is one of the popular applications of IRT. This is a 

passive thermography application. Pipes (Whitcher, 2004), cracking furnace  

(Weigle, 2005), boiler and incinerator are the equipments that use refractory 

materials in their construction. Figure 1.4, 1.5, and 1.6 show the visible images and 

their thermograms for the cracking furnace, boiler, and incinerator respectively. 

 

 

  
(a) (b) 

 

Figure 1.4 (a) Cracking furnace and (b) its thermogram 
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(a) (b) 

 

Figure 1.5 (a) Defective refractory boiler and (b) its thermogram 

 

 

 

  
(a) (b) 

 

Figure 1.6 (a) Defective refractory incinerator and (b) its thermogram 

 

 

1.1.5 Refractory Materials 

 

Refractories are a family of technical ceramics. They manage industrial 

process heat, defying thermal and mechanical abuse and high temperature chemical 

attack (Carniglia and Barna, 1992). Refractories are stable materials that retain their 

strength at high temperatures, have resistance to abrasion and to furnace gases, and 

have poor thermal conductivity (good heat-insulating capacity) (Trinks et al., 2004). 

The commonest duty of refractory is to contain high temperatures: to erect a solid 

barrier between hot inside and ambient tolerable outside (Carniglia and Barna, 1992). 

 

Furnace walls are built from insulating refractories and encased in a steel 

shell to reduce flow of heat to the surroundings, and loss is further reduced by the 
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insertion of fiber block between the insulation refractories and the steel casing 

(Trinks et al., 2004).  

 

Modern firebrick (from fireclay, kaolin) and silica brick are available in many 

compositions and many shapes for a wide range of applications and to meet varying 

temperature and usage requirements. High-density, double-burned, and super-duty 

(low-silica) firebrick have high-temperature heat resistance, but relatively high heat 

loss. Thus they are usually backed by a lower density insulating brick. 

 

 

1.1.5.1 Monolithic Refractory 

 

Monolithic refractories are classified by physical properties, consistencies, 

and grain sizing (e.g., powder, paste, clay). Construction methods have been 

developed to suit various installation procedures such as pouring, troweling, gunning, 

ramming, patching, blowing, slinging, vibrating, spraying, foaming, or injecting. The 

castable (poured), plastic (rammed), or blown (sprayed, foamed) forms of refractory 

materials are generally superior to layed-up, dipped refractory brick construction 

because they are less prone to leak, and they provide extended furnace life 

(Griswold, 1946), (Chesters, 1973). 

 

Monolithic refractories can be transferred by pumps over long distances and 

in large quantities for pouring in position. Because the weight of monolithic 

refractory in a furnace is held by a large number of supports, small or large areas can 

be repaired or replaced wherever necessary without affecting the surrounding area. 

Monolithic refractory materials adhere well to surrounding materials. 

 

Monolithic refractories are suitable for walls that must be gas tight. The 

weight of the furnace itself is sustained by supports that help the monolithic material 

adhere to the shell and prevent gas leakage. 

 

 Monolithic refractories have lower thermal expansion than most refractory 

bricks. Whatever small expansion does occur can usually be absorbed by the 

supports. Therefore, unlike refractory bricks, monolithic refractory walls do not 

require clearances for thermal expansion. Clearances required for brick construction 

may allow passage for furnace gas leaks out or air into a furnace. The superior 
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sealing capability and reduced expansion of monolithic refractories make them 

suitable for higher furnace pressures and temperatures. Among the reasons for the 

growing use of monolithic refractories are versatility of the material and the 

flexibility of the self-supporting anchor system (Carniglia and Barna, 1992). 

 

 

1.1.5.2 Fiber Refractory 

 

Refractory materials can be melted, spun, and blown into fiber strands similar 

to ‘wool’ or ‘blanket’ insulations. They are used in many medium- and low-

temperature furnaces and oven furnaces, and for outer layers in multilayered 

refractory walls. Because of all their small air spaces, they are much better insulators 

than solid refractories, but they are more fragile, less durable, and more difficult to 

install so that they do not settle, shrink, or otherwise lose their good insulating 

property (Carniglia and Barna, 1992). 

 

 

1.1.6 Refractory Fail 

 

At very high temperature, refractory become more and more porous, allowing 

the hot materials inside to attack the chemistry of the refractory. Over the time, this 

attack reduces the surface strength of the refractory and causes their melting 

temperatures to be lowered which may then cause the spalling. Spalling is defined as 

the breaking or cracking of refractory brick in service, to such an extent that pieces 

are separated or fall away, leaving new surfaces of the brick exposed (Griswold, 

1946).  

 

In Figure 1.5 and 1.6, the defective area or hot spots are indicated with bright 

color in thermogram. The hot spot temperature in Figure 1.5(b) is around 264.4
o
C, 

and in Figure 1.6(b) is around 300.0
o
C. As reported (MTBE, 2007), these 

temperatures are very critical and signs to refractory failure. These cracks will make 

the heat loss by conduction through the furnace walls and then by radiation and 

convection from outside furnace surface, in which may have a significant effect on 

the furnace economy (Trinks et al., 2004). 
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Another unwanted possibility is the refractory failure which can cause 

catastrophic equipment damage, unscheduled or early turn-around and pose serious 

safety concerns for employees. By considering all these possibilities, it is critical to 

know current condition of the furnace walls and early warning of refractory 

breakdown indicated by hotspot or abnormal temperature distribution at certain 

location (Trinks et al., 2004). 

 

 

1.1.7 Heat Loss from Wall Surface 

 

Refractory walls are frequently constructed from two or more layers of brick 

through which heat flows in series, escaping to the outer surface by convection and 

radiation. Figure 1.7 shows common wall layers for a boiler. In the modern boiler 

wall, layers 1 and 2 are usually composed of fiber blanket materials. 

 

Besides thickness, the thermal conductivities of the component layers of 

brick, surface temperatures, and surface coefficients of convection and radiation are 

all interrelated with heat loss (Griswold, 1946), (Doležal, 1961). Both convection and 

radiation coefficients increase with temperature, radiation more rapidly (Cone, 

1980). 

 

 Convection heat losses occur when furnace gases exit around                  

doors/peepholes and through crack or dropout load discharge chutes, sometimes 

burning as they go but always carrying away heat. This kind of losses may involve 

cold air leaking into a furnace as well as hot gases leaking out. The losses from cold 

air in-leakage are usually larger than those from hot gas out-leakage. Cold air in-

leakage occurs if the opening is at a level where the pressure inside the furnace is 

less than the pressure outside at the same elevation, thus sucking ‘tramp air’ (excess 

air) into the furnace through any cracks or openings. This cold air in-leakage may 

chill some of the load pieces, turning them into rejects, or else requiring a longer 

heating cycle to achieve good temperature uniformity, and therefore using more fuel 

(Trinks et al., 2004). 
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Figure 1.7 Boiler wall layers 

 

 

1.2 Motivation 

 

In IRT technology, thermal data or thermal image (thermogram) is the main 

output. In the current practice, the interpretation of the thermal image in most 

petrochemical applications is done manually by human operator. Most of the data are 

analyzed qualitatively by human vision system. This report thus proposes an 

automatic way for interpreting the thermogram from refractory lined equipments or 

facilities in term of defect depth estimation. 

 

 

1.3 Objective 

 

 The objective of this work is to simulate the temperature behavior on the 

front wall due to the existence of back wall defect and to develop an algorithm that 

can automatically estimate the defect depth as depicted in thermal images. Artificial 

neural network is used for this purpose. For verification purpose, the developed 

algorithm and its implementation are tested with trained and untrained data.  

 

 

 

 

 

 

 

 



11 

1.4 Scope of Work 

 

 This work is limited to the following scopes: 

o Thermal data used is in the form of temperature values for defect 

characterization. 

o Thermal image is obtained from passive thermography scheme meaning that no 

time dependency from one thermal image to another, hence no thermal contrast 

computation is needed. 

o Defect to be modeled and analyzed will be spalling defect. 

 

 

1.5 Report Organization 

 

 The report is organized as follows. Chapter 2 reviews some existing 

technique for defect depth estimation for infrared thermography applications. 

Chapter 3 discusses the numerical modeling for passive thermography for the use of 

defect simulation and temperature behavior study. The proposed informative 

parameters are discussed as well. Experimental results for each of the proposed 

techniques for verification purposes are presented in Chapter 4. The last Chapter 5 

summarizes and concludes the report and gives recommendation for future work. 



 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 Overview 

 

 This chapter discusses the current trend of infrared thermography (IRT) 

applications. The existing methods for numerical modeling of IRT-based approach 

and defect detections and characterizations are reviewed. The proposed method for 

defect characterization in passive thermography application is briefly described as 

well.  

 

 

2.2 Numerical Modeling in IRT 

 

 In IRT, numerical modeling is a precious tool. It can provide limits to the 

effectiveness of IRT technique and also the possibility of considering different defect 

geometries and determining their detectability without the expense of making and 

testing the corresponding specimens (James et al., 1989). 

 

 Other purpose of numerical modeling in IRT is to simulate the real situation 

in order to obtain the simulated thermogram from that simulation (Conner, 1998). 

This thermogram can be used to test the developed algorithms (mainly related to 

image processing) in case of the unavailability of the thermogram from the real 

object, for instance due to the difficulties to obtain such thermal data. 

 

 From modeling tools perspective, there are two common methods for 

numerical modeling in IRT and these are the finite difference method (FDM) 

(Özişik, 1994), (Croft and Lilley, 1977) and the finite element method (FEM) 

(Segerlind, 1984), (Rao, 1989), (Kattan, 2003), (Lewis et al., 2004), (Akin, 2005). 

FDM is simple and easy to implement but it fails when handling irregular geometry 
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or anisotropic materials. FEM although is quite complex it can work elegantly on 

deformed shapes and non-homogeneous materials (ElShayeb and Beng, 2000). In 

addition it also improves the accuracy and efficiency (Huebner et al., 1995). 

 

 FEM has been successfully applied to simulate the real world problems. 

Sukirman (1994) used FEM for solving a fully coupled problem in petroleum 

reservoir engineering. Sabir and Mousa (1999) utilized FEM based on cylindrical 

and conical curved shell elements for analysis of storage tanks. Andreev and 

Harmuth (2003) simulated the thermo-mechanical behavior and failure of ceramic 

refractory materials for the lining furnaces and vessels of the steel industry. A 

simulation of the thermo-mechanical behavior of the refractory lining of a blast 

furnace was conducted by Gruber et al. (2004). Ghojel and Ibrahim (2004) simulated 

double-channel induction furnaces to study thermal stresses in the refractory lining. 

The simulation results showed a correlation between simulated data with actual data. 

 

 In IRT, the application of FEM is currently widely used. Although in the 

early years FDM was usually employed for heat behavior study (Buglia and 

Brinkworth, 1958), (Charles and Wilson, 1980), (Saintey and Almond, 1995), 

(Darabi, 2000). The trend in the last few years shows that FEM is a common 

alternative used by researchers (Chowdhury, 2004), (Krishnapillai et al., 2005), 

(Krishnapillai et al., 2006). 

 

 

2.2.1 Numerical Modeling Tool  

 

 One can choose two alternatives when building the numerical model in IRT: 

firstly, by self-formulation of the model and then writing the computer codes for this 

model, or secondly by using existing commercial software available in the market.  

 

Among existing commercial FEM software, COSMOSWorks
TM

 (SRAC, 

2004), (Kurowski, 2006) is one of the common tools used today for solving the field 

problems. Its advantage is laid on its visual appearance that can make the modeling 

task easier. Its integration with SolidWorks
®

, a design automation software, makes 

the modeling and simulation jobs more efficient and effective. This thesis takes the 
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advantages of these software packages for numerical modeling in passive 

thermography.  

 

 

2.2.2 Informative Parameters in IRT 

 

 The informative parameters in thermography are any parameters that can be 

used to characterize the properties of subsurface defect based on their behaviour on 

the other side of the outer surface. These parameters can be a time constant or any 

magnitudes such as temperature values that can be related with the defect existence. 

 

 Most investigations for informative parameters derivation were devoted to 

active IRT. Saintey and Almond (1995) used 2-D FDM modelling to simulate the 

conductive heat flow containing a circular crack-like defect by means of transient 

thermography. It was shown that the thermal contrast and FWHM (full-width at half 

maximum) have relations with size, depth, thermal resistance, and material properties 

of defect. 

 

Saintey and Almond (1997) also used five ‘measurable’ parameters to train 

artificial neural network for defect depth estimation. These informative parameters 

were the time image contrast reaches half its maximum, the time image contrast falls 

to half its maximum, image FWHM at half rise time, image FWHM at half fall time, 

and the maximum relative contrast attained by the image.  

 

Plotnikov (1998) discovered that time of peak slope tps is an informative 

parameter for defect depth estimation. Other parameters such as the amplitude, 

phase, maximum thermal contrast (Cmax), and the maximum time tmax (when Cmax 

occurred) were also sensitive to depth variation. It was concluded that the amplitude 

and phase parameters have non-homogeneous character and were not applicable for 

defect depth extraction. This study was dedicated to transient thermography. 

 

Plotnikov and Winfree (2000) focused their research on defect depth 

estimation in composite aircraft components using transient thermography. Four time 

parameters were studied: time when thermal contrast C(t) crosses a specified 

threshold level tdiv, time when the first derivative of thermal contrast reaches its 

maximum tps, time interval corresponding to the contrast reaching 0.72 of the 
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maximum contrast value t07, and time when thermal contrast reaches its maximum 

tmax. It had been found that tdiv and tps were approximately independent of flaw size 

for shallow defects and differed significantly only for deeper defects. In contrast, tmax 

and t07 have a large dependence on flaw size for shallow depths. 

 

Maierhofer et al. (2004) did numerical simulation to study the influence of 

material and geometrical parameters on impulse thermography for buildings 

materials. Three parameters were studied: concrete cover, void size, and thermal 

properties of materials. These parameters influenced the thermal signature behaviour 

(maximum temperature difference), therefore they were informative parameters in 

this study.  

 

Chowdhury (2004) used FEM to investigate the behavior of temperature in a 

concrete slab in term of impulse thermography. The defect was simulated as a large 

void. There were two 3-D models used in their study. The first model had length and 

width 0.50m and thickness of 0.20m. The void defect size was 0.10m long by 0.10m 

wide and by 0.10m thick. The voids were located at 2, 4, 6, and 8 cm from the top of 

the surface. The second model consisted of 1.0m long by 1.0m wide by 0.5m thick 

concrete slab. It had voids of 0.20m long by 0.20m wide by 0.20m thick and located 

at 2, 4, 6, 8cm from the top of the surface. Figure 2.1 shows these models. Heat flux 

was applied to the top surface. Adiabatic conditions were assumed for the other 

surface. 

 

Their study had shown that the thermal signal (ΔT = Tvoid - Tbackground) and 

contrast (
backgroundT

T
C




 ) were dependent on the void size, thickness, and depth. 

Another important issue shown from this result was that the numerical simulation 

result using FEM had good compromise with experimental results of the physical 

problem. 

 

 Krishnapillai et al. (2006) did FEM modeling in terms of pulse thermography 

to study composite subsurface defects. They showed that there were dependencies 

between defect depth, thickness, and size with the maximum temperature difference 

on the surface. 
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(a) (b) 

 

Figure 2.1 Concrete slab: (a) first model, and (b) second model 

 

 

2.3 Existing Defect Characterization Techniques 

 

Few efforts have been made for defect characterization in infrared 

thermography. Based on literature survey up to this thesis writing, most of these 

efforts have been devoted for active thermography. Meaning that the temporal 

property (time) is one of the component that playing role for characterization 

purpose. But for defect sizing in passive thermography, only spatial properties are 

considered. 

 

Almond and Lau (1994) proposed analytical treatment for defect sizing of 

mild steel by transient thermography. The full width at half-maximum (FWHM) was 

employed as a means of circular defect sizing (Figure 2.2). They suggested that for 

10mm defect diameter, the following relation should be used:                           

FWHM = [10 – 1.08(t)
1/2

] mm. 

 

Saintey and Almond (1995) also recommended in using FWHM (Figure 2.2) 

for defect sizing in transient thermography. They showed that defect size has a 

relation with FWHM and confirmed that shallow defects have FWHMs that change 

more rapidly, and by a larger amount, than deeper defects. Sizing of such defects is 

therefore more difficult than might be imagined. 
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Figure 2.2 Schematic diagram of maximum contrast and FWHM along a line 

passing through the image center 

 

 

 

Saintey and Almond (1997) employed ANN for characterization of defect 

size and depth from transient thermography data. The NN was trained on a 

comprehensive range of finite difference modeling results and is shown to provide a 

simple means of interpreting practical experimental measurements.  

 

Numerical finite-difference modeling has been employed in a detailed 

investigation of spatial and temporal dependences of transient thermography images 

on defect size, depth and other parameters. The model was formulated in cylindrical 

polar coordinates, using the alternating direction implicit (ADI) technique (Croft and 

Lilley, 1977) for the solution of the resulting finite difference equations. The 

modeled crack defects were circular, and parallel to the surface of the material in 

which they were embedded. The crack defect was modeled in mild steel as a contact 

resistance between two layers of nodes. 

 

Two parameters were studied: the peak image contrast and the full-width at 

half maximum contrast (FWHM), see Figure 2.2. They showed that defect size and 

depth have dependence on these two parameters. From here, they proposed the 

followings five ‘measurables’ as combination of image contrast, FWHM, and time: 

(1) the time image contrast reaches half its maximum value, (2) the time image 

contrast falls to half its maximum value, (3) image FWHM at half rise time,           

(4) image FWHM at half fall time, and (5) the maximum relative contrast attained by 

the image. NN with the architecture as shown in Figure 2.3 was used for training 

using back-propagation algorithm. They obtained average absolute error of 2.89% 

for defect size estimation and 2.34% for defect depth estimation. 
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Figure 2.3 MLP-NN as size and depth estimator for mild steel material 

 

 

Manduchi et al. (1997) used NN for defect characterization by means of a 

transient thermography. The normalized contrast 
)(

)(

)(

)(
)(

refs

s

refd

d

tT

tT

tT

tT
tC   was 

selected for NN inputs. The input vectors for the NN are composed of the sampled 

values of triangular functions ranging from 0 (for x=0 and x=1) and 1 (for some x in 

the range [0,1]). A triangular function represents in fact a raw approximation of the 

time evolution of the normalized contrast. They proposed two NNs for this purpose. 

The first NN consists of 40 input units, 10 units in the hidden layer and a single 

output unit. The second NN consists of 40 input units, 30 units in the hidden layer, 

and 20 output units to produce a Gaussian function centered in the vertex position. 

 

Plotnikov (1998) proposed the second partial derivative of the contrast 

)(

)()(
)(

tT

tTtT
tC

soa

soadefr


  to estimate the defect size, where Tdef is temperature above 

the defect and Tsoa is temperature above the defect free (sound) area. The parts of the 

contrast curve where 0
2

2






x

C
, define the size of the defects. For depth estimation in 

transient thermography, he investigated five informative parameters: the maximum 

value of the thermal contrast Cmax, the when this maximum occurs tmax, the time of 

the peak slope tps of the thermal contrast curve, the amplitude, and the phase of the 

discrete Fourier transform of the temperature evolution after the heat injection. He 

concluded that tps is a steady characteristic for depth estimation and proposed this 
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property by taking square root of the time and this approach is limited to the depths 

less than a half of the plate thickness. 

 

Maldague et al. (1998) studied defect depth using MLP-NN with back-

propagation in pulsed phase thermography (PPT). NN with 32 inputs neurons, 8 

neurons in the first hidden layer, 21 neurons in the second hidden layer, and 1 output 

neurons was used (Figure 2.4). The inputs were 32 phase values (f) of aluminum 

material. NN was trained with 0.04 to 10mm defect depth.  It was observed that for 

depth smaller than 3mm, estimation error of NN is very high (100% error at 2.3mm 

depth). 
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Figure 2.4 MLP-NN as depth estimator for aluminium material 

 

 

Plotnikov and Winfree (2000) in their work for transient thermography 

studied four informative parameters for estimation of defect depth. The time when 

C(t) crosses a specified threshold level tdiv, the time when the contrast curve has the 

peak slope tps, the time when the thermal contrast reaches its maximum tmax, and the 

time interval corresponding to the contrast reaching 0.72 of the maximum contrast 

value t07. To characterize the defect depth, the following relation was used: 

ctbtad charchar  , where tchar is one of the temporal informative parameters 

and a, b, and c are predetermined constants. From their research also, some 

properties of tchar were studied. For example, it is difficult to obtain a depth profile 

based on tdiv parameter for shallow (depth in less than 2mm) defects. The depth 

estimation based on tmax parameter has a noticeable crater-like surface for shallow 

defects. The deep (depth is greater than 6mm) defects cause noisy profiles estimated 
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from tps, while for other parameters, deep defects result in more rounded estimated 

profiles for the defect. 

 

Darabi (2000) used ANFIS (Adaptive Network-based Fuzzy Inference 

System) (Jang et al., 1997) for defect depth estimation. For training, seven 

informative parameters were used for inputs, i.e. half-rise contrast –hCmax, maximum 

contrast Cmax, half-decay contrast +hCmax, half-rise contrast time 

max21 Ct maximum 

contrast time, maximum contrast time tCmax, and half-decay contrast time 

max21 Ct . The 

output was the depth. Two bell-shape membership functions were assigned for each 

input, that made ANFIS had 64 rules. It was shown that ANFIS was able to estimate 

the depth, with error 8.66% (or 91.34% correct estimation). 

 

Vallerand and Maldague (2000) proposed a method for characterization of 

defect thickness for aluminum corrosion using statistical processing method by 

means of pulsed infrared thermography (PIRT). This technique has two phases: 

learning and analysis phases. In the learning phase, the temperature images with 

known flaw including background (sound area) are obtained, and the mean and 

variance of these data are calculated. In the analysis phase, at each time step, the 

probability of each pixel being any of the known flaw or background is computed 

with Gaussian probability along with its means and variance. All probabilities of 

being a given known defect or background at each time step are multiplied together 

for obtaining the global probability of each pixel. The winning category corresponds 

to the largest probability value. This identifies the unknown pixel location as the 

more probable known flaw. They reported also that this statistical technique when 

using phase data had a better performance compared to perceptron and Kohonen 

neural network. They also showed that a better performance can be achieved if two-

step method is used, e.g. flaw detection with phase data and flaw characterization 

with amplitude data. 

 

Maldague (2001) used the gradient of the contrast image Cmax for defect 

sizing. From this gradient image |G|, the defect shape was extracted. He showed the 

procedure to estimate the true size of the defect by calibrating each pixel size respect 

to the apparent size of field of view with the actual thermogram dimension.  
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Darabi and Maldague (2002) used simulated data from 3-D finite difference 

modeling to detect and to estimate the depth of the delamination defect of CFRP 

(carbon fiber reinforced plastic) material. The running contrast 

)(

)()(
)(

tT

tTtT
tC

soa

soadefr


  as proposed by Plotnikov (1998) was used to train NN for as 

defect detector and depth estimator. Thus, two different NNs were used for defect 

detection and depth estimation. 

 

For defect detection, three layers MLP with 30 input neurons, 15 neurons in 

hidden layer, and 1 output neurons was used (Figure 2.5). This network was trained 

using 130 input-output pair vectors (105 input vectors were running contrast curves 

over defect areas and 25 were over sound area) extracted from the samples which 

contained air delamination defects at different depths and configurations. They 

claimed 96.8% of correct detection result for this network. 
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Figure 2.5 MLP-NN as defect detector for CFRP material 

 

 

 For defect detection, as before, three layers MLP (Figure 2.6) with 20 input 

neurons, 15 neurons in hidden layer, and 15 output neurons was trained using 140 

input/output vectors. The input vectors are contrast vectors as for the defect detector, 

and the output vectors are defined as pixel depth (expressed in mm). They showed a 

satisfied result for depth estimator. 

 

 



22 

1

2

15

2




20 inputs 15 neurons 15 outputs

)(1 tCr

)(2 tCr

)(3 tCr

)(20 tCr

1

15



depth #1

depth #2

depth #15

 

 

Figure 2.6 MLP-NN as depth estimator for CFRP material 

 

 

Ludwig and Teruzzi (2002) proposed the modified version of using FWHM 

for defect sizing of the circular defect with low diffusivity materials by means of 

transient thermography. They showed that the lateral heat transfer influences the 

FWHM of the thermal contrast. 

 

Dufour (2005) proposed one dimensional gradient for detecting defect edges 

in longitudinal and transversal direction. The edge gradients are 

)1()1()(  xTxTxg  and )1()1()(  yTyTyg  for transversal and 

longitudinal directions respectively, where T is the temperature value. The defect size 

in each direction is the distance between the maximum and the minimum gradients in 

that direction. 

 

 

2.4 The Proposed Defect Characterization Technique 

 

All the discussed techniques were devoted in the context of active 

thermography, except as proposed by Dufour (2005) in which this non-NN technique 

can be used for passive thermography application. It had been demonstrated in the 

previous reports that NN had been successfully applied for defect characterization in 

active thermography. Hence, this thesis is also motivated to use NN paradigm for 

defect characterization in passive thermography application.  

 

The NN-based defect characterization for passive thermography is devoted 

for furnace wall application. Many models along with its defective refractory wall 
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are then built and with this data simulated using FEM. The MLP-NN is trained using 

the proposed informative parameters as the inputs and corresponding defect’s depth 

as the outputs. For defect characterization of a test thermal image, the defect is 

detected with the proposed technique and localized using windowing technique. The 

informative parameters are then extracted and pass to the MLP-NN for 

characterization. 

 

 

2.5 Summary 

 

 This chapter has discussed on the common modeling technique for infrared 

thermography application. Current research for defect characterizations is also 

elaborated. The trend in employing numerical modeling for thermography and its 

importance has been discussed in the chapter beginning. The proposed technique for 

defect depth estimation based on MLP-NN has been introduced briefly. 

 

 

 



 

 

 

CHAPTER 3 

 

 

ESTIMATING SPALLING DEFECT DEPTH 

 

 

3.1 Introduction 

 

Furnace linings may be single or multilayer form. Single layer usually suffices for 

furnaces operating at temperatures below 760
0
C. Lining for modern high-temperature 

furnaces are almost always multilayer. The high temperature layer, which forms the interior 

surface of the refractory, referred to as ‘hot-face’, is backed by one or more layers of less-

duty refractory and/or insulating materials, and finally the outer metal shell or ‘skin’ (cold-

face) (Trinks et al, 2004).   At temperatures above 2000
0
F (1367

0
C), refractories become 

more and more porous, allowing the hot furnace gases to attack the chemistry of the 

refractory. In time, this attack reduces the surface strength of the refractories and causes their 

melting temperature to be lowered (Trinks et al, 2004). 

 

3.2 Spalling Defect 

 

Griswold (1946) mentioned that the most common defect which occurred within 

refractory wall is the spalling defect which is the breaking or cracking of refractory brick in 

service, to such an extent those pieces are separated or fallen away, leaving new surfaces of 

the brick exposed. Since the crack or spalling defect within a refractory wall can cause heat 

losses to the external environment which can cause the furnace to unable to function at its 

optimum temperature, decrease in its efficiency, and increase in its operating cost. Therefore, 

the early sign of the defect existence should be known promptly. Jaeger (2000) proposed the 

impact-echo method while Maldague (2001) suggested infrared thermography (IRT) 

technique to assess the wall integrity. IRT uses the distribution of surface temperatures to 

assess the structure or behavior of what is under the surface. Thermal infrared camera is 

employed to record the temperature distribution which is called as thermal image or 

thermogram  (Gaussorgues, 1994).  
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IRT has gained its popularity in the last few decades over other predictive 

maintenance techniques due to its many advantages. Being contactless, easy interpretation, 

large inspection coverage, and free from dangerous of radiation are among some of them. 

Above all, IRT has been successfully applied to solve many real world problems. Based on 

how the thermogram is produced, IRT has two approaches: active thermography, where an 

external heat source is needed to stimulate the materials to be inspected, and passive 

thermography, where external heat source is not needed, in which the test materials or 

structures are naturally already at a different (often higher) temperature than ambient. 

 

3.3 Modeling of Spalling Defect 

 

In IRT, numerical modeling is a precious tool, especially since it can provide limits to 

the effectiveness of the thermal nondestructive testing (TNDT) technique and also the 

possibility of considering different defect geometries and determining their detectability 

without the expense of making and testing the corresponding specimens  (James et al, 1989).  

Other purpose of numerical modeling in IRT is to simulate the real situation in order to obtain 

the simulated thermogram from that simulation (Conner, 1998). This thermogram can later be 

used to test the developed algorithms (mainly related to image processing) in case of the 

unavailability of the thermogram from the real object, for instance due to the difficulties to 

obtain such thermal data.       

 

From modeling tools perspective, there are two common methods for numerical 

modeling in IRT that are finite difference method (FDM) (Özişik, 1994; Croft and Lilley, 

1977) and finite element method (FEM) (Segerlind, 1984; Rao, 1989). FDM is simple and 

easy to implement but it suffers when handling irregular geometry or anisotropic materials. 

FEM although is quite complex but it can work elegantly on deformed shape and non-

homogeneous materials (ElShayeb and Beng, 2000), can improve accuracy and efficiency 

(Huebner et al, 1995). 

 

Most common technique nowadays in IRT is application of FEM. Although in the 

early years FDM was usually employed for heat behavior study (Saintey and Almond, 1997), 

but in the last few years, the trend shows that FEM is common alternative used by researchers 
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(Krishnapillai et al, 2006). Hence, this report takes the advantage of FEM for modeling the 

spalling defect. 

 

Consider a typical four layers furnace wall in   Figure 3.1(a). The thermal properties of these 

layers are given in Table 3.1, where k is the thermal conductivy and  is the bulk density.  
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(b) 
                             

                 Figure 3.1: Typical four layers furnace wall: (a) side-view, and (b) front view 

 

The spalling defect is simulated as a void occurred within refractory firebrick wall or the hot-

face wall. The defect depth is defined as its depth from the outer wall (cold-face steel casing 

wall) or measured as the difference between the total lengths of the layered walls with the 

defect thickness.  Figure 3.1(b) shows a portion of simulated wall with length of 80cm and 

width of 40cm. In this figure, the defect is located in the center of the wall model. Some 

terms introduced in this report are also shown in the figure. 
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Table 3.1: Thermal properties 

 
Materials k 

(W/m.K) 
 (kg/m

3
) 

No. Name 

1 

2 

3 

4 

Firebrick 

Insulation 

Fiber block 

AISI 316 Steel 

1.436 

0.225 

0.116 

16.3 

2300 

1200 

430 

8000 

 

 

In order to save the processing time, coarse elements were used in meshing process. 

Figure 3.2 shows the meshing result with 4cm element size of the modeled wall. Figure 3.3(a) 

shows the temperature distribution on the outer steel casing wall and Figure 3.3(b) shows the 

temperature distribution over the defect area along the center line of the wall. From this 

figures it is clear that due to the existence of the subsurface defect, an elevated temperatures 

are observed over the defect area as reflected on the outer surface wall. From the figure, the 

maximum temperature occurred on the center of the defect and gradually decreases near the 

defect edges. 

 

 
 

Figure 3.2: Model after meshing operation 
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Figure 3.3: (a) Temperature distribution on the outer surface wall, (b) temperature distribution over 

the defect area along the center line of the wall for defect thickness 20cm and 10cm with defect size 

15cm15cm 
 

3.4 Informative Parameters 

 

Figure 3.3(b) clearly shows that temperature distributed on the outer wall surface has 

a relation with defect depth (thickness). It was also confirmed by the previous research 

(Heriansyah and Abu-Bakar, 2007) that there is strong interdependence between the defect 

depth and the maximum temperature over the defect area (Tmax-def) as depicted in a thermal 

image of furnace wall. 

 

If the spalling defect shape is uniform then due to the symmetry property of the finite 

element model, this maximum value will always be the peak value or at the defect center as 
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shown in Figure 3.3. Figure 3.4 shows the relationship between the defect depth and 

maximum temperature value within defect area. It is obvious that deeper the thickness of the 

defect or shallower the defect depth from the outer surface will increase the temperature 

value at that surface. 
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Figure 3.4: Relation of defect depth with maximum and average temperature within defect area and 

at right and top edges.  

 

From Figure 3.3, it shows that from the peak, the temperature gradually decreases to 

the model edge. Therefore, at the defect edge (left, right, top, and bottom) the temperature is 

smaller than at the peak. Again, due to the symmetry property, for a uniform spalling at the 

left and right, and top and bottom of the defect edge will always have equal temperature 

values. Figure 3.4 shows the relation of defect depth with temperature at the right and top 

edge of the defect. In this report, the average value of the right edge (Tavg-right) and the 

average value of the top edge (Tavg-top) are used as the informative parameters. 

 

As the temperature increases due to the defect depth, the average temperature over 

defect area (Tavg-def) reflected at the outer wall will also increase as shown in Figure 3.4. The 

same situation is also observed for the average temperature on the sound (non-defective) area 

(Tavg-so) as shown in Figure 3.5. These figures also illustrate that the relation between the 

defect depth and these informative parameters (Tmax-def, Tavg-right, Tavg-top, Tavg-def, Tavg-so) tend to 

have a linear property. Note that all of these parameters were derived from a fix defect size 

and the defect is situated at the center of the wall model (Figure 3.1(b)). 
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Figure 3.5: Relationship between the defect depth and average temperature within sound area. 

 

Figure 3.6 shows the wall model with 15cm15cm defect size and 20cm of defect 

thickness, and the defect is located at the top-right corner of the wall model. Figure 3.7 

shows the temperature distribution at the outer surface wall and at the center line. It is clear 

that due to nonsymmetrical position of the spalling defect, the temperature distribution 

reflected at the outer surface wall is nonsymmetrical as well. Another fact also confirmed that 

elevated temperatures occurred over the defect area and defect depth has relation with 

temperature values. The temperature increases as the defect depth decreases (or defect 

thickness increases). 
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Figure 3.4: Front view of spalling defect located at the top-right corner of the wall model. 
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Figure 3.5: (a) Temperature distribution on the outer surface wall for the spalling defect located at the 

top-right corner of the wall model, (b) temperature distribution over the defect area along the center 

line of the wall for defect thickness 20cm and 10cm with defect size 15cm15cm. 
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3.5  Depth Estimator 

 

Artificial neural network (ANN) is a simple abstraction of biological neurons. 

Networks of these artificial neurons do not have a fraction of the power of the human brain, 

but they can be trained to perform useful functions (Hagan et al, 1996). 

In recent years many researchers have used ANN to solve complex nonlinear real 

world problems. ANNs are potentially powerful, robust and adaptive tools for detecting and 

classifying targets under changing signature or environmental conditions (Darabi and 

Maldague, 2002). These capabilities have motivated some researchers to employ ANN to 

solve their thermography problems. Saintey and Almond (1997), used finite difference 

modeling to generate input training data for neural network interpreter to determine defect 

size and depth. Darabi and Maldague (2002), did a similar approach in which they used three 

dimensional heat transfer models to generate synthetic data to train neural network depth 

estimator by means of active thermography. All existing depth estimation based on ANN 

(Saintey and Almond, 1997; Darabi and Maldague, 2002; Maldague et al, 1998; Manduchi et 

al, 1997; Vallerand and Maldague, 2000; D’Orazio et al, 2005) were designed for active 

thermography application. This report uses numerical method to simulate the spalling defect 

behavior in term of temperature distribution and to employ this simulated as the input 

parameters to train ANN for defect depth estimation in a passive thermography scheme.   

 

In this report, a multilayer perceptrons (MLP) and radial basis function (RBF) neural 

networks were trained to have the capability in the estimation of defect depth which may 

occur within the furnace refractory. MLP was selected as depth estimator since it is a 

common ANN paradigm used for various applications with satisfactory results (Jain and 

Fanelli, 2000). While, RBF was selected as the comparator, actually is not really ‘to compare’ 

but as an alternative way when using ANN approach for this specific application.  

 

As already shown in the previous section, the maximum temperature over the defect 

area (Tmax-def), the average temperature at the right edge (Tavg-right), the average temperature at 

the top edge (Tavg-top), the average temperature within defect area (Tavg-def), and the average 

temperature within the sound area    (Tavg-so) are indeed related to the spalling defect depth. 

Therefore, these five parameters are employed in the ANN training for spalling depth 



33 

 

estimation. These parameters are extracted from the numerical modeling as discussed in the 

previous section.  

 

For the training purpose, the following defect depths are used: 34.5, 33.5, 32.5, 31.5, 

30.5, 29.5, 28.5, 27.5, 26.5, 25.5, 24.5, 23.5, 22.5, 21.5, 20.5, 19.5, 18.5, 17.5, 16.5, and 15.5 

cm. Again, note that defect depth in our case is measured from the outer face (steel) wall 

(refer to Figure 3.1(a)). 

 

3.5.1 Multilayer Perceptrons 

 

Multilayer feedforward networks (or commonly referred as multilayer perceptrons) is 

one of important class of neural networks. It consists of a set of sensory units (source nodes) 

that constitute the input layer, one or more hidden layers of computation nodes, and an output 

layer of computation nodes (Haykin, 1994). Figure 3.8 shows the architecture of an MLP 

network. Popular algorithm to train an MLP network is back propagation algorithm. 

 

Each nodes connected by a quantity called weights. The basic purpose of training a 

network is to optimize weights corresponding to a particular set of input-output training 

patterns. The response at a node is calculated by evaluating the contributions from all the 

input nodes through a nonlinear mapping function. 

 

 

 
 

Figure 3.6: MLP network 
 

 

 

3.5.2 Radial Basis Function 

 

The construction of an RBF network in its most basic form involves three entirely 

different layers. The input layer is made up of source nodes (sensory units). The second layer 

is a hidden layer of high enough dimension, which serves a different purpose from that in a 
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MLP. The output layer supplies the response of the network to the activation patterns applied 

to the input layer. The transformation function from the input space to the hidden-unit space 

is nonlinear (Gaussian), whereas linear for hidden-unit space to the output (Haykin, 1994; 

Demuth and Beale, 2001). Figure 3.9 shows the architecture of a RBF network. 

 

 

 
 

Figure 3.7: RBF network 
 

 

 



 

 

 

CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

4.1 Overview 

 In this chapter, results of depth estimation from using two classifiers as proposed in 

Chapter 3 (MLP and RBF) will be presented. For the purpose of training, 20 defect samples 

of different depths (mentioned in Chapter 3) were employed. The size of the defect was set to 

15cm x 15 cm. The defect samples were simulated using SolidWorks and COSMOSworks 

software packages. The parameters for the layers are as mentioned in Chapter 3. 

 

 

4.2 Experiments with Multi Layer Perceptron and Radial Basis Function 

 

The input data for training are Tmax-def, Tavg-right,    Tavg-top, Tavg-def and Tavg-so and the 

corresponding values of defect depth were used as the outputs. One hidden layer with eight 

nodes of MLP was found to be effective for this purpose. The parameters used for training 

were 0.04 for learning rate, 0.9 for momentum, and 110
-03

 for error rate. Figure 4.1 shows 

the defect depth estimation results by both networks for the trained data as compared to the 

actual depth. Errors for depth estimation in both cases were found to be zero, or 100% correct 

estimation. 

 

Figure 4.2 shows the depth estimation for untrained data (of depth 35, 34, 33, 32, 31, 

30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, and 16cm respectively from the outer 

surface wall). Depth estimation error for this untrained data is shown in Table 4.1 for MLP 

and in Table 4.2 for RBF network result.  
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Figure 4.1: Estimated depth for trained data 
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Figure 4.2: Estimated depth for untrained data 

 

From Table 4.2, for the case of center spalling defect (Center), there is no depth 

estimation error for all defects except for defect with depth 35cm, the error is around 2.86%. 

MLP can estimate correctly without error for 19 depths (34 to 16cm). For the case of top-

right corner spalling defect (Corner), all errors are no more than 12.50% or even for the 

worst case, the accuracy is still around 87.50%. In which, 15 depths (35 to 21cm) have error 

less than 5% (95% accuracy), and 5 depths (20 to 16cm) have error less than 13% (87% 
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accuracy). The average error for center spalling is 0.14% (99.86% accuracy), and the average 

error for top-right corner spalling is 5.54% (94.46% accuracy). 

 

Table 4.1: Depth estimation error for untrained data of MLP networks 

 
Actual 

Depth 

Estimated Depth Error (%) 

Center Corner Center Corner 

35 

34 

33 

32 

31 

30 

29 

28 

27 

26 

25 

24 

23 

22 

21 

20 

19 

18 

17 

16 

34 

34 

33 

32 

31 

30 

29 

28 

27 

26 

25 

24 

23 

22 

21 

20 

19 

18 

17 

16 

34 

33 

32 

31 

30 

29 

28 

27 

26 

25 

24 

23 

22 

21 

20 

18 

17 

16 

15 

14 

2.86 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2.86 

2.94 

3.03 

3.13 

3.23 

3.33 

3.45 

3.57 

3.70 

3.85 

4.00 

4.17 

4.35 

4.55 

4.76 

10.00 

10.53 

11.11 

11.76 

12.50 

 

 

 
Table 4.2: Depth estimation error for untrained data of RBF networks 

 
Actual 

Depth 

Estimated Depth Error (%) 

Center Corner Center Corner 

35 

34 

33 

32 

31 

30 

29 

28 

27 

26 

25 

24 

23 

22 

21 

20 

19 

18 

17 

16 

35 

34 

33 

32 

31 

30 

29 

28 

27 

26 

25 

24 

23 

22 

21 

20 

19 

18 

17 

16 

34 

33 

31 

30 

29 

28 

27 

26 

25 

25 

25 

24 

24 

22 

20 

17 

14 

11 

7 

5 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2.86 

2.94 

6.06 

6.25 

6.45 

6.67 

6.90 

7.14 

7.41 

3.85 

0.00 

0.00 

-4.35 

0.00 

4.76 

15.00 

26.32 

38.89 

58.82 

68.75 
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From Table 4.2, for the case of center spalling defect, RBF can estimate correctly for 

all defect depths without error. For top-right corner spalling, the worst estimation is for 16cm 

depth, the error is greater than 60%. The next worst are in estimating 17cm and 18cm depths, 

with errors greater than 50% and 30% respectively. Other depths estimation is all under 30% 

error (70% accuracy). Hence, the average error for center defect is 0% (100% accuracy), and 

13.27% (86.73% accuracy) for the case of top-right corner defect. 

 



 

 

 

CHAPTER 5 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

5.1 Summary and Conclusion 

 In Chapter 1, the introduction on infrared thermography (IRT) and its applications in 

petrochemical industry was described. In conjunction with this, several types of refractory 

were discussed. In similar manner the concept of how the heat was loss was briefly described. 

In addition, the scope and objective of the project were properly stated. 

 

 In Chapter 2, review on several techniques in modeling defects and defect 

characterization were presented. Two common types in numerical modeling namely finite 

difference method and finite element method were presented. Advantages and disadvantages 

of these algorithms were addressed. A brief introduction of the proposed technique is given in 

the end of the chapter. 

 

 Chapter 3 described the complete process of modeling the furnace with actual 

parameter values. In is also in this chapter that the relationship between the defect depth and 

five temperature values was established. These temperature values were later used as input to 

the neural network paradigm for estimating the depth. In doing so two types of artificial 

neural network (ANN) systems were proposed – multi layer perceptron and radial basis 

function systems. 

 

 In Chapter 4, experimental results showed the effectiveness of the proposed 

algorithms. Twenty defect depths were used training the ANN and another set of twenty 

defect depths were used for performance evaluation. The results for both ANN systems 

showed very promising performance. Performance based on different locations of the defect 

was also investigated and the results showed a slight degradation in performance for defects 

situated at the corner of the furnace. 
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It has been shown from the result in the previous section that the depth estimation by 

using MLP and RBF neural networks paradigm both for trained and untrained data is quite 

satisfactory. There is no estimation error for both networks for trained data. The average error 

for untrained data for MLP is less than 1% for the case of center defect, and less than 6% for 

the case of top-right corner defect. The average error for RBF is 0% for the case of center 

defect, and less than 14% for the case of top-right corner defect.  

 

It is shown that the average error for RBF is quite greater than MLP for the case of 

top-right corner spalling, but it can estimate correctly for all depths for the case of center 

spalling type defect. Therefore as the rule of thumb, we can say generally that in this specific 

application MLP is better than RBF for both cases. Even with the lack of training data and 

quite different testing data, MLP still can give proper estimation results.  

 

The results showed us that the informative parameters (Tmax-def, Tavg-right, Tavg-top, Tavg-def 

and   Tavg-so) proposed in this paper are suitable for depth estimation in passive thermography. 

As already shown in previous section, these informative parameters have a relationship with 

spalling defect depth. Although these informative parameters will give a slightly different 

values for different spalling defect location in the model (as shown in Figure 7), but still with 

these five parameters, ANN give a satisfactorily results for trained and untrained data for 

both networks. 

 

5.2 Suggestions for Future Research 

 

For the future works, other informative parameters can be explored, moreover to 

preserve the spalling defect location property and ANN can be trained with more input data 

to achieve a better generalization.  

 

Neural network paradigm with its ability to learn and adapt to a new pattern has a 

great potential for the estimation of the defect depth. This paper has demonstrated on how to 

employ ANN paradigm for depth estimation in a passive thermography. Two NN paradigms: 

MLP and RBF networks have been employed and the results are promising. 
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