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ABSTRACT 

NON-CONTACT EVALUATION METHODS FOR INFRASTRUCTURE 

CONDITION ASSESSMENT 

by 

Sattar Dorafshan, Doctor of Philosophy 

Utah State University, 2018 

 

Major Professor: Dr. Marc Maguire 

Department: Civil and Environmental Engineering 

 

The United States infrastructure, e.g. roads and bridges, are in a critical condition. 

Inspection, monitoring, and maintenance of these infrastructure in the traditional manner 

can be expensive, dangerous, time-consuming, and tied to human judgment (the 

inspector). Non-contact methods can help overcoming these challenges. In this 

dissertation two aspects of non-contact methods are explored: inspections using 

unmanned aerial systems (UASs), and conditions assessment using image processing and 

machine learning techniques.  

In chapter two, UASs applications for bridge inspections are investigated through 

past studies and project. At its best, current technology limits UAS use to an assistive tool 

for the inspector to perform a bridge inspection faster, safer, and without traffic closure. 

However, as the study shows profiting from UASs is only possible when certain 

conditions are met. In the third chapter, the minimum requirements in terms of, UAS, 

camera, lighting conditions, and clearance, to find fatigue cracks in steel bridge are 



iv 
 
investigated. The results showed that when these requirements are met, UASs can match 

human inspections. In order to determine the human effects on the UAS inspections of 

steel bridges, several UAS inspections were carried out which is the subject of the fourth 

chapter.  In chapters five, a variety of common edge detectors in the spatial domain 

(Roberts, Prewitt, Sobel, and Laplacian of Gaussian) and in the frequency domain 

(Butterworth and Gaussian), are used to detect concrete cracks from visual images. 

Chapter six compares the performance of the same edge detectors and deep convolutional 

neural networks (DCNN), in fully trained, transfer learning, and classifier modes. 

Chapter seven investigates the feasibility of using a DCNN in inspection of concrete 

decks and buildings using UASs. Chapter eight presents a dataset with more 56,000 fully 

labeled images of three types of concrete structures. In chapter nine, applications of 

infrared thermography for in-line weld inspections are investigated. Finally, chapter ten is 

conclusions.   

 

 

 (404 pages) 
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PUBLIC ABSTRACT 

NON-CONTACT EVALUATION METHODS FOR INFRASTRUCTURE 

CONDITION ASSESSMENT 

Sattar Dorafshan 

 

The United States infrastructure, e.g. roads and bridges, are in a critical condition. 

Inspection, monitoring, and maintenance of these infrastructure in the traditional manner 

can be expensive, dangerous, time-consuming, and tied to human judgment (the 

inspector). Non-contact methods can help overcoming these challenges. In this 

dissertation two aspects of non-contact methods are explored: inspections using 

unmanned aerial systems (UASs), and conditions assessment using image processing and 

machine learning techniques. This presents a set of investigations to determine a 

guideline for remote autonomous bridge inspections.  
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CHAPTER I 

INTRODUCTION 

The United States infrastructure, e.g. roads and bridges, are in critical conditions. 

Inspection, monitoring, and maintenance of these infrastructure in the traditional manner 

can be expensive, dangerous, time-consuming, and tied to human judgment (the 

inspector). Non-contact methods can help overcoming these challenges. In this 

dissertation two aspects of non-contact methods are explored: inspections using 

unmanned aerial systems (UASs), which are investigated in chapters two, three, and four, 

and structural conditions assessment using image processing and machine learning 

techniques, which are investigated in chapters five, six, seven, eight, and nine.  

In chapter two, UASs applications for bridge inspections are investigated through 

past studies and project. This chapter shows that the current technology limits UAS use to 

an assistive tool for the inspector to perform a bridge inspection faster, safer, and without 

traffic closure. The major challenges for UASs are satisfying restrictive Federal Aviation 

Administration regulations, control issues in a GPS denied environment, pilot expenses 

and availability, time and cost allocated to tuning, maintenance, post-processing time, 

and acceptance of the collected data by bridge owners. 

 Chapter three studies the feasibility of using UAS for fatigue crack detection in 

bridges with fracture critical members (FCM) through real-time (field) and post-flight 

(desk) visual inspection. The effects of surface illumination on the minimum crack-to-

camera (MCC) distance at which a fatigue crack can be detected was investigated in the 

laboratory. Mock field inspections evaluated the achievable crack-to-platform (ACP) 

distance in GPS-denied and windy environments, and determine if known cracks can be 
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identified at achievable standoff distances. Finally, two FCM inspections demonstrated 

the field performance of UAS in identifying fatigue cracks. Results highlight the 

importance of camera specifications and surface illumination in determining the required 

standoff distance of crack detection. Furthermore, the results demonstrate the difficulties 

in obtaining clear images with unstable UAS in GPS-denied or windy environments. 

Nevertheless, the best performing platform tested in this study exhibited performance 

comparable to the average of 30 human inspectors at a fatigue crack identification 

training structure. The limited results presented here proved the feasibility of using UAS 

for fatigue crack detection in FCM inspections of steel bridges, but highlighted the 

shortcomings of UAS for this type of hands-on inspection. 

Chapter four investigates the use of Unmanned Aerial Systems (UASs) for the 

inspection of bridges with fracture critical members to find fatigue cracks. The research 

team had four inspectors inspecting a probability of detection (POD) training structure at 

the at the Steel Bridge Research, Inspection, Training, and Engineering (S-BRITE) center 

at Purdue University to locate the fatigue crack(s) on the POD frame specimens. The 

results of these inspections were compared to results of 30 hands-on inspections in terms 

of hit rate, hit to call ratio, inspection time, and length of the largest crack missed. In 

general, the desk inspections and the field inspections had comparable hit rates and hit to 

call ratios; however, the type and location of the inspected specimens significantly 

affected the results of the UAS-assisted inspections. The results indicate the superiority 

of hands-on inspections to UAS-assisted inspections in terms of hit rate, hit to call ratio, 

and inspection time; however, the UAS-assisted inspections matched or even exceeded 

the hands-on results in certain scenarios. In addition, the desk inspections resulted in 
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detecting smaller cracks (8% smaller than the field inspections and 11% smaller than the 

hands-on inspections). Regardless, the results can be considered satisfactory since none 

of the inspectors had previous UAS-assisted inspection training or experience. 

Chapter five discusses image processing algorithms for detection of defects in 

concrete. Such algorithms are useful for improving the accuracy of crack detection during 

autonomous inspection of bridges and other structures. The authors propose a generic 

image processing algorithm for crack detection, which includes the major steps of filter 

design, edge detection, image enhancement, and segmentation. The edge detection was 

carried out by six filters in the spatial (Roberts, Prewitt, Sobel, and Laplacian of 

Gaussian) and frequency (Butterworth and Gaussian) domains. These algorithms are 

applied to fifty images each of defected and sound concrete and an inspector attempted to 

identify cracks in binary images. The performance of the six filters is compared in terms 

of accuracy, precision, minimum detectable crack width, computational time, and noise-

to-signal ratio. In general, frequency domain techniques were slower than spatial domain 

methods due to computational intensity of the Fourier and inverse Fourier 

transformations used to move between the spatial and frequency domains. Frequency 

domain methods also produced noisier images than spatial domain methods. Crack 

detection in the spatial domain using the Laplacian of Gaussian filter proved to be the 

fastest, most accurate, and most precise method, and resulted in the finest minimum 

detectable crack width. 

Chapter six compares the performance of the same edge detectors, but on the 

pixel level, and deep convolutional neural networks (DCNN) for image-based crack 

detection in concrete structures. A dataset of 19 high definition images (3420 sub-images, 
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319 with cracks and 3101 without) of concrete is analyzed using the six edge detection 

schemes (Roberts, Prewitt, Sobel, Laplacian of Gaussian, Butterworth, and Gaussian) and 

using the AlexNet DCNN architecture in fully trained, transfer learning, and classifier 

modes. The relative performance of each crack detection method is compared here for the 

first time on a single dataset. Edge detection methods accurately detected 53–79% of 

cracked pixels, but they produced residual noise in the final binary images. The best of 

these methods was useful in detecting cracks wider than 0.1 mm. DCNN methods were 

used to label images, and accurately labeled them with 99% accuracy. In transfer learning 

mode, the network accurately detected about 86% of cracked images. DCNN methods 

also detected much finer cracks than edge detection methods. In fully trained and 

classifier modes, the network detected cracks wider than 0.08 mm; in transfer learning 

mode, the network was able to detect cracks wider than 0.04 mm. Computational times 

for DCNN are shorter than the most efficient edge detection algorithms, not considering 

the training process. These results show significant promise for future adoption of DCNN 

methods for image-based damage detection in concrete. To reduce the residual noise, a 

hybrid method was proposed by combining the DCNN and edge detectors which reduced 

the noise by a factor of 24. 

Chapter seven investigates the feasibility of using a Deep Learning Convolutional 

Neural Network (DLCNN) in inspection of concrete decks and buildings using small 

Unmanned Aerial Systems (sUAS). The training dataset consists of images of lab-made 

bridge decks taken with a point-and-shoot high resolution camera. The network is trained 

on this dataset in two modes: fully trained (94.7% validation accuracy) and transfer 

learning (97.1% validation accuracy). The testing datasets consist of 1620 sub-images 
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from bridge decks with the same cracks, 2340 sub-images from bridge decks with similar 

cracks, and 3600 sub-images from a building with different cracks, all taken by sUAS. 

The sUAS used in the first dataset has a low-resolution camera whereas the sUAS used in 

the second and third datasets has a camera comparable to the point-and-shoot camera. In 

this study it has been shown that it is feasible to apply DLCNNs in autonomous civil 

structural inspections with comparable results to human inspectors when using off-the-

shelf sUAS and training datasets collected with point-and-shoot handheld cameras. 

Chapter introduces SDNET2018 which is an annotated image dataset for training, 

validation, and benchmarking of artificial intelligence based crack detection algorithms 

for concrete. SDNET2018 contains over 56,000 images of cracked and non-cracked 

concrete bridge decks, walls, and pavements. The dataset includes cracks as narrow as 

0.06 mm and as wide as 25 mm. The dataset also includes images with a variety of 

obstructions, including shadows, surface roughness, scaling, edges, holes, and 

background debris. SDNET2018 will be useful for the continued development of 

concrete crack detection algorithms based on deep convolutional neural networks 

(DCNNs), which are a subject of continued research in the field of structural health 

monitoring. The authors present benchmark results for crack detection using 

SDNET2018 and a crack detection algorithm based on the AlexNet DCNN architecture. 

SDNET2018 is freely available at https://doi.org/10.15142/T3TD19. 

The feasibility of using infrared thermography (IRT) for in-line weld inspection is 

investigated in chapter nine. Welded specimens include steel angles and plates with 

complete joint penetration welds. Defects in specimens were manufactured which 

included cracks, inclusions, lack of fusion, porosity, and overpass. After initial UT 
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inspection, the regions with defects were identified. Using a heat gun, the condition of the 

in-line inspection is mimicked by increasing the temperature of the specimens to a certain 

point. A thermal camera is used to record the temperature decay of the specimens with 

time. An exponential fit function is fitted to each pixel of the recorded sequence through 

time. It is observed that the regions with possible defects (previously identified in UT 

inspection) lose the temperature faster; therefore, the area under the exponential fit 

function is smaller of defected regions compared to the sound regions. Eventually all 

specimens are cut at the locations with possible defects which showed reasonable 

agreement with the UT and IRT inspections. Despite the success of the proposed IRT 

method in identifying defects, the high number of false positives reported limits using 

IRT for weld inspection. This can likely be resolved with more investigation. The most 

likely solution to reduce the number of false positives is using a thermal camera with 

high operating temperature, at least  10,000 C, and higher sensitivity, 0.1C.  

Nevertheless, using IRT in its infancy and likely a viable technique and has vast potential 

to improve weld manufacturing and inspection. 

Finally, chapter ten is dedicated to the conclusions.  

Chapters two through nine of this dissertation are individual research items, either 

published or submitted for publication in journal and conferences. Therefore, there has 

been collaboration between the author of the dissertation and co-authors. In order to 

acknowledge the co-authors work, the role of each co-author in preparation of each 

chapter is shown in Table 1-1. In this table, the numbers in the parenthesis indicate the 

chapter number that each co-author contributed to.  
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CHAPTER II 

BRIDGE INSPECTION: HUMAN PERFORMANCE, UNMANNED AERIAL 

SYSTEMS AND AUTOMATION 

Abstract 

Unmanned Aerial Systems (UASs) have become of considerable private and 

commercial interest for a variety of jobs and entertainment in the past 10 years. This 

chapter is a literature review of the state of practice for the United States bridge 

inspection programs and outlines how automated and unmanned bridge inspections can 

be made suitable for present and future needs. At its best, current technology limits UAS 

use to an assistive tool for the inspector to perform a bridge inspection faster, safer, and 

without traffic closure. The major challenges for UASs are satisfying restrictive Federal 

Aviation Administration regulations, control issues in a GPS denied environment, pilot 

expenses and availability, time and cost allocated to tuning, maintenance, post-processing 

time, and acceptance of the collected data by bridge owners. Using UASs with self-

navigation abilities and improving image-processing algorithms to provide results near 

real-time could revolutionize the bridge inspection industry by providing accurate, multi-

use, autonomous three-dimensional models and damage identification. 

Introduction to Bridge Inspection 

According to the Federal Highway Administration’s (FHWA) annual report, the 

number of deficient bridges in the United States was 142,915 in 2015, which is more than 

23% of the of the total number of bridges in the United States [1]. The deficiency ratio, 

defined as the ratio of structurally and non-structurally deficient bridges, to total number 
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of bridges, has decreased significantly from 38% in 1992 to 23% in 2015. Fig.2-1 shows 

the deficiency ratio of the United States’ bridges based on the latest annual report from 

FHWA from 1992 through 2015. This trend suggests gradual, but consistent 

improvement of bridge inventory conditions over the past 21 years. However, the 

American Society of Civil Engineers (ASCE) gives a grade of C+ for the United States 

infrastructure [2]. Improvements in inspection efficiency may allow bridge maintenance 

engineers and managers to do more inspections at a lower cost. The FHWA stopped 

tracking non-structurally deficient bridges effective with the 2016 archived data. The 

number of structurally deficient bridges in 2016 was 54,365 which was 9% of the total 

number of bridges.  

Every bridge deteriorates as it ages and is managed by a Bridge Management 

System (BMS) that often takes into account stochastic processes based on routine bridge 

inspection information [3,4]. The evolution of bridge inspections in the United States is 

tied to high profile collapses. Currently, inspections are performed periodically, usually 

on a 24-month cycle, allowing the inspectors to monitor the defects and deterioration. 

Bridge Inspection Program Evolution 

The West Virginia bridge failure, also known as the Silver Bridge collapse, 

occurred at 5 p.m. on December 15, 1967, when an eyebar-to-pin connection fractured, 

causing a 445 m portion of the bridge to collapse and resulted in 46 casualties [5]. After 

this incident, federal authorities decided to coordinate bridge management programs 

throughout the United States by introducing the Federal Highway Act of 1968. The 

National Bridge Inspection (NBI) program was initiated to enforce periodic inspections 
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of bridges in 1968 as a direct result of this act. This program was expanded to the 

National Bridge Inspection Standards (NBIS) in 1971 to prescribe the proper inspection 

process and frequency and to designate official bridge inspectors [6]. 

 
Fig.2-1 Gradual decrease in deficiency ratio of the bridges in United States since 1992 to the 

last published data in 2015 

The Mianus River bridge collapse on I-95 in 1983, which was due to hanger 

assemblies, and the Schoharie Creek bridge failure in 1987, which was due pier scour, 

heightened concerns over bridge inspection procedures [7]. After these incidents, federal 

authorities provided guidelines regarding inspection of fracture critical and underwater 

members. The NBIS was constantly being revised but was the only reference for 

inspectors in the United States until 1991 when congress mandated that the state 

Departments of Transportation (state DOTs) come up with a comprehensive state-specific 

BMS [8]. Part of this program included development of a rigorous software package 
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called “PONTIS” which is a decision-making tool bridge managers use for bridge 

evaluations and is constantly updated with reports, pictures, core logs, and other relevant 

bridge data [9,10]. At the same time, the National Cooperative Highway Research 

Program (NCHRP) developed a BMS software termed “BRIDGIT.” The goal of 

BRIDGIT was to provide guidelines to manage decisions for either local or state bridge 

inspection agencies [11]. FHWA has been in charge of preparing and updating a national 

inspection procedure manual since 1990 called the Bridge Inspector’s Reference Manual 

(BIRM) [12]. This manual has also been updated several times and includes different 

methods, technologies, and procedures for inspection. In addition, the National Bridge 

Inventory (NBI) has gathered more than 14 million inspection data since 1983, which is 

accessible to the public on the FHWA website [13]. Dekelbab et al. called this database 

the most comprehensive source of information on bridges in the United States [14]. 

Fig.2-2 summarizes the history of bridge inspection manuals and programs since 1968. 

Visual and Physical Inspections 

Visual inspections are the oldest and most frequent type of bridge inspection. 

Visual inspections can involve walking on the deck, using binoculars to see a point of 

interest, or using either scaffolding or an Under Bridge Inspection Truck (UBIT) for 

regions that are difficult to access. BIRM defines two types of methods for hard-to-reach 

areas: access equipment and access vehicles. The equipment includes ladders, rigging, 

scaffolding, boats, climbers, floats, boatswain chairs, free climbing, etc. The most 

common access vehicles used in bridge inspection practice are man-lifts, scissor lifts, 

bucket trucks, and UBIT [12]. 
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Fig.2-2 A time-line review on bridge inspection regulations in the United States since 1968 

to the last published data in 2018 

UBITs provide a proper view of hard to reach areas for inspectors, but they have 

high capital and maintenance costs. UBITs are difficult to schedule since only a small 

number of them are in service in any given region. Other issues with UBIT inspections 

are potentially endangering the public and inspectors, adding additional weight to the 

bridge, congesting traffic lanes, and most important, UBIT inspections require skilled and 

qualified workers to operate them [15]. These indirect costs often result in considerably 

more burden to inspection agencies than the direct costs, making UBIT-free inspections 

very attractive to many DOTs.  

Physical inspections are recommended when visual inspections are not sufficient 

for rating a certain region, in other words, uncertainty of defect presence or measurement 

requirements of a member or a defect. The most common practice for physical 

inspections of bridge slabs uses a sounding hammer and chain drag to locate delaminated 

regions by comparing the resonating sounds of the defected and undamaged areas [12]. 
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Physical inspection of steel members includes finding under-paint defects to detect 

fatigue cracks, rust, and corrosion using wire brushes, grinding, and sand blasting. More 

comprehensive information on physical inspections can be found in the BIRM.  

Advanced Inspections (NDE) 

Practitioners and researchers recognized the shortcomings of visual and physical 

inspections in the 1990’s. Rens et al. suggested the following demands for more accurate 

bridge assessments [16]: 

 In-situ structural characteristic determinations 

 Accurate evaluation of the current serviceability level 

 Economic efficiency 

 Degree of dependency on inspector skill or experience 

To address these recommendations, Non-Destructive Evaluation (NDE) methods 

may be applied for bridge inspections. Based on the construction material, there are 

several NDE inspection methods suggested by BIRM for concrete bridges: Ultrasonic 

Testing (UT), Ground Penetration Radar (GPR), Impact Echo (IE), Infrared 

Thermography, Radiography Testing (RT), and Half-cell method; and for steel bridges: 

Acoustic Emission (AE), Dye Penetrant Testing (PT), Magnetic Testing (MT), Computed 

Tomography (CT), Eddy Current Testing (ET), and UT. The NDE methods provide 

essential information for bridge engineers and inspectors; however, these methods have 

not been practiced widely.  

Rolander et al. conducted a survey to determine the state of the practice for high 

bridge inspection in the United States [17]. One of the questions on this survey was the 
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type and frequency of NDE methods practiced by each DOT at the time of the survey. 

Forty-one DOTs responded to this question. Chain drag, pachometers, rebound hammers, 

the half-cell method, GPR, and IE were used for concrete bridges by more than 10 DOTs. 

NDE methods were utilized more for steel bridges, most likely because most of them are 

related to fatigue inspections, which are difficult without some form of NDE. Thirty-four, 

thirty-four, and twenty-seven DOTs used PT, UT, and MT, respectively. This study 

concluded that DOTs used NDE methods more often than before (California DOT 

unpublished survey in 1993 was the base), but there was no information about the 

frequency of using these methods in bridge inspection. A more recent survey by Lee et al. 

indicated that out of thirty states with their own bridge inspection manuals only eight of 

them addressed using NDE methods in 2014 [8]. The most practiced NDE method for 

concrete bridge inspection was GPR, which was used at least once by 77.5% of surveyed 

state DOTs, while half of the surveyed states used AE during their inspections. All 

surveyed states used PT at least once for steel bridges. MT and UT were the second most 

frequently used NDE methods in steel bridges with a 95% exposure rate. The remaining 

NDE methods for steel bridges either were not used or were reported to be “very 

difficult” to use, suggesting that major changes in current NDE methods are necessary to 

minimize human involvement [18].  

State DOTs considered visual inspection as the most frequent inspection method 

in the surveys [8,17]. As it will be explained later in the paper, UASs, an assistive tool for 

inspectors to perform visual inspections, can save time and money in DOTs. However, 

with the exception of visual sensors, the non-contact NDE techniques available for UASs, 

like various spectra cameras, may require time and effort for state DOT acceptance. 
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There is always a need for cost reductions and improvement to bridge inspection 

procedures as funding is always a constraint for bridge managers. This section has 

identified several techniques that can arguably provide more detailed data than traditional 

visual and physical inspections but may not be worth the time, effort, post-processing, 

and associated cost. This section also illustrated inspectors’ reluctance to adopt new 

techniques. There is a need to reduce the inspection time and increase inspector and 

public safety all while decreasing inspection costs, which indicates a need for automated 

inspection. If unmanned inspection processes are going to replace current standard 

practices, then they must be robust and require similar time and effort to current 

practices. The following sections will investigate recent efforts to do so.  

Unmanned/Automated Inspections  

Visual and physical inspections are still considered the most reliable and common 

bridge inspection methods. In other industries (e.g., aerospace and automotive), the role 

of human errors in inspection have been scrutinized, evaluated, and limited for decades. 

Automated inspection devices equipped with software packages are now the routine 

inspection protocol in aviation industry [19]. Unmanned/Automated inspection and 

maintenance approaches in high-tech industries are the best choice to achieve minimum 

failure and optimum maintenance level [20]. However, as discussed in the previous 

section, few inspection agencies are interested in routine NDE use outside of a handful of 

fatigue crack detection techniques, which essentially augment the inspector’s ability to 

visually identify cracks. 

Unmanned/automated methods have the potential to improve and automate the 
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bridge inspection practice. On a small scale, these methods have been performed using 

either ground or airborne vehicles in the past. The first of robotic vehicles for bridge 

inspection were ground vehicles and were used for deck inspections. For example, the 

RABIT Bridge Deck Assessment Tool [21], is a multi-sensor robot used to detect surface 

and subsurface defects in a bridge deck. The onboard sensors mounted on RABIT were: 

impact echo, ultrasonic surface wave testing, GPR, electrical resistivity, and a high-

resolution digital camera. The RABIT was able to collect data of bridge decks at a rate of 

372 square meter per hour, longer than a typical visual inspection, but acquiring 

considerably more data [22]. RABIT was able to successfully characterize and detect the 

most common deterioration types in concrete decks including rebar corrosion, 

delamination, and concrete degradation [23].  

Another example is a climbing robot to monitor reinforced concrete structures 

(under bridge). This robot is capable of detecting corrosion at early stages using electron 

bombardment [24]. The robot’s movement is facilitated through movable suction cups, 

allowing inspection in hard-to-reach regions.  

Lim et al. claimed that visual bridge deck inspections can be performed more 

accurately if they are performed autonomously [25]. A Robotic Crack Inspection and 

Mapping (ROCIM) robot was designed to replace human inspections and was capable of 

autonomous crack detection using a visual mounted camera and integrated edge detector 

software. In addition, a genetic-based path-planning algorithm was developed to locate 

turns and determine the traveling distance.  

La et al. equipped the RABIT with an autonomous system for deck inspection 

using impact-echo, ultrasonic, and electrical resistivity [26]. The system was able to 
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navigate autonomously on a bridge deck, detecting cracks and delamination and 

evaluating the concrete modulus.  

The above examples are the first generation of automated or semi-automated 

inspections with ground vehicles. Within the last decade, UASs have evolved and have 

obtained unprecedented capabilities and near ubiquity. Many sectors are taking advantage 

of these new capabilities to transform their industries. The capabilities of UASs and how 

they relate to bridge inspection are outlined in the following section. A recent review of 

the robotic infrastructure inspection can be found in [27] 

UASs and Their Applications 

Before moving on to current research on UAS based bridge inspections, a review 

of UAS definitions and applications is necessary. This review also includes a summary of 

UAS control and sensors. 

UAS Definition 

According to the Unmanned Aerial Vehicle System Association (UAVSA), a 

UAS is a combination of an Unmanned Aerial Vehicle (UAV), either fixed-wing aircraft, 

a multi-copter aircraft, the payload (what it is carrying), and the ground control system 

which is controlled by a human to some degree. UASs are generally defined as any 

aircraft or aerial device which is able to fly without an onboard human pilot. They are 

also known as remotely piloted aircrafts, remotely operated aircrafts, remotely piloted 

vehicles, drones, and remote controlled helicopters. Depending on the purpose for which 

the UAS is being used, their properties vary, including the number and weight of the 

mounted sensors, maximum flight altitude, maximum flight duration, etc. UAVs can be 
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fixed wing or vertical take-off and landing (VTOL) platforms.  

Brief UAV History 

The very first appearance of UASs in the United States goes back a century ago. 

Shortly after the first successful development of man-operated aircrafts as the United 

States entered World War I (WWI), automated unmanned aircrafts were designed to 

bomb enemy targets. However, this operation was canceled because of engine failure and 

consecutive setbacks. Also during WWI, the Germans developed an unmanned aircraft 

that performed one-way missions at a maximum speed of 650 km/h and an altitude of 300 

m. At the beginning of the modern era, from 1959 to the present, the main use of UASs 

was exclusively military. UASs have played an important role in United States’ victories 

and air superiority in different missions and threats [28]. The dominant market for UASs 

has been and still is military applications.  

Within the last 20 years, UASs have found their way into civilian applications. 

Fig.2-3 shows an overview of UAS civilian applications and predicts the financial 

investments in this market until 2017 for each category in Europe [29]. Government 

applications were predicted to become the major market from 2014 onwards. The fire 

fighting and agriculture applications will be the second dominant market followed by the 

energy sector and earth observation until 2017. In addition, the government applications 

of UASs have been the most progressive market during the past five years of this study. 

Infrastructure maintenance programs (e.g. bridge inspections) are considered a sub-

category of the government market and are just now beginning to be explored as an 

option for inspections.  
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UAS applications for civilian purposes have expanded significantly over the past 

decade and seem to be rising dramatically due to their low cost and tangible scientific 

improvements. Table 2-1 demonstrates the recent UAS applications in various fields. For 

each application, references have been provided for further reading.  

 
Fig. 2-3 The rising market of UASs for civilian application (Adapted from [29]) 

UAS Sensors 

The type and number of sensors mounted on a UAS depends on the mission 

requirements. In most cases, the sensors on a UAS must be non-contact, significantly 

limiting the possible NDE techniques. The most popular sensors for evaluating the 

structure are visual and thermal cameras. There is also a suite of sensors available that are 

necessary to perform autopilot functions. This section introduces the most common 

sensors mounted on UASs and their applications.  
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Table 2-1 Variety of UASs applications 
Application Purpose Reference 

Military 

Warfare [28] 

Reconnaissance [131] 

Intelligence [28] 

Surveillance [132] 

Anti-Terrorism  [133] 

Civilian 

Agriculture and Forestry 

Crop Condition Monitoring [134] 

Fertilization of Trails [135] 

Properties of Plants  [136] 

Crops Treatment  [137] 

Nitrogen Emission [138] 

Plant Detection [139] 

Measurement of Tree Locations [140] 

3D Mapping of Forest [141] 

Disaster Monitoring and Management 

Hurricane, Typhoons, and Tornados  [142] 

Earthquakes-Damage Evaluation With 3D Model  [143] 

Fire Detection [144] 

Nuclear Leaks  [145]  

Oil Spill Detection  [146] 

Floods and Avalanches  [147] 

Rescue Missions [148] 

Surveillance Prevention of Un-Authorized Entry [149] 

Environmental Monitoring 
Soil Erosion  [150] 

Ground Surveys  [151] 

3D Mapping 

Terrain Models  [152] 

Topographic Maps [153] 

Mapping Landfill [63] 

Building Models [154,155] 

Shaded Objects Models  [156] 

Structure Models  [157] 

Archeologic Sites [158] 

Atmospheric Temperature Monitoring  [159] 

Wildlife Monitoring Animal Behavior [160] 

 

Visual Cameras (Video/Image) 

Visual sensors are the most common sensors and are widely used on UASs for 
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remote sensing purposes. The spectral range of these sensors is in the visible range, in 

other words, from wavelengths of 390 nanometers to 700 nanometers. Adverse 

temperatures, lighting conditions, high frequency engines and motors, significant 

vibrations, and sudden rotation of the UAS can affect the data acquisition process.  

Thermal Infrared (TIR) Sensors 

Thermal sensors are able to measure the emitted energy of a surface and convert 

that into temperature. There are two approaches used in infrared thermography: passive 

and active. The passive approach relies on the thermal properties of just the material and 

structures, which have a different temperature than the ambient temperature of the 

specimen. In active thermography, an external heat/cooling source is used to excite the 

material surface, allowing the TIR sensors to find the difference in thermal signature of 

specimens in different locations. However, in a bridge inspection situation, passive 

thermography using only the ambient heat generated by the sun is probably the only 

feasible option. Thermography is an established method for subsurface defect detection in 

concrete bridge decks and girders and can be used to generate a comprehensive thermal 

map [30,31].  

Other Sensors  

There are several other sensors available that a UAS could employ, which are 

currently limited due to sensors’ weights and UASs’ capabilities: 

 Light Detection and Ranging (LiDAR) sensors: Measures distances and explores 

the scene by projecting light to the object of interest. These sensors can be used to 

reconstruct 3D models and maps from the object of interest or provide 
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information to the UAS regarding obstacle avoidance [32]. 

 Multispectral and Hyperspectral Sensors: The spectral bands visible to 

multispectral and hyperspectral sensors are greater than visual or thermal cameras 

because they cover a wider range of wavelengths [33].  

 Radio Detection and Ranging (RADAR)/Synthetic Aperture RADAR (SAR): The 

installation of SAR on UASs was reported in several resources related or 

unrelated to bridge inspection [34-35]. The main application of RADAR and SAR 

is for underwater measurements, which could possibly provide information 

regarding bridge scour [36].  

 Sound Navigation and Ranging (SONAR): In the past, these sensors have been 

used for surface mapping while flying UASs [37]. The current application for 

SONAR sensors is obstacle detection; however, SONAR use might be limited in a 

confined under-bridge space because of hard surfaces and bouncing sound waves.  

 Magnetic sensors: These sensors can generate magnetic maps in great detail, 

identify various ferrous objects in the soil, and with enough power and accuracy 

could potentially generate defect maps in ferrous materials like steel girders [38].  

 Multi-sensors and Data Fusion: Data acquired from different sensors can be 

combined using data fusion techniques. For instance, with the combination of a 

radiometer, visual camera, chemical sensor, and thermal infrared sensors, it is 

possible to measure relative humidity and temperature, CO2, luminosity, and 

wind speed [39,40].  
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UAS Navigation 

The purpose of this section is to introduce the basics of UAS navigation and the 

associated sensors. The section explains the role of vital components of a UAS with 

related references for a reader in the field of structural engineering. Using UASs for 

infrastructure inspection and maintenance is a fast growing trend, but is often outside the 

scope of most civil and infrastructure engineers’ training, so the information provided 

herein is intended to aid in comprehension of UAS navigation and limitations.  

Nearly every UAS, through its autopilot computer and external sensors, comes 

with some sort of autonomous control. Control and navigation are important issues in all 

UAS applications, and most pilots are heavily reliant on basic stabilization routines and 

GPS signals to maintain position. A 3D hold allows for safe control of a UAS in harsh 

environmental conditions as well as stabilization for obtaining adequate images. In the 

realm of bridge inspection, control and navigation issues have been reported to be 

exceptionally problematic because of the challenges of bridge environments [41]. Several 

algorithms and methods have been studied for UAS semi-autonomous control and 

navigation.  

UAS control and navigation is commonly carried out by GPS, Inertial Navigation 

Sensors (INS), Inertial Measurement Units (IMU), Micro-Electro-Mechanical Systems 

(MEMs), gyroscopes, accelerometers, and Altitude Sensors (AS) that are onboard the 

UAS and used by the autopilot system [42]. GPS is a radio navigation system that allows 

land, sea, and airborne users to determine their location and velocity [43]. INS is a 

navigation aid device that uses a computer, a set of motion sensors, and a set of rotation 

sensors that continuously calculate the position, orientation, and velocity (direction and 
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speed of movement) of a moving object through IMU without external references. MEMs 

are the technology used in microscopic devices, particularly those with moving parts 

[44]. 

The most common sensors employed for semi-autonomous UAS control are 

visual cameras due to their availability, ubiquity, and low-cost [45]. Image processing 

techniques can be employed to generate algorithms that identify certain points or objects, 

like key points, in a set of images as reference to either make a navigable map or hold a 

position. More information regarding cameras and algorithms used for this purpose are 

discussed in the following sections. 

LiDAR, laser rangefinders, and ultrasonic sensors are often used by the autopilot 

to estimate the distance from the UAS to the ground or to close objects, allow mapping, 

and vertically or 3D hold the UAS. Other common sensors that can provide some help, 

but tend to be less accurate are magnetometers (i.e., compass [41]) and barometers, which 

sense the air pressure to estimate vertical position. Many of these sensors are highly 

valuable for navigation and control, but also have significant limitations, especially when 

used without GPS. For instance, barometers are affected by wind speed and can cause the 

UAS to drift and stereo vison systems can cause the UAS to follow the current and drift 

with the waves when used over water [46].  

Autonomous Navigation  

It may be possible to remove humans from routine inspection techniques in 

several years with the convergence of UAS platforms, sensors, and control 

improvements. The potential for automated inspections will improve when a combination 
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of sensors outlined in the previous section are used along with various types of navigation 

algorithms that often involve data fusion techniques [47,48]. For autonomous bridge or 

infrastructure inspections using self-navigated UASs, three fundamental problems need to 

be solved: mapping, localization, and path planning.  

Mapping is the process where a UAS makes a map of its surroundings for 

navigational purposes using its onboard sensors [49]. Localization is the process of 

estimating a UAS’s position based on a self-generated map, and path planning is the 

process of going from point A to B while avoiding obstacles [50,51]. When flying UASs 

near or under a bridge, GPS signals (an integral part of UAS control for most pilots) will 

be lost, likely resulting in loss of control and poor image quality. In such scenarios, a 

combination of IMU, cameras, and laser range finders can be used to simultaneously 

build a map of the environment and localize itself, however this has not yet been 

demonstrated as possible [46].  

In recent navigational studies, a low-cost 5 MP monochrome or color visual 

camera set at 14-30 fps was found to be functional for navigational purposes [52,53]. 

Lemaire et al. proposed use of a monochrome camera that is able to operate at least at 60 

fps and a 90-degree gimbal [54]. For proper controlling and navigation, a velocity of 30 

fps was proposed to be sufficient in recent studies [45]. As a general rule, images larger 

than 0.3 Mega Pixel (MP) in size are not appropriate for image-processing techniques, 

like mapping and localization, because of excessive computational time for current on-

board computer configurations [45]. 

One solution for localization and mapping in a GPS denied environment is called 

Simultaneous Localization and Mapping (SLAM). SLAM is a style of autonomous 
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navigation, which allows UASs to be controlled in a GPS-denied environment. During 

the SLAM process, a UAS makes observations and measurements of the surrounding 

environment using mounted sensors, then landmark recognition and positioning allows 

the UAS to create a map of the structure and its surroundings [55]. SLAM has different 

implementations depending on the integrated sensors on the UAS [56]. Implementation 

of visual SLAM in absence of the GPS signals has drawn the attention of researchers in 

recent years; however, most of them rely on data fusion acquired from several sensors, 

such as monocular vision and barometer, and RGB-D cameras by providing color image 

and per-pixel depth, and etc. [57,58]. Despite the successful implementation, none of 

these methodologies have been used to navigate autonomously around complex structures 

such as bridges.  

This section discussed the potential for autonomous flights in GPS-denied 

environments. Using just visual cameras for autonomous navigation and realtime 

mapping is still an open problem. No actual bridge inspections have been carried out 

using autonomous navigation and, as such, are severely limited by weather and pilot skill. 

With current theoretical and software development, sensor technology, and commercial 

availability, UASs cannot inspect a bridge without mostly manual control and therefore 

UAS-assisted bridge inspections require skilled pilots [46].  

3D Model Reconstruction 

Useful 3D models of bridges could provide a permanent record of condition and 

dimensions from one inspection to another and could also be used for navigation and 

control purposes. Most of the work in this area has been on building inspection; however, 
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it should directly relate to bridge and infrastructure inspection.  

A two dimensional (2D) image loses the scene depth during photography, but 

using the line of sight and camera positions from each image, depth can be restored and a 

3D model can be constructed. Comparing features together can determine the 

correspondence level of each image. Development of robust feature detection algorithms 

is a fast moving research area in the computer science. There are several popular 

approaches for 3D image reconstruction, such as Structure-From-Motion (SFM) [59], and 

multi-view-stereo (MVS) [60]. All of which use some form of feature detection, which 

must be efficient enough to compare each of the images in a set made of possibly 

hundreds – or thousands in the case of infrastructure inspection – of images, which is 

computationally expensive. The features are traced back to a sequence of images to form 

the skeleton of the 3D model based on the feature movements.  

To familiarize the reader with common terms in the computer vision area, some of 

the feature detectors are introduced along with references for further reading. One of the 

most popular feature detection algorithms is Scale-Invariant Feature Transform, or SIFT, 

which detects the maxima of Differences of Gaussian (DoG) [61]. SIFT also describes 

the detected feature, and for this reason it is more commonly called “feature descriptor.” 

Speed Up Robust Features, or SURF, is another powerful feature detector and descriptor 

in the field of 3D model reconstruction [62]. Table 2-2 demonstrates some of the most 

important feature detectors used in image based 3D model reconstruction. 
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Table 2-2 Popular feature detectors and descriptors in 3D model reconstruction from 2D 

images 
Feature Detector 

type 
Name of the Method Reference 

Edge Detection Canny, Sobel, Deriche, Differential, Prewitt, Cross [73] 

Corner Detection 
Harris operator, Shi and Tomasi, Level curve 

curvature, Hessian, SUSAN, FAST 
 [161] 

Blob Detection 
Laplacian of Gaussian (LOG), DOG, Determinant 

of Hessian (DOH),  
 [162] 

Ridge Detection Hough Transformation, Structure Tensor [163] 

Feature Description 

SIFT,SURF, Histogram of Oriented Gradient 

(HOG), Gradient Location and Orientation 

Histogram (GLOH) 

[164] 

 

 

A comprehensive summary of 3D model reconstruction studies that applies to 

structural inspections is shown in Table 2-3. This table demonstrates the evolution of 3D 

image reconstruction in civil infrastructure from 2004 (manual reconstruction) to 2017 

(automated reconstruction). Furthermore, this table can be used as a starting point for 

future researchers to select methodologies and sensors for different applications. Useful 

visual cameras for 3D model reconstruction depend on the level of detail the model will 

require, and model accuracy can be improved through the use of LiDAR.  

Generation of a detailed model for a bridge could be very tedious because of the 

complexity of the geometry. However, 3D models of bridges can be used for semi-

autonomous inspections conducted by UASs [46]. Ideally, the 3D model can provide a 

virtual map for the UAS to navigate around the bridge and avoid obstacles. 
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Table 2-3 3D model reconstruction studies using UAS imagery for buildings 
Ref. Year Object Sensor’s Type Detector Achievements Shortcomings 

[154] 2004 Buildings 
Nikon D 100 

Camera 

Oblique 

Photogrammetry  

Camera 

Calibration 

3D Model 

Reconstruction of 

Regular Buildings 

from single UAS 

image 

Insufficent inspection detail, 

minimal potential for 

complex geometry 

 [165] 2009 Buildings 

Integrated 

LiDAR Line 

Scan 

Laser Scanner To 

Obtain The Depths 

Regenerating 3D 

Model from LiDAR 

Insufficent inspection detail, 

no details provided on 

computational time or 

accuracy 

[97] 2009 Bridges Visual Manual Stitching 

Generating Models 

for Under Bridge 

Elements 

no details provided on 

computational time or 

accuracy 

[156] 2010 
Buildings, 

mapping 
Video Camera 

MVS 

Clustering 

MVS Reconstruction 

at City Level of 

Several Buildings 

Seven hour Run-time, 

insufficient inspection detail 

 [155] 2011 Mapping 
Amateur or 

SLR Camera 

Patch-Based MVS 

Software 

PCMS 

3D surface mapping, 

possible use for 

birdge decks 

Not applicable for under 

bridge inspection. No details 

provided on computational 

time or accuracy 

[166] 2011 Buildings 

High 

Resolution 

Panasoic 

Lumix GF1 

camera 

LiDAR 

SFM 

SIFT 

3D Model of 

Buildings, Equal 

Level of Accuracy as 

LiDAR Model, 

accuracy was 

evaluated (1-3 cm) 

No details provided on 

computational time. The 

accuracy of the model was 

not desirable for fine defect 

detection. 

[167] 2012 Mapping 

Digital SLR 

Camera-Canon 

550D 

MVS 

Georeferencing 

3D Scene Modeling. 

Compared the Result 

of MSV to Terrestrial 

Data. 

No details provided on 

computational time, not 

suitable for defect detection, 

[168] 2012 Pavement 

Canon EOS 

Digital Rebel 

Xti Camera 

MVS 

SIFT 

Pavement Damage 

Detection From 3D 

Model, 0.5 cm 

accuracy 

No details provided on 

computational time, the 

accuracy computed based not 

on the defects but on targets 

[63] 2012 Mapping 

MK Hisight II 

Camera, 

Canon Digital 

Ixus 100 IS 

Camera 

Off-The-Shelf 

Programs 

SIFT, PVMS, 

CMVS 

A Comparison 

Between Available 

Software Packs for 

3D Reconstruction 

Position accuracy was not 

suitable for many defects 

(10-20 cm), No details 

provided on computational 

time 

[169] 2013 Buildings 
Canon SX230 

Camera 
Manual Stitching 

UAS Review on 

Structural Health 

Monitoring and 2D 

Stitching 

Manual model construciton  
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[65] 2014 
Concrete 

Decks 

DSLR Digital 

Camera 
SFM 

85% accuracy of 

crack detection, 3D 

model construction of 

the deck, max 0.3 cm 

difference in the 3D 

model (deck 

dimensions), 3 mm 

difference in detected 

cracks width 

No field experiment, 10 

hours of computational time 

to create the model, manual 

model development, noted 

sensitivity to lighting.  

[64] 2014 
Post-

disater  
Visual Camera SFM 

3D model of Concrete 

specimens, small and 

full-scale, report the 

cracking area, 1 hour 

to create the model, 6 

cm difference in 

specimen dimensions 

Controleld lab experiment, 

manual model generation, no 

detection on cracks finer than 

0.5 cm, no detection on 

vertical cracks (with respect 

to the camera), 0.15 cm 

difference in crack width  

[66] 2014 

Mapping, 

Complex 

Structures  

12.3MP 

Olympus E-

P1, 

Laser 

SIFT 

ASIFT 

MVS 

Georreferencing 

PW software 

development. 

Comparison between 

SIFT and ASIFT, 2 

cm maximum 

difference, 

Five hour processing time, 

not suitable for defect 

detection. 

 

 

There are off-the-shelf or open-source programs available, either free or 

commercial, that can reconstruct 3D models. Microsoft Photosynth and Automatic 

Reconstruction Conduit (ARC3D) are free web services that can reconstruct 3D models 

from color images. Agisoft Photoscan is a popular commercial software product used to 

generate 3D models and has been used with some success by the authors [46]. However, 

generating a model of a 3 m long bridge mock-up autonomously using this software took 

nearly 8 hours, and the model’s accuracy was unsuitable for navigation and inspection. 

Improvements could be made to that model, but not without considerable additional 

effort which state DOTs may not desire. As discussed in the NDE section, these advanced 

techniques need to be easy-to-implement if state DOTs are to use them routinely. Neitzel 
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and Klonowski generated 3D models based on 2D images acquired by UAS using several 

of these programs and compared the results of these and other programs and also found 

mixed results [63]. It seems that more developments need to be made in this area for 3D 

models to be a truly feasible infrastructure inspection option. 

Detailed 3D model of a bridge for purpose of damage identification has not been 

constructed successfully yet. The proposed method by Torok et al. and Zheng have the 

potential to be used for defect detection in bridges but neither of them had been examined 

in the field [64,65]. Weather, sunlight, temperature, wind and other environmental 

incidents would change the accuracy of the obtained model. In addition, the images used 

in those studies were not from UASs. The models constructed from UAS images, in other 

studies in Table 2-3, were not detailed enough for defect detection. The other issue with 

3D model construction is the required time to create it. Five to 10 hours of model 

construction time can be very long for bridge inspectors, especially when the goal of the 

UAS inspection is replace visual inspection. Torok et al., stated the model was created in 

1 hour [64]. However, the inspected object was small: 140 cm long column with a cross 

section of 53 cm by 23 cm. A single pier in a small bridge would be considerably larger 

and more complex, model reconstruction would likely take much longer. LiDAR seems 

to be the best option to construct 3D models quickly, although the studies do not mention 

the cost of using UAS equipped with a LiDAR sensor, which are typically heavy, 

requiring a larger UAS. In addition, for the output data from LiDAR to become a 3D 

model, skilled operators are required, which will add to the cost. Recent studies provided 

their models’ accuracy to the ground truth which ranged from 0.5 cm to 10 cm. For these 

models to be effective in defect detection, an accuracy of a tenth of millimeter is 
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required, which was not provided by any of the investigated studies [46]. Therefore, at 

this time, the application of UASs for 3D model reconstruction of bridges is limited for 

navigation purposes rather than defect detection. For the modeling to be of use to 

navigation, processing times need to be decreased considerably, to near real time. In 

addition, either free or commercially available 3D software can only construct objects 

with simple geometries and does so without proper details and are time consuming. 

Recently developed methods can have better performances than the off-the-shelf software 

in construction of complex objects, such as Rodriguez-Gonzalvez et al. [66]. 

Automated Damage Detection 

In order for automated inspections to become a reality, automated damage 

detection must also work with real time navigation and be able to obtain a condition 

assessment in a reasonable amount of time. Currently, the most promising bridge and 

infrastructure inspection method is visual image-based damage detection, which can be 

used with modified thermal or multi-spectral images. The requirements for these sensors 

are specific to their application, but sensor resolution needs to be fine enough to capture 

enough pixels of the defect and sound regions, and in the case of visual crack detection, 

the pixel intensity gradient must be large enough to distinguish the cracking from sound 

regions [67]. Thermal imaging has similar requirements, but camera sensitivity is 

paramount, especially since thermal UAS inspection is limited to passive thermography. 

Dorafshan et al., was able to detect fatigue cracks in the laboratory with a thermal 

camera, but only with a 0.2ºC sensitivity camera and a 1ºC sensitivity camera indicated 

nothing [46].  
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Image processing techniques are used to detect cracks, which are basically semi-

linear objects, such as Canny, Sobel, Fourier transform, and Haar transform edge 

detectors [68]. Image segmentation techniques, percolation algorithms, and filtering 

operations are also common for concrete crack detection [69-71]. Sometimes, a 

combination of several image processing techniques are required for damage 

identification [72]. Vision based training can further improve defect detection using 

techniques such as neural networks, wavelet transforms, and fuzzy C-means clustering 

[73-76]. Mohan and Poobal wrote a critical review on concrete crack detection using 

image processing methods using visual, thermal, ultrasonic, and laser based images [77]. 

Autonomous image-based crack detection in steel members (fatigue cracks) is 

challenging because of their size (0.01-0.1 mm width) [67]. Xu et al. introduced an 

image-based fatigue crack identification framework using a restricted Boltzmann 

machine algorithm [78]. The authors proposed an image-based algorithm to find two 

known fatigue cracks on a steel bridge from UAS images in multiple controlled and 

uncontrolled conditions [67].  

Subsurface defects, like reinforced concrete delaminations, can be identified 

through thermal imagery [79,80]. Other proven applications of infrared thermography for 

flaw detection are air blisters and crack propagation in FRP, voids in masonry and 

concrete members, flaws on painted steel members, rebar corrosion detection, and weld 

defect detections including lack of fusion, crack, nugget, expulsion, and porosity [81-86]. 

Two recent successful examples of using UAS-based thermography to find concrete 

delamination on bridge decks can be find in Omar and Nehdi and Wells and Lovelace 

[87,88]. Another promising area of use for automated inspections would be post-disaster 
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inspections where damage detection is necessary and many successful inspections have 

been carried out [89-95].  

The above studies indicate the vast opportunities of visual and thermal data for 

defect detection using common UAS sensors, and many studies have been attempted in 

the past using UASs or other vehicles. Metni and Hammel developed some of the first 

real-time concrete crack detection algorithms [96]. In addition, Oh et al., was able to 

identify reinforced concrete cracks, aided by user input on a bridge in combination with 

image with an average error of 0.02 mm from a distance of 2.3 m with 96.7% accuracy 

[97]. Inspired by this robotic system proposed in [97], a semi-autonomous robotic system 

was proposed to inspect road and train bridges [98].  

Recently, a combination of a 3D optical evaluation system and thermal infrared 

imagery was used to detect spalling and delamination in bridge decks, successfully 

detecting 4/7 defected areas when comparing to cores, but detected delamination in three 

sound regions (false positive) [99,100]. For comparison, chain drag reported 5 true 

positives (5/7) and 3 true negatives (3/3) for the same regions [31]. A canny edge detector 

combined with a Gaussian smoothing filter as part of pre-processing was programmed 

into the ROCIM robot and was reported to be successful but not applicable on UASs 

[101]. Zheng proposed a bridge deck crack detection and measurement technique based 

on the different normal vector orientation between sound and cracked surfaces, and crack 

dimensions could be detected within a 10% error from a reconstructed model [65].  

Morgenthal and Hallermann assessed the quality of UAS-based structural 

inspections in different weather conditions on a 44 m tall church structure, a 100 m tall 

turbine machine house, and a 225 m high chimney [102]. Cracks, rust, spalling, and 
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surface degradation were detectable in the captured images; however, motion of the UAS 

and wind speed affected the quality of images. Sankarasrinivasan et.al. proposed a top hat 

transform and HSV threshold operation to identify concrete cracks in UAS images and 

investigate the feasibility of real-time inspections [103]. Regions with spalls and cracks 

were said to be successfully detected by this algorithm; however, the number of 

examined images and number of true positives were not provided or compared to other 

algorithms. Ellenberg et al., designed an experiment to assess UAS’s image ability for 

structural monitoring and damage quantification using digital image correlation and other 

imaging, [104], techniques. Using a common 12 MP camera, deflection was estimated 

within 0.1 mm, and simulated corrosion measurements using a K-means algorithm were 

measured within 10-13% of error [105]. In addition, a combination of edge detectors, 

filtering, threshold, and morphological operations were used to detect cracks with 88% 

true positive and 69% true negative. Dorafshan et al., compared an algorithm based on 

threshold morphological operations to another image-based crack detection method 

suitable for UAS real-time detection [72,106]. The comparison showed an improved 

crack detection accuracy of 41% and 48% and an increase in true negative rates of 46% 

and 49% for defected and sound datasets. The proposed segmentation method was 

examined on challenging datasets with irrelevant features in the images such as edges of 

concrete members, surface clutter, paint stains, and background scenery lines that could 

be confused with cracks by many image-processing techniques. Implementing Deep 

Learning Convolutional Neural Networks (DLCNNs) in UAS-assisted inspections 

showed promising results for concrete deck crack detection without human intervention. 

The network was trained on a set annotated images (manually labeled as cracked or un-
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cracked) taken by a point and shoot camera of several bridge decks (98% validation 

accuracy). The trained network was then used to label new images taken by UAS of other 

concrete structures autonomously with 88% accuracy [107].   

Table 2-4 shows the summary of the above studies in addition to several new 

research efforts from 2007 to 2017. Reviewing the literature shows that the largest 

hurdles are probably a lack of a uniform assessment of accuracy and a baseline dataset 

for easy comparisons among the different methods.  

Table 2-4 UASs and damage identification 
Ref. Year Defect Sensor  Method Achievements Shortcomings 

[96] 2007 
Concrete 

Crack 
10MP camera 

Manual 

detection 

Autonomous flight 

used 

No autonomous damage 

detection. Success only on 

planar objects perpendicular to 

camera. 

[97] 2009 
Concrete 

Crack 

Visual camera, 

Laser, 

Gyroscope 

Noise removal, 

edge detection 

(Seed point 

method) 

Integrated machine 

vision, and human 

aid, compares to 

Canny and Sobel 

edge detectors 

Manual detection, no true 

positive and true negative 

reports. 

[31] 2013 

Concrete 

Spall  

12.3MP DSLR 

camera,  

3D optical 

bridge 

evaluation 

system 

(3DOBS) 

Combining chain 

drag with infrared 

thermography, 

thermal and visual 

data fusion, 

destructive testing 

3DOBS required close 

proximity to generate the 3D 

model, Chain drag more 

consistent and still requires 

lane closure. 3D model 

required surface preparation. Delamination 

FLIR SC640 

thermal 

camera 

Passive 

thermography 

pattern 

recognition 

 [65] 2014 

3D model of 

concrete 

crack 

DSLR Camera 

Oriented 

thresholding 

operation 

Crack detection and 

measurement on 3D 

model 

Thresholding value was user-

defined, no field experiments  

[101] 2014 Bridge Deck 

High 

resolution 

visual 

LoG 

Autonomous crack 

detection and 

mapping, realtime 

crack detection. 

No under-bridge inspections, 

no true/false positive reports. 
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[102] 2014 

Concrete 

Wall 

Cracks/Spalls, 

Steel Rust 

Panasonic 

Lumix DMC 

TZ 22, 14.1MP 

and Sony NEX 

5 14.2MP 

Manual  

Discussion of wind 

effect on UAS 

performance 

Motion blur weakened the 

visual damage detection, no 

autonomous defect detection, 

no comparison to human 

inspection 

Concrete 

Wall Crack 

Sony NEX 5 

14.2MP 

Automated 

computer-

vision 

probability of 

detection with clear 

and blurry images 

Less successful crack 

detection in blurry images due 

to adverse weather 

[103] 2015 

Concrete 

Member 

Crack, 

Efflorescence, 

Surface 

Erosion  

PAL 762*572 

camera 

Hat 

transformation, 

HSV and grey-

scale 

thresholding 

Detection of 

Concrete cracks and 

degradation 

Accuracy not reported, user-

defined parameters required, 

no comparison to human 

inspection. 

[104] 2016 

Concrete 

Member 

Crack, Beam 

Deformation, 

Steel 

Corrosion  

10MP GoPro 

Hero 3 

Median 

filtering, 

morphological 

operation, 

shape filtering, 

K-means 

segmentation. 

Deflection 

measurement, crack 

detection, corrosion 

detection 

Lab test, stationary camera, no 

comparison to human 

performance, accuracy not 

reported 

[72] 2016 

Concrete 

Pavement 

Crack 

12MP Nikon 

camera 

Median 

filtering, 

Sobel, HSV 

thresholding, 

morphological 

operations 

Crack detection with 

90% accuracy in less 

than 1 s per image, 

image segmentation 

using shape, UAS 

inspection 

31% of false positive reports, 

user-defined values in the 

algorithm, no comparison to 

human inspection 

 [87] 2017 

Concrete 

Delamin-

ation 

FLIR Vue Pro 

Thermal 

Camera 

Histogram 

Equalization, 

Image 

Segmentation 

(K-mean 

clustering)  

Delamination 

detection 

comparable to 

hammer sounding 

and half-cell 

potential, two full-

scale inspections 

No discussion on the effect of 

temperature, UAS’s small 

payload, sensitive to weather 

 [46] 2017 

Bridge Deck 

Cracks, Steel 

Fatigue 

Cracks 

12MP Nikon, 

12MP DJI 

Mavic, 

12Mp GoPro 

Hero 4 

Manual 

Detection, 

LoG Edge 

Detector 

90% accuracy, 

Successful fatigue 

crack detection 

visually in UAS 

images, human 

comparison. Lab and 

outdoor detection. 

Only two (movable) fatigue 

cracks in the dataset, cracks’ 

size and location were know 

before inspection 

[130] 2017 
Bridge Deck 

Cracks 
12MP Nikon 

Sobel,  

Roberts, 

Gaussian Filter 

Comparison 

between three edge 

detectors, 

Images in the datasets had no 

irrelevant objects, shadows, 
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Wide variety of 

images. 

etc., No filed test or UAS 

information. 

[67] 2017 

Bridge Deck 

Cracks,  

Steel Fatigue 

Cracks 

12Mp Nikon, 

12MP DJI 

Mavic 

LoG and 

Statistical 

Thresholding  

92% accuracy, less 

than 1 second per 

image run time. 

Images in concrete dataset 

were without irrelevant 

objects, 

The fatigue crack algorithm 

only tested on 2 images. 

[76] 2017 
Concrete 

cracks 
4k Camera  

Fuzzy C-

means 

clustering 

Detection fine 

cracks (0.3 mm 

width) from UAS 

Images, 90% true 

crack detection  

No information about the 

camera,  highly sensitive to 

image noise, 80% true 

negative reports, no 

comparison to human 

inspection. 

[78] 2017 
Steel fatigue 

cracks 

4K Nikon 

D7000 

Restricted 

Boltzmann 

machine  

Detection of fatigue 

cracks with 90% 

accuracy 

No UAS inspection,no field 

tests, user-defined parameters 

in the algorithm 

[77] 2017 
Concrete 

cracks 

Visual, 

thermal, 

ultrasonic, 

laser. 

Review  

Comprehensive 

review on different 

methodologies and 

sensors for concrete 

crack detection 

No discussion on the dataset, 

no output images for 

verification.  

[107] 2018 
Concrte 

cracks 

12Mp Nikon, 

GoPro Hero 4, 

12MP DJI 

Mavic  

Deep Learning 

Convolutional 

Neural 

Networks 

(DLCNNs) 

Successful 

implementation of 

DLCNNs trained on 

high quality images 

to detect concrete 

cracks in UAS 

images 

autonomously 

Limited testing dataset, 

relative poor performance of 

the network on UAS images 

 

 

In this section a review of possible applications of UASs for autonomous damage 

identification is provided. Past studies showed promising results in terms of finding 

concrete surface cracks and delamination in an autonomous manner. The performance of 

the implemented methods in terms of accuracy and time was tied to the cameras used in 

the inspection and the type of defects. Even though a few studies offered realtime defect 

detection, but the required framework and software, for bridge inspectors to actually use 

them, were not discussed. Another gap in the past studies was the lack of comparing 
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visual inspections performed by the inspectors to the ones performed using UASs and 

damage detection algorithms. However, there are studies comparing UAS to manned 

inspection, but the performance of the two methods was not compared to each other. The 

accuracy, cost, and time associated with autonomous defect detection may not be well-

analyzed in the reviewed studies. Using these methods requires an extra personnel, 

familiar with how the algorithms were programmed, which will add costs to the 

inspections. Human inspection can be superior to autonomous defect detection in their 

current state since a trained inspector can detect variety of defects. Autonomous defect 

detection for fatigue cracks using UASs have either failed or had limited success in the 

past [46]. Performing certain inspections, such as in-depth inspection using some sort of 

NDE method or under-water inspection, can be either very challenging or impossible 

using UASs. Despite all the shortcomings, the autonomous defect detection can be 

helpful during a typical bridge inspection by providing an unbiased approach for 

conventional concrete defect [67]. 

UASs and Bridge Inspections  

This chapter is dedicated to published studies and research about using UASs for 

DOT missions and is organized into two categories: bridge inspection and other 

applications. UAS applications in bridge inspection have become widespread with state 

DOTs. According to a survey performed by the American Association of State Highways 

and Transportation Officials (AASHTO) in 2016, seventeen state DOTs had researched 

and/or used UASs for certain transportation purposes [108]. 

The survey also indicated a growing number of state DOTs, either independently 
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or with the aid of one or more academic institutions, are studying UASs and developing 

policies. Based on a literature search, there are more states involved in UAS research for 

various purposes since the writing of Dorsey, including but not limited to North Carolina 

and Utah. Fig.2-4 shows the states with current or past involvement with UASs for 

different DOT missions [46].  

 
Fig.2-4 US Map with 34 red shaded states indicating current or past involvement with UAS 

research and applications (Adapted [46]) 

UASs and State DOTs  

UASs have been used by departments of transportation for almost two decades 

[46]. However, state DOTs have used UASs for different reasons. Currently, no DOTs 

are using UASs for routine bridge inspections, but many are performing investigations in 

this area. Many states are not investigating UAS assisted bridge inspections at all but are 

performing some sort of feasibility investigations for evaluation of other infrastructure 
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like traffic, stockpile, and construction monitoring. 

DOTs and UAS Bridge Inspections 

California DOT 

In 2008, California DOT and University of California at Davis published a report 

on aerial robot bridge inspection [41]. A custom UAS was designed to be tethered to the 

ground, and therefore was easier to control and conform to Federal Aviation 

Administration (FAA) regulations at the time. The onboard flight control computer was 

developed to provide a redundant high-speed communications link to manage the 

platform stability. However, the project was terminated because it did not result in a 

fully-deployable aerial vehicle due to the following problems: unreliable heading 

(compass), instability, especially in wind, and unsuccessful implementation of the 

altitude hold sensor. The California research project was one of the first research reports 

published by a DOT on utilizing UASs for bridge inspections. 

Georgia DOT 

As part of a joint research project with Georgia Institute of Technology in 2014, 

Georgia DOT published the results of twenty-four interviews with GDOT personnel in 

order to evaluate the economic and operational advantages and drawbacks of UASs 

within traffic management, transportation, and construction [109]. Five different UASs 

configurations, A through E, were investigated in the GDOT study. System A was a 

quad-motor UAS having FPV, VTOL, and a video camera suitable for monitoring 

operations such as and not limited to traffic monitoring. System B was an enhanced 
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version of System A, equipped with LiDAR. This system was recommended for any 

mission that involved mapping. System C also expanded upon System A with emphasis 

on prolonged environment/region monitoring, for example, construction sites. System D 

was proposed as a platform for county-sized missions, whereas Systems A through C 

were for regional missions. System D was a fixed winged aircraft with wingspan size of 

2-6 m and capable of high-quality aerial photogrammetry. This system was suggested as 

the proper candidate for post-disaster response missions and traffic monitoring. Finally, 

System E configuration, which was recommended for bridge inspections, consisted of a 

multi-rotor copter with 8 or more motors, potentially tethered, capable of VTOL, and 

equipped with LiDAR and safety pilot mode. 

Michigan DOT 

Michigan DOT published the results of experiments on five main UAS platforms 

with different sensors [100]. These UASs were equipped with a combination of visual, 

thermal, and LiDAR sensors to assess critical infrastructures and their defects, for 

example, bridges, confined spaces, traffic flow, and roadway assets. They concluded that 

UASs are low-cost, flexible, and time-efficient tools that can be used for multiple 

purposes: traffic control, infrastructure inspections, and 3D modeling of bridges and 

terrain. Each platform was reported to be suitable for a certain task in Michigan DOT. A 

VTOL, equipped with a thermal and a visual camera, proved to be the most appropriate 

for high-resolution imaging of a bridge decks, but obtained mixed results when compared 

to hammer sounding due to the poor surface quality of the deck. With regard to UAS 

controls for bridge assessment, SLAM was proposed as a topic for future study with the 
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major challenge being UAS position accuracy. 

Minnesota DOT (Phase 1) 

Minnesota DOT initiated investigations into benefits and potentials of UAS 

bridge inspection [15]. In this study, four bridges in Minnesota were inspected using 

UASs to study the effectiveness of VTOL UASs. The first bridge inspection was a 26 m 

long single span prestressted concrete bridge, and the UAS could not perform an under 

bridge inspection due to low-clearance and lack of GPS signals. The human inspection 

and the UAS inspection detected defects on a bridge deck such as spalls and cracking, but 

the inspector detected missing anchor bolt nuts during the under-bridge inspection while 

the UAS was unable to detect this defect. However, mild scour was only detectable in the 

UAS images. The second bridge inspection was done on a 100 m long open spandrel 

concrete arch bridge. The UAS was unable to survey the top of the bridge deck due to 

traffic.  Zoom lens provided reasonable visibility for some under-bridge items. In this 

case, mild scour was not detectable in the UAS images, but the UAS inspection images 

showed bearing deterioration that the human inspection report missed. On the third 

structure, a five span steel underdeck truss, the UAS could investigate the truss 

superstructure and substructure and excellent agreement was found between the human 

and UAS inspection. The final bridge was approximately 850 m long with five truss arch 

spans, and a UAS inspection was carried out on this bridge but was not compared to a 

human inspection. It was concluded that UASs can be used in the field of bridge 

inspection while posing minimum risk to the public and inspection personnel. In some 

cases, UAS images provided a cost-effective way to obtain detailed information that may 
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not normally be obtained during routine inspections. FAA regulations prevented the UAS 

from flying over traffic, negating the benefits of UAS inspections for the deck. 

Florida DOT 

In 2015, Florida DOT published a research report investigating the feasibility of 

UAS-assisted inspection of bridges and high mast luminaires [110]. A UAS, equipped 

with high-definition cameras was used in lieu of experienced inspectors to achieve the 

following goals: reduce the cost of inspection, reduce the hazards to the inspector, 

increase the public safety, and increase the inspection effectiveness through more 

comprehensive data acquisition. Limitations were also identified, such as allowable 

payloads, control and navigation in severe winds, and image quality in low-light 

conditions. One aspect of this study was to select the main UAS components based on the 

demands of the project. Weighted factor analyses were developed to provide a systematic 

decision-making toolbox for each component, which led to the selection of three VTOL 

UASs, four ground viewing stations, and three visual cameras. Finally, a dual camera 

setup, and remote control gimbal were selected to perform the inspections. The selected 

UAS was tested against wind to determine the required clearance from an object. This 

clearance was estimated to be 0.3 m for wind speeds less than 11 km/h and wind gusts 

less than 16 km/h; however, the required clearance is only valid for the tested UAS. 

UASs were able to inspect a high mast luminaire in 8.5 minutes while providing adequate 

pictures in acceptable details. Additionally, two preliminary field tests were performed 

under controlled conditions where a pedestrian bridge and a wooden bridge were 

inspected under 15 minutes and 10 minutes, respectively. The inspections indicated 
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moderate and severe rust and fine cracks. A field test with FDOT inspectors performed 

the inspection in 10 minutes under 20 km/h wind speeds and 29 km/h wind gusts, 

respectively. Rust, cracks through epoxy, bearing deformation, and deck and girder 

separation were among the detected flaws. The other field test was performed on a steel 

railroad drawbridge with wind speeds of 11 km/h and the wind gusts equal to 27 km/h. 

Missing nuts and severely rusted bolts were detected. The third field inspection was 

performed on a concrete and steel superstructure bridge in 10 minutes while the wind 

speed was 27 km/h and the wind gusts were 40 km/h This inspection showed mild to 

severe corrosion regions on a transverse girder bracing and a separation between the 

girder and the deck in the images. A service and maintenance schedule was proposed for 

UASs with a 25 hour of operation interval. 

Idaho DOT 

Idaho Transportation Department (ITD) in corporation with Utah State University 

conducted a UAS bridge inspection with emphasis on damage detection in bridges with 

Fracture Critical Members (FCM) [46]. Two aspects of remote sensing in bridge 

inspections were investigated in this study: visual inspections and autonomous defect 

detection, both using inspection data gathered by UASs. Several inspections conducted 

on a lab made bridge using a 3DR Iris platform showing UASs can be used for deck 

inspections and concrete crack detection in real time. An image processing algorithm was 

also used to detect cracks automatically with 90% accuracy. The next phase of this study 

was to determine the feasibility of fatigue crack detection using three UAS platforms: 

3DR Iris, DJI Mavic, and a custom-made VTOL. A set of indoor and outdoor 
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experiments in GPS denied environments were carried out. The target of the inspections 

was to visually detect a real fatigue crack on a test-piece from UAS images in various 

situations to determine the minimum requirements in terms of clearance and lighting 

condition. The crack was not visible in the images captured by the 3DR Iris (with a 

GoPro Hero 4 camera) in any condition. DJI Mavic images were acquired without GPS 

and in dark lighting conditions (i.e., similar to that under a bridge), showing the fatigue 

crack. The custom VTOL struggled in GPS denied situations, but the optical zoom on its 

camera allowed for somewhat successful fatigue crack detection. An image-processing 

method for autonomous fatigue crack detection was developed which detected more than 

80% of the crack length in DJI Mavic images. The DJI Mavic was recommended as a 

potentially suitable platform for under-bridge inspections due to reliance on a stereo-

vision positioning system in absence of the GPS signals, a good quality camera, its small 

size for maneuvering between girders, and the camera’s ability to function in low light 

conditions (manual exposure adjustment). This platform however did not perform 

properly over running water during inspection of an in-service fracture critical bridge in 

Idaho. Due to the absence of GPS signals under the bridge, the DJI Mavic relied mainly 

on its downward stereo vision positioning system for control and navigation. Therefore, 

the UAS did not hold neither did its altitude or its position when it was flown over the 

current. The performed field study was inconclusive with respect to fatigue crack 

detection, but was successful in detecting concrete and steel surface deterioration.  

Minnesota (Phase 2) 

Phase 2 of the Minnesota DOT study was completed in 2017 by inspecting 4 other 
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bridges throughout Minnesota [88]. The inspected bridges were longer than the ones 

studied in the phase 1 [15]. The UAS performance for bridge inspection was compared to 

standard hands-on inspection in terms of cost and time, access methods, and data 

collection. Unlike the phase 1, UAS-based structural condition assessment of the bridges 

was not compared to the hands-on results. A Sensefly Albris UAS, equipped with a 

thermal and a visual camera, was used for the inspection. The platform was designed for 

GPS-denied operation, inspection, and mapping. First, a 2,400 m long multi-span steel 

bridge constructed in 1961 was inspected. The inspection of this bridge proved that the 

UASs can successfully be used to navigate around large-scale bridges in severe weather 

condition. However, the report does not define the severe weather. The UAS provided 

data from under-bridge members yet, there was no actual indication of defect detection in 

the report. With $20,000, UAS inspection was claimed to be 66% cheaper than the 

traditional inspection ($59,000) which included four inspection vehicles, and a 25 m man 

lift. However, the traditional inspection took 8 days to inspect the bridge while the UAS 

finished the inspection in 5 days. The second inspected bridge was a 110 m long steel 

high truss built in 1939. The main objective of this inspection was to detect deck 

delamination using the integrated thermal camera on the UAS and compare the results to 

chain dragging and handheld FLIR thermal camera. It was stated that “the onboard 

thermal sensor was able to detect the deck delaminations with good accuracy”, but this 

was not quantified. A 3D model of this bridge was also constructed by processing UAS 

images with Pix4D mapping software, however, no information regarding the 

quality/accuracy of the model is presented. An 80 m long corrugated steel culvert was the 

subject of the third inspection. The integrated headlight provided enough illumination to 
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capture usable images; however, UAS thrust kicked up dust, making the images not 

useful for inspection. The final inspection was done on an 86 years old 10-spanthrough 

truss bridge, one movable span, and three concrete spans. Reportedly this inspection 

helped the managers to decide to replace the railing based on the images captured by the 

UAS.  

DOTs and Other UAS Applications 

Virginia DOT 

Virginia DOT cooperated with the National Consortium on Remote Sensing in 

Transportation to prove that it is possible to use UASs for traffic surveillance and 

monitoring [111]. The result of this cooperation showed that the UASs can reduce costs 

associated with traffic control by 50%. 

Ohio DOT 

Ohio DOT, in collaboration with Ohio State University in 2005, performed field 

experiments in Columbus, OH to collect data about freeway intersection movement, 

network paths, and parking lot monitoring. The outcome of the project provided quasi 

real-time space planning and distribution from the collected information by UASs to help 

travelers [112]. 

Florida DOT 

Florida DOT (FDOT) began to investigate the applications of UASs in 2005 with 

the main focus on traffic management and road monitoring [113].  
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Washington State DOT 

Washington State DOT and the University of Washington investigated the merits 

and challenges of using UASs to perform traffic surveillance and avalanche control 

[114]. They conducted experiments on two types of UASs: A fixed-wing aircraft and a 

VTOL rotary-wing aircraft (helicopter). The fixed-wing UAS was able to collect data 

from mountain slopes next to highways in case of an avalanche. The VTOL was found to 

be more suitable for urban area and traffic surveillance.  

Utah DOT 

Utah DOT in association with Utah State University studied the application of 

UASs for monitoring and documenting state roadway structures during a highway 

construction project [115]. Images were also taken to identify the species of wetland plant 

at Utah Lake wetland mitigation bank. The result of the inspection, after post-processing, 

was a mosaic model of the scene. 

Idaho DOT 

ITD initiated a preliminary investigation into UAS in 2014 to look into 

construction and stockpile monitoring. In this first investigation, visual and thermal 

images of bridge structures were taken, but were of limited use [46].  

Summary of DOT investigations 

Table 2-5 summarizes goals, achievements, and obstacles in each state DOT 

research project, organized chronologically by bridge inspection mission or non-bridge 

related. This table includes all state DOT studies on UASs that have been published or 
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cited by an article in research done between 2002 and 2017. Table 2-6 presents a 

summary of the UAS platform and sensor specifications used in state DOTs and is 

organized chronologically by bridge inspection mission or non-bridge related. 

Table 2-5 UAS’s progress and obstacles in state DOTs 
Bridge Inspection 

State DOT Ref. Goals Achievements Shortcomings 

California [41] 
Routine Bridge 

Inspection 

Vertical takeoff, wind resistance 

up to 37 kmh, inspection images 
Instability  

Georgia [109] 

Determining proper 

UAS configuration for 

specific tasks 

Proposition of five UAS 

configuration including the type of 

platform, vehicle, station and 

number and type of sensors. 

No field inspections 

Michigan [100] 

Initial Bridge 

Inspection, 

delamination 

detection 

Successful construction of point 

cloud 3D models, defect detection 

(delamination) 

Manual control,  

inconsistency between 

thermal and ground true 

in for delamination 

detection,  inaccurate 

GPS 

Minnesota 

(Phase 1) 
[15] 

Initial bridge 

inspection with off-

the-shelf UASs 

Structure mapping, thermal 

inspections, GPS assisted 

navigation, reasonable agreement 

between human and UAS 

inspection 

FAA regulations 

prevented top bridge 

inspection, Loss of GPS 

signals prevented under 

bridge inspections,  

Florida  [110] 

Initial inspections of 

bridge and high mast 

luminaires 

Similar image quality compared to 

human inspector, detection of 

concrete cracks down to 0.02 

inches 

FAA regulations 

prevented top bridge 

inspection, Loss of GPS 

signals prevented under 

bridge inspections, poor 

control in wind 

Idaho [46] 

Fatigue crack 

detection (FCM 

inspection), GPS-

denied navigation 

Autonomous and visual bridge 

deck condition assessment,  

Autonomous and visual fatigue 

crack detection in mock 

inspections, field inspection 

No crack detection in the 

field inspection, no over 

water flight due to sonar 

limitation,  

 

Minnesota 

(Phase2) 
 [88] 

GPS denied 

environment, initial 

inspection of large-

scale bridges 

Successful delamination detection 

using thermography, successful 

GPS-denied navigation, 3D model 

and mapping, cheaper and faster 

No indication to weather 

effects,  

no comparison between 

UAS and human 

inspection.in terms of 
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than traditional inspections for 

large-scale bridges 

defect detection (except 

for delamination) 

Non-Bridge Inspection 

State DOT Ref. Goals Achievements Challenges 

Virginia [111] 

Traffic surveillance 

and road condition 

monitoring 

Cost Saving N/A 

Florida [113] 
Recording data in 

less time consuming  

FAA rule development, proof of 

concept 
Manual control 

Ohio  [112] 
Freeway traffic 

assessment 
quasi real-time space planning,  Manual control 

Washington [114] 

Minimizing the 

highway avalanche 

closure and traffic 

control 

Higher flight elevations up to 1500 

feet, demonstrating need for 

flexible FAA regulations 

Manual control, 

restrictive FAA 

regulations 

Utah [115] 

Roadway 

construction and 

vegetation 

monitoring 

Successful and high quality 

images  

Manually controlled, 

inaccurate models of the 

site, insufficient  image 

overlap 
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Table 2-6 UAS Mission Parameters in state DOTs 
Bridge Inspection 

State DOT Year Model/type Sensors Payload Purpose 

California 2008 ES20-10 Visual Camera 4.5kg Road Inspection 

Michigan 2015 

Bergen HexaCopter 

Visual and 

Thermal Camera, 

LiDAR 

5kg 
Deck inspection, 3D modeling, roadway 

assets 

DJI Phantom Visual camera unknown Bridge and construction monitoring 

BlackoutMini 

Quadcopter 
Visual camera unknown 

Bridge structure imaging, confined space 

assessment 

Heli-Max 1 Si Visual camera unknown Confined space assessment 

Walkera QR 100S Visual camera unknown Confined space assessment 

FVPfactory 

Waterproof 

quadcopter 

Visual Camera 

“Half of 

vehicle 

weight” 

Bridge structure imaging - undersides (For 

bridges over water) 

Blimp Visual Camera 

“Half of 

vehicle 

weight” 

Traffic monitoring and maintenance 

Minnesota 

(Phase 1) 
2015 Ayeron Skyranger 

Visual and 

Thermal Camera, 

Lights 

Variable Bridge inspection 

Florida 2015 
ArduPilot Mega 2.5 

Micro Copter 
Visual Camera Variable Bridge and high mast pole inspection 

Idaho 2017 

Custom-made 

(Goose) 

Visual and thermal 

Camera 

14.5kg  

 
Bridge inspection 

DJI Mavic Visual Camera 0.9kg Bridge inspection 

3DR Iris Visual Camera 0.4kg 
Bridge inspection and fatigue crack 

detection 

Minnesota 

(Phase 2) 
2017 Sensefly Albris 

Visual and 

Thermal Camera 

1.8kg 

(including 

the UAS) 

GPS-denied navigation, mapping, 

3D model construction, bridge inspection. 

Non-Bridge Inspection 

State DOT Year Model/type Sensors Payload Purpose 

Virginia 2002 ADAS Visual Camera - Proof of concept 

Ohio 2004 MLB BAT Visual Camera 2.2kg 
Traffic surveillance and road condition 

monitoring 

Florida 2005 Aerosonde Visual Camera 13kg Traffic surveillance 

Washington 2008 
MLB-BAT 

R-Max 
Visual Camera 

2.2kg 

29.5kg 
Avalanche control, traffic supervision 

Utah 2012 AggieAir Visual Camera 0.9kg Monitoring, Object detection 

Idaho 2014 Sensfly eBee RTk 
Visual and 

Thermal Cameras 
0.73kg Road monitoring 
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FAA Regulations on UASs 

Current Regulations 

There are two sets of rules for flying any aircraft: Visual Flight Rules (VFL) and 

Instrument Flight Rules (IFR). According to the “Aeronautical Information Manual,” a 

controlled airspace is defined as “…an airspace of defined dimensions within which air 

traffic control service is provided to both IFR and VFR flights in accordance with its 

classifications” [116]. In the United States, the controlled airspaces are designated as in 

Table 2-7.  

Table 2-7 Designated Airspaces in United States (Adapted from [116]) 
Name of the class Definitions 

Class A From 5,500m mean sea level (MSL) up to and including Flight Level1 600. 

Class B From the surface to 3000m MSL. 

Class C From the surface to 1,200 m (4,000-foot) above the airport elevation. 

Class D From the surface to 760m from the airport elevation. 

Class E An airspace that is not classified as A, B, C, and D 

Class G Uncontrolled airspace with no IFR operation. 

1. Flight Level (FL) are described by a nominal altitude in hector-feet while being a multiple of 500-

foot. FL 600 is equal to 18,200 m (60,000-foot) 

 

The FAA was established after the Federal Aviation Act in 1958 and was called 

the “Federal Aviation Agency” at first, until it became a part of the DOT and took on its 

present name in 1967. One of the responsibilities of this administration was and is to 

provide safety regulations for flying UASs. FAA recognizes two categories for UAS use: 

“Fly for fun” and “Fly for work/business.” The former does not require permission from 

FAA, but the vehicle should be registered through the FAA website. The “Fly for 
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work/business” category is restricted by FAA. The latest version of the FAA rules was 

published on the FAA website on June 21, 2016. Some of these regulations are as 

follows: 

 The total weight of the unmanned aircraft should be less than 25 kg (vehicle and 

payload). 

 The vehicle must remain within the visual line-of-sight of the remote pilot in 

command, the person manipulating the flight controls, and the visual observer 

during the flight. 

 The aircraft must not operate over any persons that are not directly participating 

in the operation, are not placed under a covered structure, and are not inside of a 

covered stationary vehicle.   

 Flight is only permitted during day-light or civil twilight with appropriate anti-

collision lighting. 

 The sole use of a first person view camera does not satisfy the “see-and-avoid” 

requirements.  

 The maximum altitude is 133 m above ground level (AGL) or within 133 m of a 

structure.  

 The maximum speed of the UAS must not exceed 160 km/h. 

 No person may act as a remote pilot or visual observer for more than one UAS at 

the same time. 

 The UAS operator must either hold a remote pilot airman certificate or be under 

the direct supervision of a certificate holder. 
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 UASs must be registered and certified by the FAA. 

 The UAS must not be flown within 8 km of an airport without prior authorization 

from the airport operators. 

 The UAS must not be flown from a moving vehicle.  

Pilots requirements are: 

 Must be at least 16-years old 

 Must pass an initial aeronautical knowledge test at an FAA-approved knowledge 

testing center 

 Must be vetted by the Transportation Safety Administration (TSA) 

 Must pass a recurrent aeronautical knowledge test every 24 months.  

Registered aircraft must have an application form (AC Form 5050-1) and 

evidence of UAS ownership. After submitting these documents, the UAS is registered 

and a Certificate of Authorization (COA) can be requested. The following information is 

required to submit the COA application form: concept of operation and type of missions, 

operation location, altitude, communications, and flight procedures [109]. After 

submission, FAA conducts a comprehensive operational and technical review on the 

application to ensure the UAS can operate safely with other airspace users. As of 2018, 

the wait time to complete the application is 60 days. The COA application also requires 

proof of airworthiness for the UAS. This proof can be obtained either by submitting an 

Airworthiness Statement or through FAA’s Certificate of Airworthiness. As a new 

interim policy, FAA has been speeding up COA, also known as Certificate of Waiver in 

section 333 for certain commercial UASs. Section 333 exemption holders now are 
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automatically granted with “blanket 200 foot,” which allows them to fly anywhere in the 

country except for restricted airspaces, as long as they are below 61 m (200 feet) and the 

platform is not heavier than 24 kg. The part 107 regulations provide a flexible 

framework; however, more opportunities have been provided by FAA to omit these 

regulations. Table 2-8 demonstrates the summary of the regulations for flying UASs and 

micro UASs (weight less than or equal to 2 kg).  

Table 2-8 UAS and micro UAS regulations (adapted from [110]) 
Provision UAS Micro UAS 

Maximum Weight (platform 

plus payload) 
24 kg 2 kg 

Airspace confinements 
Class G, and Class B, C, D, E with Air 

Traffic Center permission 
Only Class G 

Distance from people and 

structures 

No operation over any person not involved 

and uncovered 
No limitation 

Autonomous operations Yes No 

Required aeronautical 

knowledge 
Knowledge test Self-certification 

FPV Permitted; if visual line of sight is satisfied Not permitted 

Visual observer training Not required Not required 

Operator training Not required Not required 

Operator certificate Required with knowledge test 
Required without 

knowledge test 

Preflight safety assessments Required Required 

Operation within 8 km of an 

airport 
Prohibited Prohibited 

Operate in congested region Permitted Permitted 

Liability insurance Not required Not required 

Night operation Prohibited Prohibited 
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FAA Restriction to UAS Bridge Inspection 

The previous section illustrated the current FAA regulation on using UASs. These 

regulations pose limitations on the certain aspects of UAS bridge inspection which will 

be discussed in this section.  

 FAA mandates the pilot has a line-of-sight to the vehicle during the inspection. 

However, one of the advantages of using UASs is to access to locations that are 

difficult to reach without a UBIT [46,117,118]. Maintaining the line-of-sight 

becomes impossible for certain terrain and topographical situations, severely 

limiting inspection. It may be possible to obtain a waiver for these situations.   

  Past studies indicate bridge deck inspection is one of the strength of UASs over 

human inspector in terms of cost and time of inspection [31,88]. However, the 

current FAA regulations prohibit UASs over passing traffic, requiring lane 

closure. Waivers for flight over traffic are possible, however, the proximity to 

said traffic will be a deciding factor.  

 One of the proven techniques for deck delamination detection in using thermal 

inertia which requires taking thermal image of a surface in two different ambient 

temperatures with maximum possible temperature gradient, i.e., daytime and 

nighttime [80], yet the FAA limits the UAS operation to daytime.   

 According to FAA regulations, the maximum flight altitude is 133 m. Therefore, 

any bridge elevated more than 133 m cannot be inspected while one of the merits 

of using UASs is to provide data on bridges that are challenging such as tall 

bridges. There are almost 150 bridges with the height of 133 m or more and 
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average age of 59 years which cannot be inspected by UASs. Again, a waiver is 

likely possible to relax this restriction. 

Synthesis of UAS Bridge Inspections and Future Needs 

The previous sections have outlined applications of UASs in different fields, 

including bridge inspection, and discussed the current capabilities related to automated 

inspections (i.e., 3D modeling, damage detection, and controls). UAS-assisted bridge 

inspections have had success throughout the United States that have resulted in successful 

routine inspections of easily accessible locations when UASs had access to GPS, and 

autopilot features. The compiled literature on these topics is informative about the future 

path of UASs for bridge inspection by recognition of current challenges and benefits. 

DOT research with UAS-based bridge inspections is relatively scarce and involved 

mostly off-the-shelf solutions and focused on feasibility. Proving that a UAS can be an 

alternative to visual inspections would very valuable in bridge inspection practice, but 

current studies have focused on case studies. This section compiles the current main 

benefits and drawbacks of UASs as an alternative to visual inspections and the future 

potential for automated inspections.  

Immediate UAS Inspection Potential  

As mentioned in before, the most interesting aspect of using UASs for state DOTs 

and bridge inspection agencies were visual inspections. The following sections 

investigate the possible advantages of using UASs for bridge inspections. 
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Safer Inspection 

One of the major advantages of UASs in this field is the higher degree of safety. 

According to the engineer of maintenance and operation at Michigan DOT, “…using 

UAVs provides a mechanism to keep the crew out of high risk situations” [100]. UASs 

can obtain photos from under-bridge regions without requiring manlifts and potentially 

road closures, allowing for increased inspector and public safety, while the acquired data 

by UASs have similar qualities as visual inspections [88]. Fig.2-5a shows a UAS during a 

targeted visual inspection to detect fatigue cracks. If an inspector was to perform the 

visual inspection (for location shown Fig.2-5a), it would require rappelling or a UBIT 

[46]. Fig.2-5b shows the inspection image of a possible fatigue crack taken by UAS. 

Inspection of high mast poles and cable-stayed members are other scenarios where UASs 

can provide a safer situation [15,110].  

  

(a) (b) 

Fig. 2-5 (a) A UAS inspecting girders bridge under a bridge, (b) an image of a fatigue crack 

taken by a UAS from a bridge girder with fatigue crack 

Additionally, safety risks and costs may decrease because there may be fewer 

people involved (Table 2-9). According to current FAA rules, having a certified pilot and 
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a spotter is considered legally adequate to fly UASs; whereas, an inspection will typically 

involve at one to four people in the visual inspection. 

Table 2-9 Manual and drone cost comparison (adapted from [108]) 
Method of 

inspection 
Time spent Lane closure 

People 

involved 
Money spent 

Visual 

Inspection 
8hour Yes 4 $4600 U.S.  

UAS  

Inspection 
1hour Yes 2 $250 U.S.  

 

 

Faster Inspection 

The time required to inspect a complex bridge or obtain photos of a hard-to-reach 

location, like Fig.2-5, can be decreased considerably with UASs. For example, Yang et 

al. stated that it only took 42 minutes to complete an entire bridge inspection using a 

UAS: 25 minute set up time, 10 minute first flight, and 7 minute second flight. The 

inspected bridge was 240 m long and 8 m wide, but bridges are likely to be highly 

variable depending on the structure type [119]. In this case, public advertisement of the 

closure and set-up time for closing down the road can also be eliminated when the UAS 

is not visible to traffic. Note that the work by Yang et al. was a survey of the structure 

and was not of quality for a true inspection (i.e., detecting defects), which would take 

considerably longer. Table 2-9 is adapted from an AASHTO report, for deck inspection 

claiming UAS inspection reduce the deck inspection cost [108]. The size and condition of 

the inspected deck, and also the objective of this inspection were not mentioned in this 
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report. Assuming both inspections were performed to get similar information of the deck, 

the UAS was faster by 8 times. There have been scenarios during the inspection where 

having a UAS sped up the inspection process, however, more comprehensive 

experiments and inspections need be carried out to determine when and how UASs can 

decrease the inspection time and by how much.  

Economical Inspections 

In addition to the safety and time reductions, there is also a documented cost 

reduction; many of the cost reductions are associated with the safety and time reductions. 

If UASs are used instead of manned inspection, cost for just the deck inspection can 

decrease from $4600 to $250 [108,123]. The itemized cost of the inspection, according 

the Dorsey, is shown in Table 2-9 [108]. This survey did not address many of the 

assumptions about costs associated with span length, age of the bridge, location of the 

bridge, etc. In addition, the current FAA regulation prohibits using UASs over the traffic, 

so the cost of lane closure, estimated to be $3,000, should also be added to the cost of 

UAS inspection. A more detailed study for under-bridge inspection showed a more 

realistic cost estimation for visual versus UAS-based inspection, as shown in Table 2-10 

[120]. This table shows that the inspection costs of a two span bridge can be reduced by 

more than one third. However, there are hidden costs that are commonly ignored in these 

studies, such as cost of renting a pilot and UAS. For many DOTs, the inspection of a 

simple bridge (e.g., no fatigue details, relatively easy access, low traffic) may take only 

20-30 minutes and require only a single inspector with a camera and binoculars [12]. In 

these cases, UAS bridge inspection will not improve the cost or time associated. For a 
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large-scale bridge (2,400 m long), a 2017 cost analysis showed that UAS-inspection was 

37% faster and 66% cheaper than the traditional inspection [88]. However, details 

regarding this calculation and inspection performance was neither reported or compared.  

Table 2-10 The cost of visual and UAS inspections for under bridge (adapted [120]) 

Method of 

inspection 

Cost of 

traffic 

control 

Cost of 

UBIT 

Cost of 

Inspectors 
Total 

Visual 

Inspection 
$640 $2000 $1200 $3840 

UAS 

Inspections 
$320 0 $750 $1070 

 

As a case study, a bridge with FCMs was inspected using hands-on and UAS-

assisted methods. The bridge is located in Ashton, Idaho, and carries Ashton-Flagg 

Ranch road traffic over the Fall River (ITD Bridge Key 21105). The full details of this 

inspection can be found in [46,118]. The bridge consisted of two main longitudinal 

frames on the Northern and Southern sides (West-East orientation). Hands-on inspection 

was carried out using a UBIT in four hours to inspect the whole bridge. The total cost of 

the inspection was $391 per hour, including UBIT costs, of inspection ($1,564 for four 

hours) which is itemized in Table 2-11. Separately, a DJI Mavic Pro UAS was used to 

inspect the bridge (costs are per hour). The UAS followed the water current without 

pilots control making inspection over the water impossible (refer to Idaho DOT section, 

for more details). Due to this issue, only a quarter of the fatigue prone locations were 

inspected using UAS which included 12 susceptible connections in four floor beams, two 
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girder splices, a girder web, a concrete barrier, and bottom flange two girders. The UAS-

assisted inspection identified the presence of fatigue cracks in two floor beam 

connections. These cracks have previously been detected marked through hands-on 

inspections. The images from these fatigue cracks show the marker lines, but not the 

actual cracks (Fig. 2-6a). In addition, the UAS-assisted inspection ruled out the presence 

of fatigue cracks in other inspected regions (Fig. 2-6b). Other defects such as concrete 

delamination and efflorescence, and steel rust were detected in the UAS-assisted 

inspection. The UAS-assisted inspection took 4.5 hours with a net flight time of 1.5 hours 

(90 minutes). The inspection cost in this case was $200 per hour. Considering a quarter of 

the bridge was inspected in 4.5 hours, the inspection costs extrapolated to whole bridge 

using the UAS would be $1800. This case study shows the hourly cost of UAS inspection 

is almost half of the hourly cost of UBIT inspection, which agrees with previous studies 

[88, 120]. However, the extrapolated UAS inspection time was longer than the actual 

UBIT assisted hands-on inspection. The additional time made UAS-assisted inspection 

15% more expensive than the hands-on inspection. It should be noted that the time and 

cost associated with using UASs is different for various situations as outlined in other 

places in this paper. 

Other Benefits 

An indirect benefit of UAS-assisted inspection may be lessened traffic 

congestion. Road closures and time required for a particular traffic disturbance can be 

limited, which is particularly important for high traffic bridges. Sometimes the objective 

of the inspection is to check the general integrity of the structure, such as checking if 



64 
 
large items are missing or large areas are defected, for instance, a 330 m long barrier 

railing was inspected using a UAS in less than 3 hours, enabling to the designers to make 

an informed decision to ultimately replace the railing [88,110].  

Table 2-11 The cost of hands-on and UAS-assisted inspections for FCM inspection [46] 

Method of 

inspection 
UBIT  

Support 

Truck  

UBIT 

Operator 
Inspector  

Pilot and 

UAS  

 

Total  

Full 

Bridge 

(total) 

Hands-on  $200 $16 $75 $100 - $391 $1564 

UAS  - - - $100 $100 $200 $1800 

 
Fig. 2-6 (a) UAS-assisted FCM inspection (a) a location with fatigue crack, (b) a location 

without fatigue crack  

UAS Inspection Challenges  

The advantages mentioned in previously are possible under relatively ideal 

conditions. Ideal conditions include a skilled pilot, no software and hardware 

malfunctions, an appropriate UAS, and no adverse weather conditions. Currently, there 

are many challenges associated with bridge inspections. Some challenges are due to the 
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availability of this emerging technology, and some are due to the regulations associated 

with governing bodies such as the FAA and state DOTs. 

Regulations 

Current FAA restrictions are not too burdensome for an agency to perform 

inspections, but provide enough restrictions to limit use in some situations. Regulations 

will relax over time, as in the past, as public perception, UAS reliability, and autonomous 

controls continue to improve. Currently, FAA regulations will allow UASs to inspect 

bridges if the they are not visible to traffic. Thus, for any inspection process that involves 

UASs being exposed to traffic, such as UAS bridge deck inspections, cable stay towers, 

above grade trusses, or even high mast luminaries, the traffic will need to be modified. 

Furthermore, FAA regulations mandate that the pilot is in visual contact with the UAS at 

all times, even if using first person view (FPV), which gives the pilot a live feed of the 

flight from a camera on the UAS. This mandate severely limits some difficult to access 

bridges which may still have inaccessible locations for the UAS due to this restriction.  

Flight Control 

Probably the largest hurdle to fully automated inspections is the GPS-denied 

environment under the bridge. Most pilots, skilled or unskilled, will have excessive 

difficulty without significant aid from the autopilot, the most useful and reliable of which 

comes from GPS signals. Coupled with the fact that most pilots own their own UASs, 

which will be used on multiple jobs, the risk of losing a UAS in a waterway or simply 

crashing it may deter many pilots from under-bridge inspections. UASs rely on GPS 

signals for autopilot features and stability. Under a bridge, these signals are either very 
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weak or non-existent and UASs cannot be controlled properly [15]. Thus, claiming that 

UASs are a feasible alternative to UBIT visual bridge inspections, as some studies have 

indicated, is not accurate [108,120]. Zink and Lovelace handled this issue by using high-

definition cameras with zoom capabilities, but the applicability of these techniques is 

limited [15]. Many new off-the-shelf UASs have indicated that they have additional 

sensors (SONAR, LiDAR) that can aid in GPS-denied environments, but there is little 

proof of feasibility at this time for bridge inspection [15,88]. Without the benefit of GPS, 

control under a bridge is very limited, especially in high wind situations, risking 

catastrophic damage to the UAS and sensors and even posing a safety hazard to the pilot, 

inspector, spectators, and motorists. There are many promising control possibilities to 

automate the inspection process, like SLAM outlined above, but the harsh environment 

and difficult scenarios limit the current generation of UAS controls packages. 

A skilled pilot is necessary, especially in a complicated situation like a bridge 

inspection where there are potentially harsh environments. Pilot needs to have substantial 

navigation skills to capture stable images while still be able to complete the inspection 

without imposing damage to the UAS. A skilled pilot can aid in a successful under or 

over-bridge inspection, and DOTs are likely to mandate some specific level of skill. 

Presence of a pilot (COA/333 or Part 107) is also legally mandatory for any type of non-

recreational activity in the outdoors. Wages for an accomplished pilot can be 

considerable and variable. According to an informal survey of UAS pilots available in the 

authors’ area, costs can be as high as $1200/day but as low as $650/day, plus travel 

expenses. Based on the above findings, there is a major need for improvements in the 

areas of UAS controls, navigation, and image processing in order to maintain 
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effectiveness. 

Time  

If for a typical structure a typical inspector will only require 30 minutes of onsite 

time to arrive at an appropriate condition rating, a UAS inspection will need to meet or 

exceed this to become viable. Considerable time and money could be spent on data post-

processing if thermal images are desired as well as any semi-automated damage 

detection. Inspectors need a way to arrive at a condition onsite and move onto the next 

bridge without creating an additional level of analysis. Part of this will come with future 

automation of the inspection process, but currently, image-processing techniques for 

damage detection and 3D modeling are not at the level required for even a semi-

automated real-time inspection. Whether for image modifications like removing image 

distortion or for intelligent feature detection algorithms like image-based crack detection, 

the post-processing operations have been commonly used for UAS bridge inspection 

research, but are still not time or cost effective for most bridges at this time [100,117]. 

Performing these complex operations is costly and requires professional and highly 

trained staff, which are inaccessible to most DOTs [110]. Post-processing operations also 

need time to perform on the order of a few minutes to a few hours. As such, there is a 

major need for automated or semi-automated tool development for bridge inspection that 

will make UAS bridge inspections feasible.  

Weather 

Weather will continue to play a major role in UAS bridge inspections. 

Unfortunately, if there is a bad weather day, an inspection cannot always be rescheduled 
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due to the many demands placed on a bridge inspection program. Inspections are often 

scheduled many months out without the possibility of returning due to tight DOT and 

private inspector schedules, although inspection dates can become more flexible when a 

UBIT is not involved. The quality of the UAS flight and the acquired data can decrease 

due to adverse weather [102,117]; furthermore, captured images or videos may not be 

clear due to the variable lighting conditions underneath a bridge. High wind speeds will 

significantly increase the allowable clearance between the UASs and the object of interest 

because of the risk for damaging sensitive mechanical equipment or even the structure 

itself [110,118]. UASs have several vulnerable components, especially the propellers, but 

also sensors. The pilot needs to be very cautious near a structure while trying to obtain 

the best resolution possible, and the complex geometry of bridge structures further 

complicates the situation. Many newer commercial UASs contain some obstacle 

avoidance software integrated into the autopilot; however, these options have not been 

evaluated in any known research. These options have the potential to help, but depending 

on the settings they could also hinder the inspection if the UAS gets too close to a point 

of interest [46]. One of the greatest tools a UAS pilot or spotter has for real-time defect 

detection is live streaming of visual data to the ground crew. However, due to the 

distance from the UAS to the receiver, interference, and bad weather, this can be 

compromised, making post-processing mandatory [46]. For a smaller bridge, a setback 

like this can eliminate the time and cost benefits of using UASs for inspections.  

Functionality 

UAS inspections can only replace visual inspections and are unlikely to be able to 
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perform physical inspections anytime in the foreseeable future, but UASs can perform 

some limited NDE. Many times during an inspection, an inspector must remove rust, 

nests or droppings from an area to observe a defect. UASs cannot prepare the surface for 

defect detection without major advances in robotics and control. UASs are limited to non-

contact NDE methods (e.g., visual, thermal) to assess the condition, whereas with a UBIT 

inspection, nearly all options for bridge inspection are available. Currently, an inspector 

can measure the size of a defect in real time, whereas a UAS can only provide this 

function on a limited basis with additional sensors and significant post-processing, most 

of which would not be off-the-shelf. The application of UASs are restricted to visual 

inspection, and if the inspectors decide a region requires more investigation, a UBIT must 

be used, which may still allow for a more robust inspection and cost reduction.  

A functional UAS requires constant tuning and maintenance on the platform and 

all the components, e.g., motors, propellers, sensors, ground station unites, and 

controlling joy sticks [110]. UASs require skilled mechanical and electrical engineers to 

retune their system after replacing or upgrading a broken or out-of-date component. 

Without proper tuning, the autopilot functions can be less effective, resulting in less 

effective or dangerous inspections. However, the cost of individual components on UASs 

are continuously decreasing. Even full off-the-shelf system costs are rapidly dropping 

while their functionality are improving. 

Gaps in Industry 

To select a suitable UAS for inspection, one needs to consider various parameters. 

For bridge inspection these parameters are varied based on inspection type and owner 
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needs [46,118]. If the bridge inspection industry wishes to move in the direction of UAS 

assisted inspections for the long term, these needs must be formalized and this chapter is 

a first step to this.  

The bridge inspection programs for each state can be very different. Each state 

relies on a combination of consultants and state employees to perform their required 

bridge inspections. Many consultants, eager to win more business, are pressing DOTs to 

allow UAS-assisted inspections. DOTs are grappling with this change and desire to 

develop standards and training protocols to ensure inspection quality. The recent 

popularity of UAS in civil infrastructure health monitoring and inspection has created the 

opportunity for private companies to perform UAS-based inspection professionally. 

AETOS, Empire Unmanned, Microdrones, BDI and TechCorr are among companies 

providing UAS-based inspection services; however, bridge owners are not usually among 

their clients. Most of the inspections conducted by these companies have been on tanks, 

pipe and power lines, and industrial sites (e.g. power plants) which are not as complicated 

as bridge inspections. DOTs may wish to train internal UAS pilots for bridge inspection. 

As of 2018, the cost of UAS registration for commercial UAS is $25. The pilot has to 

obtain a remote pilot license which costs $165. The pilot can acquire field-training 

through academic aviation credits (e.g., $500 at Utah State University for one semester). 

The cost of UAS varies from $500 to several thousand dollars; however, a DJI Mavic 

Pro, or a DJI Mavic Air are around $1,000 and are suitable for bridge inspections. For a 

DOT, the total cost for training an employee as a UAS pilot can be as low as $2,000. 
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Future Needs 

This chapter has outlined several current capabilities and proof of concept 

investigations for UAS bridge inspections as well as shortcomings of using UASs and 

areas in need of improvement. The following section outlines the areas of improvement 

that will enhance the capabilities of UASs and improve and automate infrastructure 

inspection.  

Autonomous Control 

Overall, each study which investigated unmanned inspections, whether bridge 

inspections or another application, used some form of autonomous control. Equipping the 

platform with some form of autonomous control algorithm(s) and appropriate sensors 

such as cameras (with image processing), LiDAR, and SONAR can help the UAS to 

autonomously record or avoid features or even simply hold altitude in GPS-denied 

environments; this would vastly improve bridge inspections. Some of these features are 

being implemented to various extents on a smaller scale in next-generation off-the-shelf 

platforms [15,46,118]. However, current limitations on UAS autonomous control ties the 

flight and inspection performance to the skills of the pilot. If fully autonomous control is 

to ever be achieved, the UASs can be operated by the bridge inspectors themselves, 

assuming FAA regulations allow it.  

Additionally, in order to have widespread augmentation of human inspections, the 

inspection of all bridge types must improve, posing cost, time, and sensing challenges. 

Self-navigated UASs are the solution for achieving more efficient and reliable bridge 

inspection; however, no studies have been carried out to assess the feasibility of self-
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navigated UASs in bridge inspection. However, the breakthroughs in UAS technology 

have made them considerably more functional. For instance, the size and weight of UASs 

and sensors have been decreasing while the allowable altitude, control range, and payload 

capacity are increasing.  

Sensors 

Visual and thermal cameras are the most common UAS sensors available for 

inspection purposes. These technologies still provide significant opportunities in the field 

of 3D modeling and defect detection. However, UASs are severely limited to non-contact 

only sensors, eliminating the most popular and proven NDE technologies with which 

bridge owners are comfortable. Improvements are occurring rapidly in non-contact 

sensing like infrared thermography and high resolution visual imagery; however, these 

are not well used or accepted by DOTs [31, 46,72,104,102]. Probably the most difficult 

hurdle to improving sensing of bridge structures is widespread acceptance of non-contact 

NDE by DOT engineers. This will likely require significant research to improve 

accessibility, training, and political improvements for this conservative group of 

engineers. Image processing techniques, specifically those in the thermography area, 

have shown promising results. These results are mostly validated in the laboratory, but 

not in the challenging environments in which bridges reside [46,85,87,117,121,122]. One 

major area of impact for UAS bridge inspection will be FCM inspections, which require a 

disproportionate amount of the operations and maintenance budget. FCM inspections are 

usually manned, arms-length inspection that uses some form of contact NDE along with a 

UBIT. The FCM inspections are often done on a large structure and are exceptionally 
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expensive [118]; however, UAS based inspection are not as successful as hand-on 

inspections in finding fatigue cracks (often much less than 0.5 mm wide) [46,117,118]. In 

addition, UAS-assisted FCM inspections are required to have some sort of self-navigation 

for GPS-denied operations which has not been resolved yet [46,118].  

3D Model Reconstruction 

Many previous studies illustrated the possibility of creating 3D models of a bridge 

from UAS-captured images. The ability to create a 3D model that includes enough detail 

to observe defects, support settlement, or structural members displacements could be 

invaluable to bridge management engineers. However, with off-the-shelf software and 

with current algorithms this is very time-consuming, not accurate enough, and not at a 

high enough resolution. With the improvement of LiDAR and even SONAR sensors, 3D 

models can also be constructed from LiDAR information, but only with skilled post-

processing. There is potential for this with current sensor fusion techniques that combine 

several types of information, increased functionality, and accuracy [124-126]. With 

current inspection requirements, 3D models may be redundant for the average bridge, 

which takes only 30 minutes to inspect, but future work may make them more feasible 

and useful. Combining a 3D reconstructed model with Bridge Information Modeling may 

prove to be highly valuable, especially for older structures that do not have plans or need 

a detailed load or condition rating [127].  

In addition to a detailed model suitable for inspection, an accurate model would 

be a major step toward autonomous inspections and self-navigated UASs. The SIFT and 

SURF algorithms have proven to be the most efficient way for feature detection in the 
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realm of 3D reconstruction; however, it is expected that the future focus of visual sensing 

should be on generating efficient algorithms for real-time 3D model reconstruction that 

align with DOT inspection needs.  

Automatic Damage Detection 

There are several ways damage can be detected using a UAS-assisted inspection. 

The simplest way is to have a trained inspector view a live feed of video during the 

inspection and manually identify damage as if the inspector was near the damage. This 

option works well but is limited by the quality of the view-screen, which is limited to 

1080p resolution, or in some cases, 4k resolution. Furthermore, this style of inspection is 

hampered by inspector bias and human error. As many other industries attempt to limit 

human inspections, it is likely that human influence will eventually be reduced through 

some form of augmented or automated damage detection. Currently, a significant issue 

with autonomous damage detection is the expense of post processing. Some recent 

techniques have been developed that can provide a near real-time augmentation for crack 

detection, but more robust tools are needed that fit within the current inspection 

framework [72]. If additional sensors are employed, like LiDAR or thermal imaging, 

damage detection techniques will require a skilled investigator to evaluate for accuracy 

and/or very generic algorithms need to be developed [66]. A normal human inspection 

results in a handful of images that are used for record keeping purposes while UAS 

inspections result in thousands of images, increasing storage demand, and off-site 

inspector time, which is unlikely to reduce costs.  

Furthermore, the accuracy of all damage detection techniques depends on the 
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quality of the raw data, which is unlikely to be recollected if post-processing must be 

done off site. Because adverse weather and vibration of the platform can cause blurry 

images, shadow contrast, and lack of observable heat flux, care must be taken to use the 

appropriate sensor and platform for the situation. More intelligent post-processing 

algorithms used to detect smaller defects are also in demand but will always be tied to the 

raw data accuracy. The ability to automatically detect and separate irrelevant objects in 

the images, such as shadows and background scenery lines, is a current hot topic in crack 

detection algorithms. In the case of thermal imagery, it is important to select a proper 

time to capture thermal images. The proper time depends on the depth of the defects, the 

material, and the weather temperature [128,129]. More sensitive and higher resolution 

thermal cameras can help, but good thermal measurements are more likely to be affected 

by how the inspector pre-planned the inspection process. It is anticipated that more 

standard procedures, like ASTM D4788-03, which focuses on bridge deck delamination 

detection using thermography, will be developed for surface and subsurface defects and 

for various materials in the future [31].  

Regulation 

Current rules that apply to UASs are much more relaxed than in the past, but still 

represent significant restrictions. Since the applications of UASs in structural inspection 

and maintenance are being developed in conjunction with government agencies (state 

DOTs), more flexible regulations are predicted to be sanctioned in the near future. These 

new regulations will likely reflect public perception of UAS safety as well as the 

improvements on UAS control and platform reliability. With respect to infrastructure 
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inspection, the rules that hinder inspection the most are the visual line-of-sight necessity, 

required visual observers, and limit of a single UAS controlled by a single pilot.  

Available UASs for Bridge Inspections 

In this section, available off-the-shelf UAS platforms are presented with their 

suitability for different types of bridge inspections. The recommended UASs in this 

section are based on the authors experience and do not represent the whole UAS market. 

Due to lack of definitive guidelines to help with the selection of UASs, sensors, and other 

equipment, this can be challenging for DOTs to successfully start a UAS inspection 

program. Table 2-12 shows several UASs along with their general specifications, price 

(as of April 2018), and the potential bridge inspection applications. The price of a UAS 

for bridge inspection varies significantly, depending on the purpose of the inspection, 

quality and quantity of the integrated sensors, and computing capabilities. Integrating 

thermal cameras with the existing visual sensors can increase the price of the UAS up to 

three times. If a requirement of inspection is 3D model reconstruction, the size and the 

price of the UAS increases dramatically. Neither of these options may be necessary to 

complete most types of bridge inspection. On the other hand, in the case of under-bridge 

inspections, the UAS must have an auxiliary positioning system, vision system, to 

compensate with lack of GPS signals, in order to have a successful mission. The potential 

applications mentioned in this table are not without the limitations and challenges 

discussed throughout this paper; however, the content of this table guides the bridge 

owners and inspectors when purchasing a UAS and provides a variety of commercial 

options. Furthermore, the table does not suggest that the entire bridge inspection can be 
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performed using only the recommended UASs. The possible challenges during each UAS 

bridge inspection are expected to vary significantly since published inspection reports 

with UASs are limited.  

Table 2-12 General specifications for UAS-assisted bridge inspections 

UAS Sensors 
Positioning 

System 
Size (cm) 

Maximum 

Flight 

Time 

(min) 

Price 

Range 

($) 

Potential Bridge 

Inspection 

Applications 

Parrot 

BEBOP 2 
Visual GPS 

32.8 by 

38.2  
25 

500-

700 

Over-bridge, visual 

detection of 

macroscale surface 

cracks (thicker than 

0.8 mm), routine 

inspection, checking 

the bridge structural 

integrity 

3DR Iris1 Visual GPS 63 by 38  20 
600-

800 

3DR Solo1 Visual GPS 40 by 40  20 
800-

1000 

DJI Mavic 

Air 
Visual 

GPS, 

Vision 

System 

21.3 

(diagonal) 
20 

800-

900 

Over and under-

bridge, visual 

detection of surface 

cracks (as thin as 0.04 

mm), routine 

inspection, FCM 

inspection, checking 

the bridge structural 

integrity  

DJI Mavic 

Pro 
Visual 

GPS, 

Vision 

System 

33.5 

(diagonal) 
27 

1000-

1200 

DJI Phantom 

4 Pro 

Visual 
GPS and 

Vision 

System 

35 

(diagonal) 
30 

1800-

2000 

Visual 

and 

Thermal 

5500-

8000 

Over and under-

bridge, visual 

detection of surface 

cracks (as thin as 0.04 

mm), subsurface 

defect detection 

DJI Mavic 

Air 

Visual 

and 

Thermal 

GPS, 

Vision 

System 

21.3 

(diagonal 
20 

4000-

6000 
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DSLR Pros 

Law 

Enforcement 

Visual 

and 

Thermal 

GPS and 

Vision 

System 

64.3 

(diagonal) 
17 

13000-

15000 

(delamination), routine 

inspection, FCM 

inspection, checking 

the bridge structural 

integrity 

Albris 

SenseFly 

Visual 

and 

Thermal 

GPS 56 by 80 20 
30000-

35000 

Over-bridge 

inspection, 

autonomous 3D model 

reconstruction, 

microscale defect 

detection (thinner than 

0.02 mm), 

Altus LRX 

Visual, 

Thermal, 

LiDAR 

GPS 
140 

(diagonal) 
20 

40000-

50000 

Over and under-bridge 

inspection, 

autonomous 3D model 

reconstruction, 

microscale defect 

detection (thinner than 

0.02 mm), subsurface 

defect detection 

1 No integrated camera 

 

Conclusions 

This chapter has outlined the state-of-the-art for bridge inspections and UAS 

technology with the aim of educating and informing academics and decision makers 

about the current and future capabilities of UAS-assisted or automated bridge inspections. 

The current state of practice for bridge inspections, especially in United States, is heavily 

tied to visual inspections with minimal use of NDE. Bridge owners have demonstrated 

reluctance to accept NDE methods unless they are absolutely required for bridge 

evaluations. UAS-assisted bridge inspections have the potential to not only decrease 
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costs, but to also improve the adoption of NDE technologies, potentially increasing 

inspection accuracy, however UAS inspections face major hurdles.  

UASs have shown promising results in civilian applications as well as civil 

engineering purposes, and many state DOTs have performed feasibility studies and found 

significant limitations, but also successes. The most common UAS applications in DOTs 

were traffic monitoring and surveillance, road condition assessment, and mapping; 

however, significant effort has been put into bridge structure inspection with varying 

degrees of success. The perception of UAS effectiveness for bridge inspection is tied to 

several variables, including DOT expectations, pilot skill, weather condition, and off-the-

shelf limitations. It was shown that, ideally, UASs can provide less expensive and less 

time-consuming inspections for under bridge regions without traffic closure, but not in all 

situations and there are obstacles to overcome. FAA regulations have recently relaxed, 

but impose significant limitations, including required line of sight and UAS certification. 

Using advanced NDE sensors or even visual images can become too burdensome to be 

effective for routine inspections. Current autopilot controls have become a severe 

limitation for under bridge inspections due to the loss of GPS signals, causing a UAS to 

rely on a vision positioning system or a suite of other sensors which are questionably 

useful in the severe under-bridge environment.  

The literature identified two major potential functions for UAS based inspections: 

3D model reconstruction and autonomous damage identification. Unfortunately, these 

functions face major implementation limitations in order to be functional for complex – 

or even routine – inspections. Programs capable of generating 3D reconstructed bridge 

models, from either SFM or MVS, using feature detectors and feature descriptors such as 
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SIFT and SURF have been used for 3D model reconstructions of building, sites, and 

objects, but are very time consuming and require highly skilled technicians. These 

models have promising applications for UAS navigation but are unlikely to be accurate 

enough for bridge inspections without significant advancements. Autonomous defect 

detection methods are another promising advantage for UAS-assisted bridge inspections. 

Surface defect detection, for example, cracks, spalls, and surface degradation, have been 

successfully detected from visual images. Delaminated regions have been located and 

measured using thermal imagery on concrete bridge decks. A major hurdle to the 

adoption of these methods for UAS bridge inspection is resistance from bridge owners 

that have historically not implemented NDE technologies.  

Based on the synthesis of this state-of-the-art review of bridge inspection and 

UASs, the following conclusions can be made: 

1. The review of current bridge inspection practices makes it clear that there is a need 

for continuous improvement of bridge inspection procedures and cost reductions. 

Several NDE technologies were identified that can provide a better inspection but, 

based on DOT surveys, may not be worth the time, effort, post-processing, and 

cost associated with them [46,124]. UAS sensors may also fall within this 

category. Improvements should take the form of reduced inspection time and 

increased inspector and public safety, as well as decreased inspection costs, all of 

which indicate the need for automated inspections [27]. If automated inspection 

processes are going to replace standard practice, then they must be robust and 

require a similar amount time and effort to current bridge inspections techniques in 

order to gain widespread adoption.  
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2. The recent advances of UASs and UAS have the potential to shift the bridge 

inspection paradigm by providing low cost options to gather previously difficult or 

expensive images [108,120,].  

3. UASs have increased in popularity and functionality for many applications, but the 

challenging nature of bridge inspections has reduced their effectiveness in this area 

[15,28,41,46]. UASs can also decrease the allocated time and budget for large-

scale bridge inspections by providing inspection data comparable to hands-on 

method [88,117,118]. 

4. There have been mixed successes for UAS-assisted bridge inspections throughout 

the United States that have resulted in successful inspections of easily accessible 

locations where the UAS has access to GPS, the most reliable and effective tool for 

UAS autopilots (see Table 2-5). 

5. There is a major need for improvements in the areas of UAS controls, navigation, 

and image processing in order to maintain effectiveness [46,100,110]. 

6. Weather currently plays too big of a role in UAS flight success, which is a very 

significant barrier for many state agencies with very tight inspection schedules 

[46,110,102]. This can be mitigated with continued improvement of autopilot 

controls in GPS-denied environments. UAS controls need to improve such that a 

pilot can safely and effectively obtain stable images of every part of the bridge in 

any reasonable weather.  

7. For UAS inspections to become commonplace and cost-effective, automated 

inspection may need to become a reality, or at least, vast improvements will need 

to be made on autopilot controls [41,43,44,97]. Based on the above syntheses, full 
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automation during a bridge inspection is not possible given current technology and 

environmental challenges. 

8. Image processing techniques (3D mapping or damage detection) that can detect 

defects are a significant advantage of a UAS inspection [107,131], but without the 

possibility of a real-time inspection will not become a routine part of any bridge 

inspection soon due to the level of detail required [46,118].  

9. Bridge owners must learn to accept and become comfortable with the non-contact 

NDE techniques unique to UAS inspections for the full potential of UAS bridge 

inspection to be realized [8,129]. This places the burden on industry and 

researchers to develop accurate, generic algorithms for post-processing that can 

facilitate a real-time inspection or fit within existing local bridge inspection 

constraints [55,69,70,71]. 

10. Current FAA restrictions are not too burdensome for an agency to perform some 

inspections, but provide significant challenges to be useful in all situations 

[46,110]. Regulations will relax over time, as public perception, UAS reliability, 

and autonomous controls continue to improve [44,46,110]. 
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CHAPTER III 

FATIGUE CRACK DETECTION USING UNMANNED AERIAL SYSTEMS IN 

FRACTURE CRITICAL INSPECTION OF STEEL BRIDGES 

Abstract 

Many state agencies are investigating the use of Unmanned Aerial Systems 

(UAS) for bridge inspections. Some agencies are receiving pressure from consultants and 

their own administrations to implement UAS inspections with limited knowledge of their 

efficacy. This chapter studies the feasibility of using UAS for fatigue crack detection in 

bridges with fracture critical members (FCM) through real-time and post-flight visual 

inspection. The effects of surface illumination on the minimum crack-to-camera (MCC) 

distance at which a fatigue crack can be detected was investigated in the laboratory. 

Mock field inspections evaluated the achievable crack-to-platform (ACP) distance in 

GPS-denied and windy environments, and determine if known cracks can be identified at 

achievable standoff distances. Finally, two FCM inspections demonstrated the field 

performance of UAS in identifying fatigue cracks. Results highlight the importance of 

camera specifications and surface illumination in determining the required standoff 

distance of crack detection. Furthermore, the results demonstrate the difficulties in 

obtaining clear images with unstable UAS in GPS-denied or windy environments. 

Nevertheless, the best performing platform tested in this study exhibited performance 

comparable to the average of 30 human inspectors at a fatigue crack identification 

training structure. The limited results presented here proved the feasibility of using UAS 

for fatigue crack detection in FCM inspections of steel bridges, but highlighted the 
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shortcomings of UAS for this type of hands-on inspection. 

Introduction 

According to the National Bridge Inventory, there are more than 200,000 in-

service steel bridges in the United States (NBI, 2017). About 22,000—or 11 percent—of 

these are designated fracture critical (Pham et al., 2016). The American Association of 

State Highway Transportation Officials (AASHTO) defines a fracture critical member 

(FCM) as a "component in tension whose failure is expected to result in the collapse of 

the bridge or the inability of the bridge to perform its function" (AASHTO 2016). 

Fracture critical bridges are prone to fatigue cracking, which has historically led to 

structural failure (Lichtenstein 1993; Biezma and Schanack 2007). Fatigue is the 

tendency of a member to fail at a stress level below the elastic limit when subjected to 

cyclic loading.  

Federal regulations mandate FCM inspections every 24 months (FHWA, 2017). 

FCM inspections are hands-on—requiring the inspector to be in close proximity to the 

FCM—and may include NDE for crack detection (Hearn 2007). When visual inspection 

is inconclusive in terms of fatigue crack detection, a suitable NDE method can verify the 

presence of a fatigue crack. A number of NDE techniques exist for crack detection in 

steel structures, including acoustic emission, smart paint, dye penetration, magnetic 

particles, radiography, and ultrasonic testing (Lee et al., 2014). FCM inspections do not 

require hands-on inspection of all structural members. Instead, the inspector identifies 

components and regions susceptible to fatigue cracks—either through experience or 

based on results of previous inspections—and performs a targeted inspection. 
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FCM inspections are more costly and time consuming than other types of 

inspections; a 2005 survey of bridge owners revealed that FCM inspections cost 200–

500% more than other inspection types (Connor et al., 2005). Dorafshan et al., (2017a) 

reported the following reasons for increased cost and time involved in FCM inspections:  

 May require specialized equipment, operators, and training (e.g. under-bridge 

inspection trucks (UBIT) and operators);  

 May require non-destructive evaluation (NDE) to detect cracks; and 

 May require traffic control and lane closure. 

Many state agencies are investigating potential application of unmanned aerial 

systems (UAS) for bridge inspections. Some agencies are receiving pressure from 

consultants and their own administrations to implement UAS inspections with limited 

knowledge of their efficacy and currently few studies exist that investigate UAS use for 

FCM inspections. The authors hypothesize that FCM bridge inspections can be 

performed with UAS, thus obviating the above cost-increasing considerations. For the 

last decade, state Departments of Transportation (DOTs) have used UAS for a variety of 

missions, including traffic control, mapping, and surveillance (Dorafshan et al., 2017a). 

However, bridge inspection is a relatively new application of UAS. Michigan DOT 

reported the first successful UAS-assisted bridge inspection in 2015 (Brooks et al., 2015). 

A UAS equipped with visual, thermal, and light detection and ranging (LIDAR) sensors 

was used for routine bridge inspections in Michigan. Using UAS data, researchers 

constructed a three-dimensional (3D) model of a bridge and identified delamination in the 

deck (Brooks et al., 2015).  
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Minnesota DOT initiated a multi-phase feasibility study regarding UAS-assisted 

bridge inspections. The first phase involved initial inspections of four Minnesota bridges 

using UAS (Zink and Lovelace, 2015). The UAS inspection results were comparable to 

human inspections of those bridges, providing valuable inspection images in a low-cost 

and safe manner. The second phase involved UAS inspection of four additional 

Minnesota bridges (Wells and Lovelace, 2017). The researchers were able to construct 

3D bridge models and delamination maps (from thermal images). Furthermore, they were 

successful in inspecting large-scale initial inspections of bridges and inspections of 

culvert bridges in GPS-denied environments. Despite the successful detection of a known 

fatigue crack in mock inspections, UAS images did not show any cracks during the 

inspection of an in-service bridge (Wells and Lovelace, 2017). 

A Florida DOT report discussed the use of UAS in lieu of experienced inspectors 

for inspection of bridges and high mast luminaires (Otero et al., 2015). The intent of the 

study was to provide a safer and cheaper initial inspection. Results from mock 

inspections suggested that concrete cracks of width 0.5 mm were detectable in UAS 

images.  

Previous DOT studies demonstrate successful implementation of UAS for initial 

inspections where the objective is to gather general information from a bridge. UAS 

provides inspectors real time visual access to structural components without physically 

accessing the structure. However, a recent Idaho Transportation Department (ITD) report 

outlined the state of the art of UAS-assisted bridge inspection and identified several 

associated challenges, with emphasis on fatigue crack detection (Dorafshan et al., 2017b). 

These challenges include: 
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 UAS camera must be in close proximity to detect cracks; 

 Photographic quality diminishes in poorly-lit under-bridge environment; 

 UAS navigation in poorly-lit and GPS-denied under-bridge environment is 

difficult; and 

 UAS cannot clear debris or other obstructions from FCM. 

There nevertheless exists precedent for UAS damage detection, suggesting 

significant potential for their use in fatigue crack detection (Oh et al., 2009). Metni et al. 

(2007) used UAS to detect cracks in concrete bridge decks. Similarly, Morgenthal and 

Hallermann (2014) used UAS for visual detection of concrete wall cracks. Several 

authors demonstrate autonomous detection of concrete cracks (Jahanshahi et al., 2009; 

Sankarasrinivasan et al., 2015; Dorafshan et al., 2016; Dorafshan et al., 2017c; 

Dorafshan, and Maguire, 2017), steel cracks (Yeum and Dyke 2015), post disaster 

inspections (Adams et al.,  2011), bridge 3-dimensional modeling and inspections 

(Lattanzi and Miller 2014 and Gillins et al.,  2016), and autonomous detection of concrete 

deck delamination (Omar and Nehdi 2017). However, the application of UAS for 

detection of fatigue cracks during FCM inspections has not yet been demonstrated. The 

performance of UAS in terms of accuracy and time is tied to the type of cameras used in 

the inspection and the type of defects. Implementing Deep Learning Convolutional 

Neural Networks (DLCNNs) in UAS-assisted inspections showed promising results for 

concrete deck crack detection without human intervention. The network was trained on a 

set annotated images (manually labeled as cracked or un-cracked) taken by a point and 

shoot camera of several bridge decks. The trained network was then used to label new 
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images taken by UAS of other concrete structures autonomously with 88% accuracy 

(Dorafshan et al., 2018a). A gap in the past studies was the lack of comparing visual 

inspections performed by the inspectors to the ones performed using UASs and non-

contact damage detection methods (Dorafshan and Maguire 2018, Dorafshan et al., 

2018b). This chapter addresses these research needs. This study is the first one focusing 

on fatigue crack detection in bridges using UASs. The location of fatigue cracks, under-

bridge members, and their small size impose unique challenges to UAS-assisted bridge 

inspections including but not limited to the absence of GPS signals, navigation in a semi-

confined location, absence of natural light, smaller required clearance between UAS and 

the cracks, intensified wind and gust speed, flying over water, and debris cluttering the 

cracks.  

The intent of this chapter is to: (1) demonstrate the feasibility of UAS-assisted 

FCM inspections of steel bridges; and (2) identify some of the remaining challenges and 

research needs in this area. This chapter has the following sections. Specifications of the 

studied UASs and their cameras, determination of minimum requirements for visual 

fatigue crack detection using three studied cameras through a set of laboratory 

experiments, fatigue crack detection in controlled and uncontrolled environments to 

evaluate the performance of the studied UASs, results of a FCM bridge inspection using 

UAS, results of the FCM inspection at Purdue university laboratory, and finally 

conclusions.  

UAS 

Three UASs, shown in Fig. 3-1, were used for fatigue crack detection in this 
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study. Two UAS (DJI Mavic and 3DR Iris) were low-cost commercial models. A third 

UAS (The Goose) was custom made to carry heavier payloads (i.e. a standalone digital 

camera). UAS specifications are listed in Table 3-1. The cost of each platform is included 

in the table; even though costs will vary significantly with time, this information is 

included to set up a comparison of the relative cost of the three platforms tested here. 

The cameras on the DJI Mavic was integrated on the platform by the DJI. In case 

of the 3DR Iris, the camera had to be light and small due to the limited payload. The 

GoPro Hero 4 was therefore selected to be mounted on the 3DR Iris. The Goose was 

capable of carrying a significant payload so a conventional digital camera, Nikon 

COOLPIX L830, was selected. Table 3-2 lists camera specifications. The cameras in this 

study had similar sensor type and size and comparable resolutions. Furthermore, these 

cameras represent similar off-the-shelf cameras that would be selected by inspectors 

using low-cost UAS for bridge inspections.  

 
Fig. 3-1 Three UAS used for FCM inspections 
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Table 3-1 UAS specifications 

Specification Goose DJI Mavic 3DR Iris 

Cost (USD) 5,000 1,000 < 500 

Weight (kg) 11.40 0.74 1.28 

Type Coaxial Octocopter Quadcopter Quadcopter 

Flight time (minutes) 27 27 16-22 

Payload (kg) 14.40 0.90 0.40 

First person view No Yes Yes 

Camera adjustments No Yes No 

Altitude measurement Barometer, GPS Sonar, GPS GPS 

 

Table 3-2 Camera Specifications 

Specification Nikon COOLPIX L830 DJI Camera GoPro Hero 4 

Weight (g) 508 NA 174 

Resolution (max) 
4068 × 3456 

(16 MP) 

4000 × 3000 

(12 MP) 

4000 × 3000 

(12 MP) 

Sensor type CMOS CMOS CMOS 

Lens aperture  F3-5.9 F2.2 F2.8 

Sensor size (in) 1/2.3  1/2.3 1/2.3 

ISO (max) 3200 1600 6400 

Field of view* (mm) 22.5-765 28 17.2 

* equivalent focal lengths in 35mm 

 

Minimum Requirements for UAS Fatigue Crack Detection 

Experiment Description 

Indoor laboratory experiments were performed in order to determine the 

maximum distance at which UAS cameras could identify a known fatigue crack under 

varying lighting conditions. To keep constant the physical size of each pixel in the indoor 

experiment, each camera was used to take a picture at a standard clearance as measured 
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from a 200 mm reference bar. In pictures taken by DJI Mavic and the GoPro cameras, the 

physical horizontal dimension captured was 210 mm. The field of view for the Nikon 

camera is different than the other cameras; however, same field of view is achieved by 

adjusting the camera’s optical zoom to capture 210 mm physical horizontal dimension. 

After calibration in this manner, the zoom remained constant through the office 

experiment.  

Using this test setup, the camera clearance to a 43-mm diameter steel coupon 

provided by Idaho Transportation Department (ITD) was changed until a fatigue crack 

could be identified. The identified maximum distance is reported as the maximum crack-

to-camera distance (MCC). Fig. 3-2 shows the known fatigue crack, in the coupon. The 

crack length was approximately 14 mm and the crack width was approximately 0.04 mm 

(measured by a microscope). This specimen was provided by ITD. 

 
Fig. 3-2 Test piece with fatigue crack in 2-o’clock position  

Three illumination levels were selected to simulate the range of lighting 
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conditions encountered during a bridge inspection. The first, dark, corresponds to under-

bridge conditions on a cloudy day. This condition is similar to deep twilight with 

illumination in the range 0–10.8 lx (Woo and Wong, 1979). The second, normal, 

corresponds to an intermediate lighting condition with illumination in the range 100–150 

lx (Illumination, 2009). The third, bright, corresponds to under-bridge conditions using 

an artificial light source with illumination in excess of 200 lx. Surface illumination was 

provided by two light sources (450 and 750 lx). Light sources were adjusted to provide 

the correct illumination for each condition, as verified by a Digi-Sense datalogging light 

meter with NIST traceable calibration (the light was measured on the surface of the test-

piece).  

MCC for each UAS camera was determined under each lighting condition. The 

UAS camera was first positioned at a distance of 1.2 m from the fatigue crack specimen 

(Fig. 3-2) and an image was recorded. The starting distance 1.2 m was selected because it 

is an easily achievable clearance for most commercial UAS. The operator observed the 

image and qualitatively evaluated if the known crack was visible. If the crack was not 

detectable at 1.2 m, MCC distance was reduced by 0.1 m. This procedure was repeated 

until the crack became visible in the recorded image. The distance at which the crack 

became visible to the operator under a specific lighting condition is reported as the MCC 

distance. This measurement is obviously subjective because it relied on the visual acuity 

of the operator. Furthermore, the operator was aware of both the presence and location of 

the crack. A single operator performed all of the tests in order to minimize variability (the 

same operator was also the inspector in mock and field inspections throughout this 

study). In addition to MCC, normalized MCC to pixel size was identified for each 
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lighting condition and camera. Pixel size to MCC values were computed by dividing the 

MCC to the pixel size of the image MCC was calculated from. These values were divided 

by a factor of 1,000 for better presentation. Higher values for normalized MCC to pixel 

size represent greater clearance and smaller pixel size which provide a better condition 

for visual detection. Images were recorded while UAS cameras were stationary, i.e. not 

during fight. Auto exposure mode was used in the cameras during this experiment except 

for the Mavic, which was altered in real time. This type of real time adjustment was not 

possible using the Nikon and GoPro cameras on the other UAS platforms. Because of this 

adjustment it seems that the conditions constituting bright, normal and dark changes, but 

this is due to the changes in exposure settings.  

Results 

Nikon L830 (The Goose) 

Fig. 3-3 presents images taken at the MCC distance in each lighting condition by 

the Nikon L830 camera. The change in the captured images are due to the lighting 

conditions. The crack was located at the 3 o’clock position in these picture. The MCC 

distance for dark lighting was 0.3 m (Fig. 3-3a). The MCC distance increased to 0.8 m 

under normal lighting (Fig. 3-3b). Under bright lighting, the MCC distance increased to 

1.0 m (Fig. 3-3c). For comparison, observation at less than one meter is typically 

considered “hands-on”. The normalized MCC to pixel size was greatest for Nikon 

images, with 3.97, 4.03, and 4.09, in dark, normal, and bright lighting conditions, 

respectively.  
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(a) (b) (c) 

Fig. 3-3 Nikon L830 images taken at MCC distances of (a) 0.3 m in dark, F3, ISO1600, (b) 

0.8 m in normal, F3, ISO 640, and (c) 1.0 m in bright, F3, ISO 280 

GoPro Hero 4 (Iris) 

Fig. 3-4 presents images taken at the MCC distance in each lighting condition 

taken by the GoPro camera from the Iris. The MCC distance in dark lighting was 0.2 m 

(Fig. 3-4a). The MCC distance tripled to 0.6 m in normal lighting (Fig. 3-4b). The MCC 

distance did not improve when bright lighting was provided; the MCC distance under 

bright lighting was also 0.6 m (Fig. 3-4c). The normalized MCC to pixel size values were 

smallest among the studied cameras with 1.76, 1.70, and 1.70 in, normal, and bright 

lighting condition, respectively. 

DJI Camera (Mavic) 

Fig. 3-5 presents images taken at the MCC distance in each lighting condition by 

the DJI camera from the Mavic. The MCC distance in dark lighting was 0.4 m (Fig. 3-

5a). In normal lighting, the MCC distance more than doubled to 0.9 m (Fig. 3-5b). Under 

bright lighting, the MCC distance increased to 1.1 m the maximum value recorded during 

the experiment (Fig. 3-5c). The normalized MCC to pixel size values in DJI images were 
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close to the Nikon camera values with 4.03, 3.40, and 3.11 in dark, normal, and bright 

lighting conditions, respectively. 

   
(a) (b) (c) 

Fig. 3-4 GoPro images taken at MCC distances of (a) 0.2 m in dark, F2.8, ISO 400, (b) 0.6 m 

in normal, F2.8, ISO 400, and (c) 0.6 m in bright, F2.8, ISO 400. 

   
(a) (b) (c) 

Fig. 3-5 DJI images taken at MCC distances of (a) 0.4 m in dark, F2.2, ISO 1600, (b) 0.9 m 

in normal, F2.2, ISO 617, and (c) 1.10 m in bright, F2.2, ISO 483 

Summary 

MCC distances and normalized MCC to pixel size values for each of the three 

cameras and lighting conditions are summarized in Table 3-3. Note the values in this 

table are only valid for the described condition of the laboratory experiments. As 
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expected, decreased surface illumination reduced the distance at which the crack could be 

detected. MCC distances increased from 0.2 m (GoPro) and 0.4 m (DJI) in dark lighting 

condition to 0.6 m (GoPro) and 1.10 m (DJI) in bright lighting condition. These results 

demonstrate the importance of lighting in UAS-assisted bridge inspection, particularly 

when the intent is to detect small features like fatigue cracks. However, since the change 

in MCC between normal and bright lighting conditions was small (less than 20% for each 

camera), the normal lighting condition was deemed acceptable for the remainder of the 

experiments. The ability of the camera to increase the ISO sensitivity for low lighting 

conditions improved the visual crack detection. As seen in Fig. 3-3 and Fig. 3-5, Nikon 

and DJI Mavic cameras was set the ISO sensitivity differently automatically for each 

lighting condition, between 280 to 1600 for Nikon and between 480 to 1600 for DJI 

Mavic; whereas, the ISO sensitivity for the GoPro images, shown in Fig. 3-4, were 

always 400. The normalized pixel size to MCC is maximum in the Nikon pictures 

(around 4.0 for all lighting conditions). The DJI Mavic camera has the second largest 

values between 3.11 (bright) and 4.03 (dark) which means this camera takes better 

pictures for fatigue crack detection in low light condition. The pictures taken by GoPro 

camera have the least normalized pixel size to MCC values (approximately 1.70 in all 

lighting conditions) which means this camera is not as suitable for fatigue crack detection 

as the others.  

Mock FCM Inspections 

Experiment Description 

Indoor and outdoor mock field inspections were performed to determine if known 

fatigue cracks could be identified in controlled and uncontrolled environments using 
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UAS images. The MCC experiments detailed in the previous section showed that cracks 

could be identified with stationary cameras in a variety of lighting conditions. The intent 

of the experiment detailed in this section was to determine if cracks could be identified 

in-flight in field conditions. 

Table 3-3 MCC distance (m) and normalized MCC to pixel size for UAS cameras in dark, 

normal, and bright conditions 
Lighting 

Condition 

MCC (m) Normalized MCC to pixel size (mm/1000 mm) 

Nikon L830  

(Goose) 

GoProHero4  

(Iris) 

DJI Camera 

(Mavic) 

Nikon L830  

(Goose) 

GoProHero4  

(Iris) 

DJI 

Camera 

(Mavic) 

Dark 0.3 0.2 0.4 3.96 1.76 4.03 

Normal 0.8 0.6 0.9 4.03 1.70 3.40 

Bright 1.0 0.6 1.10 4.09 1.70 3.11 

 

  

Two types of inspections were performed in each of two conditions. Real-time 

inspections required the operator to identify fatigue cracks through a 12-cm first person 

view (FPV) monitor while the UAS was in flight. Post-flight inspections required the 

operator to identify fatigue cracks on a full size computer monitor following the 

conclusion of the inspection flight. Real-time and post-flight inspections were performed 

in a controlled environment (indoors) and an uncontrolled environment (outdoors). The 

controlled environment was inside of the Systems, Materials, and Structural Health 

Laboratory (SMASH Lab) at Utah State University (USU), a 500-m2 indoor testing 

facility in Logan, UT. The intent of testing in the controlled environment was to evaluate 

the effects of flying in a GPS denied environment on fatigue crack detection distance. 

Such effects include vibration, unstable flight, and difficulty navigating in confined 

spaces. The uncontrolled environment was under a single-span steel girder bridge located 
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at the Utah Water Research Laboratory (UWRL) at USU in Logan, UT. The intent of 

testing in the uncontrolled environment was to evaluate the effects of environmental 

variables (most notably, wind), in addition to the GPS-denied operation, on the UAS 

flights and consequently on the MCC distance. 

The inspection team included a pilot and an inspector; the same inspection team 

performed all inspections. The fatigue-cracked specimen shown previously in Fig. 3-2 

was positioned in various locations within each environment. The minimum distance that 

the pilot achieved between the UAS and the fatigue-cracked specimen was reported as 

the achieved crack-to-platform (ACP distance). The inspector estimated the ACP distance 

visually. Upon viewing the resulting image, whether in real-time or post-flight, the 

inspector qualitatively evaluates whether the crack is detectable. 

Controlled Environment 

The fatigue-cracked specimen shown in Fig. 3-2 was adhered to a steel test frame 

at an elevation of 3 m in the SMASH Lab at USU. The normal lighting condition was 

provided and verified in the same manner as discussed previously.  

The Goose was unable to hold a stable position during flight due to the absence of 

GPS signal, which negatively affected image quality. The ACP distance in normal 

lighting in the controlled environment was 0.7 m, which was 0.2 m shorter than the MCC 

distance. Fig. 3-6a shows the resulting image, in which the crack is barely visible. Since 

the Goose does not allow for FPV imaging, this result is based only on post-flight 

inspection. No real-time inspection results were obtainable. 

The Iris also suffered in the GPS-denied environment. It could not hold a stable 
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position long enough to detect the fatigue crack without GPS-reliant obstacle avoidance 

or altitude hold features. The ACP distance was 0.5 m, which was 0.1 m shorter than the 

MCC distance. Even at this distance, the crack was not detectable in either real-time or 

post-flight inspections. Fig. 3-6b shows the image collected by the Iris at the ACC 

distance of 0.5 m, in which no crack can be observed. 

The Mavic is equipped with stereo-vision positioning system and sonar altitude 

hold; thus, the pilot was able to maintain a stationary position in the GPS-denied 

controlled environment. Stereo-vision positioning uses the overlapping view of the two 

cameras to find the position of the UAS. More details on how this system works can be 

found in Mustafa et al., (2012). The pilot was able to achieve an ACP distance of 0.25 m, 

close to the MCC distance in the normal lighting. Fig. 3-6c shows the image taken by the 

Mavic, in which the crack is clearly observable. The crack was detectable in both real-

time and post-flight inspections using the Mavic at the ACP distance of 0.25 m. 

However, it is interesting to note that the crack is still visible in Fig. 3-6a despite having 

almost 3 times greater ACP distance (0.7 m) than the Fig. 3-6c which is taken with Mavic 

at ACP distance of 0.25 m. It seems that the higher resolution of the Nikon camera 

compared to the DJI Mavic and image stabilization feature compensated for the Goose 

instability and vibrations.   
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(a) (b) (c) 

Fig. 3-6 Fatigue crack images taken at ACP distances in controlled, GPS denied 

environment; (a) Goose (0.7 m), (b) Iris (0.5 m), (c) Mavic (0.25 m) 

Table 3-4 summarizes the results of mock FCM inspections in normal lighting 

conditions in a controlled, GPS denied environment. Note the values in this table are only 

valid for the described conditions of the mock inspection in the controlled environment.  

Table 3-4 Summary of crack detection results for UAS in normal lighting conditions in 

controlled, GPS denied environment 

Result Goose Iris Mavic 

ACP distance (m) 0.7a 0.5 0.25 

Realtime N/A No detection detection 

Post-flight Detection No detection detection 
awith 10× zoom 

 

Uncontrolled Environment 

Where the controlled (indoor) mock inspection elucidated the effects of flight in 

the absence of a GPS signal (e.g., vibration, GPS denied operation), the uncontrolled 

(outdoor) mock inspection elucidates the additional effects of wind and navigation in a 



126 
 
confined space. The fatigue-cracked specimen shown in Fig. 3-2 was adhered to a girder 

under the UWRL bridge in Logan, UT. The inspection was performed on the morning of 

January 10, 2017. KUTLOGAN25 weather station (located 5.5 km from the test location) 

reported that the wind speed was approximately 11 m/s (25 mph) at the time of testing 

(Weather 2017a). The maximum bridge clearance was approximately 2 m, which was 

deemed too narrow for access by the Goose. Therefore, inspections in the uncontrolled 

environment were only completed with the Mavic and the Iris. 

The pilot achieved an ACP distance of 0.6 m with the Iris. This was 0.1 m longer 

than the achieved ACP distance in the controlled environment. The increase in ACP is 

attributed to the wind speeds during testing. The inspector was unable to detect the crack 

during real-time or post-flight inspections in normal lighting conditions.  

Despite the wind, the pilot was able to achieve the same ACP distance with the 

Mavic as achieved in the controlled environment (0.25 m). The crack was readily visible 

in real-time inspections with normal or bright lighting, and in post-flight inspections in all 

lighting conditions. Representative images are shown in Fig. 3-7a through Fig. 3-7c. 

Following this success, the fatigue-cracked specimen was repositioned to sit facing the 

earth on the bottom flange of a girder in order to determine the effects of camera angle on 

the crack detection. As shown in Fig. 3-7d, the inspector was able to detect the fatigue 

crack even at an oblique angle. This is significant, considering the maximum tilt angle of 

the Mavic camera is 30 degrees. The brightness was varied and fit within the bounds of 

the definitions for bright, normal, and dark as measured by the lightmeter. Unlike the 

laboratory experiments, the exposure of the DJI camera is adjusted in Fig. 3-7 to most 

clearly capture the crack. Greater values of exposure were set on the camera as the 
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lighting condition got darker minimizing apparent differences in image brightness in this 

figure. The blurriness in the figures could have been due to combination of factors 

including adequate exposure control, GPS-denied operation, and UAS vibrations.  

  
(a) (b) 

  

(c) (d) 

Fig. 3-7 Fatigue crack images taken by Mavic in (a) bright, (b) normal, and (c) dark 

lighting; and (d) at oblique angle (bright) 

Table 3-5 summarizes the results of mock FCM inspections in an uncontrolled 

outdoor environment with wind speeds of approximately 11 m/s. The results demonstrate 

the ability of the Mavic to detect fatigue cracks at realistic ACP distances in the field. 

Note the values in this table are only valid for the described conditions of the mock 

inspection in the uncontrolled environment. The mock inspections also show having 

auxiliary positioning system, such as stereo-vision on DJI Mavic, is crucial in UASs, 
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especially for navigating under a bridge where the GPS signals are either weak or non-

existent.  

Table 3-5 Summary of crack detection results for UAS in uncontrolled outdoor 

environment 

Result 

Mavic Iris 

Lighting 

Dark Normal Bright Normal 

ACP distance (m) 0.25 0.6 

Real-time Detection Detection Detection No detection 

Post-flight No detection Detection Detection No detection 

 

 

FIELD FCM INSPECTIONS 

Following successful detection of known cracks in a variety of conditions using 

the Mavic, the authors selected that UAS for field inspections. Two rounds of field 

inspections were completed. The first was a deck arch bridge over Fall River in Ashton, 

ID (ITD Bridge Key 21105). Previous FCM inspections of the Fall River Bridge by ITD 

revealed several fatigue cracks. The intent of the first field inspection was to determine if 

these previously identified fatigue cracks could be detected with the Mavic in real-time or 

post-flight inspections. However, the exact locations of the cracks were not revealed to 

the inspection team. The second field inspection was completed at the Steel Bridge 

Research, Inspection, Training, and Engineering (S-BRITE) Center at Purdue University 

in Lafayette, IN. This training structure includes several known fatigue cracks, unknown 

to the inspection team, and is used to train FCM inspectors. The intent of the second field 

inspection was to (1) determine if the known fatigue cracks could be detected with the 
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Mavic in real-time or post-flight inspections, and (2) compare the results of UAS-assisted 

FCM inspection with those of human FCM inspection and with the ground truth (i.e., the 

known number of fatigue cracks in the structure). 

Fall River Bridge FCM Inspection 

Fig. 3-8 shows plan and perspective views of the Fall River Bridge. The bridge 

comprises two main longitudinal frames in East-West orientation and fifteen 

perpendicular transverse floor beams. The floor beams are connected to the girder webs 

by gusset plates. Inspection of the Fall River Bridge commenced at 11:30 AM on March 

22, 2017. The nearest weather station, KIDASH08, was 35 km from the inspection site 

and reported a maximum wind speed of 7 m/s (16 mph) during the 90-minute inspection 

flight (Weather 2017b). However, the inspection team estimated that the wind gust 

speeds at the inspection location were considerably more. The inspection team was 

located at the Southern side of the bridge on the Eastern bank of the Fall River, shown on 

the right hand side of Fig. 3-8a as the ground station. 

In the GPS-denied under-bridge environment, the Mavic tended to follow the 

river current without the pilot’s control. The visual positioning system—the dominant 

sensor in absence of GPS signal—caused this by picking up the river current. To mitigate 

this issue, the inspection team only inspected the first four Eastern floor beams, which 

were above solid ground. The pilot flew the UAS under the bridge, inspecting 12 

locations on the floor beams, two girder splices, the Southern girder web, the Southern 

concrete barrier, the bottom flange connection to the web on the Southern girder, and the 

bottom flange of the Southern girder, as shown in Fig. 3-9a. Two of these inspection 
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points—11 and 12—are known to include fatigue cracks based on previous FCM 

inspections by ITD. The inspector and pilot knew which girders had fatigue cracks but 

the exact locations of fatigue cracks were not revealed to them. The inspection team 

verified that fatigue cracks were not present at inspection points 1–10 during both real-

time (on 12-cm FPV monitor) and post-flight (on 60-cm computer monitor) inspections. 

Fig. 3-10 shows representative inspection images from inspection points 3 and 4, which 

clearly show that no fatigue cracks exist in those locations. Fig. 3-11 shows images taken 

at inspection points 11 and 12. It is impossible to detect fatigue cracks in the original 

images (Fig. 3-11a and 3-11b). With magnification (Fig. 3-11c and 3-11d) it is still 

difficult to identify the location of cracks, even though they are marked from previous 

inspections. This is due in part to the limited APC distance and camera resolution. 

Markings made by ITD inspectors during previous inspections also obscured the cracks, 

(i.e. black marker along crack length) making them more difficult to identify (Fig. 3-11c). 

b shows the FPV view of Mavic flying under the bridge and approaching a fatigue crack 

susceptible location. Marks from previous inspections indicating the presence of a fatigue 

crack are visible in the figure. The handheld spotlight, held by the inspector, served a 

dual purpose during the inspection: as a pointer to guide the pilot to the locations of 

interest, and to provide illumination. The ACP distance in the field condition was 

approximately 0.5 m, double that achieved during the mock inspections. During wind 

gusts, the ACP distance increased to 0.75 m. 
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(a) (b) 

Fig. 3-8 Aerial (a) plan and (b) perspective view of Fall River Bridge in Ashton, ID (Images 

courtesy of Dan Robinson, AggieAir.) 

 

 
(a) (b) 

Fig. 3-9 (a) Inspection points on Fall River Bridge; (b) view of Mavic on approach to 

inspection points 

The inspection team verified that fatigue cracks were not present at inspection 

points 1–10 during both real-time (on 12-cm FPV monitor) and post-flight (on 60-cm 

computer monitor) inspections. Fig. 3-10 shows representative inspection images from 
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inspection points 3 and 4, which clearly show that no fatigue cracks exist in those 

locations. Fig. 3-11 shows images taken at inspection points 11 and 12. It is impossible to 

detect fatigue cracks in the original images (Fig. 3-11a and 3-11b). With magnification 

(Fig. 3-11c and 3-11d) it is still difficult to identify the location of cracks, even though 

they are marked from previous inspections. This is due in part to the limited APC 

distance and camera resolution. Markings made by ITD inspectors during previous 

inspections also obscured the cracks, (i.e. black marker along crack length) making them 

more difficult to identify (Fig. 3-11c).  

  

(a) (b) 

Fig. 3-10 Inspection images from Fall River Bridge points (a) 3 and (b) 4 showing no fatigue 

cracks 

The inspector detected several other items of interest, including corrosion in the 

bottom flange of the Southern girder, efflorescence, concrete cracks, possible 

delamination in Southern barrier, and minor corrosion on the splice plate of the Southern 

girder in real-time. Real-time and post-flight inspection images were of sufficient quality 

to rule out the presence of fatigue cracks in locations 1 through 10. However, the FCM 

inspection was inconclusive because of the presence of the marker lines on the cracks. 



133 
 

 
 
 

  
(a) (b) 

  
(c) (d) 

Fig. 3-11 Inspection images from Fall River Bridge points (a) 11 and (b) 12; and magnified 

inspection images from points (c) 11 and (d) 12 

The Fall River field inspection revealed a significant drawback in UAS-assisted 

FCM inspections. It is not acceptable in practice to perform an inspection and report 

inconclusive results, which could easily happen if the local weather under the bridge is 

less than ideal, as was the case with this inspection. Lack of the GPS signals, combined 

with wind gusts, made the flight impossible for large portions of the time on-site. Lastly, 

in order to comply with federal aviation administration regulations, the pilot had to 
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maintain a line of sight with the UAS which severely limited UAS accessibility to all the 

members under the bridge. Future UASs for FCM bridge inspections are suggested to 

have small sizes, more reliable positioning systems in lieu of GPS signals, wind and 

turbulence resistivity, clearance measurement capability (laser range finder), 360-degree 

gimbal, onboard adjustable light source, and on-the-fly adjustable camera setting for 

exposure and optical zoom). As of now, a commercial UAS that meets these 

requirements does not exist (Dorafshan and Maguire 2018). DJI Mavic family UASs 

satisfy some of the requirements making them an adequate candidate for UAS-assisted 

FCM inspections.  

S-BRITE Center FCM Inspection 

Fig. 3-12 shows the Probability of Detection (POD) training structure at the S-

BRITE Center at Purdue University. This structure is primarily used for visual inspection 

research and inspector training. The POD structure is intended to mimic a 120 m, two-

span, highway bridge with three girder lines elevated approximately 8 m above the 

ground. Each girder spans approximately 12 m and the girder lines are spaced 3 m apart. 

The test frame supports three types of test specimens: (1) plate girders and wide flange 

specimens, (2) welded cover plate specimens, and (3) riveted plate specimens. The plate 

girder and wide flange specimens are suspended from the frame beams, and the welded 

cover plates are attached to the bottom flanges. Riveted cover plates are attached to the 

frame columns. Each specimen can have one fatigue crack, multiple fatigue cracks or no 

fatigue cracks. Inspectors are evaluated based on their ability to correctly locate the 

fatigue cracks and distinguish cracks from surface defects (scratches, corrosion, debris, 
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etc.). In total, the inspection team examined 72 girder specimens, 19 welded cover plate 

specimens, and 8 riveted plate specimens.  A facility proctor joined the inspection team. 

 
Fig. 3-12 Training POD frame at S-BRITE center, Purdue University 

The inspection team used the Mavic—the same UAS used in the Fall River 

Bridge field inspection—and two additional UAS—a DJI Inspire 1 and a DJI Phantom 

3—for the S-BRITE Center field inspection. Multiple similar platforms provided 

redundancy in the case of equipment failure and allowed one UAS to be used for 

inspection while the remaining two were charging. Fig. 3-13 shows the three UAS and 

Table 3-6 lists relevant specifications. The on-board cameras were of comparable quality 

and specification as it is shown in Table 3-7. The flight time varied based on the weight 

of the platform. Each UAS was equipped with FPV image streaming (using a 25-cm FPV 

monitor), downward sonar sensors, vision system, and barometers. The Mavic was the 

only one equipped with stereo-vision positioning in this experiment. The FPV monitor 
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used in the S-BRITE Center field inspection was upgraded from that used in the previous 

field inspection; in addition to a larger viewing area, the new FPV monitor allowed 

remote gimbal control, zoom, and exposure adjustments in real-time. The S-BRITE 

Center inspection took place on July 5–6, 2017. Inspections were performed between 

10:00 AM and 8:30 PM on July 5 and between 9:00 AM and 5:00 PM on July 6. 

Maximum recorded wind speeds according to the KLAF weather station at the Purdue 

University airport were approximately 4 m/s (9 mph), which is much calmer than the 

wind speeds experienced during the mock inspections and the Fall River Bridge 

inspection (Weather 2017c and Weather 2017d).  

  
 

(a) (b) (c) 

Fig. 3-13 (a) DJI Mavic, (b) DJI Inspire, and (c) DJI Phantom UAS used in S-BRITE 

inspection 

Table 3-6 UAS specifications for S-BRITE center inspection 

Specification Mavic Inspire Phantom 

Weight (kg) 0.7 3.4 1.3 

Camera resolution (MP) 12 12 12 

Flight time (min) 27 15 23 

Vision system Stereo  Downward Downward 
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Table 3-7 Camera Specifications used in S-BRITE center 

Specification DJI Mavic DJI Inspire DJI Phantom 

Resolution (max) 
4000 × 3000 

(12 MP) 

4000 × 3000 

(12 MP) 

4000 × 3000 

(12 MP) 

Sensor type CMOS CMOS CMOS 

Lens aperture  F2.2 F2.8 F2.8 

Sensor size (in) 1/2.3 1/2.3 1/2.3 

ISO (max) 1600 1600 1600 

Field of view (mm) 20 24-30 20 

 

Table 3-8 summarizes the inspections. 72 Seventy-two girder specimens were 

inspected using the Mavic. Eighteen of these were also inspected using the Inspire in 

order to compare platforms. Twenty welded plate specimens were inspected using the 

Inspire, and eight riveted plate specimens were inspected using the Phantom. The post-

flight inspections were carried out by the same inspector involved in real-time 

inspections. An S-BRITE Center proctor analyzed the inspection results. For each 

reported crack or call, the proctor recorded a true positive (hit) or a false positive 

(fallout). The proctor also reported the number of false negatives (misses). The hit-to-call 

ratio is the number of hits divided by the number of calls. The true positive rate (TPR) is 

the number of hits to the sum of hits and misses (in percent). The false positive rate 

(FPR) is the number of false positives divided by the number of calls (in percent). The 

proctor also reported the average performance of thirty hands-on inspections (using 

human inspectors) for comparative purposes. Table 3-9 summarizes the inspection results 

in terms of calls, inspection time, TPR, FPR, and hit to call ratio.  
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Table 3-8 UAS inspection locations and statistics 

UAS 
Specimen 

Type 

ACP 

Distance 

(cm) 

No of Pictures 
Inspection Time 

(min) 

Post-flight 

(min) 

DJI Mavic Girders 25-50 990 241 31 

DJI Inspire 
Girder, 

Welded Plates 
75-100 992 74 70 

DJI Phantom Riveted Plates 75 107 52 24 

Table 3-9 Comparison of UAS and human inspection performance 

 
Realtime 

UAS 
Member 

(No) 
Calls Time (min) 

TPR 

(%) 

FPR 

(%) 
Hit/Call (%) 

Mavic 
G (72) 159 241 64 89 11 

G (18) 34 27 33 91 9 

Inspire 
G (18) 32 57 44 88 13 

WP (20) 26 17 75 88 12 

Phantom RP (8) 68 52 89 88 12 

Post-flight 

UAS 
Member 

(No) 
Calls Time (min) 

TPR 

(%) 

FPR 

(%) 
Hit/Call (%) 

Mavic 
G (72) 61 116 61 72 28 

G (18) 16 22 33 81 19 

Inspire 
G (18) 14 31 44 71 29 

WP (20) 15 24 0 100 0 

Phantom RP (8) 45 69 78 84 16 

Hands-on (average of 30) 

UAS 
Member 

(No) 
Calls Time (min) 

TPR 

(%) 

FPR 

(%) 
Hit/Call (%) 

Mavic 
G (72) 82 144 61 79 21 

G (18) 19 27 44 79 21 

Inspire 
G (18) 19 27 44 79 21 

WP (20) 11 No Data 75 73 27 

Phantom RP (8) 10 17 89 20 80 

 

Girder Specimens 

A 241-minute real-time inspection of 72 girder specimens using the Mavic 
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resulted in 159 calls. Eighteen of these were hits for a hit-to-call ratio of 11% and a FPR 

of 89%. The proctor reported 10 misses, for a TPR of 64%. Fig. 3-14 shows examples of 

true positive, false negative, and false positive images from the Mavic girder inspection. 

Fig. 3-14a shows a 9.2-cm fatigue crack that the inspector detected. Fig. 3-14b shows a 

2.7-cm fatigue crack that the inspector missed, and Fig. 3-14c shows a spot of rust 

staining that the inspector erroneously identified as a fatigue crack. 

   
(a) (b) (c) 

Fig. 3-14 Girder inspection images: (a) true positive (hit), (b) false negative (miss), and (c) 

false positive 

Eighteen girder specimens on the exterior girder line of the POD frame were 

inspected using both the Mavic and the Inspire. The 27-minute real-time inspection with 

the Mavic produced 34 calls with 3 hits, 31 false positives, and 6 misses. The 57-minute 

real-time inspection with the Inspire produced two fewer calls but one more hit. Despite 

requiring more than double the inspection time, the Inspire had a greater hit-to-call ratio 

(13% vs. 9%), greater TPR (44% vs. 33%), and lower FPR (88% vs. 91%) than the 

Mavic. The Inspire is a larger UAS with a better camera, however, it was less 

maneuverable and stable than the Mavic. Also, the optical focusing for the Inspire was 
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not as efficient, requiring more flight time to obtain a reading by the inspector, which 

explains the increased inspection time and lower image quality.  

Welded Cover Plate Specimens 

A 17-minute real-time inspection of 20 welded plate specimens using the Inspire 

resulted in 26 calls. Three of these calls were hits, for a hit-to-call ratio of 12%. However, 

the inspector missed only one crack for a TPR of 75%. Fig. 3-15 shows examples of true 

positive, false negative, and false positive images from the welded cover plate inspection. 

Fig. 3-15a shows a 12.8-cm fatigue crack that the inspector detected. Fig. 3-15b shows a 

5-cm crack that the inspector did not detect. Fig. 3-15c shows a rust line that the inspector 

erroneously reported as a crack. The inspection performance in this task suffered greatly 

because the pilot was unable to achieve stable flight in the GPS-denied under-structure 

environment. Image quality suffered due to UAS instability and also the underslung 

cameras had limited ability to inspect the overhead cover plates due to the camera upward 

rotation limitations. Thus, the ACP distance was relatively large and the images were less 

clear. Furthermore, the inspector had less experience detecting the cracks present in the 

welded cover plate details. 

Riveted Plate Specimens 

A 52-minute real-time inspection of eight riveted plate specimens using the 

Phantom produced 68 calls, of which 8 (12%) were hits. Again, the inspector missed only 

one crack, giving a TPR of 89%. Fig. 3-16 shows examples of true positive, false 

negative, and false positive images from the riveted plate inspection. Fig. 3-16a shows a 

2-cm fatigue crack that the inspector detected. Fig. 3-16b shows a 4-cm crack that the 
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inspector did not detect. Fig. 3-16c shows a rust line that the inspector erroneously 

reported as a crack. 

   

(a) (b) (c) 

Fig. 3-15 Welded plate inspection images: (a) true positive (hit), (b) false negative (miss), 

and (c) false positive 

   
(a) (b) (c) 

Fig. 3-16 Riveted plate inspection images: (a) true positive (hit), (b) false negative (miss), 

and (c) false positive 

Overall, the real-time UAS inspections performed reasonably well for this 

inspection category. Again, false positives were an issue, as the average hit-to-call ratio 

was about 12%, meaning that about one in 8 calls corresponded to an actual crack. The 

TPR varied across the board. In the best case, the inspector identified 89% of fatigue 

cracks in eight riveted plate specimens. In the worst case, the inspector identified only a 
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third of the fatigue cracks present in 18 exterior girder specimens. The inspector had 

trouble labeling cracks due to the complexity of the riveted specimens, which might 

explain some of the true positive variability.   

Post-Flight Inspections 

Post-flight inspections produced mixed results. On average, the number of calls 

was about half that of real-time inspections of the same specimen sets. For example, 

while the real-time inspection of 72 girder specimens with the Mavic produced 159 calls, 

the post-flight inspection produced only 61. The post-flight inspection typically extended 

the inspection time by 50–130%. The hit-to-call ratio was improved over the real-time 

inspection in all but one case. Post-flight inspection of 20 welded plates using the Inspire 

produced zero hits. This was mainly due to the location of the specimens which required 

an upward camera and lack of stability of the DJI Inspire. Excluding that data point, the 

average hit-to-call ratio during post-flight inspections was about 18%, a significant 

improvement over the 12% average hit-to-call ratio during real-time inspections. 

However, the post-flight TPR was the same or worse than the real-time TPR in all cases. 

In the case of the welded plate inspection, the inspector correctly identified 3 of the 4 

cracks during the real-time inspection, but none during the post-flight inspection. 

Interestingly, calls made during the real-time and post-flight inspections were not 

always identical. Real-time inspections with the Mavic produced 160 calls. Post-flight 

inspections with the Mavic produced 61 calls, of which only 59 corresponded to identical 

real-time calls. Similarly, real-time inspections with the Phantom produced 68 calls. Post-

flight Phantom inspections produced 45 calls, of which only 7 corresponded to identical 
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real-time calls. The Inspire was an exception to this trend; real-time inspections produced 

58 calls and post-flight inspections produced 29, all of which corresponded to identical 

real-time calls. While post-flight inspections resulted in a fewer number of false positives 

than real-time inspections, they did not result in additional true positives. This, combined 

with the greatly increased inspection time, calls into question the utility of post-flight 

inspections; but the hit-to-call ratio improved in the post-flight inspections. In this 

experiment, the real-time and post-flight inspections were considered separately. In 

practice, however, they can be used together to have more accurate crack detections 

because in real-time the inspector was more concerned about missing a crack than 

reporting false positives. As such, it is difficult to question the utility of post-flight 

inspections in practice. Furthermore, post-flight inspections require the storage of vast 

amounts of data and considerable time in excess of the actual inspection flight. These 

requirements may not be palatable to bridge owners, both of which would increase costs 

above the UAS inspection, even though FPRs decrease. In general, false positives were 

greatly decreased (up to 17%) and improved hit-to-call ratio significantly (up to 17%). 

With the inspection of the DJI Inspire images from the welded cover plates.  

Comparison to Human Hands-On Inspection 

At worst, hands-on inspections took as long as real-time UAS inspections. For 

example, the average hands-on inspection time of 18 exterior girder specimens lasted 27 

minutes. Real-time inspection of the same 18 exterior girder specimens using the Mavic 

also took 27 minutes, but real-time inspection using the Inspire took more than twice as 

long. On average, hands-on inspection of all 72 girder specimens took 144 minutes, 



144 
 
which was over 1.5 hours shorter than the time required for real-time inspection of the 

same 72 girders using the Mavic. In the case of riveted plates, hands-on inspection was 

more than three times faster than real-time UAS inspection using the Phantom. When the 

additional inspection time associated with the post-flight inspection was considered, 

hands-on inspection was 1.8–7 times faster than UAS inspection.  

Hands-on inspections of the 72 girder specimens produced almost 50% fewer 

calls than real-time UAS inspections but more calls than post-flight UAS inspections. 

The average hands-on inspector correctly located 17 fatigue cracks for a hit-to-call ratio 

of 21% or about one in five. The real-time UAS inspection identified 18 cracks but the 

hit-to-call ratio was only about one in ten. The hit-to-call ratio for the post-flight 

inspection was improved at 28%, but the TPR matched the hands-on average. 

The average hands-on inspector made 11 calls during inspection of the 20 welded 

plate specimens. About one in four calls was a correctly identified crack (hit). On 

average, hands-on inspectors correctly identified 3 of 4 cracks, which matched the 

performance during the real-time UAS inspection. However, the real-time UAS 

inspection made more than double the number of calls as the average hands-on inspector. 

Thus, the hit-to-call ratio was much worse (12% vs. 27%). Interestingly, the post-flight 

UAS inspection produced 15 calls but zero hits, due to the poor quality of the images and 

the inspector’s inexperience with fatigue cracks in on the welded cover plates.  

Hands-on inspections of riveted plates produced excellent results. The average 

inspection time was only 17 minutes and inspectors identified 8 of 9 total cracks. Of ten 

calls, eight were hits and only two were false positives. The TPR from real-time UAS 

inspection of the same eight riveted plates was the same as the hands-on average, but the 
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UAS inspection made 68 calls, of which 60 (88%) were false positives.  

Summary of S-BRITE inspection 

In summation, UAS-assisted inspections were longer in duration than human-only 

hands-on inspections. Real-time inspections resulted in a much larger number of calls 

than hands-on inspections, but the number of hits was not significantly higher. Post-flight 

inspections produced fewer false positives, but did not improve the TPR. These results 

show that the performance of UAS in FCM inspections can approach the quality of 

hands-on inspections, although the inspection time and number of false positives are 

likely to be more than hands-on inspection. The non-contact nature of the UAS-assisted 

inspection provides an opportunity for less labor-intensive inspections; but, it would also 

cause more false positive reports. As such, UAS inspection may be of most utility in 

cases where hands-on inspection is unsafe or impossible. As discussed previously, the 

hands-on inspection metrics represent the average performance of thirty human 

inspectors. As such, some human inspectors perform much better, and some much worse. 

Similarly, the results presented here should not be construed to describe the performance 

of all UAS, pilots, inspectors, camera platforms, etc., especially since only a single 

inspector and pilot tandem was used for the UAS assisted inspection. However, these 

results clearly indicate UAS assisted FCM inspections can perform similar to humans, 

but the DOT should be prepared for increased false positives, and it is not recommended 

that UAS assisted inspections replace FCM human inspection without further 

investigation. Based on the results of this study, the inspection time of the UAS-assisted 

FCM inspection is more than the average manned inspection; however, the S-BRITE 
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POD frame is not a very challenging bridge in terms of accessibility. Inspection of 

bridges with more difficulty in accessibility, can benefit more from UASs as long as the 

pilot has a visual line of sight to the UAS.    

CONCLUSIONS AND FUTURE STUDIES 

Previous literature demonstrates the application of UAS for initial inspection of 

bridges, visual and autonomous detection of delamination or cracking in concrete, and 

checking the surface condition of structures. This chapter investigated the application of 

UAS for detection of fatigue cracks in steel bridges during FCM inspections.  

Laboratory investigations revealed the importance of camera quality and surface 

illumination on the maximum crack-to-camera (MCC) distance at which fatigue cracks 

can be detected. Observed MCC distances with stable cameras (fixed, not in flight) 

ranged from 0.3 m for the worst performing platform in dark lighting to 1.1 m for the best 

performing platform in bright light. Mock FCM inspections demonstrated the difficulties 

in detecting known cracks in GPS-denied or windy environments. Some platforms were 

unstable in GPS-denied indoor environments and thus clear images were not obtainable. 

The best performing platform has an achievable crack-to-platform (ACP) distance that 

was far smaller than the previously determined MCC distance, meaning it was easily able 

to obtain clear enough images for crack detection. This was true for both real-time 

(inspection from FPV monitor during flight) and post-flight (inspection of recorded 

images after flight) inspections. Note the results in this study do not cover all scenarios in 

FCM bridge inspection and are valid for the described conditions of the mock inspection. 

Nevertheless, the findings can serve as a guideline for bridge inspectors in order to 
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perform more successful UAS-assisted FCM inspections.  

Two FCM inspections of structures with known fatigue cracks demonstrated the 

ability of the UAS platform to identify fatigue cracks in the field. The first, at Fall River 

Bridge in Ashton, ID, was inconclusive due to marker obscuring the potential fatigue 

cracks. The inspector was able to rule out the presence of fatigue cracks in several 

inspection locations. However, the inspector was unable to identify fatigue cracks in 

locations that were known to contain them. This was mainly due to limited ACP 

distances in gusting winds and obscuration of the cracks by markings from previous 

inspections. The Falls River inspection also indicated that GPS denied navigation, 

combined with the 10 m/s (22 mph) wind gusts made controlled flight near impossible. 

Also, the stereo-vision positioning, which enables some control in when GPS-denied, 

causes significant instability over water and FAA line of sight requirements eliminated 

accessibility to nearly half of the structure due to sight conditions. 

The second field inspection, at the S-BRITE Center training facility at Purdue 

University, compared the performance of UAS inspections and human inspections. UAS 

inspection was comparable to hands-on inspection in terms of the number of real cracks 

that were identified. However, UAS inspections took far longer and resulted in a much 

higher number of false positives. In general, the results of this laboratory and field study 

show that fatigue crack identification during FCM inspections is promising using UAS, 

however challenges exist and more research is needed prior to routine use of UAS for 

fatigue crack detection. 

Moving from manned to unmanned inspections, particularly for bridges with 

Fracture Critical Members (FCM), requires using Unmanned Aerial Systems (UASs) 
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with auxiliary positioning systems to compensate with the lack of GPS signals. The 

results of this study suggest that using UAS that rely heavily on GPS signals for 

navigation is very difficult and unlikely to produce fatigue crack detection. The stability 

of many systems in the GPS denied environment poses a risk to the UAS, pilot and 

mission. UAS pilots may not wish to risk their UAS in such situations until better 

autonomous position control is available. Among studied UASs, inspection using the DJI 

Mavic Pro was more successful than the others due to stereo-vision positioning system; 

however, this system causes instability when the UAS is over a current like a river (a 

common situation during FCM inspections). Future UASs for FCM bridge inspections 

are required to have small sizes, more reliable positioning systems in lieu of GPS signals, 

wind and turbulence resistivity, clearance measurement capability (laser range finder), 

360-degree gimbal, onboard adjustable light source, and adjustable camera setting for 

exposure and optical zoom. As of now, a commercial UAS that meets these requirements 

does not exist. DJI Mavic family UASs satisfy some of the requirements making them a 

proper candidate for UAS-assisted FCM inspections. The results presented in this chapter 

are based on limited number of inspections which definitely does not mimic all possible 

inspection scenarios. More UAS-assisted FCM inspections are required to draw a 

comprehensive conclusion on the performance of UASs in terms of accuracy, hits, and 

inspection time. 
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CHAPTER IV 

FRACTURE CRITICAL INSPECTIONS IN STEEL BRIDGES: HUMAN 

PERFORMANCE AND UNMANNED AERIAL SYSTEMS COMPARISON IN 

FATIGUE CRACK DETECTION 

Abstract  

The chapter investigates the use of Unmanned Aerial Systems (UASs) for the 

inspection of bridges with fracture critical members to find fatigue cracks. The research 

team had four inspectors inspecting a probability of detection (POD) training structure at 

the at the Steel Bridge Research, Inspection, Training, and Engineering (S-BRITE) center 

at Purdue University to locate the fatigue crack(s) on the POD frame specimens. The 

results of these inspections were compared to results of 30 hands-on inspections of the 

same specimens in terms of hit rate, hit to call ratio, inspection time, and length of the 

largest crack missed (LCM). In general, the desk inspections and the field inspections had 

comparable hit rates and hit to call ratios; however, the type and location of the inspected 

specimens significantly affected the results of the UAS-assisted inspections. The results 

indicated the superiority of hands-on inspections to UAS-assisted inspections in terms of 

hit rate, hit to call ratio, and inspection time; however, the UAS-assisted inspections 

matched or exceeded the hands-on results in certain scenarios (out of plane specimens). 

In addition, the desk inspections resulted in detecting cracks 8% smaller than the field 

inspections and 11% smaller than the hands-on inspections. Regardless, the results can be 

considered satisfactory since none of the inspectors had previous UAS-assisted inspection 

training or experience. 
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Introduction 

It was not until the deadly 1967 bridge collapse in West Virginia (Silver Bridge 

Collapse) that fatigue cracking was introduced to bridge engineers due to the evaluation 

and implementation of systematic bridge inspection programs (Lichtenstein, 1993). It 

took the bridge engineering community in the U.S. a few years to incorporate the new 

requirements into practice, addressing the need to build fatigue resistant bridges in 1980 

in terms of materials, design, and construction (Connor, et al., 2005). However, looking 

at the national bridge inventory (NBI), almost 70% of the steel bridges, more than 

120,000 bridges, were built before 1980 (FHWA, 2013), which makes them prone to 

fatigue cracking. Fatigue crack(s) can cause structural collapse if the bridge does not have 

enough redundancy, e.g. the Silver Bridge. According to AASHTO LRFD bridge design 

and specifications, a “component in tension whose failure is expected to result in the 

collapse of the bridge” is called a fracture critical member (FCM). It is estimated that 

almost 10% of the in service U.S. bridges are categorized as FCM (Parr, et al., 2009). In 

the national bridge inspection standards, Federal regulations mandate special inspections, 

i.e. FCM inspections, for FCM bridges with a maximum interval between inspections of 

24-months (FHWA, 2017). The FCM inspections include an inspector within arms-length 

(hands-on) of the locations susceptible to fatigue cracks, which in addition to visual 

inspection allows them to perform non-destructive evaluation (NDE) techniques if 

necessary (Hearn, 2007). According to a survey, the FCM inspections were two to five 

times more expensive than the non-FCM inspections (Connor, et al., 2005). In addition to 

the cost associated with the NDE techniques, FCM inspections require specialized 

equipment, trained operators, under-bridge inspection trucks, traffic control, and lane 
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closure, which increases cost (Dorafshan et al., 2017a and b).  

California, Michigan, Minnesota, and Florida have used Unmanned Aerial 

Systems (UASs) for bridge inspections in the past (Dorafshan & Maguire, 2018). Due to 

their non-contact nature, UAS-assisted inspections can result in safer and less time-

consuming inspections without the need for traffic control. In addition, UASs can record 

the inspection data, e.g. visual images and videos, which can be used for further manned 

or unmanned post processing. Unmanned processing can include applying image 

processing techniques on the inspection data to detect concrete cracks (Dorafshan et al., 

2017c) or fatigue cracks (Dorafshan and Maguire, 2017). Defect detection can be done in 

a fully automated manner after the flight by applying deep convolutional neural networks 

on UAS images (Dorafshan, et al., 2018b), which are superior to edge detectors 

(Dorafshan et al., 2018c). However, the first FCM inspection performed using UASs was 

in Idaho (Dorafshan et al., 2017a) and had limited success in the field. Researchers 

conducted a study to determine the minimum requirements to achieve desirable results in 

UAS-assisted FCM inspections in terms of camera, UAS platform, and distance to the 

region of interest (Dorafshan, et al., 2018a). UAS inspection was successful in mock 

inspections performed in controlled and un-controlled GPS-denied environments. 

Dorafshan et al. (2018a) also conducted a series of UAS inspections on a probability of 

detection (POD) training structure at the Steel Bridge Research, Inspection, Training, and 

Engineering (S-BRITE) center at Purdue University to locate the fatigue crack(s) on the 

POD frame specimens in two approaches. The first approach was a realtime inspection 

where an inspector was asked to identify the fatigue crack(s) for each specimen on the 

inspection forms while a pilot was flying a commercial UAS. The inspector used a 25-cm 
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First Person View (FPV) monitor that was connected to the UAS wirelessly during the 

inspection to detect the crack(s). The FPV monitor allowed the inspector to change the 

point of view, exposure, and zoom of the UAS camera (DJI Mavic). The inspector 

detected between 64% and 89% of the cracks on the POD frame for different specimens, 

which matched or exceeded the average results of 30 hands-on inspections; however, the 

average number of calls required to detect a crack, hit-to-call ratio, in realtime UAS 

inspection was almost twice that of the average hands-on inspection. The inspector also 

reviewed the UAS inspection data after the inspection, which did not improve the hit rate; 

however, in the post-flight inspection, the average hit-to-call ratio was improved by 12% 

compared to the realtime inspection.  

The main focus of the study done by Dorafshan et al. (2018a) was to evaluate 

UAS performance during an FCM inspection that did not consider the effects of different 

inspections scenarios. This study aims to address the followings:  

1. Establish the effectiveness of unmanned aerial system (UAS) inspection 

for identifying cracks in steel bridges; 

2. Evaluate the practicality of performing bridge inspections from the office 

using video captured with a UAS; 

3. Establish methods for improving UAS inspection of steel bridges; 

4. Identify the strengths and weaknesses of UAS inspection of steel bridges.  

To compare the inspectors’ performance to each other, the research team asked all 

the inspectors to fill out a questionnaire designed by the research team. To determine the 

work load associated with both types of inspections, inspectors were asked to fill out the 

official national aeronautics and space administration task load index (NASA TLX) in the 
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middle of the inspection (Hart & Staveland, 1988). The inspectors were asked to 

complete a standard vision test, Snellen eye chart (Ferris III, et al., 1982), contrast 

sensitivity test, Pelli Robson Chart (Pelli & Robson, 1988), near visual acuity test, and 

Jaeger chart (Khurana, et al., 2014) by viewing videos/images of the charts recorded by 

the UAS.  

Experimental Program  

This section describes the experimental program carried out for this study, which 

includes the UAS platform, a brief introduction to the inspected specimens mounted on 

the POD frame at the S-BRITE center, a routine field inspection for the realtime fatigue 

crack detection, a routine desk inspection for the post-flight fatigue crack detection, an 

inspector survey, a NASA TLX, and vison tests. 

UAS Platform 

A commercial DJI Mavic Pro was used to perform the field inspections and 

record inspection data for the desk inspections. Some of the technical specifications of 

the platform and its onboard camera are shown in Table 4-1. This platform was selected 

since it provided the best results in the previous FCM inspections (Dorafshan, et al., 

2018a). 

Specimens 

The inspected POD frame is shown Fig. 4-1. The specimens mounted on the POD 

frame were produced at the Bowen laboratory at Purdue University. The POD structure is 

intended to mimic a 120 m, two-span highway bridge with three lines of girders elevated 

approximately 8 m above the ground. Each girder spans approximately 12 m with 3 m of 
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transverse spacing. The locations and sizes of the fatigue cracks on these specimens were 

only known to the S-BRITE center staff (not to the inspectors or the pilot). As seen in the 

figure, three types of specimens were mounted on the POD frame: out of plane girder 

(OOP), riveted cover plates (RCP), and welded cover plates (WCP) specimens. 

Table 4-1 DJI Mavic Pro specifications 

Platform 

Weight (g) Type 
Flight Time 

(min) 

Diagonal Size, Propellers Excluded 

(mm) 

740 Quadcopter 27 335 

Camera 

Sensor 

Type 

Sensor Size 

(mm) 

Video Frame 

Rate 

Camera Adjustment through FPV 

monitor 

CMOS 7.66 30 Zoom, Exposure, and Gimbal 

 
Fig. 4-1 Three types of specimens mounted on the POD frame located at Purdue University 
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Field Inspections 

Four bridge inspectors performed the field inspections of the POD frame between 

December 18th and December 21st, 2018. A pilot from Utah State University and a 

proctor from Purdue University accompanied the inspectors on each inspection day. Each 

field inspection started with a 30-minute inspection tutorial that taught the inspector how 

to use a 12-cm FPV monitor for recording and camera adjustments. The proctor provided 

a binder of blank inspector sheets for each specimen. For each specimen, the inspector 

marked the crack(s) on the corresponding specimen sheet (or indicated that the specimen 

did not have any cracks) while the pilot flew the UAS near the inspected specimen. Fig. 

4-2 and Fig. 4-3 show the typical setup for the field inspections. The wind speeds during 

the filed inspection days were obtained from KLAF weather station at the Purdue 

University airport (Weatherunderground, 2017) and are presented in Table 4-2. This table 

also reports a start time (including the tutorial) and an end time for each day of 

inspections. As seen in Table 4-2, the inspection time varied each day due to either the 

loss of sunlight or the inspector’s unavailability in the afternoons. In addition to the filled 

inspection forms, the inspectors were asked to complete the questionnaire, NASA TLX, 

and vision tests forms, as well. 

Desk Inspections 

For the desk inspection, videos of 54 specimens of the POD frame were selected 

including 32 OOP, 14 WCP, and 6 RCP specimens. The research team reviewed the 

inspection videos from each day to find the corresponding video for each selected 

specimen (Table 4-3). 
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Fig. 4-2 The setup for the field inspections 

 
 Fig. 4-3 FPV monitor and blank binders 

Table 4-2 Field inspections 

Day Start End 

Wind Speed (kmh) 

Min Mean Max 

December 18th 8:45 16:27 12 17 24 

December 19th 8:05 17:11 11 15 20 

December 20st 10:10 16:18 9 14 20 

December 21st 8:15 15:47 7 13 20 
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Then the videos of each inspection day were shared with 33 bridge inspectors 

working for DOTs or private contractors (19 inspectors returned the results as seen in 

Table 4-3). The inspectors were asked to review the videos and fill out the inspection 

forms, along with the questionnaire, NASA TLX, and vison tests (similar to the field 

inspection). The desk inspection time limit was 480 min (eight hours) to finish inspecting 

all the specimens, and the choice of review hardware, e.g. monitor, software, and media 

player, was left to the inspectors. The research team suggested using VLC media player 

because it is free to use and allows zooming and other adjustments. 

Table 4-3 The videos for desk inspection 

Day No of Inspectors Specimen No of Specimens Video Duration (min) 

December 18th 4 

OOP 36 46 

WCP 16 14 

RCP 0 15 

Total 52 75 

December 19th 6 

OOP 54 60 

WCP 16 26 

RCP 8 17 

Total 78 103 

December 20st 4 

OOP 54 70 

WCP 16 44 

RCP 15 11 

Total 85 125 

December 21st 4 

OOP 36 141 

WCP 16 23 

RCP 0 18 

Total 52 182 

 

NASA TLX 

NASA TLX was introduced in 1988 to quantify the workload of one or more 
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individuals when performing or immediately after performing cognitive and manual 

control tasks, complex laboratory and supervisory control tasks, and aircraft simulations 

(Hart & Staveland, 1988). Despite being designed for aviation and flight simulations, the 

NASA TLX has been used to determine and compare the workload of other tasks as well 

(Hart, 2006) in terms of the following:: 

 Mental Demand (low/high): How much mental and perceptual activity 

was required (e.g., thinking, deciding, calculating, remembering, looking, 

searching, etc.)? Was the task easy or demanding, simple or complex, 

forgiving or exacting? 

 Physical Demand (low/high): How much physical activity was required 

(e.g., pushing, pulling, turning, controlling, activating, etc.)? Was the task 

easy or demanding, slow or brisk, slack or strenuous, restful or laborious? 

 Temporal Demand (low/high): How much time pressure did you feel due 

to the rate or pace at which the tasks or task elements occurred? Was the 

pace slow and leisurely or rapid and frantic? 

 Performance (good/poor): How successful do you think you were in 

accomplishing the goals of the task set by the experimenter (or yourself)? 

How satisfied were you with your performance in accomplishing these 

goals? 

 Effort (low/high): How hard did you have to work (mentally and 

physically) to accomplish your level of performance? 

 Frustration Level (low/high): How insecure, discouraged, irritated, 
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stressed, and annoyed versus secure, gratified, content, relaxed, and 

complacent did you feel during the task? 

Raw ratings and their associated weight for each factor were calculated based on 

the inspectors’ answers to six individual ratings and 15 pairwise comparisons questions. 

The pilot was also asked to complete a NASA TLX form. The final score, which is the 

weighted average of the raw ratings, shows the workload: 0 for no workload, 100 for high 

workload. 

Vision Tests 

The charts associated with the Snellen eye test (Ferris III, et al., 1982), Pelli 

Robson test (Pelli & Robson, 1988), and Jaeger test (Khurana, et al., 2014) were installed 

on the POD frame. The inspectors were asked to complete the form for each test based on 

the realtime streaming (for field inspections) or the recording of the chart (for desk 

inspections). Inspectors were allowed to use any available hardware and software to 

improve the results. Fig. 4-4shows images taken by the DJI Mavic of the vision test 

charts used in this study along with their dimensions. As seen in Fig. 4-4a, there are 11 

lines with letters in the Snellen chart. The quantity of letters increases and the size 

decreases when going from the top to the bottom. The number of the last line from the 

top that the inspectors identified correctly was considered the score for the Snellen test. 

Fig. 4-4b shows the Pelli Robson chart were the contrast decreased for each group of 

three letters. The score depended on the line where the inspector missed more than one 

letter in a group of letters (0-2.25). In the Jaeger test (Fig. 4-4c), score is based on the 

smallest readable paragraph in the visual images and in the vision video (1 for the 
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smallest fonts to 11 for the largest fonts).  

 
Fig. 4-4 Charts used for the vision tests, (a) Snellen 558.8 mm × 279.4 mm, (b) Pelli Robson 

825.5 mm × 596.9 mm, (c) Jaeger 177.8 mm × 120.65 mm 

Results 

The inspection forms including the specimens, vision tests, NASA TLX, and 

questionnaires were gathered by the research team for both field and desk inspections. 

The locations of the fatigue cracks were known to the Proctor at Purdue University. For 

each specimen, the inspector may have one, several, or zero calls for cracks. If the call is 

correct, it is a “hit”; otherwise, it is a false positive. The ratio of number of hits to the 

total number of cracks is called the hit ratio. In addition, the hit to call ratio is defined as 

the required number of calls to make one hit, which is obtained by dividing the number of 

hits by the sum of the hits and false positives. 

Field Inspection Results  

The demographic of the field inspectors are shown in Table 4-4, and Table 4-5 

shows the summary of the field inspection results in terms of inspection time (T), hit rate 

(HR), hit to call ratio (HCR), length of largest crack miss (LCM), and video length for 
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different types of specimens. The results of the vision and NASA TLX tests are shown in 

Table 4-6. The inspection time in the table refers to the length of the UAS flight in 

minutes. As seen in Table 4-5, the inspection time was 38-64% of the total field time, 

which was mostly due to charging time of the equipment. The metrics of the inspection, 

hit rate, hit to call ratio, and LCM were not affected by the inspector’s demography. 

However, it seems that the younger inspectors had the best overall hit rate of 60% on Dec 

21st and the highest hit to call ratio of 46% on Dec 20th. Table 4-5 also shows that the 

inspectors detected 58% to 67% of the cracks on the OOP specimens, whereas two 

inspectors did not detect any of the cracks on the WCP specimens. Hit rate and hit to call 

ratio on Dec. 19th were 67% and 86, respectively and on Dec. 20th were 56% and 45%, 

respectively. In addition, the most accurate crack detection happened when the inspector 

performed better in the vision tests on December 21st (Table 4-6). The NASA TLX 

results showed that frustration was the governing factor for the inspectors while mental 

demand had the highest score for the pilot. 

In the inspection surveys, two inspectors indicated that the UAS-assisted 

inspection required similar effort compared to their typical inspection. The warmup 

training helped the inspectors as it somewhat to fully prepared them for the inspection; 

however, all inspectors reported that the UAS-assisted inspection provided worse quality 

than the hands-on inspection. 

Desk Inspection 

The demographic information of the desk inspectors is shown Table 4-7. For each 

inspector, a random ID was generated that started with the date of the inspection day. 
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Two of these inspectors also participated in the field inspections, 18BN-82 and 21BN-85. 

Table 4-7 includes the inspectors’ employers, year of experience, type of engineering 

license, such as Professional Engineer (PE) or Structural Engineer (SE), their obtained 

educational degree, age, and number of inspections in the past 12 months including 

routine, routine for steel bridges, and hands-on. 

Table 4-4 Demographic of the field inspectors 

Day 
Years of 

Experience 
Age 

No of Routine Insp. 

(last year) 

No of Routine in Steel 

Insp. (last year) 

No of Hands-on Insp. 

(last year) 

18th 16.5 47 800 280 25 

19th 16 50 340 51 15 

20st 7 31 35 17 10 

21st 5 35 25 18 8 

Table 4-5 Results of the field inspection 

Day 
Inspection Time 

(min) 

Field T 

(min) 
Type 

HR 

(%) 

HCR 

(%) 

LCM 

(mm) 

Video Length 

(min) 

18th 125 328 

OOP 67 18 72 46 

WCP 0 0 108 14 

RCP NA NA NA 15 

All 50 13 108 75 

19th 199 375 

OOP 67 52 133 60 

WCP 0 0 108 26 

RCP 67 86 38 17 

All 58 46 133 103 

20th 145 224 

OOP 50 24 125 44 

WCP 33 25 108 11 

RCP 56 45 32 15 

All 48 27 125 70 

21st 201 315 

OOP 60 15 74 141 

WCP 60 16 108 23 

RCP NA NA NA 17 

All 60 15 108 181 
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Table 4-6 Vision tests and NASA TLX results for the field inspections 

Test 18th 19th 20th 21st Pilot (Avg.) 

Snellen NA 3 5 5 NA 

Pelli Robson NA 1.65 1.5 1.65 NA 

Jaeger NA NA 11 9 NA 

TLX 
Score 69  82 47 73 67 

Factor Frustration Frustration Frustration Mental Demand Mental Demand 

 

Table 4-8 presents the results of the Snellen (SN), Pelli Robson (PR), and Jaeger 

(Ja) vision tests and the NASA TLX for the desk inspections. The SN results had the 

highest coefficient of variation (COV) at 35% while the PR results had the lowest COV 

at 11% among different inspectors. The vision tests between each set of inspection videos 

produced comparable results, as seen in Fig. 4-5. As for the TLX, the average score for 

each set of inspection videos varied from 58% and 64%, with the most reported 

governing factor being mental demand (12 out of 19). 

Table 4-7 Demographic of the desk inspectors 

ID Agency Experience Licensure 
Education 

Level 
Age 

No. of Routine 

Inspections 

No. of Routine 

Inspection 

(Steel) 

No. of Hands-

on Inspection 

18BN-

82 
Private 18 PE (Civil) Bachelor 48 1,000 200 25 

18RW-

82 
Private NG NG NG NG NG NG NG 

18SD-

87 
Private 5 PE (Civil) Bachelor 29 100 NG 50 

18WJ-

84 
DOT 5 None 

High 

School 
35 132 NG 12 

19AS-

85 
DOT 14 None Associate 39 15 7 8 

19HG-

80 
DOT 10 PE (Civil) Master 65 30 7 5 

19KU-

89 
DOT 8 None Associate 42 110 16 17 

19RT-

88 
Private 12 PE (Other) Bachelor 51 300 45 15 

19SG-

83 
Private 20 

PE, SE 

(Civil) 
Master 57 200 NG 10 
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19YD-

89 
Private 34 PE (Civil) Master 56 49 31 57 

20OD-

89 
Private 20 PE (Civil) Master 46 60 48 80 

20RJ-

83 
Private 21 

PE, SE 

(Civil) 
Bachelor 44 2 0 0 

20HQ-

83 
DOT 1 None 

High 

School 
43 130 39 6 

20YF-

86 
Private 8 

PE, SE 

(Civil) 
Master 30 35 20 20 

21DF-

85 
DOT 8 PE (Civil) Bachelor 39 50 25 25 

21JG-

81 
DOT 11 None Trade 52 500 250 22 

21EH-

80 
DOT 7 SE Master 65 180 54 10 

21BN-

85 
DOT 6 PE (Civil) Master 36 25 18 8 

21ET-

84 
Private 4 PE (Civil) Master 29 200 70 9 

Table 4-8 Vision tests and NASA TLX results for the desk inspectors 

ID SN PR Ja 
TLX 

Score Factor 

18BN-82 7 1.05 7 72 Frustration 

18RW-82 3 1.5 9 82 Frustration 

18SD-87 5 1.5 9 42 Mental Demand 

18WJ-84 10 1.5 9 58 Mental Demand 

19AS-85 5 1.65 7 64 Effort 

19HG-80 11 1.65 7 65 Mental Demand 

19KU-89 9 1.65 7 63 Mental Demand 

19RT-88 5 NG 8 69 Mental Demand 

19SG-83 5 1.65 9 68 Mental Demand 

19YD-89 5 1.35 11 47 Mental Demand 

20OD-89 6 1.65 7 58 Mental Demand 

20RJ-83 5 1.8 7 59 Frustration 

20HQ-83 7 1.65 7 67 Mental Demand 

20YF-86 5 1.65 7 NG NG 

21DF-85 6 1.35 11 54 Mental Demand 

21JG-81 5 1.65 7 66 Mental Demand 

21EH-80 8 1.5 9 27 Frustration 

21BN-85 11 1.65 11 78 Frustration 

21ET-84 8 1.35 7 64 Mental Demand 



172 
 

 
Fig. 4-5 Average of vision tests scores for each set of inspection videos 

Dec. 18the Videos 

Table 4-7 shows the metrics of the desk inspections for the videos taken on the 

Dec. 18th. The inspectors had the highest average HR of 56% and HCR of 65%, for the 

RCP specimens. The average HCR dropped to 19% in the OOP specimens, while the 

average HR for the OOP specimens was comparable to the RCP specimens (50%). The 

inspectors scored poorly for the WCP specimens with the average HR of 5% and HCR of 

2%. The UAS used for the field inspections had a tilt-angle of 30-degrees, which limited 

both the pilot and the inspector’s ability to capture proper inspection videos of WCP 

specimens. The WPC specimens governed the LCM values in three out of the four desk 

inspections, with LCM equal to 108 mm; however, the greatest LCM value was 132 mm, 

which was for OOP specimens. The greatest T values were recorded while inspecting the 

OOP specimens; however, this was due to the fact that there were more OOP specimens 
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(32) inspected than other specimens (20). To have a better perception of the inspection 

time, time ratio (TR) was introduced. TR was obtained by dividing T by the video length, 

which was previously reported in Table 4-5. The TR values were between 2 and 5 for 

WPC specimens, which were the highest values among specimens in three desk 

inspections out of the four. 

Table 4-9 Results of the desk inspection on Dec. 18th videos 

ID Type HR (%) HCR (%) LCM (mm) T (min) TR 

18BN-82 

OOP 40 13 92 126 2.7 

WCP 0 0 108 67 4.8 

RCP 78 88 38 25 1.7 

All 45 19 108 218 2.9 

18RW-82 

OOP 53 11 72 88 1.9 

WCP 0 0 108 29 2.1 

RCP 67 67 21 23 1.5 

All 48 15 108 140 1.9 

18SD-87 

OOP 33 38 132 82 1.8 

WCP 0 0 108 28 2.0 

RCP 11 50 38 17 1.1 

All 21 40 132 127 1.7 

18WJ-84 

OOP 73 13 72 290 6.3 

WCP 20 8 108 70 5.0 

RCP 67 55 38 45 3.0 

All 62 16 108 405 5.4 

Dec. 19th Videos 

Table 4-10 shows the metrics of the desk inspections for the videos taken on the 

19th. The inspectors had the highest average HR of 69% and HCR of 74%, for the RCP 

specimens. The average HCR dropped to 24% in the OOP specimens while the average 

HR for the OOP specimens was close to that of the RCP specimens (68%). The 
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inspectors scored poorly for the WCP specimens, with the average HR of 13% and HCR 

of 3.5%. The WPC specimens governed the LCM values in five out of the six desk 

inspections with 108 mm and 106 mm; however, the greatest LCM value was 132 mm, 

which was for OOP specimens. The highest TR values occurred during the desk 

inspections of the OOP specimens (4.7). 

Dec. 20th Videos 

Table 4-10 shows the metrics of the desk inspections for the videos taken on the 

20th. The inspectors had the highest average HR of 78% and HCR of 75%, for the RCP 

specimens. The average HR and HCR dropped to 56% and 19%, respectively, in the OOP 

specimens. The inspectors scored relatively good for the WCP specimens with an average 

HR of 45% and HCR of 15%. The WPC specimens governed the LCM values for all 

desk inspections, with the largest value equal to 108 mm. The highest TR values were 

between 2.7 and 5.5 for WPC specimens and were the governing case in all four desk 

inspections. 

Dec. 21st Videos 

Table 4-12 shows the metrics of the desk inspections for the videos taken on the 

21st. The inspectors had the highest average, HR of 79% and HCR of 82%, for the RCP 

specimens. The average HR and HCR dropped to 59% and 17%, respectively, in the OOP 

specimens. The inspectors scored relatively well for the WCP specimens with the average 

HR equal to 36% and HCR equal to 22%. The WPC specimens governed the LCM values 

for all desk inspections, with the largest value of 108 mm. No type of specimen 

controlled in terms of greatest TR. However, the maximum TR value among all 



175 
 
specimens was 2.6, which was for the WPC specimens. 

Table 4-10 Results of the desk inspection on Dec. 19th videos 

ID Type HR (%) HCR (%) LCM (mm) T (min) TR 

19AS-85 

OOP 80 36 74 279 4.7 

WCP 20 11 108 83 3.2 

RCP 78 88 21 65 3.8 

All 69 40 108 427 4.1 

19HG-80 

OOP 67 15 72 158 2.6 

WCP 20 4 106 59 2.3 

RCP 78 58 19 32 1.9 

All 62 17 106 249 2.4 

19KU-89 

OOP 73 10 132 242 4.0 

WCP 40 6 108 66 2.5 

RCP 89 42 19 39 2.3 

All 72 13 132 347 3.4 

19RT-88 

OOP 53 44 87 95 1.6 

WCP 0 0 108 34 1.3 

RCP 11 100 38 26 1.5 

All 31 45 108 155 1.5 

19SG-83 

OOP 60 14 72 161 2.7 

WCP 0 0 108 56 2.2 

RCP 67 75 21 32 1.9 

All 52 19 108 249 2.4 

19YD-89 

OOP 73 27 72 111 1.9 

WCP 0 0 108 39 1.5 

RCP 89 80 12.7 29 1.7 

All 66 35 108 179 1.7 

 

Discussion  

In order to investigate all the results together, the effect of several parameters on 

the inspection metrics, i.e. HR, HCR, LCM, and TR, are discussed in this section. 

The Effect of the Inspection Videos 

The inspection metrics were different for each inspection day. Comparing the HR 

values for all specimens in Table 4-9 through Table 4-12 showed that the inspectors with 
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videos from the 20th and 21st detected a greater number of cracks (average HR of 63%) 

than the inspectors reviewing videos from the first two inspection days (average HR of 

51%). In addition, the average LCM for the last two days was 104 mm compared to 113 

mm in the first two days. This can be justified by the environmental factors. As seen in 

Table 4-2, at the first two days of the inspections, the wind speed was higher than that of 

the last two days. Higher wind speed compromises UAS stability heavily in GPS-denied 

environments which led to lower quality recordings. 

 

Table 4-11 Results of the desk inspection on Dec. 20th videos 

ID Type HR (%) HCR (%) LCM (mm) T (min) TR 

20OD-89 

OOP 67 23 72 80 1.8 

WCP 20 20 108 30 2.7 

RCP 67 75 32 21 1.4 

All 59 30 108 131 1.9 

20RJ-83 

OOP 73 29 74 105 2.4 

WCP 60 11 108 38 3.5 

RCP 100 100 0 27 1.8 

All 79 31 108 170 2.4 

20HQ-83 

OOP 47 17 87 216 4.9 

WCP 40 22 108 61 5.5 

RCP 56 100 32 35 2.3 

All 48 25 108 312 4.5 

20YF-86 

OOP 73 8 27 117 2.7 

WCP 60 7 108 57 5.2 

RCP 89 24 25 84 5.6 

All 76 10 108 258 3.7 
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Table 4-12 Results of the desk inspection on Dec. 21st videos 

ID Type HR (%) HCR (%) LCM (mm) T (min) TR 

21DF-85 

OOP 53 11 74 207 1.5 

WCP 0 0 108 32 1.4 

RCP 78 100 21 22 1.3 

All 52 15 108 261 1.4 

21JG-81 

OOP 53 17 87 184 1.3 

WCP 0 0 108 26 1.1 

RCP 56 100 25 31 1.8 

All 45 25 108 241 1.3 

21EH-80 

OOP 67 6 72 189 1.3 

WCP 40 4 90 60 2.6 

RCP 89 32 13 35 2.1 

All 69 9 90 284 1.6 

21BN-85 

OOP 40 29 133 190 1.3 

WCP 60 50 108 34 1.5 

RCP 78 88 38 43 2.5 

All 55 43 108 267 1.5 

21ET-84 

OOP 80 24 22 144 1.0 

WCP 80 57 89 58 2.5 

RCP 78 88 21 31 1.8 

All 79 35 89 233 1.3 

 

The Effect of Type of Specimens  

The desk inspection results were affected significantly by the type of specimens in 

all inspection videos, as seen in Fig. 4-6. The desk inspection of the RCP specimens 

resulted in the lowest HR and HCR. In addition, the inspectors spent more time on the 

RCP specimens considering the video length (higher TR). On the other hand, the 

inspectors were the most successful with the RCP specimens. The HCR values were less 

than the HR values for OOP and HCR, whereas HCR exceeded or matched the HR for 

RCP specimens. The greatest value of LCM was obtained when the inspectors reviewed 
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the RCP specimens (LCM equal to 108 mm) except for the 18SD-87 and 19KU-89 

inspectors who missed a 132 mm crack on the OOP specimens.   

 
Fig. 4-6 A summary of the average HR and HCR for each set of inspection videos 

The Effect of the Inspectors 

The average HR for the desk inspections was 57%. Ten inspectors exceeded the 

average, with the highest HR being 79% among all specimens. The HCR values were 

consistently lower than the HR values with an average of 25%. Eight inspectors scored 

higher HCR than the average HCR, with the greatest being 45%. Fig. 4-7 indicates the 

inspector’s HR and HCR scores, with lines representing the average values. The average 

TLX scores for all inspectors was 61%, whereas the inspectors with higher than average 

HR scores had lower TLX scores (average of 56%). A similar trend can be seen for the 

inspectors with higher than average HCR scores; they had TLX scores with a mean of 

59%. These trends can be seen in Fig. 4-8a as the higher TLX scores resulted in lower 
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HR and HCR. The average of SN and PR vision tests for the ten inspectors was higher 

than average for all inspectors. In addition, the eight inspectors with HCR scores greater 

than the average scored better in the Ja tests. However, as seen in Fig. 4-8b through Fig. 

4-8d, there was not a consistency between the vision test results and the metrics. The ten 

inspectors with higher HR and the eight with higher HCR than the average had more 

years of experience, 13.1 and 14.5, respectively, than the average years of experience of 

the inspectors,11.8, which is reflected in Fig. 4-8e, especially for the HR values. 

However, the above-average inspectors performed less routine inspections and more 

hands-on inspections than the rest in the 12-month period before the desk inspection. The 

number of hands-on inspections is not consistent with the HR and HCR values, as seen in 

Fig. 4-8f. The results also indicate that the inspectors working as private contractors had 

higher HCR and lower TR than the ones employed by DOTs; however, the DOT 

inspectors were slightly better in terms of HR (Table 4-13). 

 
Fig. 4-7 Average HR and HCR for each desk inspector on all specimens 
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(a) (b) (c) 

   
(d) (e) (f) 

 

Fig. 4-8 HR and HCR versus (a) NASA TLX scores, (b) SN vision test, (c) PR vision test, (d) 

Ja Vision test, (e) year of experience, (f) number of hands-on inspections 

Table 4-13 The effect of the agency on the inspection metrics 
Agency HR (Avg.) HCR (Avg.) LCM (Avg.) TR (Avg.) 

DOT 58% 22% 108 2.85 

Private 56% 28% 108 2.14 

The Effect of Review Software and Hardware 

Due to the nature of the desk inspections, it is important to investigate the effects 

of software and hardware used in the inspections on the results. For software, i.e. the 

media player used to review the inspection videos, the research team suggested VLC 

media player. This player is free and allows the user to adjust zoom and brightness while 
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the video is playing. Fourteen inspectors used the VLC media player, two used Windows 

Media Player (WMP), and three did not specify. Nine of the ten inspectors with higher 

than average HR and seven out of eight inspectors with higher than average HCR used 

the VLC media player. The inspectors were asked to identify whether they used a certain 

feature of the media player, and if they did, score that feature on the scale of one to five 

according to its usefulness. Table 4-14 shows the features, how many inspectors used 

them during the desk inspections (frequency), and the average usefulness score. Pause 

and rewind aside, zooming had the highest usefulness score and was used by all 14 

inspectors that used VLC media player. In addition, the ability to change the brightness of 

the video was used by all the VLC users and scored 3.93, making, on average, this feature 

also very important. The zoom and brightness adjustment improved the quality of the 

desk inspections by allowing the inspectors to see more details in the videos (Fig. 4-9). 

Nine of the ten inspectors with higher HR than average and six out of eight inspectors 

with higher HCR than average used VLC media player and its features during the desk 

inspections. 

In terms of hardware, the inspectors were asked to provide the specifications of 

their monitors. The most successful inspectors used a 508-mm monitor or larger. The 

videos recorded by the DJI Mavic had resolutions of 3840×2160, while the highest 

resolution in the monitors used by the inspectors was only 1920×1080. Using a monitor 

with the same resolution as the videos could improve the results of the desk inspections. 
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Table 4-14 Feature scores for the media player 
Feature Frequency Score (Avg.) 

Pause 17 4.76 

Rewind 16 4.75 

Fast forward 15 3.67 

Decrease the speed of the video 10 3.3 

Increase the speed of the video 10 2.1 

Zoom 14 4.36 

Brightness adjustment 14 3.93 

Still photo from the video 8 3.6 

 
Fig. 4-9 Still image from a video of an OOP specimen, (a) original, (b) adjusted brightness, 

(c) zoomed on a susceptible region, (d) zoomed on a susceptible region with brightness 

adjustment 

Inspectors Assessment  

The inspectors were asked the following four questions: 
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 How did your effort-level during the desk inspection compare to your 

effort-level during a typical bridge inspection? (less, similar, more) 

 How did your focus-level during the desk inspection compare to your 

focus level during a typical bridge inspection? (less, similar, more) 

 The desk inspection videos provided (worse, similar, better) quality as 

compared to a UAS inspection performed live in the field. 

 The desk inspections provided (worse, similar, better) quality as compared 

to an arm's length inspection. 

Fig. 4-10 presents the answers given by the inspectors. In terms of the effort-level, 

seven inspectors indicated more compared to a typical inspection. However, ten 

inspectors claimed the desk inspections required similar or less effort to perform than 

typical bridge inspections, which suggests the possible acceptance of the UAS technology 

along with the desk inspection setups in the bridge community. In addition, 15 inspectors 

required similar or less focus level than during typical bridge inspections, which suggests 

that desk inspections could improve bridge inspection practice. Almost 63% of the 

inspectors reported that the desk inspection videos provided similar or better quality than 

the field inspections. Therefore, it is practical for the inspectors to capture the inspection 

videos and review them later rather than detect the cracks in the field. Finally, a majority 

of the inspectors preferred hands-on inspection over desk inspection. This could be due to 

the remote nature of the UAS inspections; however, the quality of the desk inspections 

can be improved by using higher resolution cameras and monitors and more stable UAS 

platforms as was suggested in previous studies (Dorafshan & Maguire, 2018; Dorafshan, 
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et al., 2018a).  

  
(a) (b) 

Fig. 4-10 Inspector assessments of the desk inspections (a) effort and focus levels compared to the 

typical bridge inspection, (b) quality compared to UAS field and hands-on inspections 

 

Comparison to the Hands-on Inspections 

The S-BRITE center offers training programs for bridge inspectors, including 

hands-on inspections on the POD frame. A set of 30 hands-on inspections performed on 

the same specimens investigated in this study are collected from the S-BRITE center as 

shown in Table 4-15. The results of the UAS-assisted field inspection and the average of 

the desk inspections for each inspection day is presented in Table 4-16. 

Fig. 4-11 shows the HR and HCR for each type of specimen for desk, field, and 

hands-on inspections. As seen, for OOP and RCP specimens, the desk and field 

inspections provided comparable HR and HCR scores. As for the WCP, the results of the 

desk and field inspections were considerably lower than the hands-on inspections. This is 

mainly due to the location of the WCP specimens, which created a more challenging 
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scenario during the flight. The inspectors required more clearance between the DJI Mavic 

and the WCP specimens, which prevented them from capturing proper videos. 

Table 4-15 The average of the hands-on inspections 

Type HR (%) 
HCR 

(%) 

LCM 

(mm) 
T (min) 

OOP 65 25 133 86 

WCP 57 27 108 20 

RCP 84 81 38 17 

All 70 34 133 122 

Table 4-16 The average of UAS inspections 

Day Type 
Desk Inspection Result (Avg.) Field Inspections Results 

HR (%) HCR (%) LCM (mm) T (min) HR (%) HCR (%) LCM (mm) T (min) 

18 

OOP 50 19 92 147 67 18 72 - 

WCP 5 2 108 49 0 0 108  - 

RCP 56 65 34 28 NA NA NA  - 

All 44 23 114 223 50 13 108 125 

19 

OOP 68 24 85 174 67 67 133 - 

WCP 13 4 108 56 0 0 108  - 

RCP 69 74 22 37 NA 86 38  - 

All 59 28 112 268 50 46 133 199 

20 

OOP 65 19 65 130 50 24 125 - 

WCP 45 15 108 47 33 45 108  - 

RCP 78 75 22 42 56 46 32  - 

All 66 24 108 218 48 46 125 145 

21 

OOP 59 17 78 183 60 15 74 - 

WCP 36 22 101 42 60 16 108  - 

RCP 76 82 24 32 NA NA NA  - 

All 60 25 101 257 60 27 108 201 
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(a) (b) (c) 

   
(e) (f) (g) 

Fig. 4-11 Comparing the UAS-assisted inspections to the hands-on inspections, (a) HR for 

OOP, (b) HR for WCP, (c) HR for RCP, (d) HCR for OOP, (e) HCR for WCP, and (f) HCR 

for RCP  

In terms of T, the desk inspections were the most time-consuming, as can be seen 

in Fig. 4-12a. The average T for the field inspections was 168 min and for the desk 

inspections was 241 min, which were 38% and 98% more than the average T of the 

hands-on inspections, respectively. Considering none of the inspectors have participated 

in UAS-assisted inspections before expect for two field inspectors who also performed 

two of the desk inspections, more allocated time was expected. In addition, the desk 

inspections do not get considerably more expensive or frustrating as the inspection time 

increases since they happened after the field inspections. Therefore, the inspectors had 

the ability to dedicate more time without worrying about wasting money. Fig. 4-12b 
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shows the LCM values for each type of inspection. The average LCM for the desk 

inspections was 109 mm, which was 11% and 8% less than the hands-on and field 

inspections, respectively. 

  
(a) (b) 

Fig. 4-12 Comparing the UAS-assisted inspection to the hands-on inspections, (a) T, (b) 

LCM 

Conclusions and Future Work 

Inspection of bridges with fracture critical members (FCM) is among the most 

challenging tasks for the bridge community to perform since these bridges are susceptible 

to fatigue cracks. The current practice for FCM inspection is hands-on inspection with 

application of some sort of non-destructive evaluation (NDE) method if necessary. 

Successful applications of Unmanned Aerial Systems (UASs) in state departments of 

transportation (DOTs) in the past make them an interesting option for FCM inspections; 

however, there are no studies investigating the factors for an effective UAS-assisted FCM 

inspection. 

The research team conduct four UAS-assisted inspections on a probability of 
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detection (POD) training structure at the Steel Bridge Research, Inspection, Training, and 

Engineering (S-BRITE) center at Purdue University to locate the fatigue crack(s). Each 

inspection included a different inspector, accompanied by a pilot flying a DJI Mavic 

UAS, inspecting different types of the specimens on the POD frame through a first 

person view (FPV) monitor. The video streamed to the FPC monitor was also recorded 

and stored for another phase of the study. The inspectors marked the location of cracks on 

a binder that was used to evaluate their performance. The metrics of this study were hit 

rate (HR), hit to call ratio (HCR), length of the largest crack missed (LCM), and 

inspection time (T). The inspection videos of 54 specimens for each day of inspection 

were shared with 19 bridge inspectors to perform desk inspections by reviewing them and 

marking the cracks. The selected specimens included the three types of specimens on the 

POD frame: out of plane (OOP), welded cover plate (WCP), and riveted cover plate 

(RCP). Based on the results, the following remarks can be made: 

 Inspectors with more hands-on inspections performed better in the desk 

inspections. 

 Inspectors who performed better in the vision tests performed better in the 

desk inspections 

 Wind speed had a noticeable effect on the metrics of both field and desk 

inspection. (results were better for the days with lower wind speeds) 

  Inspectors performed considerably better on the OOP and RCP specimens 

than the WCP specimens due to the locations of WCP specimens and 

limited upward tilt-angle of the DJI Mavic.  
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 Lower workload experienced by the inspectors resulted in better 

inspection metrics. 

 Inspectors employed by private agencies performed marginally better than 

the DOT inspectors. 

 Using a media player with zoom and brightness adjustment improves the 

desk inspections. 

 The hands-on inspections had better metrics than the UAS-assisted 

inspections for all specimens; however, the UAS-assisted inspections 

produced similar metrics, except for T, to the hands-on inspections for 

OOP and RCP specimens.  

 The LCM was the only metric that was better in the desk inspections 

 The desk inspections and the field inspections were 98% and 38% more 

time-consuming than the hands-on inspections, respectively. 

This study shows the potential of implementing UAS-assisted inspections for 

future FCM inspections. Considering none of the inspectors were trained or participated 

in UAS inspections before, the results are promising. The authors recommend the 

following for future work to improve the inspection results: 

 Performing the inspections using a UAS with at least a 90-degree tilt-

angle. 

 Providing UAS-assisted training sessions for the inspectors before the 

inspection.  

 Preforming the desk inspections on similar monitors with equal or higher 
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resolution than the videos. 
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CHAPTER V 

IMAGE PROCESSING ALGORITHMS FOR CRACK DETECTION IN CONCRETE 

STRUCTURES 

Abstract 

This chapter discusses image processing algorithms for detection of defects in 

concrete. Such algorithms are useful for improving the accuracy of crack detection during 

autonomous inspection of bridges and other structures. The authors propose a generic 

image processing algorithm for crack detection, which includes the major steps of filter 

design, edge detection, image enhancement, and segmentation. The edge detection was 

carried out by six filters in the spatial (Roberts, Prewitt, Sobel, and Laplacian of 

Gaussian) and frequency (Butterworth and Gaussian) domains. These algorithms are 

applied to fifty images each of defected and sound concrete and an inspector attempted to 

identify cracks in binary images. The performance of the six filters is compared in terms 

of accuracy, precision, minimum detectable crack width, computational time, and noise-

to-signal ratio. In general, frequency domain techniques were slower than spatial domain 

methods due to computational intensity of the Fourier and inverse Fourier 

transformations used to move between the spatial and frequency domains. Frequency 

domain methods also produced noisier images than spatial domain methods. Crack 

detection in the spatial domain using the Laplacian of Gaussian filter proved to be the 

fastest, most accurate, and most precise method, and resulted in the finest minimum 

detectable crack width. 
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Introduction 

The United States is home to more than 600,000 bridges, more than one-third of 

which include a concrete superstructure or wear surface [1]. These bridges require a 

variety of periodic inspections in accordance with federal regulations [2]. The most 

common inspection type is the routine inspect, wherein the inspector scans the bridge 

deck to identify surface degradation or surface cracking. Such inspections are costly [3], 

time-consuming [4], and labor intensive [5]. Autonomous inspection [5] [6] [7] [8] [9] 

may be a cost-effective solution to these problems if the accuracy of human inspection 

can be matched. Image-based inspection for cracks [10, 11], spalls [12, 13], 

delaminations [13, 14, 15], and corrosion [16] using unmanned aerial systems (UAS) 

have proven effective based on previous literature.  

Image-based autonomous inspections still require human inspectors to review 

images. The number of images collected depends on a number of factors, but is 

commonly in the hundreds of thousands [5]. Manual identification of flaws in such large 

images sets is time consuming and prone to inaccuracy due to inspector fatigue or human 

error. Image processing algorithms can improve the accuracy and efficiency of 

autonomous inspections by either (a) enhancing images to improve ease of human 

detection of defects or (b) autonomously identifying defects. This chapter discusses the 

former. 

Cracks in a two-dimensional (2D) image are classified as edges, and thus existing 

edge detection algorithms are likely candidates for crack identification. 2D images are 

represented mathematically by matrices (one matrix, in the case of greyscale images, or 

three matrices in the case of red/green/blue color images). An ideal edge is defined as a 
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discontinuity in the greyscale intensity field. Crack detection algorithms can emphasize 

edges by applying filters in either the spatial or frequency domain. The use of a wide 

variety of edge detection filters or transformations for crack detection has been 

demonstrated in the literature [11, 17-33] but there is little guidance on the best methods.  

Save two noteworthy exceptions, most research focuses on developing new 

methods for crack detection rather than comparing the performance of existing methods. 

Abdel-Qader et al. [18] compared the performance of the fast Haar transform, Fourier 

transform, Sobel filter, and Canny filter for crack detection in 25 images of defected 

concrete and 25 images of sound concrete. The fast Haar transform was the most accurate 

method, with overall accuracy of 86%, followed by the Canny filter (76%), Sobel filter 

(68%), and the Fourier transform (64%). The processing time was not considered. Mohan 

and Poobal [34] reviewed a number of edge detection techniques for visual, thermal, and 

ultrasonic images, but the information presented was from several studies that considered 

vastly different data sets, and so the results are not directly comparable. This chapter 

presents a direct comparison of the performance of four common edge detection methods 

in the spatial domain (Roberts, Prewitt, Sobel, and Laplacian of Gaussian) and two in the 

frequency domain (Butterworth and Gaussian) by applying them to a dataset of fifty 

sound and fifty defected images of concrete. 

Analytical Program 

Fig. 5-1 shows a generic image analysis algorithm developed for this study. The 

generic algorithm includes three main steps: Edge detection, edge image enhancement, 

and segmentation. Edge detection in the spatial domain involves greyscale conversion 
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and application of a filter. Edge detection in the frequency domain requires additional 

steps to transform the image from the spatial domain to the frequency domain before 

application of the filter, and the inverse operation to transform the filtered image back to 

the spatial domain. This section details the particulars of each step in the generic image 

processing algorithm.  

 
Fig. 5-1 The steps in the proposed crack detection algorithm, (a) the spatial domain, (b) the 

frequency domain 

Greyscale conversion 

Edge detection algorithms perform best with greyscale images [35], so the first 

step in the image analysis procedure is greyscale conversion of color images. The original 

color image comprises a matrix of pixels, each with a defined red, green, and blue 

intensity. Greyscale conversion follows Equation 5-1, where 𝐼(𝑥, 𝑦) is the grayscale 

intensity of pixel (𝑥, 𝑦), and 𝑅(𝑥, 𝑦), 𝐺(𝑥, 𝑦), and 𝐵(𝑥, 𝑦) are the red, green, and blue 

pixel intensities of the same, respectively. 
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𝐼(𝑥, 𝑦) = 0.2989𝑅(𝑥, 𝑦) + 0.5870𝐺(𝑥, 𝑦) + 0.1140𝐵(𝑥, 𝑦)  (5-1) 

Edge detection in the spatial domain 

In general, edge detection in images requires filtering by one of several common 

methods that are discussed in detail below. Filters are applied as a small matrix of values 

called a kernel through a mathematical operation known as convolution. In general form, 

the convoluted image 𝑶 is the sum of the element-by-element products of the image 

intensity matrix 𝑰 and the kernel 𝑲 in every position in which 𝑲 fits fully inside 𝑰. 

Equation 5-2 describes this in plainer terms for image size 𝑀 × 𝑁 and kernel size 𝑚 × 𝑛. 

𝑂(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑘 − 1, 𝑗 + ℓ − 1)𝐾(𝑘, ℓ)𝑛
ℓ=1

𝑚
𝑘=1     (5-2) 

The convoluted image 𝑶 will be of size (𝑀 − 𝑚 + 1) × (𝑁 − 𝑛 + 1). The kernel 

typically includes both 𝑥 and 𝑦 components; the convoluted images 𝐸𝑥 and 𝐸𝑦 obtained 

from the 𝑥 and 𝑦 components of the filter emphasize vertical and horizontal edges, 

respectively. The final edge image 𝐸 is the square root of the sum of the squared 

component images, i.e. 

𝐸(𝑥, 𝑦) = √𝐸𝑥
2(𝑥, 𝑦) + 𝐸𝑦

2(𝑥, 𝑦)      (5-3 

Common edge detecting filters in the spatial domain include Roberts, Prewitt, and 

Sobel. Equations 5-4 through 5–6 give the 𝑥 and 𝑦 kernels for the Roberts (𝑅𝑥 and 𝑅𝑦), 

Prewitt (𝑃𝑥 and 𝑃𝑦), and Sobel (𝑆𝑥 and 𝑆𝑦) filters. These filters compute the gradient 

between neighboring pixels in the 𝑥 and 𝑦 directions and intensify areas of high gradient 

(i.e., edges). Filters are constructed such that the components are of opposite sign and the 

sum of all components is zero. The Roberts filter (Equation 5-4) is a compact kernel, 

which could lead to very fast processing times. The Prewitt (Equation 5-5) and Sobel 
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(Equation 5-6) filters use larger 3 × 3 kernels nad are therefore more powerful but likely 

require extended computation times. The Prewitt is a first-order filter (the largest 

magnitude component is one); the second-order Sobel filter will likely produce an image 

with more intensified edges. 

𝑅𝑥 = [
1 0
0 −1

]    𝑅𝑦 = [
0 1

−1 0
]   (5-4) 

𝑃𝑥 = [
−1 0 1
−1 0 1
−1 0 1

]   𝑃𝑦 = [
1 1 1
0 0 0

−1 −1 −1
]   (5-5) 

𝑆𝑥 = [
−1 0 1
−2 0 2
−1 0 1

]   𝑆𝑦 = [
1 2 1

   0    0    0
  −1   −2   −1

]  (5-6) 

Another popular edge detection method in the spatial domain is the Laplacian of 

Gaussian (LoG) function. When applied to an image with intensities 𝐼(𝑥, 𝑦), the 

Laplacian operator ∇2=
𝜕2𝐼

𝜕𝑥2 +
𝜕2𝐼

𝜕𝑦2 emphasizes both edges and noise or artifact. The 

influence of noise can be reduced by first applying the Gaussian smoothing filter given 

by Equation 5-7, where 𝑥 and 𝑦 are the spatial coordinates within the Gaussian kernel 

and 𝜎 is the standard deviation. 

𝐺(𝑥, 𝑦) =  
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

𝑥2+𝑦2

2𝜎2 )      (5-7) 

 

Equation 5-8 gives the Lapalacian of the Gaussian, which can be preallocated for 

a given filter size 𝑚 × 𝑛 and standard deviation 𝜎.  

𝐿𝑜𝐺 = ∇2(𝐺(𝑥, 𝑦)) =
𝑥2+𝑦2−2𝜎2

4𝜎4 𝑒𝑥𝑝 (−
𝑥2+𝑦2

2𝜎2 )    (5-8) 

Iterative optimization of the parameters 𝑚, 𝑛, and 𝜎 is possible on an image-by-
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image basis, but it is convenient to predefine both the size and standard deviation. For the 

purposes of this study, the LoG kernel is defined as a square matrix with size equal to 

0.5% of the maximum image dimension and the standard deviation is defined as one-

fourth the maximum image dimension. At first glance, it would appear that the larger 

13 × 13 LoG filter would be more computationally intensive than the smaller Roberts, 

Prewitt, and Sobel filters discussed previously. However, the LoG filter does not include 

𝑥 and 𝑦 component kernels. Thus only one convolution operation (Equation 5-2) is 

required, and there is no need for the component transformation (Equation 5-3). 

Edge detection in the frequency domain 

Edge detection in the frequency domain requires transformation from the spatial 

domain to the frequency domain. This is quickly accomplished using the fast Fourier 

transform (FFT), which transforms the greyscale image intensities 𝐼(𝑥, 𝑦) into the 

frequency components 𝐹(𝑢, 𝑣). Unlike in the spatial domain, where the filter kernel is of 

arbitrary size, the filter kernel in the frequency domain is the same size as the image. The 

edge image 𝐸(𝑢, 𝑣) in the frequency domain is the element-by-element product of the 

filter kernel 𝐾(𝑢, 𝑣) and the frequency domain image 𝐹(𝑢, 𝑣), i.e.,  

𝐸(𝑢, 𝑣) = 𝐾(𝑢, 𝑣) ⊙ 𝐹(𝑢, 𝑣)      (5-9) 

where ⊙ denotes element-wise multiplication. Inverse fast Fourier transformation 

(iFFT) of the frequency domain edge image 𝐸(𝑢, 𝑣) gives the edge image in the spatial 

domain 𝐸(𝑥, 𝑦). 

The two most common frequency domain edge detection filters include 

Butterworth [36] and Gaussian [37] high pass filters. High pass filters attenuate 
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frequencies above some defined cutoff frequency 𝐷0. Equation 5-10 gives the general 

form of the 𝑛th-order Butterworth filter kernel 𝐾𝐵(𝑢, 𝑣), where 𝐷(𝑢, 𝑣) is the distance 

between the pixel (𝑢, 𝑣) and the origin of the frequency (the center of the 𝑀 × 𝑁 image) 

as defined by Equation 5-11. 

𝐾𝐵(𝑢, 𝑣) = 1 −
1

1+[
𝐷(𝑢,𝑣)

𝐷0
]

2𝑛      (5-10) 

𝐷(𝑢, 𝑣) = √[𝑢 − (
𝑀

2
+ 1)]

2
+ [𝑣 − (

𝑁

2
+ 1)]

2
   (5-11) 

Similarly, Equation 5-12 gives the general form of the Gaussian high pass filter 

kernel 𝐾𝐺(𝑢, 𝑣), where 𝐷(𝑢, 𝑣) is again the distance between the pixel (𝑢, 𝑣) and the 

frequency origin and 𝜎 is the assumed standard deviation of the frequency distribution.  

𝐾𝐺(𝑢, 𝑣) = 1 − 𝑒
−𝐷2(𝑢,𝑣)

2𝜎2       (5-12) 

For the purposes of this study, a fourth order (𝑛 = 4) Butterworth filter was 

constructed with cutoff frequency 𝐷0 = 𝑀 10⁄ . The Guassian filter was constructed with 

standard deviation 𝜎 = 𝑀 10⁄ . Fig. 5-2 presents a graphical representation of the 

Butterworth and Gaussian filters. 

Edge image enhancement 

Edge images 𝐸(𝑥, 𝑦) resulting from spatial or frequency domain edge detection 

filters contain a range of pixel intensities that require scaling. The scaling function given 

by Equation 5-13 converts the edge image pixel intensities 𝐸(𝑥, 𝑦) to linearly scaled edge 

image pixel intensities 𝐸𝑠𝑐(𝑥, 𝑦) such that 0 ≤ 𝐼𝑠𝑐(𝑥, 𝑦) ≤ 1. 

𝐸𝑠𝑐(𝑥, 𝑦) = [𝐸(𝑥, 𝑦) − min(𝐸)] [
1

max(𝐸)−min(𝐸)
]   (5-13) 
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(a) (b) 

Fig. 5-2 (a) Butterworth (𝒏 = 𝟒, 𝑫𝟎 = 𝟐𝟓𝟗) and (b) Gaussian (𝝈 = 𝟓𝟗) filters for edge 

detection in the frequency domain 

The scaled edge image 𝐸𝑠𝑐(𝑥, 𝑦) requires contrast adjustment to improve edge 

clarity. Equation 5-14 transforms the scaled edge image 𝐸𝑠𝑐(𝑥, 𝑦) into the enhanced edge 

image 𝐸𝑒(𝑥, 𝑦), where 𝜇𝐸𝑠𝑐
 and 𝜎𝐸𝑠𝑐

 are the mean and standard deviation of the scaled 

edge image pixel intensities, respectively.  

𝐸𝑒(𝑥, 𝑦) = [𝐸𝑠𝑐(𝑥, 𝑦) − min(𝐸𝑠𝑐)] [
2𝜎𝐸𝑠𝑐

max(𝐸𝑠𝑐)−min(𝐸𝑠𝑐)
] + 𝜇𝐸𝑠𝑐

 (5-14) 

Segmentation 

Segmentation is the final step in the proposed image analysis algorithm. This 

process converts the edge image to the binary image, in which pixels belonging to a crack 

take an intensity value of one and the remaining pixels take an intensity value of zero. 

Selection of an appropriate threshold intensity—above which a pixel is classified as a 

crack and below which it is not—is critical. If the threshold intensity is too high, cracks 



202 
 
go undetected. If it is too low, the image becomes noisy and it is difficult to differentiate 

cracks from noise. This work considered two threshold operations for segmentation: pixel 

threshold and area threshold. 

The pixel threshold operation follows Equation 5-15, where 𝐵1(𝑥, 𝑦) is the first-

level binary image and 𝑇1 is the pixel threshold value. 

𝐵1(𝑥, 𝑦) = {
0,       𝐸𝑒(𝑥, 𝑦) < 𝑇1

1,       𝐸𝑒(𝑥, 𝑦) ≥ 𝑇1
     (5-15) 

𝑇1 can be selected using Otsu’s method [38] or other intuitive/adaptive 

approaches [31]. In this study, 𝑇1was selected based on the statistical properties of pixel 

intensities in the enhanced edge image 𝐸𝑒(𝑥, 𝑦). Equation 5-16 defines 𝑇1, where 𝜇𝐸𝑒
 and 

𝜎𝐸𝑒
 are the mean and standard deviation of the enhanced edge image pixel intensities. 

𝑇1 =  𝜇𝐸𝑒
+ 3𝜎𝐸𝑒

       (5-16) 

Similarly, the area threshold operation follows Equation 5-17, where 𝐵2(𝑥, 𝑦) is 

the second-level binary image and 𝑇2 is the area threshold value.  

𝐵2(𝑥, 𝑦) = {
0,       𝐵1(𝑥, 𝑦) < 𝑇2

1,       𝐵1(𝑥, 𝑦) ≥ 𝑇2
     (5-17) 

Equation 5-18 defines 𝑇2 according to the area of each connected component 𝐴𝑐𝑐, 

where 𝜎𝐴𝑐𝑐
 is the standard deviation of the areas of connected components in 𝐵1. 

𝑇2 = 𝜎𝐴𝑐𝑐
        (5-18) 

The area of connected components 𝐴𝑐𝑐 is determined according to eight-neighbor 

connectivity, which considers pixel connectivity in the vertical, horizontal, or diagonal 

directions, such that pixel (𝑥, 𝑦) is connected to all pixels (𝑥 ± 1, 𝑦 ± 1). 𝐴𝑐𝑐 could 

alternatively be defined according to four-neighbor connectivity, which is a stricter 
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definition that only considers connectivity in the vertical and horizontal directions, such 

that pixel (𝑥, 𝑦) is connected to pixels (𝑥 ± 1, 𝑦) and (𝑥, 𝑦 ± 1). For the purposes of this 

research, the more relaxed eight-neighbor definition of connectivity was adopted. 

The second-level binary image 𝐵2 is the final product of the proposed crack 

detection algorithm.   

Experimental Program 

In order to test the crack detection algorithm discussed above, researchers 

gathered fifty images of sound concrete and fifty images of cracked concrete from several 

previously tested concrete panels at the Systems, Materials, and Structural Health 

Laboratory (SMASH Lab) at Utah State University [39]. Images were taken with a 12 

MP digital camera with focal length of 35 mm. The distance between the lens and the 

surface was 1.0 m. The surface illumination, as verified by a Digi-Sense data logging 

light meter with NIST traceable calibration, was 150–250 lx. The image resolution was 

2592 × 4608 px and the approximate field size was 1.0 × 1.2 m. RGB images were saved 

in JPEG format. Image processing was performed in MATLAB on a 64-bit operating 

system with 32 GB memory and 3.40 GHz processor. Fig. 5-3 shows representative 

images of defected and sound concrete. Images were processed in six iterations, 

corresponding to the four spatial domain edge detectors and two frequency domain edge 

detectors. 

Following image processing, an inspector reviewed the second-level binary 

images resulting from each of the six iterations in random order and classified each image 

as cracked or sound. The inspector reviewed only the second-level binary images and was 



204 
 
not privy to the original images or images from intermediate steps in the crack detection 

algorithm. The same inspector inspected all of the images. The team then compared the 

results of each inspection to the ground truth, i.e., the known classification of each image 

as defected or sound based on physical inspection of the concrete surface aided by a 

crack microscope. The team then recorded the number of true positives (TP or hits), true 

negatives (TN or specificity), false positives (FP or fallout), and false negatives (FN or 

misses) for each iteration of the crack detection algorithm. A TP is a defected image in 

which the inspector accurately identifies the defect. A TN is a sound image that the 

inspector accurately identifies as sound. A FP is a sound image within which the 

inspector inaccurately identifies a defect. A FN is a defected image that the inspector 

inaccurately identifies as sound. A hit required the inspector to identify at least half of the 

actual crack length in a defected image. Fallout occurred when the inspector identified a 

crack in the noise or artifact of the second-level binary image. 

 
(a) 
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(b) 

Fig. 5-3 Representative images of (a) defected and (b) sound concrete 

The performance of each iteration of the proposed algorithm was evaluated in 

terms of accuracy, precision, processing time, and minimum detectable crack width 

(MDCW). Accuracy is the sum of the number of hits and the specificity divided by the 

total number of images. Precision is the ratio of hits to the sum of hits and fallout. 

Processing time is the time required for execution of the crack detection algorithm using 

a particular edge detector. MDCW is the width of the narrowest crack detected in each 

iteration of the algorithm for cracks with widths of 0.08, 0.10, 0.40, 0.80, and 1.00 mm, 

as verified by a crack width microscope with 0.02 mm resolution. The algorithms are also 

compared in terms of the pixel intensity range in the enhanced edge images and the 

noise-to-signal ratio (𝑁/𝑆). A wider range of pixel intensities suggests a sharper contrast 

between defects and sound regions. The  𝑁/𝑆 describes the level of noise or artifact in 

the image and is defined as the ratio of lit pixels (ones) to the total number of pixels in 
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the second-level binary image 𝐵2. The 𝑁/𝑆 is only computed for the sound dataset, 

because any lit pixels are known to be noise and not defects. A lower 𝑁/𝑆 is obviously 

preferred because defects become more difficult to resolve when the image is noisy. 

Results 

Table 5-1 summarizes the results of the six iterations of the proposed crack 

detection algorithm.  

Spatial domain, Roberts filter 

Crack detection in the spatial domain using Roberts filter resulted in the lowest 

number of hits (64%), but also resulted in the lowest fallout (10%). Thus, while the 

Roberts filter was the least accurate (77%), its precision (86%) was among the highest. 

The minimum detectable crack width was 0.4 mm, the largest of the six edge detectors 

evaluated. The processing time (1.67 s per image) was near the median of the six 

methods evaluated. Fig. 5-4 shows representative edge, enhanced edge, first-level binary, 

and second-level binary images from spatial domain edge detection of an image from the 

defected set (Fig. 4-3a) using Roberts filter. 

Spatial domain, Prewitt filter 

Crack detection in the spatial domain using Prewitt filter resulted in the second 

lowest number of hits (82%) and the highest fallout (18%). The Prewitt filter was the 

second least accurate and the least precise of the six methods evaluated. The minimum 

detectable crack width was 0.2 mm, which was comparable to four of the six methods. 

The processing time (1.40 s per image) was among the shortest. Fig. 5-5 shows 
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representative edge, enhanced edge, first-level binary, and second-level binary images 

from spatial domain edge detection of an image from the defected set using Prewitt filter. 

Table 5-1 Performance of different edge detectors in the proposed crack detection 

algorithm 

Domain 

Edge 

Detector 

TP 

(%) 

TN 

(%) 

FP 

(%) 

FN 

(%) 

Accuracy 

(%) 

Precision 

(%) 

MDCW 

 (mm) 

Time  

(s) 

Spatial Roberts 64 90 10 36 77 86 0.4 1.67 

Spatial Prewitt 82 82 18 18 82 82 0.2 1.4 

Spatial Sobel 86 84 16 14 85 84 0.2 1.4 

Spatial LoG 98 86 14 2 92 88 0.1 1.18 

Frequency Butterworth 80 86 14 20 83 85 0.2 1.81 

Frequency Gaussian 80 88 12 20 84 87 0.2 1.92 

 
 Fig. 5-4 (a) Edge, (b) enhanced edge, (c) first-level binary, and (d) second-level binary 

images; defected dataset, spatial domain, Roberts filter 
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(a) (b) 

  
(c) (d) 

Fig. 5-5 (a) Edge, (b) enhanced edge, (c) first-level binary, and (d) second-level binary 

images; defected dataset, spatial domain, Prewitt filter 

Spatial domain, Sobel filter 

Crack detection in the spatial domain using Sobel filter resulted in the second 

highest number of hits (86%) and the second highest fallout (16%). Thus, while the Sobel 

filter was among the most accurate (85%) it was also among the least precise (84%). The 

minimum detectable crack width was 0.2 mm and the processing time (1.4 s per image) 

was among the shortest. Fig. 5-6 shows representative edge, enhanced edge, first-level 

binary, and second-level binary images from spatial domain edge detection of an image 

from the defected set using Sobel filter. 
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(a) (b) 

  
(c) (d) 

Fig. 5-6 (a) Edge, (b) enhanced edge, (c) first-level binary, and (d) second-level binary 

images; defected dataset, spatial domain, Sobel filter 

Spatial domain, LoG filter 

Crack detection in the spatial domain using the LoG filter resulted in the highest 

number of hits (98%), with only one miss in fifty defected images. The fallout (14%) was 

near the median for the six methods evaluated. Nevertheless, the LoG filter was the most 

accurate (92%) and the most precise (88%). Furthermore, the LoG method has the 

narrowest minimum detectable crack width (0.1 mm) and the shortest processing time 

(1.18 s per image). Fig. 5-7 shows representative edge, enhanced edge, first-level binary, 

and second-level binary images from spatial domain edge detection of an image from the 

defected set using LoG filter.  
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(a) (b) 

  
(c) (d) 

Fig. 5-7 (a) Edge, (b) enhanced edge, (c) first-level binary, and (d) second-level binary 

images; defected dataset, spatial domain, LoG filter 

Frequency domain, Butterworth filter 

Crack detection in the frequency domain using Butterworth filter resulted in the 

median number of hits (80%) and the median fallout (14%). The accuracy (83%) and 

precision (85%) were also near the median of the six methods evaluated. The minimum 

detectable crack width was again 0.2 mm and the processing time (1.81 s per image) was 

the second longest of the six methods. Fig. 5-8 shows representative edge, enhanced 

edge, first-level binary, and second-level binary images from frequency domain edge 

detection of an image from the defected set using Butterworth filter. 
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(a) (b) 

  
(c) (d) 

Fig. 5-8 (a) Edge, (b) enhanced edge, (c) first-level binary, and (d) second-level binary 

images; defected dataset, frequency domain, Butterworth filter 

Frequency domain, Gaussian filter 

Crack detection in the frequency domain using Gaussian filter resulted in the 

median number of hits (80%) and the second lowest fallout (12%). The accuracy (84%) 

was also near the median value but the precision (87%) was the second highest. The 

minimum detectable crack width was again 0.2 mm. The processing time (1.92 s per 

image) was the longest of the six methods evaluated. Fig. 5-9 shows representative edge, 

enhanced edge, first-level binary, and second-level binary images from frequency domain 

edge detection of an image from the defected set using Gaussian filter. 
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(a) (b) 

  
(c) (d) 

Fig. 5-9 (a) Edge, (b) enhanced edge, (c) first-level binary, and (d) second-level binary 

images; defected dataset, spatial domain, Gaussian filter 

Comparison 

Table 5-2 presents a comparison of the range of pixel intensities in the enhanced 

edge image 𝐸𝑒, the pixel thresholds 𝑇1 and 𝑇2 used for construction of the first- and 

second-level binary images 𝐵1 and 𝐵2, and the noise-to-signal ratio 𝑁/𝑆 observed in 

sound dataset using the six edge detection methods. Fig. 5-10 presents a direct 

comparison of second-level binary images from analysis of the image in Fig 3-5a, a 

member of the defected dataset. Similarly, Fig. 5-11 shows a direct comparison of the 

second-level binary images from analysis of the image in Fig. 5-3b, a member of the 

sound dataset. 
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Edge detection in the spatial domain using LoG filter was the fastest of the six 

crack detection methods evaluated. The frequency domain methods were expected to be 

the fastest because the element-wise product (Equation 5-9) requires far fewer floating-

point operations than the iterative convolution operation (Equation 5-2). However, the 

computational intensity of the Fourier and inverse Fourier transformations used to move 

between the spatial and frequency domains greatly increased processing time. The 

frequency domain methods took an average of 1.87 seconds per image, while the spatial 

domain methods took on average of 1.41 seconds per image. The LoG filter was expected 

to be computationally efficient in comparison with the other methods despite its 

comparatively large size (13 × 13). The computational efficiency of this method results 

from the fact that LoG uses only one kernel, as opposed to 𝑥 and  component kernels as 

in the other spatial domain methods. This reduces the number of convolution operations 

(Equation 5-2) from two to one and obviates the use of Equation 5-3. The computational 

efficiency of the other spatial domain methods did not follow the expected trend. It was 

expected that the processing time would increase with the kernel size, and that the 3 × 3 

Prewitt and Sobel filters would require longer computational time than the 2 × 2 Roberts 

filter. In fact, the opposite was true. Processing time for the Roberts filter was 20% longer 

than for the Prewitt or Sobel. The reader will recall the output image from Equation 5-2 is 

of dimension (𝑀 − 𝑚 + 1) × (𝑁 − 𝑛 + 1) for image size 𝑀 × 𝑁 and kernel size 𝑚 × 𝑛. 

Thus, a smaller kernel actually produces a larger edge image. This explains, at least in 

part, the increased computational time for the smaller Roberts filter. The LoG filter was 

also both the most accurate and precise of the six methods tested. The LoG method 
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resulted in 98% hits with only one miss among the fifty images in the defected dataset. 

The next most accurate method recorded 7 misses. The remaining methods all recorded 

ten or more misses. Thus, the accuracy of LoG (92%) was significantly higher than the 

other five methods (77–85%). The precision of LoG (88%), which also considers fallout, 

was much closer to that of the other five methods (82–87%). The LoG method recorded 7 

false positives in the fifty images in the sound dataset. The Roberts filter, with 18 misses, 

was by far the least accurate (77%). However, with only five false positives, it was 

among the most precise (86%). Prewitt was the least precise with 9 misses, 9 false 

positives, and 82% precision.  

The LoG filter resolved the finest cracks with MDCW of 0.1 mm. Most of the 

other methods were only able to resolve cracks 0.2 mm or wider. The Roberts filter could 

only detect cracks 0.4 mm or wider. Considering the image size used in this study, one 

pixel is equivalent to 0.2 mm. Thus, the LoG filter was useful in detecting cracks that are 

about 1 pixel wide, while Roberts could only resolve cracks that are 2 pixels wide. 

The contrast adjustment ranges, segmentation thresholds 𝑇1 and 𝑇2, and noise-to-

signal ratios 𝑁/𝑆 listed in Table 5-2 give some context to the performance metrics 

discussed above. The contrast adjustment ranges, J1 and J2 represent the range of pixel 

intensities in the enhanced edge image 𝐸𝑒. A wider range of contrast values (J2- J1) 

corresponds to more intensification of edges within the image. Thus, cracks should be 

more easily detected when the contrast adjustment range is large. The Roberts filter, 

which performed poorly according to the performance metrics discussed above, exhibited 

the smallest range. The LoG filter, which arguably exhibited the best performance, had 
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one of the widest contrast adjustment ranges. Furthermore, the contrast adjustment range 

for the LoG filter was quite different between the defected and sound datasets. This 

resulted from a large number of pixels with high intensities in the defected image. 

The noise-to-signal ratio 𝑁/𝑆 was evaluated only for the sound dataset for the 

simple reason that the noise in sound images was more well defined. In the perfectly ideal 

case, no pixels should be lit in the second-level binary image from the sound dataset. 

Thus, any lit pixels are by default noise. In the defected dataset, the distinction between 

signal and noise is ill defined. In general, the spatial domain methods exhibited lower 

𝑁/𝑆 than the frequency domain methods. The lowest 𝑁/𝑆 were observed for the Prewitt 

and Sobel filters, with 𝑁/𝑆 of 0.32 and 0.33, respectively. The Roberts filter exhibited 

only slightly more noise (𝑁 𝑆⁄ = 0.41). In comparison, the LoG filter produced a fairly 

noisy edge image (𝑁 𝑆⁄ = 0.90). 

Increased noise in the frequency domain manifests as an increase in the standard 

deviation 𝜎𝐸𝑒
 of the pixel intensities of the enhanced edge image 𝐸𝑒. Following Equation 

5-16, this causes an increase in the pixel threshold 𝑇1. While pixel thresholds were higher 

in the frequency domain, area thresholds were lower. This results from reduced 

continuity of cracks in the frequency domain. 

It was expected that the LoG method, which was the most successful in terms of 

the performance metrics—accuracy, precision, MDCW, and processing time—would 

also exhibit the least noise. Instead, the noise-to-signal ratio in the LoG images was 

among the highest observed. This can be explained in part by the images shown in Fig. 5-

10 and Fig. 5-11. The presence of cracks in even the noisiest of images in Fig.5-10e and f 
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is clear. Similarly, even in the sound images with the highest 𝑁/𝑆 (Fig. 5-11e and Fig. 5-

11f), it is easy to see that no cracks are present. Despite the large number of lit pixels, no 

pattern of connectivity is apparent and thus the inspector can reasonably conclude that he 

or she is observing noise and not a defect. These images represent only a single data point 

for each method from the defected and sound dataset. However, they suggest that the 

level of noise in the binary image is not the only factor affecting the inspector’s ability to 

detect cracks. The continuity of cracks in the binary image is also important, especially 

considering that the inspector needed to identify at least half of the crack in order to 

register a hit.  

The value of the area threshold 𝑇2 gives some idea of the continuity of cracks in 

the defected images. 𝑇2 was defined in Equation 5-18 as the standard deviation 𝜎𝐴𝑐𝑐
 of 

the areas of connected components 𝐴𝑐𝑐. When the continuity of cracks in the binary 

image is poor (i.e., the cracks are discontinuous), 𝜎𝐴𝑐𝑐
 is small. Conversely, when the 

cracks in the binary image are highly continuous, 𝜎𝐴𝑐𝑐
 increases. Thus, higher values of 

𝑇2 imply a higher degree of continuity of cracks in the binary image. Additionally, when 

the cracks are highly continuous in binary images from the defected dataset, the value of 

𝑇2 will be much higher for the defected dataset than for the sound dataset. Such is the 

case for the Prewitt, Sobel, and LoG filters. The same is also true, but to a lesser degree, 

for the Butterworth and Gaussian filters. The values of 𝑇2 for the sound and defected 

datasets using the Roberts filter are similar. This suggests poor continuity of the cracks in 

the binary images, which is confirmed in Fig. 5-10a. Considering that the Roberts filter 

was among the worst methods tested here, this result is not at all surprising. The cracks in 
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the rest of the binary images form the defected dataset (Fig. 5-10b–Fig. 5-10f) are visibly 

more continuous. 

The results presented here have some significant implications for future work in 

the realm of automated detection without human inspectors. For all of the evaluated 

methods, the pixel segmentation threshold 𝑇1 was higher for the defected dataset than for 

the sound dataset. The same was true for the area segmentation threshold 𝑇2. For the LoG 

method, the contrast adjustment ranges were also much different for the defected dataset 

than for the sound dataset. Future research could consider these differences as indicators 

of the likelihood that a particular processed image includes a defect. 

Table 5-2 The average range and threshold value for each method in defected and sound 

datasets 

Method 

Defected Dataset Sound Dataset 

J1 J2 T1 T2 J1 J2 T1 T2  Average N/S (%) 

Roberts 0.204 0.251 0.70 25 0.21 0.25 0.64 21 0.41 

Prewitt 0.232 0.290 0.66 76 0.23 0.29 0.59 53 0.32 

Sobel 0.230 0.291 0.67 75 0.23 0.29 0.59 53 0.33 

LoG 0.534 0.590 0.71 58 0.62 0.69 0.63 32 0.90 

Butterworth 0.581 0.631 0.89 10 0.57 0.64 0.93 6 1.74 

Gaussian 0.594 0.640 0.89 8 0.58 0.64 0.93 5 1.76 

 

Conclusions 

This study proposed a generic image-processing algorithm for detection of defects 
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in concrete for the purpose of comparing different edge detection algorithms. The 

proposed algorithm involved edge detection, edge image enhancement, and segmentation. 

Edge detection was completed in the spatial domain using Roberts, Prewitt, Sobel, and 

LoG filters; and in the frequency domain using Butterworth and Gaussian filters. Fifty 

images of defected concrete and fifty of sound concrete were analyzed by the proposed 

algorithm in six iterations making use of the six aforementioned edge detection 

strategies). An inspector reviewed the resulting binary images from each iteration and 

identified cracks. The inspection results were compared to the ground truth, and the six 

edge detection methods were compared based on accuracy, precision, minimum 

detectable crack width, and processing time per image. Edge detection in the spatial 

domain using LoG filter yielded the highest accuracy (92%) and precision (88%), the 

finest minimum detectable crack width, and the fastest processing time (1.18 s per 

image). All but one of the remaining methods (edge detection in the spatial domain using 

Roberts filter) yielded greater than 80% accuracy and were able to detect cracks as fine as 

0.2 mm. While crack detection in the spatial domain using Roberts filter yielded the 

lowest accuracy (77%), it also yielded the fewest false positives (10%) and its precision 

(86%) was among the highest. In general, the processing time was longer for crack 

detection in the frequency domain (1.8–1.9 s per image) than in the spatial domain (1.2–

1.7 s per image). Additionally, the second-level binary images (the final product of the 

image processing algorithm) were much noisier in the frequency domain. According to 

these results, crack detection in the spatial domain using LoG filter yields the best and 

fastest results for detecting defects in concrete structures. 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 5-10 Second-level binary images from defected dataset obtained by crack detection in 

the spatial domain using (a) Roberts, (b) Prewitt, (c) Sobel, and (d) LoG; and in the 

frequency domain using (e) Butterworth and (f) Gaussian 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 5-11 Second-level binary images from sound dataset obtained by crack detection in the 

spatial domain using (a) Roberts, (b) Prewitt, (c) Sobel, and (d) LoG; and in the frequency 

domain using (e) Butterworth and (f) Gaussian 
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CHAPTER VI 

COMPARISON OF DEEP CONVOLUTIONAL NEURAL NETWORKS AND EDGE 

DETECTORS FOR IMAGE-BASED CRACK DETECTION IN CONCRETE 

Abstract 

This chapter compares the performance of common edge detectors and deep 

convolutional neural networks (DCNN) for image-based crack detection in concrete 

structures. A dataset of 19 high definition images (3420 sub-images, 319 with cracks and 

3101 without) of concrete is analyzed using six common edge detection schemes 

(Roberts, Prewitt, Sobel, Laplacian of Gaussian, Butterworth, and Gaussian) and using 

the AlexNet DCNN architecture in fully trained, transfer learning, and classifier modes. 

The relative performance of each crack detection method is compared here for the first 

time on a single dataset. Edge detection methods accurately detected 53–79% of cracked 

pixels, but they produced residual noise in the final binary images. The best of these 

methods was useful in detecting cracks wider than 0.1 mm. DCNN methods were used to 

label images, and accurately labeled them with 99% accuracy. In transfer learning mode, 

the network accurately detected about 86% of cracked images. DCNN methods also 

detected much finer cracks than edge detection methods. In fully trained and classifier 

modes, the network detected cracks wider than 0.08 mm; in transfer learning mode, the 

network was able to detect cracks wider than 0.04 mm. Computational times for DCNN 

are shorter than the most efficient edge detection algorithms, not considering the training 

process. These results show significant promise for future adoption of DCNN methods 

for image-based damage detection in concrete. To reduce the residual noise, a hybrid 
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method was proposed by combining the DCNN and edge detectors which reduced the 

noise by a factor of 24.  

Introduction 

At least a third of the more than 600,000 bridges in the United States include a 

concrete superstructure or wearing surface [1]. Routine inspections of concrete bridges 

are conducted periodically to assess overall condition and to identify surface cracking or 

other degradation [2]. Manned inspections of this type are costly, time consuming, and 

labor intensive [3] [4] [5]. Unmanned and autonomous inspections are a potentially 

viable alternative to manned inspections [5] [6] [7] [8] [9] [10]. Inspections performed by 

robots or unmanned aerial systems (UAS) are typically image-based, meaning that the 

inspection platform takes images that are then processed and/or reviewed by an inspector. 

Previous literature demonstrates several successful applications of image-based 

inspections to detect cracks [11, 12], spalls [13, 14], delaminations [14, 15, 16], and 

corrosion [17] in concrete bridges. 

Image-based inspections of this type can be performed in three general ways: Raw 

image inspection, image enhancement, or autonomous image processing. Raw image 

inspection means that the inspector views the images taken during the inspection without 

any additional processing [5, 18]. The number of images collected depends on a number 

of factors, but is commonly in the hundreds of thousands [5, 18]. Manual identification of 

flaws in such large images sets is time consuming and prone to inaccuracy due to 

inspector fatigue or human error. Enhanced image inspection refers to the use of some 

image processing algorithm to make it easier to identify flaws in inspection images. This 



228 
 
is typically performed using one of several edge detection algorithms, which greatly 

magnify the visibility of cracks within images. In doing so, the aforementioned problems 

with inspector fatigue can be mitigated to some degree. Finally, autonomous image 

processing refers to the use of an algorithm that detects cracks within images. This is 

typically accomplished using machine learning algorithms or other artificial intelligence 

schemes. 

This chapter discusses the latter two approaches and compares their performance. 

Image enhancement methods includes the application of a variety of image processing 

techniques on visual images to detect cracks including but not limited to morphological 

operations [19], digital image correlation [20, 21], image binarization [22, 23], 

percolation model [24], wavelet transforms [25], and edge detectors [12] [27] [29]    [33] 

[34]  [36] [37] [38] [36]. The autonomous approach for crack detection on the other hand 

requires a set of training images to learn the features of cracks. Similarly, several 

researchers have shown the feasibility of autonomous crack detection in visual images 

using combined image processing techniques and artificial neural networks [30, 40]. 

Deep convolutional neural networks (DCNNs) have been recently used for concrete crack 

detection [41, 42, 43].  

Despite the abundance of image-based crack detection studies, direct comparisons 

between these methods is a gap. Save two noteworthy exceptions, most research focuses 

on developing new methods for crack detection rather than comparing the performance of 

existing methods. Abdel-Qader et al. [27] compared the performance of the fast Haar 

transform, Fourier transform, Sobel filter, and Canny filter for crack detection in 25 

images of defected concrete and 25 images of sound concrete. The fast Haar transform 
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was the most accurate method, with overall accuracy of 86%, followed by the Canny 

filter (76%), Sobel filter (68%), and the Fourier transform (64%). he processing time was 

not considered in the analysis and the criteria for recoding true of false positives in the 

binary images were not clear. Lack of definition for metrics such as true positive has seen 

in the past studies. Mohan and Poobal [44] reviewed a number of edge detection 

techniques for visual, thermal, and ultrasonic images, but the information presented was 

from several studies that considered vastly different data sets, and so the results are not 

directly comparable. A comparison between two edge detectors, Canny and Sobel, and a 

convolutional neural network is done in [42]. However, the comparison was performed 

on four images. In addition, the edge detectors were used without pre-processing which is 

not a very common practice. Another shortcoming of the comparison in [42] is the lack of 

accuracy definition of the edge detector results. This chapter compares image processing 

and deep learning techniques together as a reference for future study. which includes a 

direct comparison of the performance of four common edge detection methods in the 

spatial domain (Roberts, Prewitt, Sobel, Laplacian of Gaussian) and two in the frequency 

domain (Butterworth and Gaussian) and an AlexNet-based DCNN in three modes of 

training (fully trained, transfer learning, and no-training) by applying them to an 

annotated dataset designated for crack detection.  

Dataset 

The dataset used in this study consisted of 100 images of concrete panels that 

simulated reinforced concrete bridge decks for the purpose of verifying various non-

destructive testing. These panels were constructed previously in Systems, Materials, and 
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Structural Health laboratory (SMASH Lab) at Utah State University. Images are collected 

with a 16 MP digital single lens reflex camera with 35 mm focal length and no zoom. The 

target was normal to the axis of the lens at a distance of approximately 0.5 m. The 

background illumination was in the range 400–1000 lx, as measured by a NIST traceable 

digital light meter purchased new just prior to measurement. The finest crack width was 

approximately 0.04mm and the widest was 1.42mm. The original image size was 2592 × 

4608 px and the field of view was approximately 0.3 × 0.55 m. Images were stored as 

JPEG with average file size near 5 MB. In order to comply with the architecture of the 

DCNN, each original image was divided into 180 sub-images with size of 256 × 256 px. 

The sub-images were labeled in two categories, 1,574 sub-images with cracks and 16,426 

sub-images without cracks. Fig. 6-1Fig.  illustrates the studied dataset with one example 

of high-resolution image, a sub-image labeled as C from the original image if it had a 

crack, and a sub-image labeled as U from the original image if it did not. For DCNN 

applications, this dataset was divided into training dataset, validation dataset, and testing 

dataset as shown in Table 6-1. The testing dataset was selected randomly from 100 

original images. The images in this dataset are a portion of the bridge deck images of the 

structural defect dataset (SDNET2017 [45]). The sub-images in the testing dataset have 

also been segmented in the pixel-level as Cp and Up for semantic comparison where Cp 

stands for pixels with cracks and Up stands for sound pixels. The results of the pixel-level 

segmentation on the testing dataset are presented in Table 6-2. In this table, the Cp ratio 

stands for the number of pixels in each image labeled as crack to total number of pixels in 

that image.  
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Fig. 6-1 Illustration of the dataset 

Table 6-1 Number of cracked and sound sub-images in training, validation, and testing 

datasets 
Dataset No of Original Images C U Total 

Training 
81 

1129 11680 12809 

Validation 125 1646 1771 

Testing 19 319 3101 3420 
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Table 6-2 Number of Cp and Up pixels in the testing dataset 
Dataset Cp Up Cp Ratio (%) 

im1 18835 11777645 0.16 

im2 13952 11782528 0.12 

im3 67548 11728932 0.57 

im4 13472 11783008 0.11 

im5 46192 11750288 0.39 

im6 46372 11750108 0.39 

im7 46658 11749822 0.40 

im8 37572 11758908 0.32 

im9 42675 11753805 0.36 

im10 88321 11708159 0.75 

im11 2693 11793787 0.02 

im12 1264 11795216 0.01 

im13 3336 11793144 0.03 

im14 0 11796480 0.00 

im15 5995 11790485 0.05 

im16 4203 11792277 0.04 

im17 0 11796480 0.00 

im18 4953 11791527 0.04 

im19 1304 11795176 0.01 

 

Edge Detection 

In this paper, edge detection refers to the use of filters (edge detectors) in an 

image processing algorithm for the purpose of detecting or enhancing the cracks in an 

image such that they can be more easily and efficiently located within a large image 

dataset. Cracks in a two-dimensional (2D) image are classified as edges, and thus existing 

edge detection algorithms are likely candidates for crack identification. 2D images are 

represented mathematically by matrices (one matrix, in the case of greyscale images, or 

three matrices in the case of red/green/blue color images). An ideal edge is defined as a 
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discontinuity in the greyscale intensity field. Crack detection algorithms can emphasize 

edges by applying filters in either the spatial or frequency domain. Edge detection 

algorithms purport to make manual crack detection more reliable. In general, such image 

processing algorithms follow three steps: (1) edge detection, (2) edge image 

enhancement, and (3) segmentation (sometimes called binarization or thresholding). Edge 

detection involves the application of various filters in either the spatial or frequency 

domain to a grayscale image in order to emphasize discontinuities. Edge image 

enhancement scales the image and adjusts contrast to improve edge clarity. Segmentation 

transforms the enhanced edge image into a binary image of cracked and sound pixels. 

In the spatial domain, the convoluted image 𝑬 is the sum of the element-by-

element products of the image intensity 𝑰 and the kernel 𝑲 in every position in which 𝑲 

fits fully in 𝑰. For 𝑰𝑀×𝑁 (image dimension 𝑀 × 𝑁) and 𝑲𝑚×𝑛 (kernel size 𝑚 × 𝑛): 

𝑬(𝑖, 𝑗) = ∑ ∑ 𝑰(𝑖 + 𝑘 − 1, 𝑗 + ℓ − 1)𝑲(𝑘, ℓ)𝑛
ℓ=1

𝑚
𝑘=1    (6-1) 

𝑬 is of size (𝑀 − 𝑚 + 1) × (𝑁 − 𝑛 + 1). Filters kernels may include 𝑥 and 𝑦 

components (corresponding to image spatial dimension in horizontal and vertical 

dimensions), 𝑲𝑥 and 𝑲𝑦, in which case the edge image 𝑬 is the hypotenuse of 𝑬𝑥 and 

𝑬𝑦. 

Four edge detector filters in the spatial domain were employed in this study: 

Roberts in 𝑥 and 𝑦 directions, denoted as 𝑲𝑅𝑥 and 𝑲𝑅𝑦 in Eq. 6-2, Prewitt in 𝑥 and 𝑦 

directions, denoted as 𝑲𝑃𝑥 and 𝑲𝑃𝑦  in Eq. 6-3, Sobel in 𝑥 and 𝑦 directions, denoted as 

𝑲𝑆𝑥 and 𝑲𝑆𝑦 in Eq. 6-4, and Laplacian-of-Gaussian (𝐿𝑜𝐺) denoted as 𝑲𝐿𝑜𝐺 in Eq. 6-5. A 

10 × 10 𝐿𝑜𝐺 filter was employed here with standard deviation of 𝜎 = 2.  
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             𝑲𝑅𝑥 = [
1 0
0 −1

]                𝑲𝑅𝑦 = [
0 1

−1 0
] (6-2) 

𝑲𝑥 = [
−1 0 1
−1 0 1
−1 0 1

]   𝑲𝑃𝑦 = [
1 1 1
0 0 0

−1 −1 −1
] (6-3) 

𝑲𝑆𝑥 = [
−1 0 1
−2 0 2
−1 0 1

]   𝑲𝑆𝑦 = [
1 2 1

   0    0    0
  −1   −2   −1

] (6-4) 

𝑲𝐿𝑜𝐺 = ∇2(𝑮(𝑥, 𝑦)) =
𝑥2+𝑦2−2𝜎2

4𝜎4 𝑒𝑥𝑝 (−
𝑥2+𝑦2

2𝜎2 )   (6-5) 

Edge detection in the frequency domain requires transformation of the spatial 

domain image 𝑰 into the frequency domain image 𝑭 by fast Fourier transform (FFT). The 

edge image 𝑬 is the element-wise product of the filter kernel 𝑲 and the frequency domain 

image 𝑭: 

𝑬(𝑢, 𝑣) = 𝑲(𝑢, 𝑣) ⊙ 𝑭(𝑢, 𝑣)      (6-6) 

where 𝑢 and 𝑣 are the dimensions of the transformed image in the frequency 

domain. Two edge detector filters in the frequency domain were employed in this study: 

Butterworth denoted as 𝑲𝐵 in Eq. 6-7 and Gaussian denoted as 𝑲𝐺  in Eq. 6-8.  

𝑲𝐵(𝑢, 𝑣) = 1 −
1

1+[
𝐷(𝑢,𝑣)

𝐷0
]

2𝑛      (6-7) 

𝑲𝐺(𝑢, 𝑣) = 1 − 𝑒
−𝐷2(𝑢,𝑣)

2𝜎2       (6-8) 

where 𝐷(𝑢, 𝑣) is the distance between the pixel (𝑢, 𝑣) and the origin of the 

frequency (the center of the 𝑀 × 𝑁 image) as defined by Eq. 6-9, 𝐷0 and 𝑛 are the user-

defined parameters to define the order and cut-off frequency in the Butterworth filter; and 

𝜎 is the user-defined parameter to define the standard deviation of the Gaussian filter.   
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𝐷(𝑢, 𝑣) = √[𝑢 − (
𝑀

2
+ 1)]

2
+ [𝑣 − (

𝑁

2
+ 1)]

2
   (6-9) 

and 𝑲𝐵, and 𝑲𝐺 , are Butterworth and Gaussian filters.  

The scaled edge image 𝑬𝑠𝑐 is 𝑬 scaled such that 0 ≤ 𝑬𝑠𝑐 ≤ 1. The enhanced edge 

image is then: 

𝑬𝑒(𝑥, 𝑦) = [𝑬𝑠𝑐(𝑥, 𝑦) − min(𝑬𝑠𝑐)] [
2𝜎𝑬𝑠𝑐

max(𝑬𝑠𝑐)−min(𝑬𝑠𝑐)
] + 𝜇𝑬𝒔𝒄

 (6-10) 

where min(𝑬𝑠𝑐), max(𝑬𝑠𝑐),  𝜎𝐸𝑠𝑐
, and 𝜇𝑬𝑠𝑐

 are minimum, maximum, standard 

deviation, and mean of the scaled edge image, respectively. Edge enhancement is a 

crucial part of the proposed method by improving the segmentation of pixels with cracks 

from the background pixels. Fig2 shows an example of the effect of edge enhancement 

on the final binary image of the proposed algorithm (Sobel edge detector). 

   
(a) (b) (c) 

Fig. 6-2 The effect of edge enhancement on the final image of the edge detectors, Sobel, (a) 

original image, (b) final binary image superimposed on the original image (b) without the 

edge enhancement, (c) with the edge enhancement 

The final binary image 𝑩 is constructed by segmentation, which assigns a value of 

one to all pixels in which the intensity exceeds some threshold 𝑇 and a value of zero to all 
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other pixels. In this study, a two level binarization is introduced: the first is based on a 

pixel intensity threshold 𝑇1 in the enhanced edge image and then based on an area 

connectivity threshold 𝑇2 on the binary image from the first level. The first threshold 

operation filters the weak edges from the enhanced edge image (Eq. 6-11). By applying  

𝑇1 the strong edges in the enhanced edge image (80% or stronger than the maximum 

intensity, 0.8 max (𝐸𝑒)) are preserved as cracks. At this point, the strong edges have been 

identified in the first binary image; however, the surface roughness of the concrete can 

cause residual noise.  

𝑇1 =  0.8 max (𝐸𝑒)       (6-11) 

In order to gain more effective segmentations, the morphological operation 

closing was carried out on the first level binary image. Closing consists of a dilation 

followed by an erosion using an identical structuring element for both operations (see 

Fig. 6). The purpose of the closing operation is to unify possibly the discrete parts of the 

crack in the first binary image. Structuring elements define the spatial domain on the 

binary image in which the morphological operation will be carried out. Circle-shaped 

structuring elements with generic dimensions were used to perform the closing operation. 

The radius of the structural element was defined as the minimum Euclidean distance 

between the centroids of connected components in each binary image. The closing 

operation on improved the results of each individual edge detector in terms of true 

positives. Fig. 6-4 shows an example where not applying the closing operation cause the 

LoG edge detector to miss the more than half the crack after applying the second 

threshold operation.  
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The second binarization operation was designed to segment the cracks from the 

residual noises in the first binary image based on the area of the connected components in 

the first level binary image (Eq. 6-12). The connected area 𝐴𝑐(𝑥, 𝑦) is the number of 

contiguous pixels in a connected component, considering eight-neighbor connectivity. 

max(𝐴𝑐) is the area of the largest connected component in the first level binary image. 

The idea for the area threshold is to control the noise in the final binary image as shown 

in Fig. 6-5 for the results of the Gaussian high pass filter.  

𝑇2 = max (𝐴𝑐)        (6-12) 

   
(a) (b) (c) 

Fig. 6-3 Closing operation illustration (a) first level binary image, (b) dilation, and (c) 

erosion using a disk structuring element with diameter of 4 px. (LoG edge detector). 
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(a) (b) (c) 

Fig. 6-4 Crack in the (a) ground truth, 1391 px, (b) without the closing operation 391 px 

correct detection (c) with closing operation 1215 px correct detection (LoG edge detector) 

   
(a) (b) (c) 

Fig. 6-5 Crack in the (a) ground truth, 2325 px, (b) without second level threshold operation 

3672 pixels false detection (c) with second level threshold operation: 214 px false detection 

(Gaussian edge detector) 

DCNN 

Using direct image-processing techniques for concrete crack detection has several 

drawbacks. First, the algorithms are tailored for certain images in the studied datasets 
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which affects their performance on new datasets. These algorithms may not be as 

accurate when tested on new datasets taken in more challenging situations such as low 

lighting condition, presence of shadows, low quality cameras, etc. Second, the image 

processing algorithms are often designed to aid the inspector in crack detection and still 

rely on human judgement for final results [29]. One solution is using machine learning 

algorithms to analyze the inspection images [46] [47]. Deep convolutional neural 

networks (DCNNs) are a type of feedforward artificial neural networks which have 

revolutionized autonomous image classification and object detection in the past 5 years 

[48]. A DCNN uses a set of annotated, e.g. labeled, images for training and calculates the 

learning parameters in the learning layers between the input and output layers thorough 

thousands to millions iterations.  

A number of architectures have been employed to create neural networks 

providing excellent accuracy on open-source labeled datasets, such as ImageNet and 

MNIST, in the past 4 years [49] [50] [51]. Each architecture includes a number of main 

layers. The main layers are composed of sub-layers. The total number of layers defined in 

a software program, like MATLAB, to build an architecture is referred to as 

“Programmable Layers” in this study. Krizhevsky [49] proposed one of the first 

architectures of a DCNN, i.e. AlexNet. This architecture has 8 main layers (25 

programmable layers) and was the winner of the image classification competition in 2012 

(ImageNet [52]). Szegedy et al. proposed another architecture called GoogleNet with 22 

main layers (144 programmable layers) and improved the accuracy by introducing 

inception module in the learning layers which won the 2014 competition [53]. Deep 

residual learning neural network, ResNet, was introduced in 2016 [54]. ResNet has 50 
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and 101 main layers (177 and 347 programmable layers) and was the winner of 2016 

competition.  

DCNNs have been used in vision-based structural health monitoring in recent 

years for crack detection [42], road pavement cracks [55, 56], corrosion detection [57, 

58], multi-damage detection [41, 59] structural health monitoring [62]. Due to popularity 

of Unmanned Aerial Systems (UASs) for structural health monitoring and bridge 

inspection [63] applications of DCNNs in UAS-assisted inspections has begun to attract 

researchers for more robust non-contact damage detection [43, 64, 65].  

In general, DCNN architecture includes an input layer, learning layers, and an 

output layer [66]. The input layer reads the image and transfers it to the learning layers. 

The learning layers perform convolution operations, applying filters to extract image 

features. The output layer classifies the image according to target categories using the 

features extracted in the learning layers. The neural network can be trained by assigning 

target categories to images in a training dataset and modifying filter values iteratively 

through back propagation until the desired accuracy is achieved.  

DCNN can be used for crack detection in three ways: classification [42], 

localization [41], or segmentation. The goal of classification is to label each image as 

cracked or sound. The training and validation datasets comprise pre-classified cracked 

and sound images. The goal of localization is to determine bounding coordinates that 

identify the location of a crack within an image. As before, the training and validation 

datasets include both cracked and sound images, but the cracked images have bounding 

boxes drawn around the location of the crack. The goal of segmentation is to classify 

each pixel as cracked or sound, and the training and validation datasets comprise a very 
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large number of pre-classified pixels. The computational intensity of DCNN normally 

necessitates subdivision of images to reduce computational requirements.   

The AlexNet DCNN architecture, illustrated in Fig. 6-6 comprises five 

convolution layers (C1—C5), three max pooling layers (MP1—MP3), seven nonlinearity 

layers using the rectified linear unit (ReLU) function (ReLU1—ReLU7), two 

normalization layers (Norm1—Norm2), three fully connected layers (FC1—FC3), two 

dropout layers (DP1—DP2), one softmax layer (SM), and one classification layer (CL). 

Each layer is applied to the image using the convolution operation (Eq. 6-1). Fig. 6-6 

shows the architecture of the AlexNet along with its corresponding filter number and 

size. The kernel values are determined iteratively through training, but the size, number, 

and stride of the kernels are predetermined. The nonlinearity layers operate on the result 

of each convolution layer through element-wise comparison. The ReLU function used for 

nonlinearity is defined as the maximum value of zero and the input: 

𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

       (6-13) 

Following the non-linearity layer, a max pooling layer introduces a representative 

for a set neighboring pixels by taking their maximum value. The max pooling layers are 

essential to reduce the computational time and overfitting issues in the DCNN. After the 

max pooling layer, one or several fully connected layers are used at the end of the 

architecture. The fully connected layer is a traditional multi-layer perceptron followed by 

a softmax layer to classify the image. The mission of the fully connected layers is to 

connect the information from the past layers together in way that the softmax layer can 

predict the results correctly during the training process. The optimum combination is 
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achieved from a process called backpropagation algorithm (partial derivatives of the 

softmax layer output with respect to weights). 

 
Fig 6-6 AlexNet DCNN architecture 

The purpose of the softmax layer is to ensure the sum of probabilities for all 

labels is equal to 1. In addition to these basic layers, a DCNN also includes 

normalization, dropout, and classification layers. Normalization layer normalizes the 

response around a local neighborhood to compensate with the possible unbounded 

activations from the ReLu layer. The dropout layer is a probability-based threshold layer 

that filters responses smaller than a threshold probability (50% is common). The 

classification layer is similar to the fully connected layers. For detailed explanations of 

function of each layer and their interaction, readers can refer to Reference [67]  

Three modes are used for applying the network on the training dataset. The first 

mode is to Fully Train (FT) the network from scratch (FT mode) on the training dataset. 
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In this mode all the weights are assigned with random numbers and the computed through 

iterations based on the training dataset. Obtaining an annotated dataset for concrete 

cracks as big as ImageNet is not currently feasible. Even if a large concrete crack dataset 

was available, training process from scratch could take days to complete on hardware 

with several graphic processor units (GPUs), and would therefore be prohibitively time 

consuming. However, it is possible to apply a previously trained network (pre-trained 

network) on a small dataset and obtain reasonable accuracy [68]. Pre-trained networks 

can be applied on a new dataset in different ways [69]. These methods are usually 

referred to as “domain adaptation” in the deep learning literature. One can use an already 

trained DCNN on the ImageNet dataset as a classifier for new images. This type of 

domain adaptation is referred to as Classifier (CL mode). In CL mode, only the last fully 

connected layer needs to be altered to match the target labels in concrete dataset. The 

network then uses the pre-trained weights and forms a classifier based on the training 

dataset. Note that no actual training happens when CL mode is used. Another studied 

domain adoption method is to partially retrain a pre-trained network and modify the 

layers according to a new dataset. This approach is called fine-tuning or transfer learning 

(TL mode). In the TL mode, the network has to be re-trained since both classifier and 

weights have to be updated based on the new dataset. In the TL mode, the weights of the 

lower-level layers (closer to the input image layer) are preserved. These weights are 

computed from training on millions of images and consist of generic feature extractors 

such as edge detectors. Therefore, the determined lower-level weights can be applied on 

any dataset for feature extraction. On the other hand, the classifier layers (close to end of 

network) are more sensitive to the training dataset and its labels. To adjust the network to 
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the new dataset, the weights in the high-level layers are updated through training on the 

new dataset. 

Experimental Program 

Computational Resources 

All computations were performed on a desktop computer with 64-bit operating 

system, 32 GB memory, and 3.40 GHz processor running a GeForce GTX 750 Ti 

graphics processing unit (GPU). Image processing was performed in MATLAB.  

Edge Detection Program 

The testing dataset of 319 C and 3101 U sub-images was iteratively processed 

using each of the six edge detection schemes discussed in the edge detection section. 

Unlike the past studies [30, 26, 62], the metrics to evaluate the performance of each edge 

detector was defined very clearly on a pixel level. The final binary images were 

compared to the ground truth. True positive (TP) is when the edge detector identified a 

pixel on the crack pixels (Cp). False negative is when the edge detector did not identify a 

pixel on the crack pixels (Cp). True negative (TN) is when the edge detector did not 

identify a pixel on the sound pixels (Up), and false positive is when the edge detector 

identified a pixel on the sound pixels (Up). Note all comparisons were performed on the 

final binary images produced by each edge detector. Fig. 6-7 shows examples of how 

metrics are calculated: (a) the original image is segmented into 1,582 Cp pixels 

(highlighted) and 63,954 Up pixels, (b) the final binary image super imposed on the 

original image, Roberts edge detector, identified 2,276 Cp pixels (highlighted) and 
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63,260 Up pixels, (c) 1,367 pixels in the final binary image were TP, (d) 215 pixels in the 

final binary image were FN, (e) 63,046 pixels in the final binary image were TN, and (f) 

909 pixels in the final binary image were FP. The metrics in the Fig. 6-7c through Fig. 6-

7f are shown in white. Note that for U sub-images, TP and FN are meaningless and only 

TN and FP are recorded.  

The team then rated each edge detection scheme in terms of true positive rate 

(TPR), true negative rate (TNR), accuracy (ACC), positive predictive value (PPV), 

negative predictive value (NPV), and F1 score, defined as follows  

𝑇𝑃𝑅 = (
𝑇𝑃

𝑇𝑃+𝐹𝑁
)       (6-14) 

𝑇𝑁𝑅 = (
𝑇𝑁

𝑇𝑁+𝐹𝑃
)       (6-15) 

𝐴𝐶𝐶 = (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
)      (6-16) 

𝑃𝑃𝑉 = (
𝑇𝑃

𝑇𝑃+𝐹𝑃
)       (6-17) 

𝑁𝑃𝑉 = (
𝑇𝑁

𝑇𝑁+𝐹𝑁
)       (6-18) 

𝐹1 = (
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
)       (6-19) 

In addition, missed crack width (MCW), and computational time (T) are also 

compared between different edge detectors. MCW is defined as the coarsest crack that 

went undetected by a particular edge detection scheme, as determined by crack width 

measurement using a crack width microscope with 0.02 mm resolution. Computational 

time is defined as the average processing time for ten runs of a particular edge detection 

scheme, normalized by the number of images (180 sub-images). 
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(a)  (b)  (c) 

   

(d) (e)  (f)  

Fig. 6-7 Examples of metric, (a) ground truth, Cp=1,582 px, Up=63,954 px, (b) final binary 

image using Roberts edge detector, Cp=2276 px, Up=63,260 px (c) TP=1367 px, (d) FN=215 

px, (e) TN=63,045 px, (f) FP=909 px  (Robersts edge detector) 

DCNN Program 

Crack detection using DCNN was performed by classification of sub-images in 

the fully trained, transfer learning, and classifier modes. A total of 12,809 sub-images 

(1,129 labeled C and 11,680 labeled as U), were selected at random for inclusion in the 

training dataset, and 1,771 (125 labeled as C and 1,646 labeled as U) were selected for 

the validation dataset. The remaining 3,420 sub-images (319 labeled as C and 3101 

labeled as U) made up the testing dataset.  
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Batch size number and validation criterion determine the number of iterations in 

training process. Larger batch sizes result in faster convergence, but batch size is limited 

by the available GPU memory. The selected batch size was 10. The training dataset has 

12,809 sub-images. Number of iterations to cover all sub-images was simply calculated 

by dividing the total sub-images to the batch size, i.e. 1281 iterations. This number of 

iterations is known as an epoch. A maximum of 30 epochs were considered for back 

propagation on the network, meaning that the network performs as many 30 × 1281 =

38,430 iterations to finish the training. The network was set to stop iterating once the 

accuracy in the validation dataset stopped improving in three consecutive epochs. If the 

validation criterion is not met by the end of 30th epoch, more iterations cycles should be 

considered for the training.  

The network in each mode is used to classify the sub-images in the testing dataset 

and the results are compared to the ground truth. TP is when the network correctly 

labeled a sub-image as C, and a FN when the network failed to do so. A TN is when the 

network correctly labeled a sound sub-image as U and a FN when the network labeled a 

sub-image as C in a sound sub-image. TPR, TNR, ACC, PPV, NPV, and F1 are 

calculated according to Eq. 6-14 through Eq. 6-19. T and MCW are evaluated in the same 

manner as the edge detector approach except that the training time is not considered when 

calculating the T for DCNN.    

Results and Discussion 

Edge Detection Results 

A summary of results for the six edge detectors applied on the C class and U class 
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sub-images are shown in Table 6-3 and Table 6-4, respectively. The metrics for 

comparison are shown Fig. 6-8a in terms of TPR, PPV, and in Fig. 6-8b in terms of TNR, 

ACC, and NPV. The latter metrics were significantly affected by the data imbalance 

between Cp and Up pixels. Nevertheless, the evaluated metrics in this chapter are on the 

pixel-level which makes the comparison unique compared to previous crack detection 

studies. LoG produced the highest TPR with 76% followed by Sobel and Prewitt with 

76% and 69%. In the spatial domain, Robert edge detector produced lowest TPR, 53%, 

which was still higher that the TPRs produced by frequency domain edge detector, where 

Butterworth detected 41% and Gaussian detected only 31% of the crack pixels. LoG edge 

detector also produced the highest PPV, 60%, followed by Sobel and Prewitt with 56% 

and 54%. Gaussian high pass filter had only 18% PPV which was the lowest among the 

studied methods. F1 scores ranged from 23% in sub-images segmented by Gaussian high 

pass filter to 68% in sub-images segmented by LoG. Roberts and Gaussian high pass 

filter produced the lowest TNR values, 96% and 97%, respectively and the lowest ACC, 

both 95%. As for NPV, the lowest values were 95% and 96% when Gaussian and 

Butterworth edge detectors were used, respectively. Again LoG was the most accurate, 

98%, and produced the highest TNR=99% and NVP=99.5%. The difference in metrics in 

Fig. 6-8b is only 2%-4% but note that these metrics are affected by the gigantic class 

imbalance between Cp and Up pixels (only 2% of the pixels were Cp). To see this 

difference better, percentage of reported FP pixels per sub-image, noise ratio (NR), for 

each edge detector is shown in Fig. 6-8c. To calculate the noise ratio, first the average FN 

for each method was calculated by dividing total number of FNs to the number of sub-

images in each class, 319 in C class, and 3101 in U class. The NR is then calculated as 
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the average FNs divided by total number of pixels in each sub-image, i.e. 256 × 256.  

   
(a) (b) (c) 

Fig. 6-8 Results of the studied edge detectors on the sub-images in the C class (a) TRP, PPV, 

and F1 (b) TNR, ACC, and NPV, (c) NR in C and U classes.  

Table 6-3 Summary of edge detector performance on sub-images in the C class 

Domain Edge Detector TPR TNR ACC PPV NPV F1 
MCW 

(mm) 
T (s) 

Spatial 

Roberts 0.53 0.96 0.95 0.23 0.99 0.32 0.40 5.15 

Prewitt 0.69 0.98 0.97 0.42 0.99 0.52 0.20 4.13 

Sobel 0.76 0.98 0.97 0.44 0.99 0.56 0.20 4.64 

LoG 0.79 0.99 0.98 0.60 1.00 0.68 0.10 3.79 

 

Frequency 

Butterworth 0.41 0.97 0.96 0.25 0.99 0.31 0.20 5.76 

Gaussian 0.32 0.97 0.95 0.18 0.98 0.23 0.20 5.70 

Table 6-4 Summary of edge detector performance on sub-images in the U class 

Domain Edge Detector TNR T (s) 

Spatial 

Roberts 0.93 5.46 

Prewitt 0.95 4.71 

Sobel 0.95 4.83 

LoG 0.95 4.05 

Frequency 
Butterworth 0.95 5.98 

Gaussian 0.93 5.86 
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As seen for sub-images in C class NR values, 2.4% on average, were almost half 

of the ones in the U class, 5.3% on average. This is due to the fact that the proposed 

methodology for crack detection is based on the assumption that there is a crack in the 

investigated image and it is the largest connected component in the first level binary 

image. Therefore, noise and irrelevant objects are preserved in the final binary image in 

U class as FN. In addition, the LoG edge detector produced the lowest NR values, 1.1% 

in the C class and 4.5% in the U class while Roberts and frequency domain detectors 

were the worst ones in both classes. 

Factoring Roberts, overall the spatial domain edge detectors produced better 

binary images for crack detection compared to frequency domain ones. The same trend 

can be seen for values of T in Table 6-3 and Table 6-4 where the fastest method was 

LoG. Finally, LoG detected finer cracks than the rest of studied method with MCW of 0.1 

mm. Fig. 6-9 shows an example of crack detection using different edge detectors along 

with the original image and ground truth. LoG edge detector performed better than all the 

other studied detectors in all considered metrics.  

DCNN Results 

Training and Validation 

Fig. 6-10 shows the achieved accuracy of the DCNN under fully trained and 

transfer learning during training and validation. In fully trained mode, the validation 

criterion was met after 14 epochs (17934 iterations), which required 6,200 seconds 

processing time. The resulting validation accuracy was 97.50%. In transfer learning 

mode, the validation criteria were met after 7 epochs (8967 iterations), which required 
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4,100 seconds processing time. In classifier mode, the classifier was constructed in 299 

seconds and achieved 98.1% accuracy on the validation dataset. 

Testing 

Table 6-5 summarizes the performance of DCNN crack detection in the testing 

dataset. In general, the DCNN crack detection algorithms performed exceedingly well 

compared to the traditional detectors. In fully trained mode, the algorithm scored 212 TPs 

out of 319 cracked sub-images and 3099 TNs out of 3,101 sound sub-images. In transfer 

learning mode, the algorithm scored more TPs but also scored more FPs. The network in 

the CL mode performance in terms of TP and TN were in the middle of the FT and TL 

modes (TP=267 and TF=52).  

 
Fig. 6-9 An example of edge detector performance on a 0.02 mm crack (a) original image, 

(b) GT=1145 px, (c) Roberts, TPR=39% (d) Prewitt, TPR=60%, (e) Sobel, TPR=55%, (f) 

LoG, TPR=71%, (g) Butterworth, TPR=38%, (h) Gaussian, TPR=17% 
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Fig. 6-10 DCNN accuracy during training and validation 

In all three cases, the accuracy matched or exceeded 97%. However, the TL mode 

had NPV=99%, F1=89%, and ACC=98% which were the highest among the studied 

modes. The highest positive predictive value was in the FT mode (PPV=99%) while TL 

mode produced only PPV=92%. The CL mode produced the highest FPs which lead to 

the lowest NPV of 98% among the studied modes. The metrics are shown in Fig. 6-11. 

As seen the most tangible difference were observed in TPR, PPV, and F1 scores among 

different metrics since they are more affected by the TPs and C class had considerably 

less sub-images.   
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Fig. 6-11 Metrics for the DCNN in FT, TL, and CL modes 

Table 6-5 Summary of DCNN results 

Mode TP FN TN FP TPR TNR ACC PPV NPV F1 
MCW 

(mm) 

Time 

(s) 

FT 212 107 3099 2 0.66 1.00 0.97 0.99 0.97 0.80 0.08 2.65 

TL 275 44 3077 24 0.86 0.99 0.98 0.92 0.99 0.89 0.04 2.81 

CL 267 52 3034 67 0.84 0.98 0.97 0.80 0.98 0.82 0.08 2.75 

 

The MCW for fully trained and classifier modes was 0.08 mm. In transfer 

learning mode, the missed crack width was 0.04 mm. Fig. 6-12 shows fully trained, 

transfer learning, and classifier DCNN results for a sub-image containing a 0.08 mm 

crack. As shown in the figure, the 0.08 mm crack was detected only in transfer learning 

mode, and went undetected in fully trained and classifier modes. The computational time 

was similar for all three DCNN modes were comparable (2.65-2.81 seconds per 180 sub-

images). However, the network in the FT mode required more time for training due to 

more performed iterations compared to the TL mode, which was expected. In the authors 
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experience, using an AlexNet-based network in TL mode can be up to 50% less time-

consuming than the FT mode on concrete image dataset [37, 39]. On the other hand, the 

network on the CL mode has the advantage of not relying on the training and can be 

considered the fastest way of testing the network on new datasets. The absence of 

training in CL mode, however, adversely affected the TNR, ACC, and PPV of the 

network, which is also an expected outcome [37]. Transfer learning mode was the most 

accurate and detected the finest cracks, but also took the longest computational time.  

   

(a) (b) (c) 

Fig. 6-12 DCNN results for a crack of width 0.08 mm: (a) FT mode, (b) TL mode, and (c) 

CL mode 

Fig. 6-13a through c show representative results for DCNN in fully trained, 

transfer learning, and classifier modes, respectively. Since the objective is to find the 

cracks, sub-images in the U class are shaded and sub-images in the C class are shown 

clearly. Incorrectly labeled sub-images (FN and FP) are identified using a box indicating 

such.  
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(a) 

 

(b) 



256 
 

 

(c) 

Fig. 6-13 Results of (a) fully trained DCNN crack detection, (b) transfer learning DCNN, 

and (c) classifier DCNN for crack detection on the original full scale images in the testing 

dataset 

Comparison 

As discussed before, the results presented in Table 6-3 and Table 6-4 for edge 

detectors and in Table 6-5 for DCNNs are not directly comparable because DCNN results 

consider sub-images while edge detection results were based on the pixels. However, 

comparison is possible since the same sub-images and metrics were used to evaluate both 

approaches. These results are given in Table 6-6.  

All of the methods tested here performed better on sound sub-images than on 

cracked sub-images (i.e., TN > TF), and so the metric numbers skewed high. For 

example, only 32% of cracked pixels (Cp) were detected using the Gaussian edge 

detection scheme. Nevertheless, since more than 97% of sound pixels were correctly 
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detected, the reported accuracy was ACC=95% which is misleading because the PPV for 

this edge detector was only 18%, which shows its inefficiency. Several noteworthy 

results become apparent. First, while the previous section claimed that there was no clear 

winner between DCNN in fully trained and transfer learning modes, the true positive rate 

for transfer learning was 20% higher than for fully trained. At the same time, the true 

negative rate for transfer learning was only one percent lower than for fully trained. This, 

combined with smaller missed crack width and similar computation time requirements, 

make transfer learning a clear winner among DCNN modes. F1 scores and PPV values 

were significantly for DCNN in all modes were significantly greater than the edge 

detector techniques. 

Table 6-6 Comparison of DCNN and edge detection performance considering sub-images 

Method TPR TNR ACC PPV NPV F1 

MCW 

(mm) 

Time 

(s) 

D
C

N
N

 

FT mode 0.66 1.00 0.97 0.99 0.97 0.80 0.08 2.65 

TL mode 0.86 0.99 0.98 0.92 0.99 0.89 0.04 2.81 

CL mode 0.84 0.98 0.97 0.80 0.98 0.82 0.08 2.75 

E
d
g
e 

D
et

ec
to

r 

Roberts 0.53 0.96 0.95 0.23 0.99 0.32 0.40 5.30 

Prewitt 0.69 0.98 0.97 0.42 0.99 0.52 0.20 4.42 

Sobel 0.76 0.98 0.97 0.44 0.99 0.56 0.20 4.74 

LoG 0.79 0.99 0.98 0.60 1.00 0.68 0.10 3.92 

Gaussian 0.41 0.97 0.96 0.25 0.99 0.31 0.20 5.87 

Butterworth 0.32 0.97 0.95 0.18 0.98 0.23 0.20 5.78 
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This analysis also shows that DCNN methods performed better at image based 

concrete crack detection than any of the edge detection methods (expect for FT mode). 

The LoG edge detector exhibited the highest true positive rate of all six edge detectors, 

accurately identifying nearly 79% of cracked pixels. LoG also detected the finest cracks 

of any edge detector, with MCW of 0.1 mm. The TPR among DCNN methods was about 

86% and 84% in TL and CL modes, respectively, which was a significant improvement 

over LoG. In addition, the TFR for the DCNN approach had superiority over the edge 

detectors due to the high NR ratios (refer to Fig. 6-8c). Furthermore, DCNN methods 

were able to detect finer cracks than edge detectors. In fully trained and classifier modes, 

the MCW was 0.08 mm, a marginal improvement over LoG. In transfer learning mode, 

the MCW was an impressive 0.04 mm. 

Computational times also show the superiority of DCNN over edge detectors; 

computational time was almost 50% less for the DCNNs over edge detectors. However, 

crack detection using DCNN requires time for training (in FT and TL modes) and 

classifier construction (in CL mode), which are not taken into account when reporting the 

computational time. The assumption is that, in the future, pre-trained DCNN will be 

available for this purpose, so it is not necessarily appropriate to include training time in 

this comparison. In fact, DCNN can be trained using a very large dataset with images of 

varying quality (e.g., resolution, lighting condition, focus), making it more robust and 

applicable to most situations. Edge detectors are typically manually tuned to maximize 

performance for a particular dataset or subset, diminishing their robustness.  

These results highlight the significant promise of DCNN methods for image based 

crack detection in concrete. The evidence presented here shows that edge detection 
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methods—which represent the current state of practice—perform reasonably well. DCNN 

methods provide autonomous crack detection and provide significant performance 

enhancements over edge detection schemes. The results presented here for DCNN are 

only a preliminary step in the development of DCNN methods for concrete crack 

detection. Future work will demonstrate the use of more advanced DCNN for the same 

problem in the hopes that more advanced networks will provide even better crack 

detection performance.  

The reader should note that the results presented here are for high quality images 

taken in good lighting and free of vibration. The extension of these results to noncontact 

image-based inspection and damage detection will require application of the same 

methods to images with imperfections resulting from poor lighting, vibration, or other 

issues [43]. This work is ongoing, but the results presented here show promise for 

autonomous crack detection in concrete structures using noncontact image-based 

methods. 

Despite being recently introduced to structural health monitoring and inspection, 

DCNNs have improved the vision-based structural defect detection. This study shows the 

superiority of an AlexNet DCNN over traditional edge detectors for concrete crack 

detection. The performance of the network can be further enhanced if more powerful 

architectures such as GoogleNet or RestNet are implemented for crack detection. Unlike 

edge detectors, the DLCCNs can be used for any types of defect in structures, if enough 

annotated images are available for training. Formation an annotated image dataset for 

structural defects, such as ImageNet, is vital for further applications of DCNNs in 

structural engineering. With this dataset available, new architectures can be developed to 
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focus on finding a handful of structural defects instead of 1000 different objects, which 

will reduce the computational time associated with training process. In addition, domain 

adaptation methods such as transfer learning, will be more effective if the network is 

previously trained on the structural defects dataset. Improving the performance of domain 

adaptation techniques makes real-time defect detection in robotic vision-based 

inspections feasible. In other words, a pre-trained DCNN on the structural defect dataset, 

can be directly used to accurately classify new images taken by an unmanned aerial 

system to different structural defects as the inspection is taking place.   

Hybrid Crack Detector 

Unless semantic networks are used for crack detection, edge detectors are still 

providing segmentation in the pixel level. This information puts the edge detector in 

favor of the DCNN for fine monitoring and measurements of cracks but creating the 

training dataset with classified pixels can be very time consuming and challenging. On 

the other hand, the sole use of edge detectors has the disadvantage of residual noise or 

non-crack objects misidentified as cracks. Even with the most effective edge detector, 

LoG, there was more than 4% of TN (combined of FNs of the images in both C class and 

U class) which is 9,457,066 sound pixels identified as cracks in the testing dataset. Fig. 6-

14 shows examples of TN (highlighted in red) in the three C class sub-images after the 

final binary image from the LoG edge detector was super-imposed on the original 

images.  
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(a) (b) (c) 

Fig. 6-14 Examples of FNs in the U class images (a) non-crack edge, (b) different surface 

finish, (c) noise due to the coarse concrete surface 

Since the DCNN in FT mode provided such accurate classification for the U class 

sub-images, only two cases of FP, the network was first used to label all the sub-images 

in U and C classes. No edge detector was applied on the sub-images identified as U class 

by the network. The LoG edge detector was applied on the rest of the images in the 

testing dataset. Combining the two approaches, number of FNs were reduced to 70% of 

the ones reported only by the LoG edge detector. This leads to an average reduction of 

the NR values from 2.45% to 0.11%. This improvement can be seen in Fig. 6-15a for an 

image with crack, and Fig. 6-15b for an image without a crack.  

Using this technique also improved the overall performance of the of the edge 

detectors. As mentioned before, the edge detectors performed better on the sub-images 

with cracks due the effect of second level threshold which was the reason to evaluate 

their performance on C class and U class sub-images separately in Table 6-3 and Table 6-

4. However, PPV and F1 score metrics would be considerably lower if the both classes 
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were considered in calculating them. For the best edge detector, i.e. LoG, PPV=6% and 

F1=11% were achieved when both classes were used. However, using the hybrid 

technique resulted in the almost the same PPV and F1 score provided in Table 6-3 for the 

LoG since only C class images were analyzed (with exception of two sub-images in the U 

class).  

  
(a) (b) 

  
(c) (d) 

Fig. 6-15 Combination of DCNN and edge detectors (a) the superimposed image with crack 

using LoG on all sub-images, (b) the superimposed image with crack without using LoG on 

U class sub-images, (c) the superimposed image without crack using LoG on all sub-images, 

(d) the superimposed image without crack without using LoG on U class sub-images. 

Conclusions 

This chapter presents a comparison of edge detection and DCNN algorithms for 

image based concrete crack detection. The dataset consisted of 3420 sub-images of 

concrete cracks. Several common edge detection algorithms were employed in the spatial 
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(Roberts, Prewitt, Sobel, and LoG) and frequency (Butterworth and Gaussian) domains. 

AlexNet DCNN architecture was employed in its fully trained, classifier, and fine-tuned 

modes. Edge detection schemes performed reasonably well. The best method—LoG—

accurately detected about 79% of cracked pixels and was useful in detecting cracks 

coarser than 0.1 mm. In comparison, the best DCNN method—the network in transfer 

learning mode—accurately detected 86% of cracked images and could detect cracks 

coarser than 0.04 mm. This represents a significant performance enhancement over edge 

detection schemes and shows promise for future applications of DCNN for image based 

crack detection in concrete. In addition, a methodology was proposed to reduce the FNs 

reports by 70% by applying the edge detectors only on sub-images not labeled as 

uncracked. In addition, a hybrid crack detector was introduced which combines the 

advantages of both approaches. In the hybrid detector, the sub-images were first labeled 

by the network in the fully trained mode. Since it produced the highest TNR, the edge 

detector is not applied on the sub-images labeled as U (uncracked) by the network. This 

technique reduced the noise ratio of the LoG edge detectors from 2.4% to 0.11% and has 

the similar effect on the other edge detectors as well.  

This study shows the superiority of an AlexNet DCNN over traditional edge 

detectors for concrete crack detection. This superiority can be further improved when 

architectures such as GoogleNet or RestNet are implemented for crack detection. 

DLCCNs are able to classify multiple defects if enough annotated images are available 

for training. Formation an annotated image dataset for structural defects, such as 

ImageNet, is vital for further applications of DCNNs in structural engineering. With this 

dataset available, new architectures can be proposed to focus on finding structural defects 
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instead of random objects, which will reduce the computational time associated with 

training process. In addition, domain adaptation methods such as transfer learning, will 

be more effective if the network is previously trained on the structural defects dataset. 

Improving the performance of domain adaptation techniques makes real-time defect 

detection in robotic vision-based inspections feasible. In other words, a pre-trained 

DCNN on the structural defect dataset, can be directly used to accurately classify new 

images taken by an unmanned aerial system to different structural defects as the 

inspection is taking place.   
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CHAPTER VII 

DEEP LEARNING NEURAL NETWORKS FOR SUAS-ASSISTED STRUCTURAL 

INSPECTIONS: FEASIBILITY AND APPLICATION 

Abstract 

 This chapter investigates the feasibility of using a Deep Learning Convolutional 

Neural Network (DLCNN) in inspection of concrete decks and buildings using small 

Unmanned Aerial Systems (sUAS). The training dataset consists of images of lab-made 

bridge decks taken with a point-and-shoot high resolution camera. The network is trained 

on this dataset in two modes: fully trained (94.7% validation accuracy) and transfer 

learning (97.1% validation accuracy). The testing datasets consist of 1620 sub-images 

from bridge decks with the same cracks, 2340 sub-images from bridge decks with similar 

cracks, and 3600 sub-images from a building with different cracks, all taken by sUAS. 

The sUAS used in the first dataset has a low-resolution camera whereas the sUAS used in 

the second and third datasets has a camera comparable to the point-and-shoot camera. In 

this study it has been shown that it is feasible to apply DLCNNs in autonomous civil 

structural inspections with comparable results to human inspectors when using off-the-

shelf sUAS and training datasets collected with point-and-shoot handheld cameras. 

Introduction 

Automation is changing all aspects of living in the 21st century. Civil and 

structural engineering is no exception to this change. The recent demand for 

nondestructive and non-contact methodologies [1, 2, 3] has provided a stage for small 

Unmanned Aerial Systems (sUAS) implementations in inspection [60], maintenance [5], 
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and monitoring of structures [6]. Federal law mandates a routine inspection every two 

years for bridges to ensure that the service requirements are met [7]. The recommended 

routine inspection is a physical inspection [8] which brings several limitations in practice 

such as traffic closure, safety risks to inspectors and public, and accessibility issues [65]. 

sUAS-assisted structural inspections can address some of these limitations by providing 

safer, repeatable, and cheaper inspections [66]. Despite facing certain challenges, using 

sUAS in structural inspections is a fast growing market. One crucial task in infrastructure 

inspection, maintenance, and monitoring is damage detection [11]. sUAS-assisted bridge 

inspections have been practiced by state Departments of Transportation (DOTs) in the 

United States: in Michigan, to detect cracks and delamination in concrete bridge decks 

[12]; in Minnesota for routine inspection [13, 14]; in Florida for crack detection [15]; and 

in Idaho for fatigue crack detection [60] in the past four years. Visual and thermal 

infrared cameras are the most common sensors on sUAS, thus, using image processing 

and machine learning techniques in inspection provides autonomous or semi-autonomous 

damage detection. Image processing techniques have been used to detect concrete cracks 

[72, 73, 74, 75], concrete spall [20, 21], concrete delamination [78], steel cracks [18, 23, 

24] , and pavement cracks [25, 26, 27]. In addition, sUAS have been coupled with image 

processing and machine learning techniques for infrastructure inspection [6, 28] crack 

concrete detection [65, 85], post-disaster inspection [30], infrastructure 3-dimensional 

modeling [31, 32], displacement and structural stiffness measurements [33, 34],  

Deep learning convolutional neural networks (DLCNNs) are a type of 

feedforward artificial neural networks which have revolutionized autonomous image 

classification and object detection in the past 5 years [35]. A DLCNN uses a set of 



276 
 
annotated, e.g. labeled, images for training and calculates the learning parameters in the 

learning layers between the input and output layers thorough thousands to millions 

iterations. Recent applications of DLCNNs for non-contact structural health monitoring 

can be seen in [36, 37, 38]. Deep learning can be used for crack detection in three 

different ways: classification [36], i.e. labeling an image as cracked or un-cracked, 

localization [37], i.e. locate the region that the crack exists in an image using bounding 

boxes, segmentation [39], i.e. segment the pixels of an image into cracked pixels and un-

cracks pixels. For classification task, the training dataset includes a set of labeled images 

(i.e. “C” for cracked and “U” for un-cracked images). For localization task, the 

coordinates of a bounding box(s) surrounding the crack(s) in each image must be 

identified. For segmentation task, all pixels in each image in the training dataset have to 

be labeled as either cracked or un-cracked. The general layout of a deep learning 

architecture includes an input layer, learning layers, and a output layer [40]. The input 

layer reads the image(s) and transfers it (thrm) to the learning layers. Deep learning 

happens in the learning layers by applying filters to the input image through convolution 

operations to extract image features. The output layer uses the features in the learning 

layers to classify the image according to the target categories. Since the images are 

already assigned to the target labels in training process, the network uses back 

propagation to update and modify the filters to reach a desirable accuracy through 

iteration.  

The performance of a DLCNN depends on the number and arrangement of layers 

(i.e., architecture) and the size and variety of training dataset. Krizhevsky [41] proposed 

one of the first successful architectures of a DLCNN, i.e. AlexNet. This architecture has 
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25 layers and was the winner of the image classification competition in 2012 (ImageNet 

[42]). Szegedy et. el. proposed another architecture called GoogleNet with 144 layers 

including inception module in the layers which won the 2014 competition [43]. Deep 

residual learning neural network, ResNet, was introduced in 2016 [44]. ResNet had 177 

to 347 layers and was the winner of 2015 competition.  

Incorporating sUAS-assisted structural inspections with deep learning can be 

considered the state of the art of non-contact structural inspection, maintenance, and 

monitoring, which is investigated for the first time in this paper. This study investigates 

the feasibility of using a DLCNN trained on a set of high-quality point-and-shoot 

concrete images to label new images of concrete structures taken by sUAS. Since the 

presence of irrelevant objects or scenery in the inspection images compromises the 

efficiency of vision-based non-contact methods [45], the testing datasets in this study 

purposely have both. In addition, the quality of sUAS images depends on different 

parameters such as the specifications of the platform and the sensor (i.e., camera). Low 

quality, noisy, or blurry images mislead both inspector and conventional image 

processing-based crack detection methods. Even with the best available sUAS, there is a 

good chance that the sUAS images lack the desired quality due to uncontrollable 

environmental issues (e.g. wind speed or poor lighting conditions) [45]. Therefore, it is 

important to answer these questions: Are DLCCNs useful for sUAS-assisted structural 

inspections? If so, what are the requirements? The effects of using low-quality sensors on 

the performance of a DLCNN in structural health monitoring was proven to reduce the 

accuracy of the investigated network [46]; however, both noisy and sound data in this 

study were obtained through computer simulations.  
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Alex-Net Architecture  

The AlexNet network consists of 5 convolution layers (C), 3 max pooling layers 

(MP), 7 non-linearity layers using ReLu function (ReLu), 2 normalization layers (Norm), 

3 fully connected layers (FC), 2 dropout layers (DP), 1 softmax layer (SM), and 1 

classification layer (CL). The layers are shown in Fig. 7-1 The convolution layers extract 

the features in each input image through convolution operation. The arrays in the kernels, 

i.e. weights, are obtained through several iterations in the training process; however, the 

size, number and stride of the kernels are usually assigned before the training. The non-

linearity layer operates on the result of each convolution layer through an element wise 

comparison. One of the common non-linearity functions is Rectified Linear (ReLu) unit. 

The ReLu function is defined as the maximum value of 0 and the input. After the non-

linearity layer, a max pooling layer is placed which introduces a representative for a set 

neighboring pixels by taking their maximum value. The max pooling layers are essential 

to reduce the computational time and overfitting issues in the DLCNNs. After the max 

pooling layer, one or several fully connected layers are used at the end of the architecture. 

The fully connected layer is a traditional multi-layer perceptron followed by a softmax 

layer to classify the image. The mission of the fully connected layers is to connect the 

information from the past layers together in way that the softmax layer can predict the 

results correctly during the training process. The optimum combination is achieved from 

a process called back propagation algorithm (partial derivatives of the softmax layer 

output with respect to weights). The purpose of the softmax layer is to ensure the sum of 

probabilities for all labels is equal to 1. In addition to these basic layers, a DLCNN also 

includes normalization, dropout, and classification layers. Normalization layer 



279 
 
normalizes the response around a local neighborhood to compensate with the possible 

unbounded activations from the ReLu layer. The dropout layer is a probability-based 

threshold layer that filters responses smaller than a threshold probability (50% is 

common). The classification layer is similar to the fully connected layers.  

 

Fig. 7-1 The architecture of AlexNet adopted from [41] 

Two modes are used for training in the AlexNet network on the concrete training 

dataset. The first mode is to Fully Train (FT) the network from the scratch (FT mode) on 

the training dataset. In this mode all the weights are assigned with random numbers and 

the computed through iterations based on the training dataset. Obtaining an annotated 

dataset for concrete cracks as big as ImageNet is not currently feasible. Even if a large 

concrete crack dataset was available, training process from scratch could take up to a few 

weeks to complete on hardware with several graphic processor units (GPUs), and would 

therefore be prohibitively time consuming. However, it is possible to apply a previously 

trained network (pre-trained network) on a small dataset and obtain reasonable accuracy 
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[47]. Pre-trained networks can be applied on a new dataset in different ways [48]. These 

methods are usually referred to as “domain adaptation” in the deep learning literature. 

One of these techniques is to partially retrain a pre-trained network and modify the layers 

according to a new dataset. This approach is called fine-tuning or transfer learning (TL 

mode). In this mode, a pre-trained network is used for classification task of the new 

images. However, the network has to be re-trained since both classifier and weights have 

to be updated based on the new dataset. In the TL approach, the weights of the lower-

level layers (closer to the input image layer) are preserved. These weights are computed 

from training on millions of images and consist of generic feature extractors such as edge 

detectors. Therefore, the determined lower-level weights can be applied on any dataset 

for feature extraction. On the other hand, the classifier layers (close to end of network) 

are more sensitive to the training dataset and its labels. To adjust the network to the new 

dataset, the weights in the high-level layers are obtained through training on the new 

dataset.   

Experimental Program 

Inspected Structures 

Cracks on four concrete bridge decks and one concrete building are inspected in 

this study. The bridge decks were previously made in the System, Material, and 

Structural Health (SMASH) lab building on Utah State University (USU) campus. The 

inspected building is the exterior walls of Russell/Wanlass Performance Hall building on 

USU campus.   
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Equipment 

Two sUAS are used to produce the testing datasets: 3DR Iris and DJI Mavic, 

shown in Fig. 7-2. Table 7-1 shows the specifications of each sUAS. The 3DR Iris was 

used to inspect the bridge decks and the DJI Mavic was used to inspect both bridge decks 

and the building. A GoPro Hero4 camera was mounted on the 3DR Iris while the DJI 

Mavic had its own integrated camera. Also a Nikon COOLPIX L830 camera was used to 

capture the training dataset images. The specifications of these cameras are shown in 

Table 7-2. The graphic processor unit (GPU) device on the desktop used in this study was 

a GeForce GTX 750 Ti. All computations are carried out using single GPU mode in 

Matlab 2017b. 

Datasets 

The images in all datasets were divided into sub-images (227 pixels by 227 

pixels) to comply with the AlexNet architecture. The training dataset includes 9011 sub-

images, 1471 with C label and 7540 with U label, from two lab-made bridge decks using 

the Nikon camera with a clearance of roughly 0.5 m. The images in this chapter are a part 

of SDNET, a fully annotated image dataset dedicated to structural defects [49]. SDNET 

is free and publicly available for academic purposes. For the validation dataset, 10% of 

the images in the training dataset were used. Three sUAS testing datasets are gathered to 

evaluate the performance of the network.  
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Fig. 7-2 The sUAS used for inspection 

Table 7-1 sUAS Specifications 
UAS 3DR Iris DJI Mavic 

Cost (USD) 500 1,000 

Weight (kg) 1.28 0.74 

Type Quadcopter Quadcopter 

Max Flight Time (m) 27 22 

Payload (kg) 0.90 0.40 

First Person View Yes Yes 

Camera GoPro DJI Integrated 

Table 7-2 Camera Specifications 
Camera Nikon GoPro Hero4 DJI Camera 

Resolution (MP)  16   12 MP 12 

Image Dimensions 4068 × 3456 4000 × 3000 4000 × 3000 

Sensor Type CMOS CMOS CMOS 

Lens Aperture F3-5.9 F2.2 F2.8 

Sensor Size (in) 1/2.3 1/2.3 1/2.3 

ISO (max) 3200 1600 6400 

 

The first testing dataset includes 1620 sub-images of one of the bridge decks 

taken by the GoPro Camera mounted on the 3DR Iris. Images in this dataset are taken by 
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a lower quality camera during the 3DR Iris flight from same cracks in the training 

dataset. The second testing dataset includes 2340 sub-images taken by the DJI Mavic of 

the bridge decks. The effect of having undesirable surface conditions, i.e. moisture and 

ice, in the testing dataset on the performance of the network is investigated by applying 

the network on in this dataset. The third dataset includes 3600 sub-images taken by the 

DJI Mavic of the USU Russell/Wanlass Performance Hall building. The cracks and 

concrete textures in this dataset are different from training dataset. Fig. 7-3 shows 

representative images of the training and testing datasets. The number of sub-images in 

each dataset and their labels, C for cracked and U for un-cracked, are shown in Table 7-3. 

  

  

Fig. 7-3 Representative original images of (a) training dataset, (b) 1st testing dataset, (c)2nd 

testing dataset, (d) 3rd testing dataset 
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Table 7-3 The results of the first testing dataset prove the feasibility of using DLCNNs on 

sUAS images. 

Dataset C U 

Training 1324 6786 

Validation 147 754 

1st Testing 188 1432 

2nd Testing 278 2062 

3rd Testing 1719 1881 

Results 

Training 

Two training procedures, FT and TL, are carried out to label the images in each 

testing dataset. In both modes, the training continued until the accuracy stopped 

improving in three consecutive epochs. Fig. 7-4 shows the accuracy and loss vs iteration 

for FT and TL modes. The training process in the TL mode has only a third iterations 

compared to the FT mode. The achieved validation accuracy is 94.7% for FT which is 

less than the validation accuracy in TL with 97.1%. This accuracy was calculated based 

on the total number of correct calls. The performance of the network in each mode is 

shown in Table 7-4. As seen, the FT mode performed better than the TL mode in terms of 

True Positives (TP), 91.2%. The total accuracy of TL mode was better than the FT mode 

due to higher True Negatives (TN). Having more sub-images labeled as U in the 

validation dataset, 754 sub-images, makes the accuracy more dependent on the TN than 

TP. The training process in the FT mode is 50% more time consuming than TL mode 

which is due to more performed iterations in the FT mode. 
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Fig. 7-4 The training process, (left) accuracy, (right) loss 

Table 7-4 The Training Modes Results 

Mode Time (s) TP (TPR) TN (TNR) Acc. (%) 

FT 6210 134 (91.2%) 719 (95.3%) 94.7 

TL 4123 131 (89.1%) 744 (98.6%) 97.1 

 

Testing 

Table 7-5 shows the results of applying the network in both modes on the testing 

datasets. In the first testing dataset, the FT mode provides 6% more TPs than the TL 

mode, which is consistent with validation results. The TNs reported by the FT mode is 

80.2% which is almost 10% less than the TL mode. This puts the FT mode after TL mode 

in terms of total accuracy in despite the FT mode superiority in TP reports. The TP, TN, 

and total accuracy of both modes on the first dataset can be considered satisfactory when 
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compared to crack detection using conventional image processing techniques and human 

inspector [73].  

Table 7-5 Testing Results 
Dataset Mode TP TN Acc. (%) 

1st Dataset 
FT 153 (81.4%) 1149 (80.2%) 80.0 

TL 142 (75.5%) 1282 (89.5%) 87.9 

2nd Dataset 
FT 164 (59.0%) 1686 (81.8%) 79.0 

TL 128 (46.1%) 1959 (95.0%) 89.0 

3rd Dataset 
FT 864 (50.3%) 1240 (65.9%) 58.4 

TL 747 (43.5%) 1545 (82.1%) 63.7 

 

In the second testing dataset, the FT mode provides 15% more TPs than the TL 

mode. The TNs reported by the FT mode is 81.8%, better than the first dataset, but is 

almost 7% less than the TL mode. This puts the FT mode after TL mode in both TN and 

total accuracy, despite the FT mode superiority in TP reports. The TN reports can be 

considered satisfactory, particularly in TL mode with 95.0%. However, the network fails 

to detect the cracks as good as the first dataset when they are not the similar to cracks in 

the training dataset. In addition, the presence of irrelevant objects, and the background 

scenery in the testing images challenged the network ability to detect the cracks correctly.  

In the third testing dataset, the FT mode provides 7% more TPs than the TL 

mode. The TNs reported in the FT mode is only 65.9%, worst in all datasets and almost 

16% less than the TL mode. The performance of FT mode is worse than TL mode in both 

TN and total accuracy, despite the FT mode superiority in TP reports. TN reports in the 

TL mode can be considered satisfactory with 82%. However, the network did not 
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perform well in crack detection for both modes or in TNs in the FT mode. The cracks in 

this dataset are new to the network in terms of size, shape, pattern, and concrete texture. 

This caused the network to perform rather poor and was unable to accurately identify 

cracks.  

Discussion 

The performance of the network in both modes declines when tested on 

challenging datasets as seen in Fig. 7-5. The images in the first dataset, of similar cracks, 

have lower quality since the GoPro camera is a less suitable camera for detailed 

photography than the Nikon, refer to Table 7-2 for camera specifications. These images 

also suffer from blurriness, which is due Iris vibrations during the deck inspections. The 

network detects more cracks in the FT mode than the TL mode in all testing datasets. In 

the FT mode, all weights are computed partially for detection of concrete cracks. Higher 

TP rates than the TL mode, can justify more training time associated with FT mode. Fig. 

7-6 shows a sub-image in the first testing dataset which has been labeled correctly as C in 

FT mode; but, TL mode did not detect the crack on it. When network labeled the sub-

image wrong, a shaded box is added on the right top corner of the label box for 

presentation purposes. The sub-images with shaded mark are associated with either false 

negative (FN) or false positive (FP). This trend can also be seen in the second training 

dataset with more tangible superiority of TP reports in the FT mode. Fig. 7-7 shows an 

example of the network better crack detection in the FT mode.  
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Fig. 7-5 The TP and TN rates for all datasets in both network modes 

 
Fig. 7-6 Comparing TP reports in the 1st training dataset for, (a) FT mode correct label and 

(b) TL mode wrong label 
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(a) (b) 

Fig. 7-7 Comparing TP reports in the 2nd training dataset for, (a) FT mode correct label 

and (b) TL mode wrong label 

TP reports in the second dataset experienced a sudden drop which is mostly due to 

presence of irrelevant objects on the decks in the testing dataset resembling the cracks 

such as ice, snow, and grass chips. Fig. 7-8 shows an example of FP report due to 

presence of an irrelevant object. The trend of higher TP reports in FT mode continues to 

the third dataset too as seen Fig. 8-9; however, the TP rates dropped more drastically 

compared to the second dataset. This is because the cracks on this dataset are on different 

concrete textures, i.e. building walls, and have different patterns, and smaller sizes (Fig. 

3d).  
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(a) (b) 

Fig. 7-8 False positives due to presence of irrelevant objects, (a) FT mode wrong label, (b) 

TL mode wrong label 

The TN reports have a decreasing trend from the first to the third training dataset, 

from 82% to 66%, when the network is in the FT mode. Similar trend is observed in the 

TL mode but the range of TNs are greater, 95% in the first to 82% in the third dataset. 

Using the network in TL mode is more efficient when the images in the dataset have new 

features since the network has been trained on the ImageNet dataset with more than 1000 

image categories. The network in TL mode produces higher TNs in both training and 

testing process. On the first dataset, the difference between TNs in FT and TL modes was 

almost 9%. The presence of irrelevant objects such as concrete edges or having a non-

concrete background mostly make this difference (Fig. 7-10). This difference in the 

second dataset was almost 6% due to the presence of irrelevant objects as seen in Fig. 7-

11. The TN reports in the TL mode is 16% higher in the third dataset. Presence of 
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irrelevant objects and different concrete texture are the reasons for this difference as seen 

in Fig. 7-12. 

  
(a) (b) 

Fig. 7-9 Comparing TP reports in the 3rd training dataset for, (a): FT mode correct label, 

(b): TL mode wrong label 

 
Fig. 7-10 Comparing TN reports in the 1st training dataset for, (a) FT mode wrong label 

and (b) TL mode correct label 

The challenges in the dataset images weaken the performance of the network, 
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such as lower quality camera, image blurriness, presence of irrelevant objects, different 

crack pattern and size, and different structure. Having similar cracks in both training and 

testing datasets, the lower quality camera did not affect the TP and TN results as the 

presence of the new features did due to background change, crack size, and crack pattern 

in the testing dataset. To improve the results, the training dataset should be more 

comprehensive and include the possible new features in the inspection images which are 

not necessarily associated to the concrete cracks. Using higher quality cameras on the 

sUAS helps the detection rate. The AlexNet architecture can be replaced with more 

advanced and accurate architectures such as ResNet, to improve the network performance 

however, multiple GPU devices might be required. In addition, gathering scientific 

images from cracks and other defects to generate a comprehensive dataset, such as 

ImageNet, will be extremely useful for sUAS-assisted inspections. Nevertheless, the 

results of this study proved the feasibility of using DLCNNs for sUAS-assisted structural 

inspections of infrastructure.  

Conclusion and Future Work 

The application of deep learning convolutional neural networks for sUAS-assisted 

inspection of concrete structures is investigated in this paper. A convolutional neural 

network using AlexNet architecture was fully trained on a set high-quality point-and-

shoot images to achieve a desirable accuracy (FT mode). In addition to the FT mode, a 

pre-trained neural network with the same architecture, on the ImageNet, was re-trained 

on the training dataset using transfer learning for comparison purposes (TL mode). 
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Fig. 7-11 Comparing TN reports in the 2nd training dataset for, (a) FT mode wrong label 

and (b) TL mode correct label 

  
(a) (b) 

Fig. 7-12 Comparing TN reports in the 3rd training dataset for, (a) FT mode wrong label 

and (b) TL mode correct label 

The training and validation process for FT mode was 50% more time-consuming; 

however, it provides better accuracy (about 3%) in validation process. The network in FT 
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mode on the other hand, performs better than the TL mode in crack detection (better true 

positive) in validation dataset. To investigate the challenges in sUAS-assisted structural 

inspections of infrastructure, three datasets are gathered and the network performance is 

evaluated in both modes. The image in the first dataset are from the same cracks but 

taken by a low resolution camera on a sUAS. The image in the second dataset are from 

the same structures, i.e. decks, but taken by a sUAS with comparable resolution to the 

point-and-shoot camera. The image in the third dataset are from a different structure, i.e. 

building, by a sUAS with comparable resolution. The results showed that the true 

positive (TP) reports were higher when the FT mode was used. However, using the 

network in TL mode improves the true negative (TN) reports over the FT mode.  The 

accuracy of the network in both modes declined facing the new datasets from over 80% 

in the first dataset to 79% in the second dataset and to 58.4% in the third dataset in the 

fully trained mode. The accuracy in TL mode was 88% in the first dataset and decreased 

to 64% in the third dataset. The network in the FT mode detected more cracks in all 

datasets than the TL mode (between 6% to 15%); however, using transfer learning 

resulted the network achieved greater accuracies (7% to 15%). Both TP and TN reports 

decrease when the networks are tested on the testing datasets. The networks are shown to 

perform better in the first dataset showing it is important to have similar defects in the 

training and testing dataset. When the cracks are different but on similar structures, i.e. 

the second dataset, the accuracy dropped significantly and it got worse when the pattern, 

size, and the background of the cracks were changed in the third dataset. To improve the 

results, the training dataset should be more comprehensive to include the possible 

features in the inspection images. Using higher quality cameras on the sUAS helps the 
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detection rate. The AlexNet architecture can be replaced with different accurate 

architectures such as ResNet, to improve the network performance. 
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CHAPTER VIII 

SDNET2018: AN ANNOTATED IMAGE DATASET FOR NON-CONTACT 

CONCRETE CRACK DETECTION USING DEEP CONVOLUTIONAL NEURAL 

NETWORKS 

Abstract 

SDNET2018 is an annotated image dataset for training, validation, and 

benchmarking of artificial intelligence based crack detection algorithms for concrete. 

SDNET2018 contains over 56,000 images of cracked and non-cracked concrete bridge 

decks, walls, and pavements. The dataset includes cracks as narrow as 0.06 mm and as 

wide as 25 mm. The dataset also includes images with a variety of obstructions, including 

shadows, surface roughness, scaling, edges, holes, and background debris. SDNET2018 

will be useful for the continued development of concrete crack detection algorithms 

based on deep convolutional neural networks (DCNNs), which are a subject of continued 

research in the field of structural health monitoring. The authors present benchmark 

results for crack detection using SDNET2018 and a crack detection algorithm based on 

the AlexNet DCNN architecture. SDNET2018 is freely available at 

https://doi.org/10.15142/T3TD19. 

Data Specifications  

 Subject area: Structural health monitoring, deep learning, convolutional 

neural networks, artificial intelligence 

 More specific subject area: Concrete crack detection, image classification 

 Type of data: 2D-RGB image (.jpg) 
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 How data was acquired: Original images of cracked and non-cracked 

concrete bridge decks, walls, and pavements were captured using a 16 MP 

Nikon digital camera. 

 Data format: Raw digital images (.jpg) 

 Experimental features: 230 images of cracked and non-cracked concrete 

(54 bridge decks, 72 walls, 104 pavements) segmented into more than 

56,000 sub-images (256 × 256 px) 

 Crack widths from 0.06 to 25 mm 

 Obstructions including shadows, surface debris, inclusions, scaling, etc… 

 Data source location: Utah State University, Logan, Utah, USA 

 Data accessibility: The dataset is freely accessible at [1]  for any academic 

purposes 

 Related research article: Parts of this dataset have been used in the 

following research items for image-based non-contact crack detection 

applications: [99] [100] [101] [102] [103] [72] [8] 

 

Value of the Data 

 SDNET2018 can be used for training, validation, and benchmarking of algorithms 

for autonomous crack detection in concrete; 

 SDNET2018 has images of reinforced concrete decks (D) and walls (W), and 

unreinforced concrete pavements (P), which enables DCNNs training on it while 

also categorizing different types of concrete cracks;  
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 A DCNN trained on SDNET2018 can identify fine and wide cracks due to the 

size variety in it, widths from 0.06 mm to 25 mm; 

 Images in SDNET2018 intentionally include irrelevant objects which may 

improve the accuracy of DCNNs trained on this dataset in real applications; 

 SDNET2018 can be used to develop new DCNN architectures or modify the 

existing architectures, e.g. AlexNet or GoogleNet, in order to increase the 

efficiency of the network for concrete crack detection.  

Data 

The SDNET2018 image dataset contains more than 56,000 annotated images of 

cracked and non-cracked concrete, bridge decks, walls, and pavements. Its purpose is for 

training, validation, and benchmarking of autonomous crack detection algorithms based 

on image processing, deep convolutional neural networks (DCNN) [8], or other 

techniques. Such techniques are increasing in popularity in the structural health 

monitoring field. Continued advancement of crack detection algorithms requires an 

annotated diverse image dataset [9], which has not been available until now.  

Images of bridge decks were taken at the Systems, Materials, and Structural 

Health (SMASH) Laboratory at Utah State University, where a number of full scale 

bridge deck sections were stored. Images of walls and pavements were taken on Utah 

State University campus. Table 8-1 lists the number of cracked, non-cracked, and total 

sub-images of each type included in SDNET2018. The sample images in Fig. 8-1 show 

the range of crack widths, surface conditions, and other environmental factors 

represented within SDNET2018. Images are 256 × 256-px RGB image files in .jpg 
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format. Each image is classified as cracked or non-cracked and stored in a corresponding 

folder within the repository. Images are organized into three sub-directories: P for 

pavements, W for walls, and D for bridge decks. Each subfolder is further organized into 

sub-sub-directories with the prefix C for cracked and U for uncracked (e.g., :\D\CD for 

images of bridge decks with cracks). With the exception of segmentation into sub-images 

as discussed above, the images have not been modified from their original state.  

Experimental Design, Materials, and Methods 

SDNET2018 images were taken with a 16-MP Nikon camera at a working 

distance of 500 mm without zoom. The sensitivity was 125 ISO and the image resolution 

was 4068 × 3456 px. The surface illumination was between 1,500 and 3,000 lx. Each full 

image was segmented into 256 × 256-px sub-images. Each image represents a physical 

area of approximately 1000 mm × 850 mm and each sub-image represents a physical area 

of approximately 60 mm ×60 mm. 

Table 8-1 SDNET2018 image dataset description and statistics 

Image description No. cracked No. non-cracked Total 

Reinforced Bridge deck 2025 11595 13620 

Wall 3851 14287 18138 

Unreinforced Pavement 2608 21726 24334 

Total 8484 47608 56092 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig. 8-1. SDNET2018 images include (a) fine cracks, (b) coarse cracks, (c) shadows, (d) 

stains, (e) rough surface finishes, (f) inclusions and voids, (g) edges, (h) joints and surface 

scaling, and (i) background obstructions  

The authors analyzed the SDNET2018 dataset using the AlexNet DCNN 

architecture in fully trained and transfer learning modes using the computational setup 
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and procedure described by Dorafshan et al. [8]. Benchmarking results, including the 

sizes of the training and testing datasets, number of epochs required for training, and 

accuracy of classification of the testing dataset, are presented in Table 8-2. 

Table 8-2 Benchmark for SDNET2018 image classification using AlexNet 

Image 

description 

No. sub-images DCNN 

mode 

Training 

epochs 

Accuracy 

(%) Training Testing 

Bridge deck 
12,259 1,361 

FT 32 90.45 

TL 10 91.92 

Wall 
16,324 1,814 

FT 30 87.54 

TL 9 89.31 

Pavement 
21,900 2,434 

FT 30 94.86 

TL 10 95.52 

 

References 

[1]  Maguire M, Dorafshan S, Thomas RJ. SDNET2018: A concrete crack 

image dataset for machine learning applications.  Browse all Datasets. Paper 48. 

https://digitalcommons.usu.edu/all_datasets/48. https://doi.org/10.15142/T3TD19. 

[Accessed 18 05 2018]. 

[2]  Dorafshan S, Maguire M. Autonomous detection of concrete cracks on 

bridge decks and fatigue cracks on steel members. in Digital Imaging 2017, 

Mashantucket, CT, 2017.  

[3]  Dorafshan S, Maguire M, Chang M. Comparing automated image-based 

crack detection techniques in spatial and frequency domains. in Proceedings of the 26th 

American Society of Nondestructive Testing Reseach Symposium, Jacksonville, FL, 



308 
 
2017.  

[4]  Dorafshan S, Maguire M, Hoffer N, Coopmans C. Challenges in bridge 

inspection using small unmanned aerial systems: Results and lessons learned. in 

Proceedings of the 2017 International Conference on Unmanned Aircraft Systems, 

Miami, FL, 2017. DOI: 10.1109/ICUAS.2017.7991459 

[5]  Dorafshan S, Maguire M. Bridge Inspection: Human Performance, 

Unmanned Aerial Vehicles and Automation. Journal of Civil Strucutral Health 

monitoring. 2018 8: 443–476. https://doi.org/10.1007/s13349-018-0285-4 

[6]  Dorafshan S, Coopmans C, Thomas RJ, Maguire M. Deep Learning 

Neural Networks for sUAS-Assisted Structural Inpspections, Feasibility and Application. 

in ICUAS 2018, Dallas, TX, 2018.  

[7]  Dorafshan S, Maguire M, Qi X. Automatic Surface Crack Detection in 

Concrete Structures Using OTSU Thresholding and Morphological Operations. Civil and 

Environmental Engineering Faculty Publications. Paper 1234. Utah State University. 

2016. 

[8]  Dorafshan S, Thomas RJ, Maguire M. Comparison of Deep Convolutional 

Neural Networks and Edge Detectors for Image-Based Crack Detection in Concrete. 

Construction and Building Materials, 2018 186:1031-1045.  

[9]  Bashiri FS, LaRose E, Peissig P, Tafti AP. MCIndoor20000: a fully-

labeled image dataset to advance indoor objects detection.  Data In Brief. 2018 17:71-75.  

 

 



309 
 

CHAPTER IX 

INFRARED IN-LINE WELD INSPECTION – FEASIBILITY STUDY 

Abstract  

The current practice of weld inspection is using ultrasonic waves (UT inspection) 

is associated with several limitations such as expensive inspector qualifications and 

storage times (for weld cool), no permanent record of inspection, and minimum base 

metal thickness. Using thermography can potentially improve weld inspection by 

addressing these issues. The feasibility of using infrared thermography (IRT) for in-line 

weld inspection is investigated in this report. Welded specimens include steel angles and 

plates with complete joint penetration welds. Defects in specimens were manufactured 

which included cracks, inclusions, lack of fusion, porosity, and overpass. After initial UT 

inspection, the regions with defects were identified. Using a heat gun, the condition of the 

in-line inspection is mimicked by increasing the temperature of the specimens to a certain 

point. A thermal camera is used to record the temperature decay of the specimens with 

time. An exponential fit function is fitted to each pixel of the recorded sequence through 

time. It is observed that the regions with possible defects (previously identified in UT 

inspection) lose the temperature faster; therefore, the area under the exponential fit 

function is smaller of defected regions compared to the sound regions. Eventually all 

specimens are cut at the locations with possible defects which showed reasonable 

agreement with the UT and IRT inspections.  

Despite the success of the proposed IRT method in identifying defects, the high 

number of false positives reported limits using IRT for weld inspection. This can likely 
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be resolved with more investigation. The most likely solution to reduce the number of 

false positives is using a thermal camera with high operating temperature, at least  10,000 

C, and higher sensitivity, 0.1C.  Nevertheless, using IRT in its infancy and likely a 

viable technique and has vast potential to improve weld manufacturing and inspection.  

Introduction  

Verification of weld safety and workmanship is paramount to structural weld 

inspection both during fabrication and in-service. Weld inspections are costly in terms of 

time and money for both fabrication and in-service. There are many available non-

destructive evaluation (NDE) methods for weld inspection, but they are limited 

depending on the situation. Ultrasonic (UT) technique has been widely used to detect 

surface and sub-surface defects of welds. Despite the adequate accuracy, UT inspection 

has certain drawbacks. UT uses a contact probe to transmit ultrasonic waves in a weld 

specimen which makes in-line inspection challenging due to shop space and time 

constraints. Depending on the type of welding and the base material, the temperature of 

the weld ranges from 3,000 to 20,000 C. Because UT inspection is an inspection with 

contact, the inspector needs to wait for the welds to cool down for up to 4 hours. This 

adds time, and consequently cost, to the inspection process. The American Society of 

Testing Materials (ASTM E494-15) limits the thickness of the specimen for UT 

inspection to 5 mm (0.2 in.). This means UT inspection is not an option for steel joists 

made of 3 mm (1/8 in.) angles, which are common. Using UT for weld inspection 

requires a trained and experienced inspector to use the device and interpret the signal 

attenuation. Additionally, UT provides no permanent record and the results can only be 
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interpreted in real time with no opportunity for review by others at a later date, making 

quality assurance and quality control difficult. 

There are some challenges associated with infrared thermography (IRT) weld 

inspection. It can be difficult to provide the ideal situation for infrared thermography on a 

specimen since it requires a uniform energy deposit in a short period on a large surface. 

Also, irregular emissivity and thermal losses reduce the accuracy of the inspection 

considerably. These challenges have been identified on other civil structures inspected in 

the field but in a fabrication setting can be mitigated through changes to the weld 

inspection protocol, preparation, and post-processing. The purpose of this study is to 

investigate the potential and challenges of using IRT in weld inspection for sub-surface 

defect detection. IRT is a non-contact method and can be applied for in-line weld 

inspection using a high-temperature range thermal camera. Currently, high-temperature 

cameras that are commercially available measure up to 3,000C. Therefore, using IRT 

has the potential to decrease the inspection time and cost. In addition, IRT can be applied 

to detect flaws in specimens with any thickness. Unlike UT inspection, the thermal 

sequences or images can be achieved and reviewed if necessary. Finally, using IRT 

equipped with a machine vision post-processing operation on the thermal sequences does 

not require training or knowledge.  

There are very few studies under real world conditions where IRT techniques are 

used for construction weld inspection, but a common challenge is high number of false 

positives. Using IRT for weld defect detection has been investigated recently by Manuel 

and Washer (2017). Surface and subsurface defects, including lack of fusion, inclusion, 
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cracking and cutouts were attempted. The specimens were covered with high emissivity 

black paint, which is not an efficient approach for in-line weld inspection, but to improve 

the results of thermography. A pair of industrial heaters, a laboratory oven, propane 

heaters, and a resistive heat element were used as excitation sources through 50 tests on 

three specimens. A FLIR T620 camera was used to monitor the welds which is 

considered a state-of-the-art thermal camera. Since the exact location of the defects was 

known, the IRT inspection showed promising results; however, as seen in Fig. 9-1, there 

are several sound locations on the specimens depicting similar behavior as defected 

locations. Fig. 9-1b indicates considerable noise through the specimen and if the defect 

locations were not known would be impossible to truly identify a defect and would result 

in considerable false positive reports. 

 

 
(a) (b) 

Fig. 9-1 False positive in IRT weld inspections, images are from (Manuel and Washer 2017) 

In order to investigate the possibility of using IRT for weld inspection for 

Vulcraft, specimens with and without defects were manufactured and inspected using 
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IRT. This report summarizes the findings, conclusions, and recommendations of this 

study. Chapter 2 introduces the specimens and the process of defect manufacturing in this 

study. Chapter 3 explains the experiments performed on the specimens. Chapter 4 

proposes the novel methodology to separate the defected regions from the sound regions. 

Chapter 5 presents the challenges and recommendations to improve the results of IRT 

weld inspection and chapter 6 presents the conclusions.  

Specimens 

Angles with two thicknesses, 3 mm (2/16 in.) and 8 mm (5/16 in.), were selected 

to manufacture the defects during welding. In addition, two 13 mm (8/16 in.) plates were 

also used to perform the multi-pass welds.  

Defect Manufacturing  

Initially, four common weld defects were proposed to be studied in this research. 

These defects were inclusion, porosity, cracking, and lack of fusion. To manufacture each 

defect, the following methods from past studies and experience were proposed: 

Inclusion: 

Method a: Drop a small piece of slag into the weld and weld over it; 

Method b: Drill a small hole 1.5 mm (1/16 m) into the wall of the base metal; 

Method c: Perform a multi-pass weld and drill a hole in first weld (Consonni et al, 

2012). 

Fig. 9-2 shows the process of inclusion manufacturing using method (a), i.e. 

putting slags in the welding bed.  Fig. 9-3 shows the inclusion manufacturing using 

methods b and c.  
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Fig. 9-2 Manufacturing inclusion in the welds using slag (method a) 

 
Fig. 9-3 Manufacturing inclusion in the welds using drilling (method b and c) 

Porosity:  

Change amps/volts; 

Introduce moisture to the welding bed (Kemppainen et al, 2003);  

Introduce oil to the welding bed. 

Method (a) created porosity on the back of the specimens while method (b) and 

(c) created both surface and sub-surface porosity. Fig. 9-4 shows how defected welds 

with porosity were manufactured. 
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Cracking:  

Instead of a clean bevel, a small 6.35 mm (1/4 in). part of the angle square was 

left as is and welded around. As the weld cooled it created a very tight crack. Fig. 9-5 

shows how the specimens were prepared before manufacturing the cracks in the welds. 

 
Fig. 9-4 Manufacturing porosity in the welds by changing the voltage (method a), adding 

water (method b), and adding oil (method c) 

 
Fig. 9-5 Manufacturing cracks in the welds by leaving out a part of the bevels 

Lack of Fusion: 

UT inspection, explained in the next section, showed that a couple of welds 

exhibited lack of fusion. These welds were made using a normal welding process and 
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were supposed to be sound. Since welds with lack of fusion were obtained, no additional 

process was used to create a lack of fusion defect in the specimens.   

Experiments 

UT Inspection 

The total number of welded angles was 32, including 2 plates with thickness of 13 

mm (8/16 in.), 14 angles with thickness of 8 mm (5/16 in.), and 8 angles with thickness 

of 3 mm (2/16 in.). A USN 58 L Ultrasound flaw detector was used to inspect the 

specimens. Fig. 9-6 shows the flaw detector and probe. The inspector swept the probe 

along the weld to locate defects. The regions with defects showed signal spikes in the 

monitor of the device. The results of the UT inspection are shown in Table 9-1. In this 

table, quantity represents the number of specimens, an angle leg or a plate surface, that 

was considered to have a certain defect after UT inspection. The specimens with 3 mm 

(2/16 in.) thickness were inspected, but the results are not valid due to the thickness 

limitation regulated by ASTM.   

IRT Inspection 

The aim of the IRT inspection was to investigate whether it is feasible to detect 

the same defects UT inspection identified previously. The thermal camera for this study 

was an FLIR SC640 thermal camera with an operating temperature range of -40 to 80C. 

The camera also has a thermal sensitivity of 30 mK at 30C, accuracy of ± 1C, spectral 

range of 7.5-13 μm, resolution of 640 by 480 IR, and up to 30 Hz data acquisition 

frequency. 
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Fig. 9-6 USN 58 L Ultrasonic flaw detector 

Table 9-1 Results of UT inspections 
Specimen 

Thickness 
Detected Defect Quantity 

13 mm (8/16 in.) 

Inclusion 1 

Lock of Fusion 1 

Sum 2 

8 mm (5/16 in.) 

Sound 2 

Inclusion 1 

Porosity 11 

Cracking 2 

Lack of Fusion 10 

Over Pass 2 

Sum 28 

 

In order to simulate in-line inspection, the specimens were heated up to a 

temperature in the range of the operating temperature of the camera using a Milwaukee 

Variable Temperature Heat Gun. The heat gun increased the temperature of the 

specimens, each leg of the angles at the time or the whole plate, through transmission 

mode. Fig. 9-7 shows the experiment set up. The heat gun, placed within 50 mm (2 in.) of 

the bottom of the specimens, increased the temperature of a Region of Interest (ROI) in 
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each specimen. For specimens with defects, the ROI covered the region with defects 

determined by UT inspections. For sound welds, ROI was selected randomly on the weld. 

The thermal camera was set on a tripod to monitor the surface emission of the weld. 

When the maximum temperature reached almost 80C, the heat gun was turned off and 

the camera started recording thermal sequences with a 10 Hz frequency for 50 s. The 

camera connected to a PC that provided a First Person View (FPV) of the specimens 

through Therma Vision Examine IR software.   

 
Fig. 9-7 Weld inspection in a lab setting 

Proposed Temperature Decay 

Solving Newton’s cooling law and specific heat formula, the temperature of any 



319 
 
given object changes in an exponential form as shown below: 

𝑇(𝑡) = 𝑇𝑎 + (𝑇0 − 𝑎)𝑒−𝑘𝑡 (9-1) 

Where T is the temperature of a certain location at any time, 𝑇𝑎 is the ambient 

temperature, 𝑇0 is the material temperature at the initial time, and k is a constant which 

depends on the following: material heat transfer constant (), area of the exposed surface 

(A), mass of the material (m), and specific heat of the material (c).  

𝑘 =
−𝛼𝐴

𝑚𝑐
 (9-2) 

Presence of a defect disrupts the heat transfer by changing one or multiple 

parameters in equation (9-2). Therefore, the ROIs with defects should theoretically have 

different temperature functions than the sound ROIs.   

The surface of the specimens in this study were not grinded or prepared, with the 

exception of two specimens that were painted with black high emissivity paint. Each 

sequence of thermal images shows the temperature of the specimen in different locations 

as pixel intensities. By monitoring each pixel through time, one can fit an exponential 

function and compare the sound and defected pixels to each other. However, fitting a 

curve to each pixel in an image throughout the whole sequence can be time consuming 

and computationally expensive. Therefore, sub-regions consisting of 10-30 pixels were 

defined for each ROI in each specimen. The average temperature of each sub-region was 

then calculated in each sequence and an exponential curve was fitted to the sub-region.  

Results 

Table 9-2 shows the specimens tag, ID, intended defect, identified defect using 

UT, and observed defect after cutting through destructive testing (DT). The size of the 
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defects was measured using a HUMBOLDT HC-2950 microscope with 0.02 mm (0.0008 

in.). The UT inspection results detected lack of fusion in 10 specimens despite the 

presence of other defects in them. UT inspection also did not result in conclusive defect 

identification for 3 mm (2/16 in.) specimens.  

Table 9-2 The summary of specimens and their defects 

Specimen 

Tag 

Thickness 

(mm) 

Intended 

Defect 

Identified Defect 

(UT) 

Observed 

Defect 

(DT) 

Size (mm) 

L W 

IHc1 13 I I ND - - 

IHc2 13 I LoF ND - - 

S1A 8 ND ND ND - - 

S1B 8 ND ND ND - - 

CH1A 8 C P C 1.06 0.02 

CH1B 8 C P 
C 1.68 0.42 

C 5.00 0.96 

CH2A 8 C C C 1.20 
0.04-

0.20 

    C 1.30 0.30 

CH2B 8 C C I 2.46 1.22 

GH2A 8 ND LoF ND - - 

GH2B 8 ND LoF ND - - 

IHa1A 8 I LoF I 2.94 0.68 

IHa1B 8 I LoF I 0.92 0.56 

IHa2A 8 I LoF C 5.00 0.08 

IHa2B 8 I LoF I 0.20 0.20 

IHa3A 8 I P C 1.82 0.12 

IHa3B 8 I OP I 2.10 1.30 

    I 3.06 0.26 

IHa4A 8 I I ND - - 

IHa4B 8 I P I 0.58 0.58 

    C 1.00 0.22 
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NH1A 8 ND LoF I 0.30 0.30 

    C 1.00 0.02 

NH1B 8 ND LoF ND - - 

NH2A 8 ND LoF ND - - 

NH2B 8 ND LoF ND - - 

PHa1A 8 P P P 1.02 1.02 

    P 1.20 1.20 

PHa1B 8 P OP I 0.50 0.50 

PHa2A 8 P P I 2.18 0.54 

    C 0.50 0.04 

PHa2B 8 P P I 1.30 0.66 

    I 1.36 0.72 

PHb1 8 P P P 0.62 0.40 

    I 1.00 0.24 

PHb2 8 P P I 0.62 0.08 

    I 1.10 0.22 

PHc1 8 P P I 0.98 0.20 

PHc2 8 P P ND - - 

CL1 3 C ND I 0.18 0.12 

GL1 3 ND ND ND - - 

GL2 3 ND ND ND - - 

GL3 3 ND ND ND - - 

NL1 3 ND ND ND - - 

NL2 3 ND ND ND - - 

PLO 3 P ND ND - - 

PLW 3 P ND ND - - 

The proposed IRT technique was evaluated with respect to the UT results in the 

following sections 

UT Inspection 

8 mm (5/16 in.) Specimens 

Two specimens had sound welds according to the UT inspection. Fig. 9-8 shows 
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the 8 mm (5/16 in.) sound specimens with the regions of interest.  

  
S1A S1B 

Fig. 9-8 Eight mm (5/16 in.) sound specimens, S1A and S1B, with associated ROIs 

The mean temperature in 5-pixel by 5-pixel sub-regions was calculated for each 

sequence. The general form of the fit function was as follows: 

𝑇(𝑡) = 𝑎𝑒−𝑏𝑡 (9-3) 

The mean of coefficients “a” and “b” for each specimen and the total number of 

sub-regions are shown in Table 9-3. The average of two ROIs is considered to be the fit 

function for the sound weld with thickness of 8 mm (5/16 in.).  Fig. 9-9 shows the 

temperature decay graphs for sound welds, S1A and S1B, and for the average. The area 

under the temperature decay graph can be used as an indicator for heat loss (𝐴𝑛).  

The UT inspection detected defects in 8 mm (5/16 in.) specimens including 1 with 

inclusion, 11 with porosity, 10 with lack of fusion, 2 with sub-surface cracking, and 2 

with over-pass (out of this study’s scopes). The ceramic inclusion caused the weld to lose 
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temperature faster in specimen IHa4A than the sound weld, as seen in Fig. 9-10. 𝐴  for 

the ROI with inclusion was 3102, which was smaller than the sound specimen. 

Table 9-3 Coefficients of the exponential fit functions for 8 mm (5/16 in.) sound welds 
S1A S1B Average 

No of 

Sub-

regions 

𝑨𝒏 a b 

No of 

sub-

regions 

Area a b 𝑨𝒏 a b 

72 3176 70.53 0.00417 63 3307 69.53 0.00256 3242 70.03 0.003365 

 
Fig. 9-9 The temperature decay for graph for sound welds 
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Fig. 9-10 Temperature decay in sound weld and IHa4A with inclusion 

A total of 11 specimens were diagnosed with porosity in the UT inspection. The 

porosity in three of them was caused by changing the voltage during welding. Fig. 9-11 

shows the temperature decay graphs for welds with porosity manufactured by this 

method. As seen, the sound weld was more resistant to heat loss than the welds with 

porosity. The area 𝐴𝑛 for P1, P2, and P3 (PHa1A, PHa2A, and PHa2B specimens) were 

2982, 3046, and 3134, respectively, which were smaller than the sound area in all three 

cases. 

The UT inspection showed signs of porosity in 2 specimens that were 

manufactured to have cracking. The temperature decay graphs for these specimens are 

shown in Fig. 9-12. The heat loss was faster in defected specimens than the sound weld. 

The values of 𝐴𝑛 for P4 and P5 (CH1A and CH1B specimens) were 2732 and 2990, 

respectively.  

The UT inspection showed signs of porosity in 2 specimens that were 
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manufactured to have inclusion. The temperature decay graphs for these specimens are 

shown in Fig. 9-13. The heat loss was faster in defected specimens than those with sound 

welds. The values of 𝐴𝑛 for P6 and P7 (IHa3A and IHa4B specimens) were 3130 and 

3085, respectively. 

Introducing oil to the welding bed also caused porosity in two specimens. The 

temperature decay graphs for these specimens are shown in Fig. 9-15. The heat loss was 

faster in defected specimens than the sound weld specimens. The values of 𝐴𝑛 for P10 

and P11 (PHc1 and PHc2 specimens) were 3115 and 3080, respectively. 

Introducing water to the welding bed caused porosity in two specimens. The 

temperature decay graphs for these specimens are shown in Fig. 9-14. The heat loss was 

faster in defected specimens than the sound weld specimens. The values of 𝐴𝑛 for P8 and 

P9 (PHb1 and PHb2 specimens) were 3119 and 3114, respectively. 

Using the proposed method to manufacture cracking, UT inspection verified 

regions with cracks in two specimens. The temperature decay graph for these specimens 

are shown in Fig. 9-16. The heat loss was faster in defected specimens than the sound 

weld. The values of 𝐴𝑛 for C1 and C2 (CH2A and CH2B specimens) were 3101 and 

3144, respectively. 
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Fig. 9-11 Temperature decay of PHa1A, PHa2A, and PHa2B specimens with porosity 

(manufactured by changing voltage) and sound welds 

 
Fig. 9-12 Temperature decay of CH1A and CH1B specimens with porosity (manufactured 

for cracking) and sound welds 
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Fig. 9-13 Temperature decay of IHa3A and IHa4B specimens with porosity (manufactured 

for inclusion) and sound welds 

 
Fig. 9-14 Temperature decay of PHb1 and PHb2 specimens with porosity caused by water 

and sound welds 
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Fig. 9-15 Temperature decay of PHc1 and PHc2 specimens with porosity caused by oil and 

sound welds 

 
Fig. 9-16 Temperature decay of CH2A and CH2B specimens with cracks and sound welds 

A total number of 10 specimens were diagnosed with lack of fusion by the UT 

inspection . The lack of fusion in these specimens happened during the welding process 

and was not intentional. This defect was detected using UT inspection and prevented 
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identification of other defects, if existing, since the presence of lack of fusion disrupted 

the signal.  

Two specimens with lack of fusion were originally built to be part of sound 

specimens. The welding bed was beveled and cleaned prior to welding of these 

specimens. The temperature decay graphs for these specimens are shown in Fig. 9-17. 

The heat loss was faster in defected specimens than the sound weld. The values of 𝐴𝑛 for 

LoF1 and LoF2 (GH2A and GH2B specimens) were 2992 and 3037, respectively. 

 
Fig. 9-17 Temperature decay of GH2A and GH2B specimens with lack of fusion in good 

welds and sound welds 

Four specimens with lack of fusion were originally built to have inclusions. The 

temperature decay graphs for these specimens are shown in Fig. 9-18. The heat loss was 

faster in defected specimens than the sound weld. The values of 𝐴𝑛 for LoF3, LoF4, 

LoF5, and LoF6 (IHa1A, IHa1B, IHa2A, and IHa2B specimens) were 3051, 2994, 2836, 
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and 2907, respectively. 

Four specimens with lack of fusion were originally built to have no defects. 

Unlike specimens LoF1 and LoF2, the welding bed was not beveled prior to welding 

(normal welding process). The temperature decay graphs for these specimens are shown 

in Fig. 9-19. The heat loss was faster in defected specimens than the sound weld. The 

values of 𝐴𝑛 for LoF7, LoF8, LoF9, and LoF10 (NH1A, NH1B, NH2A, and NH2B 

specimens) were 2947, 2917, 2892, and 2825, respectively.  

In two specimens, UT inspection detected over-pass. Even though this defect was 

not in the scope of this study, these specimens were analyzed for comparison. The 

temperature decay graphs for these specimens are shown in Fig. 9-20. The heat loss was 

faster in defected specimens than the sound weld. The values of 𝐴𝑛 for OP1 and OP2 

(IHa3B and PHa1B specimens) were 3179 and 3077, respectively. 

Table 9-4 shows the values 𝐴𝑛 for all the specimens with 8 mm (5/16 in.) 

thickness. 



331 
 

 
Fig. 9-18 Temperature decay of IHa1A, IHa1B, IHa2A, and IHa2B specimens with lack of 

fusion (intended to have inclusion) and sound welds 

 
Fig. 9-19 Temperature decay of NH1A, NH1B, NH2A, and NH2B specimens with lack of 

fusion in normal welds and sound welds 
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Fig. 9-20 Temperature decay of IHa3B and PHa1B specimens with lack of fusion and sound 

welds 

13 mm (8/16 in.) Specimens 

UT inspection showed both plates had defects in them: inclusions and lack of 

fusion. Therefore, no fit function associated with sound specimens can be calculated for 

13 mm (8/16 in.) plates. In order to obtain the exponential fit function for sound regions, 

two ROIs were selected in the regions that passed the UT inspection as sound. Then each 

ROI was segmented to several sub-regions and the fit function for each sub-region was 

obtained. Table 9-5 shows mean of coefficients for the fit function and the 𝐴𝑛 values over 

all sub-regions for the sound weld. UT inspection detected 3 inclusions in one of the 

specimens. The temperature decay graphs for ROIs with defects are shown in Fig. 9-21. 

The heat loss was faster in defected ROI than the sound weld. The values of 𝐴𝑛 for I2, I3, 

and I4 (IHc1-1, IHc1-2, and IHc1-3 specimens) were 3046, 3244, and 3102, respectively. 
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Table 9-4 The values of An for 8 mm (5/16 in.) welds 

Defect Type Specimen Tag 
Defect 

ID 
𝑨𝒏 

Sound S1 NA 3242 

Inclusion IHa4A I1 3102 

Porosity 

PHa1A P1 2982 

PHa2A P2 3046 

PHa2B P3 3134 

CH1A P4 2732 

CH1B P5 2990 

IHa4A P6 3130 

IHa4B P7 3085 

PHb1 P8 3115 

PHb2 P9 3114 

PHc1 P10 3119 

PHc2 P11 3080 

Cracks 
CH2A C1 3101 

CH2B C2 3144 

Lack of Fusion 

GH2A LoF1 2992 

GH2B LoF2 3037 

IHa1A LoF3 3051 

IHa1B LoF4 2994 

IHa2A LoF5 2836 

IHa2B LoF6 2907 

NH1A LoF7 2947 

NH1B LoF8 2917 

NH2A LoF9 2892 

NH2B LoF10 2825 

Over-pass 
IHa3B OP1 3179 

PHa1B OP2 3077 

 

UT inspection detected lack of fusion in a part of the weld on the other plate. The 

temperature decay graph for the ROI with lack of fusion is shown in Fig. 9-22. The heat 
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loss was slightly faster in the defected specimen than the sound weld. The value of 𝐴𝑛 for 

LoF11 (IHc2 specimen) was 3341. 

Table 9-6 shows the 𝐴𝑛 values for all the specimens with thickness of 13 mm 

(8/16 in.). 

Table 9-5 Coefficients of the exponential fit functions for 13 mm (8/16 in.) sound welds 

Specimen 1 (with inclusions) Specimen 2 (with LoF) 

No of Sub-regions 𝐴𝑛 a b No of Sub-regions 𝐴𝑛 a b 

158 3354 70.01 0.00164 100 3353 70.02 0.00228 

 
Fig. 9-21 Temperature decay of IHc1-1, IHc1-2, and IHc1-3 specimens with inclusions and 

sound weld 
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Fig. 9-22 Temperature decay of IHc2 specimen with lack of fusion and sound weld 

Table 9-6 The values of An for 13 mm (8/16 in.) welds. 

Defect Type Specimen Tag Defect ID 𝑨𝒏 

Sound NA NA 3354 

Inclusion 

IHc1-1 I2 3046 

IHc1-2 I3 3244 

IHc1-3 I4 3102 

Lack of Fusion IHc2 LoF11 3341 

3 mm (2/16 in.) Specimens 

The list of the 3 mm (2/16 in.) specimens with their intended defects are shown in 

Table 9-7. Since the UT inspection results were not valid for these specimens, two of the 

specimens, made using the normal process, were selected as sound specimens. The ROI 

on each specimen, covering the whole area of the weld, was segmented into sub-regions. 

The mean of coefficients “a” and “b” for all sub-regions and the total number of sub-

regions are shown in Table 9-8.  
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Table 9-7 IDs and possible defects in 3 mm (2/16 in.) specimens 
Specimen ID Specimen Tag Possible Defect 

L1 GL2 Sound 

L2 GL3 Sound 

L3 CL1 Cracking 

L4 GL1 Porosity 

L5 NL1 Lack of Fusion 

L6 NL2 Inclusion 

L7 PLW Porosity 

L8 PLO Porosity 

 

Table 9-8 Coefficients of the exponential fit function for 3 mm (2/16 in.) sound welds 
L1 L2 Average 

No of Sub-

regions 
𝐴𝑛 a b 

No of sub-

regions 
Area a b 𝐴𝑛 a b 

2035 3060 69.29 0.0049 1292 3050 67.26 0.0038 3056 68.50 0.0045 

𝐴𝑛 = 3056 was considered the area associated with the sound weld in 3 mm 

(2/16 in.) specimens. The rest of the specimens were analyzed and the 𝐴𝑛 value of each 

sub-region was compared to 3056. If the area was less than 3056, the sub-region was 

considered defected, since defected regions tend to lose heat faster than the sound ones. 

Otherwise, the analyzed sub-region was sound.  

For specimen L3, no defected regions were found in the ROI, the region inside of 

the rectangle, as seen in Fig. 9-23. For specimen L4, no defected regions were found in 

the ROI, the region inside of the rectangle, as seen in Fig 9-24. For specimen L5, six 

regions were identified as defected in the ROI, the region inside of the rectangle, as seen 

in Fig. 9-25. The defected regions were identified with solid rectangles on in the ROI. 

The pattern of these solid rectangles indicates porosity. For specimen L6, no defected 
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regions were found in the ROI, the region inside of the rectangle, as seen in Fig. 9-26. 

For specimen L7, six regions were identified as defected in the ROI, the region inside of 

the rectangle, as seen in Fig. 9-27. The defected regions were identified with solid 

rectangles in the ROI. The pattern of the detected defects indicates porosity on the 

rectangles on the right and lack of fusion on the rectangles on the left (edge of the weld). 

For specimen L7, several regions were identified as defected in the ROI as seen in Fig. 9-

28. The defected regions were identified with solid rectangles on the ROI. The pattern of 

the detected regions can be associated with porosity and/or lack of fusion. 

 
 Fig. 9-23 Specimen L3 and the ROI 
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Fig. 9-24 Specimen L4 and the ROI 

 
Fig. 9-25 Specimen L5 and the ROI, with the regions identified as defects in red 
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Fig. 9-26 Specimen L6 and the ROI 

 
Fig. 9-27 Specimen L7 and the ROI, with the regions identified as defects in red 
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Fig. 9-28 Specimen L8 and the ROI, with the regions identified as defects in red 

Destructive Testing of the Specimens 

The destructive testing includes cutting the weld specimens longitudinally at 

susceptible locations. The susceptible locations are determined in the UT inspection. Fig. 

9-29 shows a typical cut performed on specimens CH1A and CH1B. The observed 

defects and their size in all specimens are shown in Table 9-2. The cutting results for 

some specimens in this table indicated no defects (ND) despite being diagnosed with 

defects in UT and IRT inspections. Due to the small size of the defects, as seen in Table 

9-2, the cut could have missed the defects. The other possible scenario is that UT and IRT 

inspection provided false positives in these specimens.  



341 
 

 
Fig. 9-29 Specimens CH1A and CH1B (a) cutting, (b) inclusion (c) crack, (d) inclusion 

The sole use of the proposed IRT method for weld defect detection can identify 

the locations of defects, the regions with smallest values of 𝐴𝑛. Fig. 9-30 show the  𝐴𝑛 

values for the specimen IHc1 and the region on interest. Each column in the bar graph 

represents the average  𝐴𝑛 for a sub-region (5 by 5 pixels) in the region of interest. The 

darker colors indicate lower  𝐴𝑛 values which are associated with the defected regions. 

As seen, the middle of the weld had the least  𝐴𝑛 values which is in agreement with 3 

inclusions detected in the UT inspection, however, the DT results showed no signs of 

defects. Fig. 9-31 shows the   𝐴𝑛 values and region of interest of the specimen IHc2 

where the UT inspection identified lack of fusion. In the bar graph the lack of fusion can 

be seen on the edge of the weld with darker colors. Fig. 9-32 shows the 𝐴𝑛 values for 

specimen PHa2b. The darker column in the bar graph were associated with defected 
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regions and also false positives, as indicated in the figure.  

 
Fig. 9-30 The An values for specimen IHc1 

Finding the defects using the proposed IRT method can be challenging or 

impossible due to false positives.  

Challenges and Recommendations 

The authors faced several challenges throughout this research. Using real-time 

IRT for weld inspection has not been done in the past studies.  
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Fig. 9-31 The An values for specimen IHc2 

Weld Surface 

 During the welding process, the specimens’ surface manifested regions with 

irregularities such as difference in contrast or color and bumps, which affected the 

thermal images. These irregularities were not correlated with the presence of defects in 

the welds and can mislead the inspector viewing the captured thermal images. Fig. 9-

33shows how the surface clutters can increase the false positive detections in a thermal 

image. Having these clutters changes the surface emissivity of the material and can cause 
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inaccuracy in the camera’s readings. This issue is even more important when dealing with 

low-emissivity materials such as steel and welds. 

 
Fig. 9-32 The An values for specimen PHa2B 

 It is possible to grind the weld surface to get rid of the surface clutters and bombs 

but it would not be practical in a manufacturing process. Another option is covering the 

weld surface with high emissivity paint to provide a mono-contrast surface for 

thermography. All welds eventually get painted in the manufacturing process, but it is 

preferable to detect the defects before painting and right after they are built.  
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Fig. 9-33 Misleading surface clutters: left visual, right thermal 

Camera 

The specification of the infrared camera plays an important role in IRT weld 

inspection. The camera used for this study, FLIR SC 640, does not have comparable 

sensitivity and accuracy to the recent commercially available ones. In addition, this 

camera was not compatible with MATLAB and uses an old-fashioned chord for desktop 

connection, which is not well-suited to new desktops. However, the most important issue 

with the FLIR SC 640 was its low temperature range (-40 to 80C) which does not allow 

real-time in-line weld inspection. FLIR SC 6100 measures up to 2,000C and can record 

sequences up to 126 Hz. It is also possible to special-order cameras with even larger 

temperature ranges.  

Uncontrolled and Uneven Heating 

Excitation source is another factor affecting the success of IRT weld inspection. 
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In this study, a heat gun was used to simulate the temperature condition of a steel angle 

after welding in a lower scale. The heat gun provides a cheap, easy-to-use, and repeatable 

source for increasing the temperature of the welds; however, the transmitted energy from 

the heat gun is not homogenous. Some regions get hotter than the others. Using the fit 

function of the temperature decay instead of using actual temperatures diminished the 

effects of un-even heating to some extent, but it did not completely resolve it. The 

amount of energy created by the heat source could not be measured when the heat gun 

was used. Therefore, the heating is un-controlled. Common heat sources used in the 

literature for IRT defect detection are high power halogen and Ultraviolet (UV) lamps. 

Lumatic Superlite I07 UV lamp was used to detect weld cracks in a study and showed 

promising results (Broberg 2013).  

Defect Manufacturing 

Another challenge in this study was to manufacture realistic weld defects. Despite 

using standard methods to build defects, some defects were really hard to obtain. For 

instance, in 8 mm (5/16 in.) specimens, UT only detected inclusion in 1 out of 8 

specimens. The methodology used to generate cracks was not conclusive to cracks even 

though UT inspection detected some anomalies in those specimens. Lack of fusion aside, 

porosity seemed to be the most convenient defect to manufacture by introducing water 

and oil to the welding bed; however, most of the obtained porosities were on the surface 

and visually detectable. Lack of fusion was manifested in welds when it was not 

supposed to; either they were built to have a different defect or no defects at all.  
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Welding Process 

The process used to create the welds in this study was … which was highly 

uncontrolled due the extreme temperature and pressure imposed on the base metal. Some 

defects, such as inclusion, were almost impossible to create in this process, mainly 

because the slags were blown away from the welding bed. This welding process also 

resulted in more surface clutters than controlled welding. Tungsten inert gas (TIG) 

welding can be used to create the defects in a more controlled manner.  

 Conclusions 

Verification of weld safety and workmanship is paramount to structural weld 

inspection both during fabrication and in-service. Weld inspections are costly in terms of 

time and money for both situations. Ultrasonic (UT) technique has been widely used to 

detect surface and sub-surface defects of welds. Because UT inspection is an inspection 

with contact, the inspector needs to wait for the welds to cool down for one to a six hours. 

This adds time, and consequently cost, to the inspection process. The purpose of this 

study is to investigate the potentials and challenges of using to IRT in weld inspection, 

particularly for sub-surface defect detection. IRT is a non-contact method and can be 

applied for in-line weld inspection using a high-temperature range thermal camera. 

Four common weld defects were made to be studied in this research including 

inclusion, porosity, cracking, and lack of fusion. The total number of welded angles was 

32, or 38 specimens, including 2 plates with thickness of 13 mm (8/16 in.), 14 angles 

with thickness of 8 mm (5/16 in.), and 8 angles with thickness of 3 mm (2/16 in.). UT 

inspection was used to detect defects in 13 mm (8/16 in.) and 8 mm (5/16 in.) specimens. 
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The specimens then were heated up using a heat gun in heat transmission mode. A 

thermal camera was set on a tripod and monitored the surface emission of the weld. 

When the maximum temperature in the ROI on the weld neared 70C, the heat gun was 

turned off and the camera started recording thermal sequences with a 10 Hz frequency for 

50 s. The recorded sequences were then analyzed to find the rate at which sub-regions in 

ROIs lost heat by fitting an exponential fit function and calculating the area under this 

function (𝐴𝑛). The sound welds had larger values of 𝐴𝑛 than the welds with defects. The 

results of the UT inspection and IRT inspection matched, proving the feasibility of using 

IRT for weld inspections. UT results for 3 mm (2/16 in.) specimens were not valid; 

therefore, the two specimens that were built as sound were analyzed to obtain 𝐴𝑛 for 

sound welds. The sub-regions with areas less than sound weld 𝐴𝑛 were identified as 

defected regions. Possible porosity and lack of fusion were detected by this method in 3 

specimens, while no defects were detected in the other 3.  

Challenges associated with using IRT for weld inspection were as follows: 

 Surface clutters and bombs created during welding were not correlated 

with the presence of defects in the welds but they can be misleading in the 

captured thermal images. Having these clutters changes the surface 

emissivity of the material and can cause inaccuracy in the camera’s 

readings, especially in low-emissivity materials.  

 The camera used for this study, FLIR SC 640, only measures temperature 

in the range of -40 to 80C, which is not suitable for in-line weld 

inspection. Because the camera is almost 10 years old it was not 
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compatible with current desktops and required a special chord for desktop 

connection.   

 The transmitted energy from the heat gun used to increase the temperature 

of the specimens is not homogenous. Some regions got hotter than the 

others. Using the fit function of the temperature decay instead of using 

actual temperatures diminished the effects of un-even heating to some 

extent, but it did not completely resolve it. 

 Despite using standard methods to build defects, some defects were hard 

to create, such as cracks and inclusions. The manufactured porosities were 

mostly on surface not sub-surface. Lack of fusion was manifested in welds 

when it was not supposed to; either they were built to have a different 

defect or no defects at all. 

 Welding process which was used to create the welds was uncontrolled and 

made defect manufacturing very challenging, especially for inclusions. 

This welding process also resulted in more surface clutters than controlled 

welding.  

 For further study and inspection, the following recommendations are 

proposed: 

 Using high temperature range cameras coupled with a data acquisition 

system and software. 

 Using controlled heat sources to excite the specimens, such as high power 

halogen or UV lamps. 
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 Modifying the welding process to a more controlled and less violent 

procedure such as TIG.  
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CHAPTER X 

CONCLUSIONS 

Summary 

This dissertation investigates the applications of non-contact methods for 

structural assessments of infrastructure. The practice of remote structural health 

monitoring (SHM) has become very popular with states departments of transportations 

(DOTs). Remote SHM is supported by two foundations: using unmanned aerial systems 

(UASs) and applications of image processing and machine learning techniques. This 

study addressed both of these concepts. The first chapter introduces the research 

conducted in this dissertation. Chapters two through four of this dissertation are dedicated 

to the applications of UASs for bridge inspections. In the second chapter, an extensive 

review is performed in order to identify the potentials/challenges, current practice, and 

future needs of UAS bridge inspections. Chapter three investigates the minimum 

requirements for using UASs in inspection of bridges with fracture critical members 

(FCM). This chapter also includes two UAS-assisted FCM inspections as case studies. 

Chapter four determines the effects of having different inspections scenarios on the UAS-

assisted FCM inspections and provides a comprehensive comparison to a set of hands-on 

inspection results. Chapter five through eight are dedicated to the applications of image 

processing and machine learning techniques in concrete crack detection. In chapter five, 

the performance of six image edge detectors is investigated to find surface cracks on 

concrete decks. Chapter six investigates using convolutional neural networks (CNNs) 

with deep learning algorithms for concrete crack detections autonomously. In addition, 
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the performance of the studied CNNs is compared to the performance of six edge 

detectors and a hybrid edge detection methodology is presented. Chapter seven studies 

the feasibility of using CNNs for UAS images for concrete crack detection with different 

training datasets. Chapter eight presents an image dataset with more 56,000 labeled 

images of structural defects (SDNET2018). Finally, in chapter nine, the feasibility of 

using infrared thermography for in-line weld inspections is explored. 

Conclusions of chapter two 

This chapter has outlined the state-of-the-art for bridge inspections and UAS 

technology with the aim of educating and informing academics and decision makers 

about the current and future capabilities of UAS-assisted or automated bridge inspections. 

The current state of practice for bridge inspections, especially in United States, is heavily 

tied to visual inspections with minimal use of NDE. Bridge owners have demonstrated 

reluctance to accept NDE methods unless they are absolutely required for bridge 

evaluations. UAS-assisted bridge inspections have the potential to not only decrease 

costs, but to also improve the adoption of NDE technologies, potentially increasing 

inspection accuracy, however UAS inspections face major hurdles.  

UASs have shown promising results in civilian applications as well as civil 

engineering purposes, and many state DOTs have performed feasibility studies and found 

significant limitations, but also successes. The most common UAS applications in DOTs 

were traffic monitoring and surveillance, road condition assessment, and mapping; 

however, significant effort has been put into bridge structure inspection with varying 

degrees of success. The perception of UAS effectiveness for bridge inspection is tied to 
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several variables, including DOT expectations, pilot skill, weather condition, and off-the-

shelf limitations. It was shown that, ideally, UASs can provide less expensive and less 

time-consuming inspections for under bridge regions without traffic closure, but not in all 

situations and there are obstacles to overcome. FAA regulations have recently relaxed, 

but impose significant limitations, including required line of sight and UAS certification. 

Using advanced NDE sensors or even visual images can become too burdensome to be 

effective for routine inspections. Current autopilot controls have become a severe 

limitation for under bridge inspections due to the loss of GPS signals, causing a UAS to 

rely on a vision positioning system or a suite of other sensors which are questionably 

useful in the severe under-bridge environment.  

The literature identified two major potential functions for UAS based inspections: 

3D model reconstruction and autonomous damage identification. Unfortunately, these 

functions face major implementation limitations in order to be functional for complex – 

or even routine – inspections. Programs capable of generating 3D reconstructed bridge 

models, from either SFM or MVS, using feature detectors and feature descriptors such as 

SIFT and SURF have been used for 3D model reconstructions of building, sites, and 

objects, but are very time consuming and require highly skilled technicians. These 

models have promising applications for UAS navigation but are unlikely to be accurate 

enough for bridge inspections without significant advancements. Autonomous defect 

detection methods are another promising advantage for UAS-assisted bridge inspections. 

Surface defect detection, for example, cracks, spalls, and surface degradation, have been 

successfully detected from visual images. Delaminated regions have been located and 

measured using thermal imagery on concrete bridge decks. A major hurdle to the 
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adoption of these methods for UAS bridge inspection is resistance from bridge owners 

that have historically not implemented NDE technologies.  

Based on the synthesis of this state-of-the-art review of bridge inspection and 

UASs, the following conclusions can be made: 

 The review of current bridge inspection practices makes it clear that there is a 

need for continuous improvement of bridge inspection procedures and cost 

reductions. Several NDE technologies were identified that can provide a 

better inspection but, based on DOT surveys, may not be worth the time, 

effort, post-processing, and cost associated with them. UAS sensors may also 

fall within this category. Improvements should take the form of reduced 

inspection time and increased inspector and public safety, as well as 

decreased inspection costs, all of which indicate the need for automated 

inspections. If automated inspection processes are going to replace standard 

practice, then they must be robust and require a similar amount time and 

effort to current bridge inspections techniques in order to gain widespread 

adoption.  

 The recent advances of UASs and UAS have the potential to shift the bridge 

inspection paradigm by providing low cost options to gather previously 

difficult or expensive images.  

 UASs have increased in popularity and functionality for many applications, 

but the challenging nature of bridge inspections has reduced their 

effectiveness in this area. UASs can also decrease the allocated time and 
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budget for large-scale bridge inspections by providing inspection data 

comparable to hands-on method. 

 There have been mixed successes for UAS-assisted bridge inspections 

throughout the United States that have resulted in successful inspections of 

easily accessible locations where the UAS has access to GPS, the most 

reliable and effective tool for UAS autopilots (see Table 2-5). 

 There is a major need for improvements in the areas of UAS controls, 

navigation, and image processing in order to maintain effectiveness. 

 Weather currently plays too big of a role in UAS flight success, which is a 

very significant barrier for many state agencies with very tight inspection 

schedules. This can be mitigated with continued improvement of autopilot 

controls in GPS-denied environments. UAS controls need to improve such 

that a pilot can safely and effectively obtain stable images of every part of the 

bridge in any reasonable weather.  

 For UAS inspections to become commonplace and cost-effective, automated 

inspection may need to become a reality, or at least, vast improvements will 

need to be made on autopilot controls. Based on the above syntheses, full 

automation during a bridge inspection is not possible given current 

technology and environmental challenges. 

 Image processing techniques (3D mapping or damage detection) that can 

detect defects are a significant advantage of a UAS inspection, but without 

the possibility of a real-time inspection will not become a routine part of any 
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bridge inspection soon due to the level of detail required.  

 Bridge owners must learn to accept and become comfortable with the non-

contact NDE techniques unique to UAS inspections for the full potential of 

UAS bridge inspection to be realized. This places the burden on industry and 

researchers to develop accurate, generic algorithms for post-processing that 

can facilitate a real-time inspection or fit within existing local bridge 

inspection constraints. 

 Current FAA restrictions are not too burdensome for an agency to perform 

some inspections, but provide significant challenges to be useful in all 

situations. Regulations will relax over time, as public perception, UAS 

reliability, and autonomous controls continue to improve. 

Conclusions of chapter three 

Previous literature demonstrates the application of UAS for initial inspection of 

bridges, visual and autonomous detection of delamination or cracking in concrete, and 

checking the surface condition of structures. This chapter investigated the application of 

UAS for detection of fatigue cracks in steel bridges during FCM inspections.  

Laboratory investigations revealed the importance of camera quality and surface 

illumination on the maximum crack-to-camera (MCC) distance at which fatigue cracks 

can be detected. Observed MCC distances with stable cameras (fixed, not in flight) 

ranged from 0.3 m for the worst performing platform in dark lighting to 1.1 m for the best 

performing platform in bright light. Mock FCM inspections demonstrated the difficulties 

in detecting known cracks in GPS-denied or windy environments. Some platforms were 
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unstable in GPS-denied indoor environments and thus clear images were not obtainable. 

The best performing platform has an achievable crack-to-platform (ACP) distance that 

was far smaller than the previously determined MCC distance, meaning it was easily able 

to obtain clear enough images for crack detection. This was true for both real-time 

(inspection from FPV monitor during flight) and post-flight (inspection of recorded 

images after flight) inspections. Note the results in this study do not cover all scenarios in 

FCM bridge inspection and are valid for the described conditions of the mock inspection. 

Nevertheless, the findings can serve as a guideline for bridge inspectors in order to 

perform more successful UAS-assisted FCM inspections.  

Two FCM inspections of structures with known fatigue cracks demonstrated the 

ability of the UAS platform to identify fatigue cracks in the field. The first, at Fall River 

Bridge in Ashton, ID, was inconclusive due to marker obscuring the potential fatigue 

cracks. The inspector was able to rule out the presence of fatigue cracks in several 

inspection locations. However, the inspector was unable to identify fatigue cracks in 

locations that were known to contain them. This was mainly due to limited ACP 

distances in gusting winds and obscuration of the cracks by markings from previous 

inspections. The Falls River inspection also indicated that GPS denied navigation, 

combined with the 10 m/s (22 mph) wind gusts made controlled flight near impossible. 

Also, the stereo-vision positioning, which enables some control in when GPS-denied, 

causes significant instability over water and FAA line of sight requirements eliminated 

accessibility to nearly half of the structure due to sight conditions. 

The second field inspection, at the S-BRITE Center training facility at Purdue 

University, compared the performance of UAS inspections and human inspections. UAS 
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inspection was comparable to hands-on inspection in terms of the number of real cracks 

that were identified. However, UAS inspections took far longer and resulted in a much 

higher number of false positives. In general, the results of this laboratory and field study 

show that fatigue crack identification during FCM inspections is promising using UAS, 

however challenges exist and more research is needed prior to routine use of UAS for 

fatigue crack detection. 

Moving from manned to unmanned inspections, particularly for bridges with 

Fracture Critical Members (FCM), requires using Unmanned Aerial Systems (UASs) 

with auxiliary positioning systems to compensate with the lack of GPS signals. The 

results of this study suggest that using UAS that rely heavily on GPS signals for 

navigation is very difficult and unlikely to produce fatigue crack detection. The stability 

of many systems in the GPS denied environment poses a risk to the UAS, pilot and 

mission. UAS pilots may not wish to risk their UAS in such situations until better 

autonomous position control is available. Among studied UASs, inspection using the DJI 

Mavic Pro was more successful than the others due to stereo-vision positioning system; 

however, this system causes instability when the UAS is over a current like a river (a 

common situation during FCM inspections). Future UASs for FCM bridge inspections 

are required to have small sizes, more reliable positioning systems in lieu of GPS signals, 

wind and turbulence resistivity, clearance measurement capability (laser range finder), 

360-degree gimbal, onboard adjustable light source, and adjustable camera setting for 

exposure and optical zoom. As of now, a commercial UAS that meets these requirements 

does not exist. DJI Mavic family UASs satisfy some of the requirements making them a 

proper candidate for UAS-assisted FCM inspections. The results presented in this chapter 
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are based on limited number of inspections which definitely does not mimic all possible 

inspection scenarios. More UAS-assisted FCM inspections are required to draw a 

comprehensive conclusion on the performance of UASs in terms of accuracy, hits, and 

inspection time. 

Conclusions of chapter four 

Inspection of bridges with fracture critical members (FCM) is among the most 

challenging tasks for the bridge community to perform since these bridges are susceptible 

to fatigue cracks. The current practice for FCM inspection is hands-on inspection with 

application of some sort of non-destructive evaluation (NDE) method if necessary. 

Successful applications of Unmanned Aerial Systems (UASs) in state departments of 

transportation (DOTs) in the past make them an interesting option for FCM inspections; 

however, there are no studies investigating the factors for an effective UAS-assisted FCM 

inspection. 

The research team conduct four UAS-assisted inspections on a probability of 

detection (POD) training structure at the Steel Bridge Research, Inspection, Training, and 

Engineering (S-BRITE) center at Purdue University to locate the fatigue crack(s). Each 

inspection included a different inspector, accompanied by a pilot flying a DJI Mavic 

UAS, inspecting different types of the specimens on the POD frame through a first 

person view (FPV) monitor. The video streamed to the FPC monitor was also recorded 

and stored for another phase of the study. The inspectors marked the location of cracks on 

a binder that was used to evaluate their performance. The metrics of this study were hit 

rate (HR), hit to call ratio (HCR), length of the largest crack missed (LCM), and 
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inspection time (T). The inspection videos of 54 specimens for each day of inspection 

were shared with 19 bridge inspectors to perform desk inspections by reviewing them and 

marking the cracks. The selected specimens included the three types of specimens on the 

POD frame: out of plane (OOP), welded cover plate (WCP), and riveted cover plate 

(RCP). Based on the results, the following remarks can be made: 

 Wind speed had a noticeable effect on the metrics of both field and desk 

inspection. (results were better for the days with lower wind speeds) 

  Inspectors performed considerably better on the OOP and RCP specimens 

than the WCP specimens due to the locations of WCP specimens and 

limited upward tilt-angle of the DJI Mavic.  

 Lower workload experienced by the inspectors resulted in better 

inspection metrics. 

 Inspectors employed by private agencies performed marginally better than 

the DOT inspectors. 

 Using a media player with zoom and brightness adjustment improves the 

desk inspections. 

 The hands-on inspections had better metrics than the UAS-assisted 

inspections for all specimens; however, the UAS-assisted inspections 

produced similar metrics, except for T, to the hands-on inspections for 

OOP and RCP specimens.  

 The LCM was the only metric that was better in the desk inspections 

 The desk inspections and the field inspections were 98% and 38% more 
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time-consuming than the hands-on inspections, respectively. 

This study shows the potential of implementing UAS-assisted inspections for 

future FCM inspections. Considering none of the inspectors were trained or participated 

in UAS inspections before, the results are promising. The authors recommend the 

following for future work to improve the inspection results: 

 Performing the inspections using a UAS with at least a 90-degree tilt-

angle. 

 Providing UAS-assisted training sessions for the inspectors before the 

inspection.  

Preforming the desk inspections on similar monitors with equal or higher 

resolution than the videos. 

Conclusions of chapter five 

This study proposed a generic image-processing algorithm for detection of defects 

in concrete for the purpose of comparing different edge detection algorithms. The 

proposed algorithm involved edge detection, edge image enhancement, and segmentation. 

Edge detection was completed in the spatial domain using Roberts, Prewitt, Sobel, and 

LoG filters; and in the frequency domain using Butterworth and Gaussian filters. Fifty 

images of defected concrete and fifty of sound concrete were analyzed by the proposed 

algorithm in six iterations making use of the six aforementioned edge detection 

strategies). An inspector reviewed the resulting binary images from each iteration and 

identified cracks. The inspection results were compared to the ground truth, and the six 

edge detection methods were compared based on accuracy, precision, minimum 
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detectable crack width, and processing time per image. Edge detection in the spatial 

domain using LoG filter yielded the highest accuracy (92%) and precision (88%), the 

finest minimum detectable crack width, and the fastest processing time (1.18 s per 

image). All but one of the remaining methods (edge detection in the spatial domain using 

Roberts filter) yielded greater than 80% accuracy and were able to detect cracks as fine as 

0.2 mm. While crack detection in the spatial domain using Roberts filter yielded the 

lowest accuracy (77%), it also yielded the fewest false positives (10%) and its precision 

(86%) was among the highest. In general, the processing time was longer for crack 

detection in the frequency domain (1.8–1.9 s per image) than in the spatial domain (1.2–

1.7 s per image). Additionally, the second-level binary images (the final product of the 

image processing algorithm) were much noisier in the frequency domain. According to 

these results, crack detection in the spatial domain using LoG filter yields the best and 

fastest results for detecting defects in concrete structures. 

Conclusions of chapter six 

This chapter presents a comparison of edge detection and DCNN algorithms for 

image based concrete crack detection. The dataset consisted of 3420 sub-images of 

concrete cracks. Several common edge detection algorithms were employed in the spatial 

(Roberts, Prewitt, Sobel, and LoG) and frequency (Butterworth and Gaussian) domains. 

AlexNet DCNN architecture was employed in its fully trained, classifier, and fine-tuned 

modes. Edge detection schemes performed reasonably well. The best method—LoG—

accurately detected about 79% of cracked pixels and was useful in detecting cracks 

coarser than 0.1 mm. In comparison, the best DCNN method—the network in transfer 
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learning mode—accurately detected 86% of cracked images and could detect cracks 

coarser than 0.04 mm. This represents a significant performance enhancement over edge 

detection schemes and shows promise for future applications of DCNN for image based 

crack detection in concrete. In addition, a methodology was proposed to reduce the FNs 

reports by 70% by applying the edge detectors only on sub-images not labeled as 

uncracked. In addition, a hybrid crack detector was introduced which combines the 

advantages of both approaches. In the hybrid detector, the sub-images were first labeled 

by the network in the fully trained mode. Since it produced the highest TNR, the edge 

detector is not applied on the sub-images labeled as U (uncracked) by the network. This 

technique reduced the noise ratio of the LoG edge detectors from 2.4% to 0.11% and has 

the similar effect on the other edge detectors as well.  

This study shows the superiority of an AlexNet DCNN over traditional edge 

detectors for concrete crack detection. This superiority can be further improved when 

architectures such as GoogleNet or RestNet are implemented for crack detection. 

DLCCNs are able to classify multiple defects if enough annotated images are available 

for training. Formation an annotated image dataset for structural defects, such as 

ImageNet, is vital for further applications of DCNNs in structural engineering. With this 

dataset available, new architectures can be proposed to focus on finding structural defects 

instead of random objects, which will reduce the computational time associated with 

training process. In addition, domain adaptation methods such as transfer learning, will 

be more effective if the network is previously trained on the structural defects dataset. 

Improving the performance of domain adaptation techniques makes real-time defect 

detection in robotic vision-based inspections feasible. In other words, a pre-trained 
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DCNN on the structural defect dataset, can be directly used to accurately classify new 

images taken by an unmanned aerial system to different structural defects as the 

inspection is taking place. 

Conclusions of chapter seven and eight 

The application of deep learning convolutional neural networks for sUAS-assisted 

inspection of concrete structures is investigated in this paper. A convolutional neural 

network using AlexNet architecture was fully trained on a set high-quality point-and-

shoot images to achieve a desirable accuracy (FT mode). In addition to the FT mode, a 

pre-trained neural network with the same architecture, on the ImageNet, was re-trained 

on the training dataset using transfer learning for comparison purposes (TL mode). The 

training and validation process for FT mode was 50% more time-consuming; however, it 

provides better accuracy (about 3%) in validation process. The network in FT mode on 

the other hand, performs better than the TL mode in crack detection (better true positive) 

in validation dataset. To investigate the challenges in sUAS-assisted structural 

inspections of infrastructure, three datasets are gathered and the network performance is 

evaluated in both modes. The image in the first dataset are from the same cracks but 

taken by a low resolution camera on a sUAS. The image in the second dataset are from 

the same structures, i.e. decks, but taken by a sUAS with comparable resolution to the 

point-and-shoot camera. The image in the third dataset are from a different structure, i.e. 

building, by a sUAS with comparable resolution. The results showed that the true 

positive (TP) reports were higher when the FT mode was used. However, using the 

network in TL mode improves the true negative (TN) reports over the FT mode.  The 
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accuracy of the network in both modes declined facing the new datasets from over 80% 

in the first dataset to 79% in the second dataset and to 58.4% in the third dataset in the 

fully trained mode. The accuracy in TL mode was 88% in the first dataset and decreased 

to 64% in the third dataset. The network in the FT mode detected more cracks in all 

datasets than the TL mode (between 6% to 15%); however, using transfer learning 

resulted the network achieved greater accuracies (7% to 15%). Both TP and TN reports 

decrease when the networks are tested on the testing datasets. The networks are shown to 

perform better in the first dataset showing it is important to have similar defects in the 

training and testing dataset. When the cracks are different but on similar structures, i.e. 

the second dataset, the accuracy dropped significantly and it got worse when the pattern, 

size, and the background of the cracks were changed in the third dataset. To improve the 

results, the training dataset should be more comprehensive to include the possible 

features in the inspection images. Using higher quality cameras on the sUAS helps the 

detection rate. The AlexNet architecture can be replaced with different accurate 

architectures such as ResNet, to improve the network performance. 

Conclusions of chapter nine 

Verification of weld safety and workmanship is paramount to structural weld 

inspection both during fabrication and in-service. Weld inspections are costly in terms of 

time and money for both situations. Ultrasonic (UT) technique has been widely used to 

detect surface and sub-surface defects of welds. Because UT inspection is an inspection 

with contact, the inspector needs to wait for the welds to cool down for one to a six hours. 

This adds time, and consequently cost, to the inspection process. The purpose of this 
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study is to investigate the potentials and challenges of using to IRT in weld inspection, 

particularly for sub-surface defect detection. IRT is a non-contact method and can be 

applied for in-line weld inspection using a high-temperature range thermal camera. 

Four common weld defects were made to be studied in this research including 

inclusion, porosity, cracking, and lack of fusion. The total number of welded angles was 

32, or 38 specimens, including 2 plates with thickness of 13 mm (8/16 in.), 14 angles 

with thickness of 8 mm (5/16 in.), and 8 angles with thickness of 3 mm (2/16 in.). UT 

inspection was used to detect defects in 13 mm (8/16 in.) and 8 mm (5/16 in.) specimens. 

The specimens then were heated up using a heat gun in heat transmission mode. A 

thermal camera was set on a tripod and monitored the surface emission of the weld. 

When the maximum temperature in the ROI on the weld neared 70C, the heat gun was 

turned off and the camera started recording thermal sequences with a 10 Hz frequency for 

50 s. The recorded sequences were then analyzed to find the rate at which sub-regions in 

ROIs lost heat by fitting an exponential fit function and calculating the area under this 

function (𝐴𝑛). The sound welds had larger values of 𝐴𝑛 than the welds with defects. The 

results of the UT inspection and IRT inspection matched, proving the feasibility of using 

IRT for weld inspections. UT results for 3 mm (2/16 in.) specimens were not valid; 

therefore, the two specimens that were built as sound were analyzed to obtain 𝐴𝑛 for 

sound welds. The sub-regions with areas less than sound weld 𝐴𝑛 were identified as 

defected regions. Possible porosity and lack of fusion were detected by this method in 3 

specimens, while no defects were detected in the other 3.  

Challenges associated with using IRT for weld inspection were as follows: 
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 Surface clutters and bombs created during welding were not correlated 

with the presence of defects in the welds but they can be misleading in the 

captured thermal images. Having these clutters changes the surface 

emissivity of the material and can cause inaccuracy in the camera’s 

readings, especially in low-emissivity materials.  

 The camera used for this study, FLIR SC 640, only measures temperature 

in the range of -40 to 80C, which is not suitable for in-line weld 

inspection. Because the camera is almost 10 years old it was not 

compatible with current desktops and required a special chord for desktop 

connection.   

 The transmitted energy from the heat gun used to increase the temperature 

of the specimens is not homogenous. Some regions got hotter than the 

others. Using the fit function of the temperature decay instead of using 

actual temperatures diminished the effects of un-even heating to some 

extent, but it did not completely resolve it. 

 Despite using standard methods to build defects, some defects were hard 

to create, such as cracks and inclusions. The manufactured porosities were 

mostly on surface not sub-surface. Lack of fusion was manifested in welds 

when it was not supposed to; either they were built to have a different 

defect or no defects at all. 

 Welding process which was used to create the welds was uncontrolled and 

made defect manufacturing very challenging, especially for inclusions. 
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This welding process also resulted in more surface clutters than controlled 

welding.  

 For further study and inspection, the following recommendations are 

proposed: 

 Using high temperature range cameras coupled with a data acquisition 

system and software. 

 Using controlled heat sources to excite the specimens, such as high power 

halogen or UV lamps. 

Modifying the welding process to a more controlled and less violent procedure 

such as TIG. 
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