5,613 research outputs found

    A Simple Language Model based on PMI Matrix Approximations

    Full text link
    In this study, we introduce a new approach for learning language models by training them to estimate word-context pointwise mutual information (PMI), and then deriving the desired conditional probabilities from PMI at test time. Specifically, we show that with minor modifications to word2vec's algorithm, we get principled language models that are closely related to the well-established Noise Contrastive Estimation (NCE) based language models. A compelling aspect of our approach is that our models are trained with the same simple negative sampling objective function that is commonly used in word2vec to learn word embeddings.Comment: Accepted to EMNLP 201

    Distributional Inclusion Vector Embedding for Unsupervised Hypernymy Detection

    Full text link
    Modeling hypernymy, such as poodle is-a dog, is an important generalization aid to many NLP tasks, such as entailment, coreference, relation extraction, and question answering. Supervised learning from labeled hypernym sources, such as WordNet, limits the coverage of these models, which can be addressed by learning hypernyms from unlabeled text. Existing unsupervised methods either do not scale to large vocabularies or yield unacceptably poor accuracy. This paper introduces distributional inclusion vector embedding (DIVE), a simple-to-implement unsupervised method of hypernym discovery via per-word non-negative vector embeddings which preserve the inclusion property of word contexts in a low-dimensional and interpretable space. In experimental evaluations more comprehensive than any previous literature of which we are aware-evaluating on 11 datasets using multiple existing as well as newly proposed scoring functions-we find that our method provides up to double the precision of previous unsupervised embeddings, and the highest average performance, using a much more compact word representation, and yielding many new state-of-the-art results.Comment: NAACL 201

    ExplaiNE: An Approach for Explaining Network Embedding-based Link Predictions

    Get PDF
    Networks are powerful data structures, but are challenging to work with for conventional machine learning methods. Network Embedding (NE) methods attempt to resolve this by learning vector representations for the nodes, for subsequent use in downstream machine learning tasks. Link Prediction (LP) is one such downstream machine learning task that is an important use case and popular benchmark for NE methods. Unfortunately, while NE methods perform exceedingly well at this task, they are lacking in transparency as compared to simpler LP approaches. We introduce ExplaiNE, an approach to offer counterfactual explanations for NE-based LP methods, by identifying existing links in the network that explain the predicted links. ExplaiNE is applicable to a broad class of NE algorithms. An extensive empirical evaluation for the NE method `Conditional Network Embedding' in particular demonstrates its accuracy and scalability
    • …
    corecore