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Abstract
Networks are powerful data structures, but are
challenging to work with for conventional ma-
chine learning methods. Network Embedding
(NE) methods attempt to resolve this by learning
vector representations for the nodes, for subse-
quent use in downstream machine learning tasks.

Link Prediction (LP) is one such downstream ma-
chine learning task that is an important use case
and popular benchmark for NE methods. Unfor-
tunately, while NE methods perform exceedingly
well at this task, they are lacking in transparency
as compared to simpler LP approaches.

We introduce ExplaiNE, an approach to offer
counterfactual explanations for NE-based LP
methods, by identifying existing links in the net-
work that explain the predicted links. ExplaiNE is
applicable to a broad class of NE algorithms. An
extensive empirical evaluation for the NE method
‘Conditional Network Embedding’ in particular
demonstrates its accuracy and scalability.

1. Introduction
Network embeddings (NEs) have exploded in popularity
in both the machine learning and data mining communi-
ties. By mapping a network’s nodes into a vector space,
NEs enable the application of a variety of machine learning
methods on networks for important tasks such as link pre-
diction (LP): the task to predict whether nodes are likely to
be(come) connected in incomplete or evolving networks. LP
has wide-ranging applications, for friendship recommenda-
tions, recommender systems, knowledge graph completion,
etc. While there are numerous conventional LP methods
that predict links based on heuristic statistics computed over
networks (e.g., based on the number of common neigh-
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bors) (see, e.g., Martı́nez et al., 2017), recently proposed
NE-based methods typically outperform those heuristic ap-
proaches (e.g., Grover & Leskovec, 2016; Kang et al., 2019).

While the superior performance of NE-based LP methods
is an advantage, a major disadvantage is that they do not
easily allow for human-intelligible explanations of the pre-
dicted links. Yet, the ability to understand link predictions is
important and useful for several reasons: (a) recommender
systems that provide explanations are more easily trusted
and more effective, (b) it allows data analysts to have a
better understanding of the network characteristics such as
node features and network dynamics, (c) transparency of au-
tomated processing systems is required in a growing number
of regulations, and explanations can increase transparency.

We present ExplaiNE, a mathematically principled coun-
terfactual reasoning approach for explaining NE-based link
predictions. In its simplest form, ExplaiNE quantifies how
the probability of a predicted link {i, j} would be affected
by weakening an existing link {i, k}. Links {i, k} that after
weakening most strongly reduce the probability of the pre-
dicted link {i, j} then serve as counterfactual explanations.

Example. We show the idea of ExplaiNE on Zachary’s
karate club network (Zachary, 1977). The network con-
sists of 34 karate club members (nodes), with 78 friendship
links. An NE-based LP method1 to predict a link for node
i = 33 (green pentagon) indicates a high probability link
to node j = 24 (green square). Figure 1 visualizes the
embedding and highlights which existing links incident to i
ExplaiNE deems explanatory for this prediction in a positive
(orange circle, dotted edge) or negative sense (blue circle,
dashed edge). It concludes this because weakening links to
the orange nodes would reduce the link probability {i, j},
whereas weakening links to the blue nodes would increase it.
Note that these effects are quite intuitive given the geometry
of the embedding: the orange nodes ‘pull’ node 33 closer to
24, while the blue nodes pull node 33 away from 24.

ExplaiNE is first derived as generically as possible, allowing
for explanations not only in terms of links incident to the
predicted link, but also in terms of other links as well as non-

1The embedding used is 2-dimensional and derived using Con-
ditional Network Embedding (Kang et al., 2019).
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Figure 1. In Zachary’s karate club network, we explain the pre-
dicted link between i = 33 and j = 24. The colored nodes with
dashed or dotted edges are the neighbors of node 33. According to
ExplaiNE, the links to the orange nodes with dotted edge have a
positive effect on the probability of link {i, j} to exist, while the
effect of the links to blue nodes with dashed edge is negative.

links. We then reduce its scope to explanations of the type
used in the example above (i.e., only incident links), and
make an approximation (which we justify empirically), in
order to obtain a still generic but highly scalable approach.

Next we apply ExplaiNE to Conditional Network Embed-
ding (CNE; Kang et al., 2019), a recent state-of-the-art NE
method. The application of ExplaiNE to CNE is particu-
larly transparent, thanks to the mathematical elegance of the
CNE model and its straightforward use in LP, requiring no
training once the embedding is found. We also outline how
ExplaiNE can be applied to NE methods based on skip gram
with negative sampling-based such as LINE (Tang et al.,
2015b), DeepWalk (Perozzi et al., 2014), PTE (Tang et al.,
2015a), and node2vec (Grover & Leskovec, 2016).

Contributions. The main contributions are:

• ExplaiNE, a mathematically principled counterfactual
reasoning approach for explaining link predictions
based on network embeddings (Sec. 2.2).

• A scalable tight approximation of ExplaiNE (Sec. 2.3).
• A detailed application of ExplaiNE to CNE (Sec. 2.4)
• An outline of how to apply ExplaiNE to NE methods

based on skip gram with negative sampling (Sec. 2.5)
• Quantitative and run time analyses showing the stabil-

ity and scalability of the approximation. (Sec. 3.1,3.4)
• Qualitative and quantitative realistic case studies con-

firming the usefulness of ExplaiNE. (Sec. 3.2,3.3)

2. Methods
To introduce ExplaiNE in full generality, we first provide a
simple but generic description of NE-based link prediction
methods in Section 2.1. We then formalize ExplaiNE in a
generic manner in Section 2.2, before describing a scalable
approximation in Section 2.3. In Section 2.4 we develop
ExplaiNE in detail for CNE. In Section 2.5 we outline how
ExplaiNE can also be applied to other popular NE methods.
But before all that, we first introduce some notation.

An undirected network is denoted G = (V,E) where V is a
set of n = |V | nodes and E ⊆

(
V
2

)
is the set of links (also

known as edges). A link is denoted by an unordered node
pair {i, j} ∈ E. Let A denote the adjacency matrix, with
element aij = 1 for {i, j} ∈ E and aij = 0 otherwise. The
symbol Â will be used to denote the adjacency matrix of a
particular observed network. NE methods find a mapping
f : V → Rd from nodes to d-dimensional real vectors. An
embedding is denoted as X = (x1,x2, . . . ,xn)

′ ∈ Rn×d,
with X∗ denoting an optimal embedding for adjacency
matrix A (suppressing the dependency of X on A for
conciseness—see below), and similarly X̂∗ optimal for Â.

2.1. Network Embedding-based Link Predictions

All well-known NE methods aim to find an embedding X∗

for given graph G (with adjacency matrix A) that maximizes
a continuously differentiable2 objective function L(A,X)
for the given adjacency matrix A. Thus X∗ must satisfy
the following necessary condition for optimality:

∇XL(A,X∗) = 0. (1)

Defining F (A,X) , ∇XL(A,X), the optimal embed-
ding X∗ is thus a solution to F (A,X∗) = 0.

Based on an embedding X , it is common to predict the
existence of a link between any pair of nodes i and j by
computing a link probability (or other score) gij(X), using
a differentiable function gij : Rnd → R. In practice, gij
often only depends on the embeddings xi and xj of i and j,
and often it can be written as gij(X) = g(xi,xj) for some
function g : Rd × Rd → R. It is often found by training a
classifier (e.g., logistic regression) on a set of known linked
and unlinked node pairs (see Sec. 2.5), but sometimes it
follows directly from the NE model (e.g., for CNE).

We also introduce the function g∗ij : Rn×n → R defined
as g∗ij(A) , gij(X

∗) where X∗ is optimal w.r.t. A. I.e.,
g∗ij directly computes the link probability w.r.t. an optimal
embedding for a specified adjacency matrix.

2Note that, although NE methods are often described for un-
weighted networks (i.e., a binary adjacency matrix), the objective
L(A,X) is often continuously differentiable also w.r.t. the adja-
cency matrix A. This is required for ExplaiNE to be applicable,
but as we will see this requirement is often satisfied.
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2.2. ExplaiNE as a generic approach

ExplaiNE uses a counterfactual reasoning approach to ex-
plain link predictions based on a NE. Namely, it quantifies
the change of the link probability (or other score) of a node
pair {i, j} if the presence of a link between a given pair
of nodes {k, l} were to be altered. Consider first the situa-
tion where {k, l} ∈ E. Then, if removing the link between
them strongly decreases the probability of a link between i
and j, the link {k, l} is a good counterfactual explanation
of this predicted link. Conversely, consider the situation
where {k, l} 6∈ E. Then, if adding a link between them
strongly decreases the probability of a link between i and
j, it is the absence of a link between k and l that is a good
counterfactual explanation of this predicted link.

Intuitively, adding or removing an existing link will alter
the probability of a link between i and j because it will alter
the optimal embedding, which in turn will change the link
probability of the target pair. For the ExplaiNE strategy to
be effective, we must be able to compute and combine these
two effects in an efficient manner.

A naive approach would be to recompute the embedding
with a link added or removed, and to quantify how much this
changes the probability of a link between i and j. However,
recomputing the embedding is computationally demand-
ing, and is practically impossible to do even for a moderate
number of pairs {k, l}. Moreover, even adding or remov-
ing a single link can dramatically change the optimization
landscape. As there are potentially many local optima, this
can change the optimal embedding entirely (even if initial-
ized with the original embedding), making a change in link
probability erratic and hard to interpret.

Instead, ExplaiNE investigates the effect of an infinitesimal
change to akl around its observed value âkl, on the link
probability as computed by g∗ij . Specifically, ExplaiNE
seeks explanations as node-pairs {k, l} (k 6= l and {k, l} 6=
{i, j}) for which

∂g∗ij
∂akl

(Â) is large in absolute value, with a
positive sign if âkl = 1 (as then decreasing akl down from
âkl = 1 by a small amount would maximally decrease g∗ij),
and with a negative sign if âkl = 0 (as then increasing akl up
from âkl = 0 by a small amount would maximally decrease
g∗ij). This can be done analytically. Indeed, applying the
chain rule:

∂g∗ij
∂akl

(Â) = ∇Xgij

(
X̂∗
)T
· ∂X

∗

∂akl
(Â). (2)

For many NE methods the first factor can be computed
analytically from the expression for gij , as we will see in
the next subsections. The second factor can be computed
using the implicit function theorem (see, e.g., Chiang, 1984).
Rephrased for our specific setting, this theorem states (note
that we are overloading the symbol X∗ here to also signify
a function):

Theorem 1 (Implicit function theorem). Let F : Rn×n ×
Rn×d → Rn×d be a continuously differentiable function
with arguments denoted A ∈ Rn×n and X ∈ Rn×d. More-
over, let Â and X̂∗ be such that F (Â, X̂∗) = 0. If the Ja-
cobian matrix∇XF (Â, X̂∗) is invertible, then there exists
an open set S ⊂ Rn×n with Â ∈ S such that there exists a
continuously differentiable function X∗ : S → Rn×d with:

X∗(Â) = X̂∗, and

F (A,X∗(A)) = 0 for all A ∈ S,

and:

∂X∗

∂akl
(A) = −(∇XF (A,X∗(A)))−1 · ∂F

∂akl
(A,X∗(A)).

It is the latter expression, evaluated at Â, that we need in in
order to evaluate Eq. (2). Note that the Jacobian ∇XF is
in fact the Hessian of L with respect to X . This means that
∇XF (Â, X̂∗) is negative definite (as X̂∗ is optimal for Â).
While for some NE-methods it may not be strictly negative
definite and thus not invertible as required by the theorem
(because, e.g., any translation of X̂∗ may be equally opti-
mal according to L), this situation can be avoided by adding
a regularizer to L on, e.g., the Frobenius norm of X̂∗ with
very small weight. Without going into detail, we note that as
this regularization constant approaches zero, this becomes
equivalent with using the pseudo-inverse of the Hessian,
instead of its inverse. This is the approach we have taken
whenever this situation arose. Denoting this Hessian evalu-
ated at Â and X̂∗ as H , can thus write:

∂X∗

∂akl
(Â) = −H−1 · ∂F

∂akl
(Â, X̂∗). (3)

Putting Eqs. (2) and (3) together, we now can compute the
derivative of g∗ij with respect to akl as follows:

∂g∗ij
∂akl

(Â) = −∇Xgij

(
X̂∗
)T
·H−1 · ∂F

∂akl
(Â, X̂∗).

(4)

For efficiency, one can compute the partial derivatives for
a given predicted link {i, j} and for all pairs {k, l} by pre-

computing the vector ∇Xgij

(
X̂∗
)T
·H−1 by solving a

linear system with nd variables and equations, and right
multiplying it with the vectors ∂F

∂akl
(Â, X̂∗) which depend

on k and l. Unfortunately, the computational cost of solving
this linear system is O((nd)3) in practice, limiting scalabil-
ity both in network size and dimensionality. Thus, while this
is a clear improvement over the naive approach, it is still not
sufficient for realistic network sizes. The next subsection
describes how to make ExplaiNE tractable also for large
networks and dimensionalities.
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2.3. Making ExplaiNE scalable

First, we choose to focus on explanations in terms of linked
pairs {k, l}, rather than in terms of unlinked pairs. Such pos-
itive explanations are arguably more insightful than negative
ones, and especially in sparse networks. Second, experi-
ments (see supplement Sec. 4.1)show that the best explana-
tion for a predicted link {i, j} for a node i, tends to be a link
{k, l} that is incident to node i, i.e., for which l = i. This
is arguably because links adjacent to node i affect the link
probability g∗ij(Â) by directly affecting the embedding x∗i ,
whereas links not incident to i are likely to have a secondary
effect only. Besides this, we also believe that nodes incident
to i are likely to be more meaningful from node i’s perspec-
tive than other links, in practical applications. Thus, we can
restrict ourselves to seeking an explanation for a predicted
link from node i to node j in terms of an existing link {i, k}
for which

∂g∗ij
∂âik

(Â) is large and positive.

Third, we consider only NE methods where gij(X∗) only
depends on x∗i and x∗j .3 Thus, Eq. (2) can be written as:

∂g∗ij
∂aik

(Â) = ∇xigij

(
X̂∗
)T
· ∂x

∗
i

∂aik
(Â) (5)

+∇xj
gij

(
X̂∗
)T
·
∂x∗j
∂aik

(Â).

Finally, we make an approximation inspired by the fact that
changing aik will have a direct effect on the optimal embed-
dings x∗i and x∗k, but only indirectly (and thus typically less
so) on the embedding of the other nodes—including on x∗j .
This means that the second term in Eq. (5) can be neglected.

What remains to be computed is thus ∂x∗i
∂aik

(Â). To do so,
we consider the optimality condition of the embedding w.r.t.
x∗i alone, considering all other node embeddings fixed to
their optimal embeddings in X̂∗ for the observed Â. Let-
ting X̂∗(i) denote the set of x̂l with l 6= i, this optimality
condition can be written as:

∇xi
L(Â,xi, X̂∗(i)) = 0.

For conciseness, let us define F̂i(A,xi) ,
∇xi
L(A,xi, X̂∗(i)). Optimality of x̂∗i given the ob-

served network Â then requires that F̂i(Â, x̂∗i ) = 0. We
can now use the implicit function theorem on this optimality
condition to approximate ∂x∗i

∂aik
as:

∂x∗i
∂aik

(âik) = −H−1i ·
∂F̂i
∂aik

. (6)

Here, Hi = ∇xi
F̂i(Â, x̂

∗
i ) is the Jacobian of F̂i or equiva-

lently the Hessian of L w.r.t. xi, evaluated at (Â, X̂∗).

3This is true for all NE methods we are aware of, and thus
hardly a limitation at all.

Putting Eqs. (6) and (5) (neglecting the second term as
discussed) together, this yields:

∂g∗ij
∂aik

(Â) = −∇xigij

(
X̂∗
)T
·H−1i ·

∂F̂i
∂aik

(Â, x̂∗i ).

(7)

Comparing Eq. (4) with Eq. (7) reveals the dramatic com-
plexity reduction achieved: Inverting Hi ∈ Rd×d has a
practical complexity of only O(d3), which is entirely fea-
sible given common dimensionalities used in the literature
(often 128). The experiments will validate that the approxi-
mations made are entirely justified in practice.

2.4. ExplaiNE for Conditional Network Embedding

We now apply the generic ExplaiNE approach to Condi-
tional Network Embedding (CNE), a specific NE method.
Detailed derivations are deferred to the supplement Sec. 1.

CNE proposes a probability distribution for the network
conditional on the embedding, and finds the optimal embed-
ding by maximum likelihood estimation. Specifically, the
objective function L in CNE is the log-probability of the
network conditioned on the embedding:

L(Â,X) = log(P (Â|X)) =
∑

{i,j}:âij=1

logPij(aij = 1|X)

+
∑

{i,j}:âij=0

logPij(aij = 0|X).

Here, the link probabilities Pij conditioned on the embed-
ding are defined as follows:

Pij(aij = 1|X) = 1− Pij(aij = 0|X) = (8)

PÂ,ijN+,σ1
(‖xi − xj‖)

PÂ,ijN+,σ1
(‖xi − xj‖) + (1− PÂ,ij)N+,σ2

(‖xi − xj‖)
,

whereN+,σ denotes a half-Normal distribution (Leone et al.,
1961) with spread parameter σ, σ2 > σ1 = 1, and where
PÂ,ij is a prior probability for a link to exist between nodes
i and j as inferred from the degrees of the nodes (or based on
other information about the structure of the network)—see,
e.g., Adriaens et al. (2017); van Leeuwen et al. (2016).

CNE, being based on a probabilistic model for the graph
conditioned on the embedding, naturally allows for LP
using the probabilities Pij(âij = 1|X). In other words,
gij(X) = Pij(aij = 1|X) as shown in Eq. (8). Note that it
depends on xi and xj alone, as required for the approximate
version of ExplaiNE to be applicable (third assumption).

Next we show how to apply approximated ExplaiNE to
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CNE.4 First, we derive the optimality condition:

F̂i(Â, x̂
∗
i ) = ∇x∗i

log(P (Â|X̂∗))

= γ
∑
j 6=i

(x̂∗i − x̂∗j )
(
P
(
aij = 1|X̂∗

)
− âij

)
= 0.

Denoting γ = 1
σ2
1
− 1

σ2
2

, and P̂ ∗ij , g∗ij(Â) = Pij(aij =

1|X̂∗) (the probability of a link between i and j given the
optimal embedding X̂∗ for Â), we can now derive the three
factors in Eq. (7):5

∇xi
gij

(
X̂∗
)
= −γ(x∗i − x∗j )P̂

∗
ij(1− P̂ ∗ij).

Hi = ∇xi
F̂i(Â, x̂

∗
i )

= γI
∑
l 6=i

(P ∗il − âil)

− γ2
∑
l 6=i

(x∗i − x∗l )(x
∗
i − x∗l )

′P̂ ∗il(1− P̂ ∗il).

∂F̂i
∂aik

(Â, x̂∗i ) = γ(x∗k − x∗i ).

This means:

∂g∗ij
∂aik

(Â) = (x∗i − x∗j )
T

(
−Hi

γ2P̂ ∗ij(1− P̂ ∗ij)

)−1
(x∗i − x∗k).

Note that the Hessian should be invertible and negative
definite, if x̂∗i is indeed a local maximum. Interestingly,
this expression has an intuitive interpretation: without the
inverted Hessian, it would be an inner product between the
distance of x∗i to the embeddings of both nodes x∗j and
x∗k, indicating that the best explanation is located as far as
possible in the direction of x∗j as seen from x∗i . Yet, the
Hessian modulates the metric and reduces the explanatory
power in directions where there are lots of embedded nodes
l for which P̂ ∗il(1− P̂ ∗il) is large, i.e., for which the model
is undecided whether there should be a link.

2.5. ExplaiNE for other NE methods

Here we illustrate the generic applicability of ExplaiNE
by outlining the steps of applying it to NE methods based
on skip gram with negative sampling (SGNS) (e.g., LINE,
PTE, DeepWalk, node2vec). In Sec. 3 of the supplement,
we derive a concrete example for LINE (Tang et al., 2015b).

4Due to the limited space, here we only show how to apply
approximated ExplaiNE to CNE, as the exact version is not used
in the experiments except for the experiment validating the approx-
imated version. For the application of exact ExplainNE to CNE,
we refer the reader to the supplement Sec. 2. From now on, we
drop the modifier ‘approximated’ when the context is clear.

5Detailed derivations are provided in the supplementary mate-
rial Sec. 1 due to space constraints.

In those methods, gi,j(X) = g(xi,xj), where g , σ ◦ h
with σ : Rd → R a linear classifier (often logistic regres-
sion) applied to edge embeddings, whereby the embedding
h(xi,xj) of an edge {i, j} is computed by applying an edge
embedding operator h : Rd ×Rd → Rd (e.g., element-wise
product) to the embeddings of the nodes at its end-points.

Levy & Goldberg (2014) and Qiu et al. (2018) found that
SGNS-based NE methods all share the same objective:

L =

|V |∑
i=1

|V |∑
j=1

log σ(xi · yj) + b

|V |∑
i=1

Ej′∼PN
[log σ(−xi · yj′)] ,

where xi is the target embedding of node i, yi is the em-
bedding of node j as context (usually discarded, node2vec
does not differentiate target and context), σ(·) is a sigmoid
function, PN is known as the noise that generates negative
samples, and b is the number of negative samples. Moreover,
Qiu et al. (2018) showed that L often has a closed form rep-
resentation (or converges to one in probability).This makes
it possible to obtain an analytical expression of the NE opti-
mality condition, and thus of the function F (A,X). Given
this, both exact and approximated ExplaiNE can be derived.

3. Experiments
We investigated the following questions: Q1 How does the
approximation compare to the exact version? Q2 Does Ex-
plaiNE give sensible explanations? Q3 Does the proposed
method scale?

All experiments are based on CNE with parameters σ1 = 1,
σ2 = 2. Any weights associated to the links in the networks
are ignored. We used the following networks.

Game of Thrones’ (GoT) network.6 Consisting of 796
characters (nodes) and 2823 links between characters that
are mentioned within 15 words of one another in books
1-5. We used a 2-dimensional embedding of this network to
assess the quality of the approximated ExplaiNE approach.

DBLP co-authorship network (Tang et al., 2008).7 Con-
taining papers published up to year 2017, from which we
selected all papers published at ICML, NeurIPS, ICLR,
JMLR, MLJ, KDD, ECML-PKDD, and DMKD. This re-
sults in 23,359 authors (nodes) and 20,545 papers, converted
into 66,597 links between authors who co-authored at least
one paper. We conducted both qualitative and quantitative
evaluations on a 32-dimensional embedding of this network.

MovieLens dataset (Harper & Konstan, 2016).8 Con-
taining 100,000 ratings by 943 users on 1,682 movies. The

6https://github.com/mathbeveridge/asoiaf
7DBLP dataset V10: https://aminer.org/citation
8https://grouplens.org/datasets/

movielens/100k/

https://github.com/mathbeveridge/asoiaf
https://aminer.org/citation
https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/100k/
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network is thus bipartite and consists of 943+1,682 nodes
and 100,000 edges. The dataset also contains metadata such
as title and genre, which we have used as external validation
sources. We conducted qualitative and quantitative experi-
ments on a 16-dimensional embedding of this network.

In Sec. 3.1 we analyze the quality of the approximation. In
Sec. 3.2, we conduct a qualitative analysis of explanations
on the DBLP and MovieLens networks. In Sec. 3.3 we quan-
titatively analyze the quality of the explanations. Finally, in
Sec. 3.4 we consider the scalability of ExplaiNE.

3.1. Quality of the ExplaiNE approximation

Before applying approximated ExplaiNE to real world
dataset, we first evaluate the quality of the approximation
(Q1). We will assess the extent to which the top K explana-
tions for a predicted link {i, j} incident to a given node i, as
given by approximated ExplaiNE, overlap with the top-K
explanations given by exact ExplaiNE. Relevant parameters
here are (1) the value of K and (2) the number of neighbors.
As we consider only links to neighbors as candidate expla-
nations, K must be smaller than the number of neighbors of
i. Moreover, if the number of neighbors is not much larger
than K, a substantial overlap in the top-K explanations of
the exact and approximate method is not surprising. Indeed,
if i has m neighbors, two random subset of K neighbors
would share l elements with probability

(
K
l

)(
m−K
K−l

)
/
(
m
K

)
,

which is large for large l if m is not much larger than K.

Thus, we performed a stratified analysis, computing the size
of the overlap of the top-K explanations, aggregated in a
histogram over nodes with a specific degree. We did this on
the GoT dataset for K from 1 to 5 This experiment revealed
that the top-1 is always identical between the approximated
and exact versions, while the elements further in the ranked
list very rarely swapped positions (2 to 3 differences out of
796 on ranks 2,3,4, and 7 differences out of 796 for rank 5,
see supplement Sec. 4.2).

In the supplement Sec. 4.3 we also compared the complete
ranking of the neighbors between the approximated and
exact ExplaiNE versions, and this for the most probable
link for every node (i.e., seeking explanations for links
that are actually present in the network). We computed
the normalized Kendall tau distance9 between the ranked
explanations given by approximated and exact ExplaiNE.
The average normalized Kendall tau distance is 0.05± 0.08.
For comparison, the average Kendall tau distance between a
random ranking and exact ExplaiNE is 0.51± 0.15.

Now confident in its accuracy, we can now evaluate the be-
havior of approximated ExplaiNE on two realistic networks.

9https://en.wikipedia.org/wiki/Kendall_
tau_distance

Table 1. Predicted/recommended collaborations for Eric P. Xing.
The top link (author: Adams Wei Yu) predicted by CNE are ex-
plained through co-authors of Eric P. Xing that are also colleagues
or co-authors of Adams Wei Yu. The most relevant five co-authors
of Eric P. Xing also cover major parts of Adams Wei Yu’s research
interests: large scale optimization and deep learning.

Rank Recommendations
Explain:

‘Adams Wei Yu’
1 Adams Wei Yu Hao Su
2 Jure Leskovec Li Fei-Fei
3 Sunita Sarawagi Suvrit Sra
4 Tong Zhang Fan Li
5 Soumen Chakrabarti Wei Dai

3.2. Qualitative evaluation

Here we apply ExplaiNE to explain the predicted links in
two real world networks (the DBLP co-authorship and the
MovieLens rating networks) to assess whether ExplaiNE
gives sensible explanations to the predicted links (Q2).

DBLP network. In the co-authorship network, a predicted
link between authors i and j suggests a collaboration be-
tween them. While ExplaiNE uses no external information
to provide its explanations for such suggested collabora-
tions, our experiments indicate that such explanations tend
to be existing collaborators working on a topic on which
the suggested collaborator is active as well. As an example,
we predict links for ICML’19 general chair Eric P. Xing
(node i), and compute the explanations for his top recom-
mendation (node j): Adams Wei Yu. It turns out that the
existing co-authors of Eric P. Xing identified by ExplaiNE
as top-5 explanations for this recommendation (see Table 1)
are either colleagues or co-authors of Adams Wei Yu, with a
shared interest in large scale optimization and deep learning.

MovieLens network. In the rating network, a predicted link
between a user i and movie j amounts to a recommendation
of movie j to user i. In making this recommendation CNE
did not have access to any meta-data of the users or movies,
and neither does ExplaiNE to identify explanations. Yet,
we can make use of this meta-data to qualitatively assess
whether the explanations make sense. As an example, we
computed the recommendation for the first user (uid=0) in
the user list (See Table. 2). The top recommended movie
is ‘Batman’ with genre tags ‘Action’, ‘Adventure’, ‘Crime’,
and ‘Drama’. The genres of the top explanations given by
ExplainNE arguably have strongly overlapping genre tags
(e.g., all top-5 are tagged with ‘Action’). Moreover, the
second-highest ranked explanation is ‘Batman Forever’.

More case studies are given in the supplement Sec. 5. These
results suggest that ExplaiNE gives sensible explanations.
The next subsection aims to quantify these findings.

https://en.wikipedia.org/wiki/Kendall_tau_distance
https://en.wikipedia.org/wiki/Kendall_tau_distance
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Table 2. Recommended movie to user uid=0. The top movie rec-
ommended by CNE (Batman) is explained through movies already
seen by user uid=0. The top-ranked explanations have genres that
overlap with the recommended movie.
j Recommendations Genres
1 Batman Action, Adventure, Crime,

Drama
2 E.T. the Extra-Terrestrial Children’s, Drama, Fan-

tasy, Sci-Fi
3 The Secret of Roan Inish Adventure

k Explanations for ‘Batman’ Genres
1 Supercop Action, Thriller
2 Batman Forever Action, Adventure, Com-

edy, Crime
3 The Crow Action, Romance, Thriller
4 Full Metal Jacket Action, Drama, War
5 Young Guns Action, Comedy, Western

3.3. Quantitative evaluation

Objectively evaluating the quality of an explanation is con-
ceptually non-trivial, due to a lack of datasets with ground-
truth explanations for LP. Yet, as we show in this section,
it is possible to use metadata to derive reasonable ground
truth explanations, and compare with those.

DBLP network. Here, we can construct ground truth ex-
planations for existing links (as opposed to predicted ones).
While this is not the intended use case of ExplaiNE, it is
perfectly legitimate and justified here given our intention
to objectively validate the quality of the explanations. Our
approach is based on the intuition that a one-time co-author
j of a given author i could have been introduced to that
author i by another co-author k on the same paper, thus
explaining the link {i, j}. While this will of course not al-
ways be true, we postulate that it is sufficiently common for
ExplaiNE—providing it works well—to highlight the other
co-authors as explanations for the observed link {i, j}.

Given an author i and a one-time co-author j of i, we used
ExplaiNE to rank the other co-authors of i, from more to
less explanatory (according to Eq. 7). We then took the
top-r of this ranked list as predicted co-authors on the paper
i co-authored with j. Based on this, we created a confusion
matrix. Clearly, the hardness of this prediction task is dif-
ferent for papers with different numbers of authors. Thus,
in order to get a more aggregate assessment, we summed
the top-r confusion matrices for all one-time co-authors of
node i on papers with a given number of co-authors L, and
this for different L between 3 and 5. For a given author-list
length, the confusion matrices with different r were then
used to create precision-recall curves or ROC curves. Fig-
ure 2 shows the ROC curves for Eric P. Xing as node i and
three author-list lengths. For comparison, also ROC curves
computed based on a randomly ranked list is shown (as the

Table 3. Average runtime (in sec., 10 trials) of exact and approxi-
mated ExplaiNE in computing the explanations for a random pair
of nodes {i, j}. Note that the exact method also has substantial
memory cost: 13.1 Gb for MovieLens and on DBLP we went out
of memory. On MovieLens, the time was computed only for one
k, and multiplied by n− 2 to get an estimated total time for all k.

Network #nodes dim time exact time approx
Karate 34 2 0.03 1.8e−4
GoT 796 2 64.1 4.1e−4
GoT 796 8 1490.2 9.8e−4

MovieLens 2625 16 ∼ 1.63e6 6.8e−3
DBLP 23359 32 — 0.02

size of the data is rather small, these are not always close
to the diagonal). ROC curves for other nodes i as well as
Precision-Recall curves can be found in the supplement. All
results indicate that the explanations are remarkably effec-
tive at this task, indicating that ExplaiNE performs well.

MovieLens network. A good explanation k of a predicted
link between a movie-user pair {i, j} should arguably have a
similar list of genres as j. To test this, we computed the top-
5 explanations for user i and her top recommended movie
j. Then we averaged the Jaccard similarity between the set
of genres for movie j and the set of genres of each of the 5
explanations. To assess the significance of this average, we
computed an empirical p-value for it by randomly sampling
50 sets of 5 ‘explanations’ drawn from the watched movies
of i, resulting in 50 random average Jaccard similarities
to compare with the one obtained by ExplaiNE. Thus we
obtained an empirical p-value for each user i, indicating
the significance of the overlap between the set of genres
of the recommended movie j and the top-5 explanations.
A histogram of these p-values is shown in Fig. 3. While
p-values are uniformly distributed under the null hypothesis
that the explanations have genres unrelated to those of j,
here this is not the case—indicating the null hypothesis
is false. A Kolmogorov-Smirnoff test indeed shows an
extremely high significance (p-value numerically 0).

3.4. Scalability and runtime

To address Q3, we measured the runtime of exact and ap-
proximated ExplaiNE when computing

∂g∗ij
∂aik

(Â) for all
k 6∈ {i, j}, as per Eqs. (4) and (7), on average over random
pairs of nodes {i, j}. The runtime was measured on a PC
with quad-core 2.7GHz Intel Core i5 and 16GB 1600MHz
DDR3 RAM. Table 3, shows that approximated ExplaiNE
is efficient and applicable to large networks with higher
dimensionality, while exact ExplaiNE is not.

4. Related Work
LP, as an important network analysis task, has recently been
extensively studied in the NE literature (Hamilton et al.,
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Figure 2. ROC curves of co-author predictions for i =’Eric P. Xing’, with author-list lengths 3, 4, and 5 (orange=rand., blue=ExplaiNE).
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Figure 3. P -values that indicates the significance of the correlation
between the genre recommended and the genres in the explana-
tion. Each p-value is computed against 50 random explanations.
Those explanations are drawn from user’s watched movies. The
empirical distribution has Kolmogorov-Smirnov test statistic 0.32
and a p-value that is numerically 0.0 against uniform distribution.
This shows the significance of positive correlation between the
recommended movies and the explanations made by ExplaiNE.

2017; Cui et al., 2018). By embedding the nodes in a vector
space, the link prediction task can be addressed using tradi-
tional machine learning (ML) methods. This has led to new
and accurate approaches for LP (Grover & Leskovec, 2016;
Kang et al., 2019), but at the expense of explainability.

In parallel, the importance of accountability of AI has
sparked growing research interest in interpretable ML. Ap-
proaches to interpretable machine learning research can be
categorized into model-based and post-hoc approaches (Du
et al., 2018; Murdoch et al., 2019). The first category fo-
cuses on incorporating interpretability (e.g., sparsity) while
constructing the ML model. ExplaiNE belongs to the sec-
ond category of interpretable ML methods: it is a post-hoc
method that focuses on interpreting the local structure of
ML models (here, NE models). The most strongly related
work (although not for LP) are Ribeiro et al. (2016) and
Lundberg & Lee (2017), who provide a model-agnostic ex-
planation via local approximation of the target model. More
closely related, Simonyan et al. (2013) and Koh & Liang
(2017) propose to compute the gradient of the loss function
of a (black-box) model with respect to the input to gauge

the relevance of the input features. The first of these com-
putes the gradient using back-propagation, while the second
approximates the gradient using a Taylor series expansion.

ExplaiNE is the first generic approach (and, as far as we
know, the first approach at all) for explaining link predic-
tions based on a NE. Moreover, to the best of our knowledge,
ExplaiNE is the first method that uses the implicit function
theorem for explainability. This proved to be a crucial ele-
ment for computing the gradient of the link probability w.r.t.
the network structure, as it allowed us to rigorously track
the optimal embedding given an infinitesimal change in the
input network. We believe this theorem can prove valuable
also for other tasks, particularly those where an intermediate
representation is obtained by optimizing an unsupervised
objective function (e.g., an autoencoder), to be fed into a
subsequent model that is trained in a supervised manner.

5. Conclusions
Link Prediction (LP) in networks is an important task, with
applications to social networks, recommenders, and knowl-
edge graphs. State-of-the-art approaches are based on first
embedding the nodes in a vector space, followed by a LP
step. Unfortunately, while accurate, these approaches offer
no insight in their predictions. To remedy this, we intro-
duced ExplaiNE, a generic approach to explain LPs based
on Network Embeddings (NEs) in terms of existing links
in the network. ExplaiNE is applicable for a wide range of
NE methods. We applied it to CNE, a state-of-the-art NE
method, and outlined how it can be applied for a wide range
of other NE methods. Extensive qualitative and quantitative
evaluations show the usefulness of ExplaiNE, and its ability
to scale to large networks.

In the future we aim to develop ExplaiNE for other NE meth-
ods, apply it to recommender systems, and extend it to offer
explanations in terms of the presence of dense communities
or other larger substructures in the network.
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Supplementary materials for ExplaiNE

1. Approximated ExplaiNE for Conditional Network Embedding
We now apply approximated ExplaiNE approach to Conditional Network Embedding. Our goal is to compute gradient of
predicted link probability g∗ij with respect to the change of link aik (main paper Eq.7), namely:

∂g∗ij
∂aik

(Â) = −∇xi
gij

(
X̂∗
)T
·H−1i ·

∂F̂i
∂aik

(Â, x̂∗i ). (1)

In order to compute the derivative, we first drive the optimality conditions for CNE. Recall the objective function L in CNE
is log-probability:

L(Â,X) = log(P (Â|X)) =
∑

{i,j}:âij=1

logPij(aij = 1|X)

+
∑

{i,j}:âij=0

logPij(aij = 0|X).

where the link probabilities conditioned on the embedding are defined as:

P (aij = 1|X) =
PÂ,ijN+,σ1(‖xi − xj‖)

PÂ,ijN+,σ1
(‖xi − xj‖) + (1− PÂ,ij)N+,σ2

(‖xi − xj‖)
,

P (aij = 0|X) = 1− P (aij = 1|X)

where N+,σ denotes a half-Normal distribution (Leone et al., 1961) with spread parameter σ, where σ2 > σ1 = 1, and
where PÂ,ij is a prior probability for a link to exist between nodes i and j as inferred from the degrees of the nodes (or
based on other types of information about the structure of the network), derived as explained in Adriaens et al. (2017); van
Leeuwen et al. (2016).

Denoting γ = 1
σ2
1
− 1

σ2
2

, and P̂ ∗ij , g∗ij(Â) = P (aij = 1|X̂∗) (the probability of a link between i and j given the optimal

embedding X̂∗ for Â), we can now derive the three terms in Eq. 1.
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First term.. First term is derived by taking the gradient of predicted link probability gij
(
X̂∗
)

with respect to xi:

∇xigij

(
X̂∗
)
= ∇xiP (aij = 1|X)

= ∇xi

(
PÂ,ijN+,σ1

(‖x∗i − x∗j‖)
PÂ,ijN+,σ1

(‖x∗i − x∗j‖) + (1− PÂ,ij)N+,σ2
(‖x∗i − x∗j‖)

)

=
∇xi

(
PÂ,ijN+,σ1(‖x∗i − x∗j‖)

)(
PÂ,ijN+,σ1(‖x∗i − x∗j‖) + (1− PÂ,ij)N+,σ2(‖x∗i − x∗j‖)

)
(
PÂ,ijN+,σ1

(‖x∗i − x∗j‖) + (1− PÂ,ij)N+,σ2
(‖x∗i − x∗j‖)

)2
−

(
PÂ,ijN+,σ1

(‖x∗i − x∗j‖)
)
∇xi

(
PÂ,ijN+,σ1

(‖x∗i − x∗j‖) + (1− PÂ,ij)N+,σ2
(‖x∗i − x∗j‖)

)
(
PÂ,ijN+,σ1

(‖x∗i − x∗j‖) + (1− PÂ,ij)N+,σ2
(‖x∗i − x∗j‖)

)2
=

−1
σ2
1
(x∗i − x∗j )

(
PÂ,ijN+,σ1

(‖x∗i − x∗j‖)
)(

PÂ,ijN+,σ1
(‖x∗i − x∗j‖) + (1− PÂ,ij)N+,σ2

(‖x∗i − x∗j‖)
)

(
PÂ,ijN+,σ1(‖x∗i − x∗j‖) + (1− PÂ,ij)N+,σ2(‖x∗i − x∗j‖)

)2
−

(
PÂ,ijN+,σ1(‖x∗i − x∗j‖)

)(
−1
σ2
1
(x∗i − x∗j )

(
PÂ,ijN+,σ1(‖x∗i − x∗j‖)

)
+ −1

σ2
2
(1− PÂ,ij)N+,σ2(‖x∗i − x∗j‖)

)
(
PÂ,ijN+,σ1

(‖x∗i − x∗j‖) + (1− PÂ,ij)N+,σ2
(‖x∗i − x∗j‖)

)2
= −γ

PÂ,ij(1− PÂ,ij)N+,σ1
(‖x∗i − x∗j‖)N+,σ2

(‖x∗i − x∗j‖)(
PÂ,ijN+,σ1

(‖x∗i − x∗j‖) + (1− PÂ,ij)N+,σ2
(‖x∗i − x∗j‖)

)2
= −γ(x∗i − x∗j )P (aij = 1|X̂∗)P (aij = 0|X̂∗)

= −γ(x∗i − x∗j )P̂
∗
ij(1− P̂ ∗ij) (2)

Second term. The Hessian Hi the gradient of F̂i(Â, x̂∗i ) w.r.t. x∗i . Recall the optimality condition: The optimality
condition in approximated ExplaiNE can be derived as:

F̂i(Â, x̂
∗
i ) = ∇x∗i

log(P (Â|X̂∗))

= γ
∑
j 6=i

(x̂∗i − x̂∗j )
(
P
(
aij = 1|X̂∗

)
− âij

)
= 0. (3)

Based on this condition we derive the Hessian:

Hi = ∇xiF̂i(Â, x̂
∗
i )

= ∇xi

γ∑
j 6=i

(x̂∗i − x̂∗j )
(
P
(
aij = 1|X̂∗

)
− âij

)
= γ

I
∑
j 6=i

(
P ∗ij − âij

)
− γ

∑
j 6=i

(x∗i − x∗j )(x
∗
i − x∗j )

′P ∗ij(1− P ∗ij)

 . (4)

The last line follows similar derivation of Eq. 2.

Third term. Now compute the gradient with respect to aik from optimality condition (Eq. 3):

∂F̂i
∂âik

(Â, x̂∗i ) =
∂

∂âik

γ∑
j 6=i

(x̂∗i − x̂∗j )
(
P
(
aij = 1|X̂∗

)
− âij

)
= γ(x∗k − x∗i ). (5)
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Putting things together, we have

∂g∗ij
∂aik

(Â)

= (x∗i − x∗j )
′ ·

(
−Hi

γ2P̂ ∗ij(1− P̂ ∗ij)

)−1
· (x∗i − x∗k) (6)

2. Exact ExplaiNE for Conditional Network Embedding
We now apply exact ExplaiNE approach to Conditional Network Embedding (CNE). Our goal is to compute the change
(i.e., gradient) of link probability of a node paire {i, j} with respect to node-pairs {k, l} (k 6= l and {k, l} 6= {i, j}), i.e., the
explanations. Applying the chain rule and implicit function theorem, the exact ExplaiNE computes this gradient as (main
paper Eq.4):

∂g∗ij
∂akl

(Â) = −∇Xgij

(
X̂∗
)T
·H−1 · ∂F

∂akl
(Â, X̂∗). (7)

Now let’s derive each term in Eq. 7 for CNE.

First term. Because in CNE the link function g∗ij(Â) only depends on xi and xj , the gradient ∇Xgij

(
X̂∗
)

is a nd× 1

vector with 2d non-zero entries. Formally:

∇Xgij

(
X̂∗
)
=



0
...

∇xi
gij

(
X̂∗
)

...

∇xj
gij

(
X̂∗
)

...
0


(8)

where
∇xi

gij

(
X̂∗
)
= −γ(x∗i − x∗j )P̂

∗
ij(1− P̂ ∗ij),

and
∇xjgij

(
X̂∗
)
= −γ(x∗j − x∗i )P̂

∗
ij(1− P̂ ∗ij).

Second term. We drive the Hessian H (nd× nd) as:

H = ∇XF (Â,X∗)

=



. . .
∇x∗i

Fi(Â,x
∗
i ) . . . ∇x∗i

Fj(Â,x
∗
j )

...
. . .

...
∇x∗j

Fi(Â,x
∗
i ) . . . ∇x∗j

Fj(Â,x
∗
j )

. . .


, (9)

where
∇x∗i

Fi(Â,x
∗
i ) = γI

∑
j 6=i

(P̂ ∗ij − âij)− γ2
∑
j 6=i

(x∗i − x∗j )(x
∗
i − x∗j )

′P̂ ∗ij(1− P̂ ∗ij)

and
∇x∗j

Fj(Â,x
∗
i ) = −γI(P̂ ∗ij − âij) + γ2(x∗i − x∗j )(x

∗
i − x∗j )

′P̂ ∗ij(1− P̂ ∗ij)
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Third term. Finally, we can compute derivative ∂F
∂akl

(Â, X̂∗) (nd× 1) as:

∂F

∂akl
(Â, X̂∗) =



0
...

γ(x∗k − x∗l )
...

γ(x∗l − x∗k)
...
0


(10)

Putting all together, we have gradient of link probability g∗ij(Â) with respect to a link akl:

∂g∗ij
∂akl

(Â) = −∇Xgij

(
X̂∗
)T
·H−1 · ∂F

∂akl
(Â, X̂∗)

=



0
...

∇xigij

(
X̂∗
)

...

∇xj
gij

(
X̂∗
)

...
0



′

·



. . .
−∇x∗i

Fi(Â,x
∗
i ) . . . −∇x∗i

Fj(Â,x
∗
j )

...
. . .

...
−∇x∗j

Fi(Â,x
∗
i ) . . . −∇x∗j

Fj(Â,x
∗
j )

. . .



−1


0
...

γ(x∗k − x∗l )
...

γ(x∗l − x∗k)
...
0



3. Approximated ExplaiNE for LINE
LINE (Tang et al., 2015b) computes embeddings that approximate both 1st and 2nd order proximity. The model consists of
two objective functions. The first one measures the distance (KL) between the model and empirical distribution of the 1st
proximity measure. Similarly the second objective function measures the distance (KL) between the model and empirical
distribution of the 2nd proximity measure. Optimizing over the objective functions thus gives two embeddings for an input
word, one for each type of proximities. Then the embeddings are simply concatenated and used as the final node embedding.
Usually the context embedding in the 2nd proximity approximation are not used in the practice, similar to the situation in
the language modeling (e.g., skip-gram with negative sampling a.k.a SGNS).

Similar to CNE, we assume the given network is unweighted, undirected. Explaining the first order proximity embedding
(LINE 1st) is simple, thus our derivation assumes the link prediction is based solely on the LINE 2nd embedding, adopt the
reasoning in the works (Levy & Goldberg, 2014; Qiu et al., 2018). For LINE 2nd, the probability of encountering “context”
node vj given node vi is defined as,

p(vj |vi) =
exp(x′iyj)∑
k exp(x

′
iyk)

where xi denotes the embedding of a target node i and yj denotes the embedding of context node j.

Then the 2nd proximity objective reads:
O =

∑
i∈V

diKL (p̂(·|vi)‖p(·|vi))

where di =
∑
j aij weights the importance of i-th node, and empirical distribution p̂(·|vi) is defined as p̂(vj |vi) = aij

di
.

Carrying out the KL-divergence, the objective function can be further expressed as:

O =
∑

(i,j)∈E

aij log p(vj |vi)
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Because the normalization factor of the distribution is computationally expensive, the objective function is approximated
using negative sampling (Mikolov et al., 2013):

L =
∑

(i,j)∈E

aij log g(x
′
iyj) + bEj′∼PN

[log g (−x′iyj′)]

where b is the number of negative samples, g(z) is the sigmoid function. The expectation term can be expressed as

Ej′∼PN
[log g (−x′iyj′)] =

∑
j′

dj′

vol(G)
log g (−x′iyj′)

Then the objective function of LINE (2nd) can be expressed as:

L =
∑

(i,j)∈E

aij log g(x
′
iyj) + b

didj
vol(G)

log g(−x′iyj)

Denote g+ij = g(x′iyj) and g−ij = g(−x′iyj) we can compute the gradient of L with respect to xi as:

∇xi
L = (

∑
j

aijg
−
ij − b

didj
vol(G)

g+ij) · yj

Equating the gradient to zero we have implicit function given by optimal embedding x∗i and y∗j :

Fi(Â, x̂i) = ∇xiLij = (
∑
j

âijg
−
ij − b

didj
vol(G)

g+ij) · y
∗
j

= 0

Our goal is to explain the predicted link probability g∗ij with respect the change of an edge âkl. Assume the function function
g to be the logistic regression classifier (with parameter w and b) trained on edge embedding that combines two node
embedding using Hadamard operator (i.e., element wise product denoted as x∗i ◦ x∗j ) (Grover & Leskovec, 2016):

g∗ij(X̂
∗) =

1

1 + e−(w
′(x∗i ◦x∗j )+b)

(11)

Our goal is compute gradient:

∂g∗ij
∂aik

(X̂∗) = −∇xi
gij

(
X̂∗
)T
·H−1i ·

∂F̂i
∂aik

(Â, x̂∗i ). (12)

First term in the derivative:
∇xig

∗
ij(X̂

∗) = g∗ij(1− g∗ij) · (w ◦ x∗j )

Second term in the derivative:

Hi = ∇xi
Fi(Â, x̂

∗
i )

= ∇xi

(
∑
j

âijg
−
ij − b

didj
vol(G)

g+ij) · y
∗
j


=
∑
j

−âijg−ij(1− g
−
ij)y

∗
j (y
∗
j )
′ − b didj

vol(G)
g+ij(1− g

+
ij)y

∗
j (y
∗
j )
′

= −
∑
j

(
âij +

didj
vol(G)

)
g+ijg

−
ijy
∗
j (y
∗
j )
′
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The third term reads:

∂Fi
∂âik

(Â, x̂∗i ) =
∂

∂âik

∑
j

âijg
−
ijy
∗
j − b

didj
vol(G)

g+ij · y
∗
j


= g−iky

∗
k − b

 ∂

∂âij

di
vol(G)

·
∑
j

djg
+
ijy
∗
j


= g−iky

∗
k − b

vol(G)− di
vol(G)2

·

∑
j

djg
+
ijy
∗
j

+
di

vol(G)
g+iky

∗
k


=

(
g−ik −

bdi
vo(G)

g+ik

)
y∗k −

b(vol(G)− di)
vol(G)2

·
∑
j

djg
+
ijy
∗
j

where ∂di
∂aik

= 1, ∂vol(G)
∂aik

= 1, ∂dj
∂aik

=

{
1, for j = k
0, otherwise .

More General, the loss function based on term #(w,c)

#w #c
|C|

is applicable for all skip gram with negative sampling (SGNS) model

based methods (LINE, PTE, DeepWalk, node2vec) (Levy & Goldberg, 2014; Qiu et al., 2018). Based on different sampling
strategy, #(w,c)

#w #c
|C|

becomes different functions of âij. For example, in LINE this is ratio
∑

i aij ·
∑

j aij∑
ij aij

. PTE is similar to but

extended to multiple networks. In DeepWalk and node2vec, this expression converges probabilistically to entries of function
of random walk matrix P = D−1A. So in theory, the idea of ExplaiNE can be extended to all SGNS based methods.

4. Quality of the ExplaiNE approximation
In this section we describe the detailed evaluation about the quality of the ExplaiNE approximation. The results are obtained
on GoT network with embedding dimensionality 2.

4.1. Compare the gradient of incident nodes v.s. non-incident nodes

0.00 0.05 0.10 0.15 0.20
0

100

200

300

400

500

600 incident
non-incident

Figure 4. Gradient values of (top) predicted link probability of 100 randomly sampled nodes with respect to incident nodes (blue bars)
versus non-incident nodes (orange bars). The gradient values of non-incident node pairs (on average −2.13e−7± 6.96e−5)are mush
smaller than the gradient values of the incident node pairs (on average 0.005± 0.02). This validates our assumption that the derivative of
the predicted link probability is higher w.r.t incident node pairs {i, k} than w.r.t non-incident node pairs {k, l}..

Our first goal is to validate the assumption (main paper Sec.2.3) that the derivative of the predicted link probability is
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higher w.r.t incident node pairs {i, k} than w.r.t non-incident node pairs {k, l}. We randomly sampled 100 nodes, for
each node i we compute (using exact ExplaiNE) the gradient of the link probability of i’s top predicted link {i, j} with
respect to i′s incident pairs {i, k}. These values summarized in the histogram (Fig.4) with blue bars. As comparison, we
also compute (using exact ExplaiNE) for each node i the gradient of predicted probability of link {i, j} with respect to a
random sample (same number as i’s incident nodes) of non-incident pairs {k, l} (k 6= l and {k, l} 6= {i, j}). These values
are also summarized in the histogram (Fig.4) with orange bars. The plot shows the gradient values of non-incident node
pairs (on average −2.13e−7± 6.96e−5)are mush smaller than the gradient values of the incident node pairs (on average
0.005± 0.02). This validates our assumption.

4.2. Evaluate ExplaiNE approximation on predicted links

In this section, we assess the extent to which the top K explanations for a predicted link {i, j} incident to a given node i, as
given by approximated ExplaiNE, overlap with the top-K explanations given by exact ExplaiNE.

The relevant parameters here are (1) the value of K and (2) the number of neighbors. As we consider only links to neighbors
as candidate explanations, K must be smaller than the number of neighbors. Moreover, if the number of neighbors is not
much larger than K, a substantial overlap in the top-K explanations of the exact and approximate method is not surprising.

Indeed, if i has m neighbors, two random subset of K neighbors would share l elements with probability (Kl )(
m−K
K−l )

(mK)
, which

is large for large l if m is not much larger than K.

4 5 6 7 8 9 10
#neighbors of the target node

0

1

2

3

#c
om

m
on

 e
xp

la
na

tio
ns

0
(0.00)

0
(0.00)

0
(1.95)

0
(2.86)

0
(4.29)

0
(6.43)

0
(2.62)

0
(0.00)

0
(16.80)

0
(17.55)

0
(12.86)

0
(12.86)

0
(14.46)

0
(4.73)

0
(51.75)

0
(33.60)

0
(17.55)

0
(8.57)

0
(6.43)

0
(5.79)

0
(1.57)

69
(17.25)

56
(5.60)

39
(1.95)

25
(0.71)

24
(0.43)

27
(0.32)

9
(0.07)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. Histogram for K = 3 degrees up to 10 (668 out of 796 nodes have smaller or equal degrees). It reveals that the top-3
explanations given by approximated ExplaiNE in almost all cases completely overlaps with the explanation given by exact ExplaiNE.

Thus, we performed a stratified analysis, computing the size of the overlap of the top-K explanations, aggregated in a
histogram over nodes with a specific degree. We plot the histogram for K = 3 degrees up to 10 (668 out of 796 nodes
have smaller or equal degrees) (Fig. 5) and for K = 5 degrees up to 12 (691 out of 796 nodes have smaller or equal
degrees) (Fig. 6). Both histogram revealed that the top-K explanations given by approximated ExplaiNE in almost all cases
completely overlaps with the explanation given by exact ExplaiNE.

For completeness, we counted the cases of perfect overlapping up to the largest node degree 122 for K = 1, . . . , 5,
summarized in Table. 4. The result agains shows the almost perfect overlapping between the explanations given by
approximated ExplainNE and exact ExplainNE. Note for larger neighborhood size, the more probable the top explanations
contains more noise, thus the top ranked explanations have lower similarities (e.g. in K = 5 case) with the exact version.
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Figure 6. Histogram for K = 5 degrees up to 12 (691 out of 796 nodes have smaller or equal degrees). It reveals that the top-5
explanations given by approximated ExplaiNE in almost all cases completely overlaps with the explanation given by exact ExplaiNE.

Table 4. Number of perfect overlapping between the explanations given by approximated ExplainNE and exact ExplainNE. Count up to
the largest node degree 122 for K = 1, . . . , 5.

K = 1 K = 2 K = 3 K = 4 K = 5
Number of perfect overlaps

out of 796 cases 796 794 793 794 789

4.3. Evaluate ExplaiNE approximation on existing links

Although the top-K explanation are arguably more relevant than the tail of the ranking, for completeness we also compared
the total ranking of the neighbors between the approximated and exact ExplaiNE versions, and this for the top predicted
link as well as for all existing links (i.e. seeking explanations for links that are actually present in the network). More
specifically, for each node’s top existing link (according to the link probability) we computed the normalized Kendall tau
distance between the ranked explanation given by approximated ExplaiNE and exact ExplaiNE. We compared this with
the normalized Kendall tau distance measured between a random ranking and the ranking given by exact ExplaiNE (See
Fig. 7).The average normalized Kendall tau distance between explanations given by approximated and exact ExplaiNE is
0.008± 0.04 and, for comparison, the average between a random ranking and exact ExplaiNE is 0.49± 0.29. These results
again confirm the accuracy (here, in terms of ranking distance) of approximated ExplaiNE well approximates exact version.

5. Qualitative study
DBLP network. In the co-authorship network, a predicted link between authors i and j suggests a collaboration between
them. While ExplaiNE uses no external information to provide its explanations for such suggested collaborations, our
experiments indicate that such explanations tend to be existing collaborators working on a topic on which the suggested
collaborator is active as well.

As first example, we predict links for ICML’19 general chair Eric P. Xing (node i), and compute the explanations for his top
recommendation (node j): Adams Wei Yu. It turns out that the existing co-authors of Eric P. Xing identified by ExplaiNE as
top-5 explanations for this recommendation (see Table 5) are either colleagues or coauthors of Adams Wei Yu, with a shared
interest in large scale optimization and deep learning.

As second example, we predict links for ICML’19 program chair Kamalika Chaudhuri (node i), and compute the explanations
for his top recommendation (node j): Matus Telgarsky. It turns out that the existing co-authors of Kamalika Chaudhuri
identified by ExplaiNE as top-5 explanations for this recommendation (see Table 6) are coauthors, advisors, or colleagues of
Matus Telgarsky, with a shared interest in deep learning.
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Figure 7. For each node’s top existing link (according to the link probability) we computed the normalized Kendall tau distance between
the ranked explanation given by approximated ExplaiNE and exact ExplaiNE. We compared this with the normalized Kendall tau distance
measured between a random ranking and the ranking given by exact ExplaiNE. The average normalized Kendall tau distance between
explanations given by approximated and exact ExplaiNE is 0.008± 0.04 and, for comparison, the average between a random ranking and
exact ExplaiNE is 0.49± 0.29. This again confirms the accuracy (here, in terms of ranking distance) of approximated ExplaiNE well
approximates exact version.

Table 5. Predicted/recommended collaborations for Eric P. Xing. The top link (author: Adams Wei Yu) predicted by CNE are explained
through co-authors of Eric P. Xing that are also colleagues or co-authors of Adams Wei Yu. The most relevant five co-authors of Eric P.
Xing also cover major parts of Adams Wei Yu’s research interests: large scale optimization and deep learning.

Rank Recommendations
Explain:

‘Adams Wei Yu’
1 Adams Wei Yu Hao Su
2 Jure Leskovec Li Fei-Fei
3 Sunita Sarawagi Suvrit Sra
4 Tong Zhang Fan Li
5 Soumen Chakrabarti Wei Dai

As thrid example, we predict links for ICML’19 program chair Ruslan Salakhutdinov (node i), and compute the explanations
for his top recommendation (node j): Rich Zemel. It turns out that the existing co-authors of Ruslan Salakhutdinov identified
by ExplaiNE as top-5 explanations for this recommendation (see Table 7) are students, coauthors, or colleagues of Rich
Zemel, with a shared interest in deep learning. As fourth example, we predict links for Prof. Yann LeCun (node i), and
compute the explanations for his top recommendation (node j): Tomas Mikolov. It turns out that the existing co-authors of
Yann LeCun identified by ExplaiNE as top-5 explanations for this recommendation (see Table 8) are either colleagues or
coauthors of Tomas Mikolov, with a shared interest in deep learning. As fifth example, we predict links for Prof. Michael I.
Jordan (node i), and compute the explanations for his top recommendation (node j): Christos Faloutsos. It turns out that the
existing co-authors of Michael I. Jordan identified by ExplaiNE as top-5 explanations for this recommendation (see Table 9)
are either colleagues or coauthors of Christos Faloutsos, with a shared interest mainly in data mining and database systems.
MovieLens network. In the rating network, a predicted link between a user i and movie j amounts to a recommendation of
movie j to user i. In making this recommendation CNE did not have access to any meta-data of the users or movies, and
neither does ExplaiNE to identify explanations. Yet, we can make use of this meta-data to qualitatively assess whether the
explanations make sense. As our first example, we computed the recommendation for the first user (uid=0) in the user list
(See Table. 10). The top recommended movie is ‘Batman’ with genre tags ‘Action’, ‘Adventure’, ‘Crime’, and ‘Drama’. The
genres of the top explanations given by explainNE arguably have strongly overlapping genre tags (e.g. all top-5 are tagged
with ‘Action’). Moreover, the second-highest ranked explanation is ‘Batman Forever’. As second example, we computed the
recommendation for the first user (uid=1) in the user list (See Table. 11). The top recommended movie is ‘The Devil’s Own’
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Table 6. Predicted/recommended collaborations for Kamalika Chaudhuri. The top link (author: Matus Telgarsky) predicted by CNE are
explained through co-authors of Kamalika Chaudhuri that are also coauthors, advisors, or colleagues of Matus Telgarsky. The most
relevant five co-authors of Kamalika Chaudhuri also cover major parts of Matus Telgarsky’s research interests: deep learning.

Rank Recommendations
Explain:

‘Matus Telgarsky’
1 Matus Telgarsky Animashree Anandkumar
2 Elad Hazan Chicheng Zhang
3 Majid Janzamin Yoav Freund
4 Rong Ge Sanjoy Dasgupta
5 Shai Shalev-Shwartz Sham M. Kakade

Table 7. Predicted/recommended collaborations for Ruslan Salakhutdinov. The top link (author: Rich Zemel) predicted by CNE are
explained through co-authors of Ruslan Salakhutdinov that are also students, coauthors, or colleagues of Rich Zemel. The most relevant
five co-authors of Ruslan Salakhutdinov also cover major parts of Rich Zemel’s research interests: deep learning.

Rank Recommendations
Explain:

‘Rich Zemel’
1 Rich Zemel Ryan P. Adams
2 Ruslan Salakhudinov Jimmy Ba
3 Russell Greiner Kevin Swersky
4 Dale Schuurmans Kyunghyun Cho
5 Aaron C. Courville Ryan Kiros

with genre tags ‘Action’, ‘Drama’, ‘Thriller’,’ and ‘War’. The genres of the top explanations given by explainNE arguably
have strongly overlapping genre tags.

As thrid example, we computed the recommendation for the first user (uid=1) in the user list (See Table. 12). The top
recommended movie is ‘The Replacement Killers’ with genre tags ‘Action’ and ‘Thriller’. The genres of the top explanations
given by explainNE arguably have descent amount of overlapping genre tags. As fourth example, we computed the
recommendation for the first user (uid=1) in the user list (See Table. 13). The top recommended movie is ‘ Murder at 1600’
with genre tags ‘Mystery’ and ‘Thriller’. The genres of the top explanations given by explainNE arguably have strongly
overlapping genre tags.

As fifth example, we computed the recommendation for the first user (uid=1) in the user list (See Table. 14). The top
recommended movie is ‘Dumbo’ with genre tags ‘Animation’, ‘Childrens’, and ‘Musical’. The genres of the top explanations
given by explainNE arguably have strongly overlapping genre tags (e.g. all top-4 are tagged with ‘Childrens’).

6. Quantitative study
DBLP network. Here, we can construct ground truth explanations for existing links (as opposed to predicted ones). While
this is not the intended use case of ExplaiNE, it is perfectly legitimate and justified here given our intention to objectively
validate the quality of the explanations. Our approach is based on the intuition that a one-time co-author j of a given author i
could have been introduced to that author i by another co-author k on the same paper, thus explaining the link {i, j}. While
this will of course not always be true, we postulate that it is sufficiently common for ExplaiNE—providing it works well—to
highlight the other co-authors as explanations for the observed link {i, j}.

Given an author i and a one-time co-author j of i, we used ExplaiNE to rank the other co-authors of i, from more to less
explanatory. We then took the top-r of this ranked list as predicted co-authors on the paper i co-authored with j. Based
on this, we created a confusion matrix. Clearly, the hardness of this prediction task is different for papers with different
numbers of authors. Thus, in order to get a more aggregate assessment, we summed the top-r confusion matrices for all
one-time co-authors of node i on papers with a given number of co-authors L, and this for different L between 3 and 5. For
a given author-list length, the confusion matrices with different r were then used to create precision-recall curves or ROC
curves.

Figure 8 shows the PR and ROC curves for Eric P. Xing as node i and three author-list lengths. For comparison, also PR and
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Table 8. Predicted/recommended collaborations for Prof. Yann LeCun. The top link (author: Tomas Mikolov) predicted by CNE are
explained through co-authors of Yann LeCun that are also students, coauthors, or colleagues of Tomas Mikolov. The most relevant five
co-authors of Yann LeCun also cover major parts of Tomas Mikolov’s research interests: deep learning.

Rank Recommendations
Explain:

‘Tomas Mikolov’
1 Tomas Mikolov Andrew Caplin
2 Hans Peter Graf Sumit Chopra
3 Graham W. Taylor Ido Kanter
4 Volodymyr Mnih Clement Farabet
5 Rodolfo A. Milito Wojciech Zaremba

Table 9. Predicted/recommended collaborations for Prof. Michael I. Jordan. The top link (author: Christos Faloutsos) predicted by CNE
are explained through co-authors of Michael I. Jordan that are also students, coauthors, or colleagues of Christos Faloutsos. The most
relevant five co-authors of Michael I. Jordan also cover major parts of Christos Faloutsos’s research interests: data mining and database
systems

Rank Recommendations
Explain:

‘Christos Faloutsos’
1 Christos Faloutsos Pinar Duygulu
2 Carlos Guestrin Deepayan Chakrabarti
3 Wolfgang Maass Jennifer G. Dy
4 Andrew Zisserman Richard M. Karp
5 Kotagiri Ramamohanarao Stephen Tu

ROC curves computed based on a randomly ranked list is shown (as the size of the data is rather small, these are not always
close to the diagonal). Figure 9 shows the ROC curves for Kamalika Chaudhuri as node i and three author-list lengths.
Figure 10 shows the PR and ROC curves for Ruslan Salakhutdinov as node i and three author-list lengths. Figure 11 shows
the PR and ROC curves for Yann LeCun as node i and three author-list lengths. Figure 12 shows the PR and ROC curves for
Michael I. Jordan as node i and three author-list lengths.

MovieLens network. A good explanation k of a predicted link between a movie-user pair {i, j} should arguably have a
similar list of genres as j. To test this, we computed the top-5 explanations for user i and her top recommended movie
j. Then we averaged the Jaccard similarity between the set of genres for movie j and the set of genres of each of the 5
explanations. To assess the significance of this average, we computed an empirical p-value for it by randomly sampling 50
sets of 5 ‘explanations’ drawn from the watched movies of i, resulting in 50 random average Jaccard similarities to compare
with the one obtained by ExplaiNE. Thus we obtained an empirical p-value for each user i, indicating the significance of the
overlap between the set of genres of the recommended movie j and the top-5 explanations. We also computed the empirical
p-values by randomly sampling 50 sets of 5 ‘explanations’ drawn from the all movies for each i. A histogram of these
p-values is shown in Fig. 13a,b. While p-values are uniformly distributed under the null hypothesis that the explanations
have genres unrelated to those of j, here this is not the case—indicating the null hypothesis is false. In both settings, a
Kolmogorov-Smirnoff test indeed shows an extremely high significance (p-value numerically 0).
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Table 10. Recommended movie to user uid=0. The top movie recommended by CNE (Batman) is explained through movies already seen
by user uid=0. The top-ranked explanations have genres that overlap with the recommended movie.

j Recommendations Genres
1 Batman Action, Adventure,

Crime, Drama
2 E.T. the Extra-Terrestrial Children’s, Drama,

Fantasy, Sci-Fi
3 The Secret of Roan Inish Adventure

k Explain: ‘Batman’ Genres
1 Supercop Action, Thriller
2 Batman Forever Action, Adventure,

Comedy, Crime
3 The Crow Action, Romance,

Thriller
4 Full Metal Jacket Action, Drama, War
5 Young Guns Action, Comedy, West-

ern

Table 11. Recommended movie to user uid=1. The top movie recommended by CNE (The Devil’s Own) is explained through movies
already seen by user uid=1. The top-ranked explanations have genres that overlap with the recommended movie.

j Recommendations Genres
1 The Devil’s Own Action, Drama,

Thriller, War
2 Everyone Says I Love

You
Comedy, Musical, Ro-
mance

3 Lone Star Drama, Mystery

k Explain: ‘The Devil’s Own’ Genres
1 Heat Action, Crime, Thriller
2 Midnight in the Garden

of Good and Evil
Comedy, Crime,
Drama, Mystery

3 A Time to Kill Action, Drama
4 Liar Liar Comedy
5 Up Close & Personal Drama, Romance

Table 12. Recommended movie to user uid=2. The top movie recommended by CNE (The Replacement Killers) is explained through
movies already seen by user uid=2. The top-ranked explanations have genres that overlap with the recommended movie.

j Recommendations Genres
1 The Replacement Killers Action, Thriller
2 Titanic Action, Drama, Ro-

mance
3 The Full Monty Comedy

k Explain: ‘The Replacement Killers’ Genres
1 Spice World Comedy, Musical
2 Deep Rising Action, Horror, Sci-Fi
3 Deconstructing Harry Comedy, Drama
4 Fallen Action, Mystery,

Thriller
5 Wag the Dog Comedy, Drama
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Table 13. Recommended movie to user uid=3. The top movie recommended by CNE (Murder at 1600) is explained through movies
already seen by user uid=3. The top-ranked explanations have genres that overlap with the recommended movie.

j Recommendations Genres
1 Murder at 1600 Mystery, Thriller
2 The Devil’s Advocate Crime, Horror, Mys-

tery, Thriller
3 The Game Mystery, Thriller

k Explain: ‘Murder at 1600’ Genres
1 Liar Liar Comedy
2 Scream Horror, Thriller
3 Cop Land Crime, Drama, Mys-

tery
4 Assignment Thriller
5 Conspiracy Theory Action, Mystery, Ro-

mance, Thriller

Table 14. Recommended movie to user uid=4. The top movie recommended by CNE (Dumbo) is explained through movies already seen
by user uid=4. The top-ranked explanations have genres that overlap with the recommended movie.

j Recommendations Genres
1 Dumbo Animation, Children’s,

Musical
2 The Lion King Animation, Children’s,

Musical
3 The ox and the Hound Animation, Children’s

k Explain: ‘Dumbo’ Genres
1 Fantasia Animation, Children’s,

Musical
2 Cinderella Animation, Children’s,

Musical
3 The Parent Trap Children’s, Drama
4 Alice in Wonderland Animation, Children’s,

Musical
5 Jack Comedy, Drama
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Figure 8. PR (first row) and ROC (second row) curves of co-author predictions for i =’Eric P. Xing’, with author-list lengths 3, 4, and 5
(orange=random, blue=ExplaiNE).
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Figure 9. PR (first row) and ROC (second row) curves of co-author predictions for i =’Kamalika Chaudhuri’, with author-list lengths 3, 4
(orange=random, blue=ExplaiNE). In this case, no paper has author list length 5.
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Figure 10. PR (first row) and ROC (second row) curves of co-author predictions for i =’Ruslan Salakhutdinov’, with author-list lengths 3,
4, and 5 (orange=random, blue=ExplaiNE).
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Figure 11. PR (first row) and ROC (second row) curves of co-author predictions for i =’Yann LeCun’, with author-list lengths 3, 4, and 5
(orange=random, blue=ExplaiNE).
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Figure 12. PR (first row) and ROC (second row) curves of co-author predictions for i =’Michael I. Jordan’, with author-list lengths 3, 4,
and 5 (orange=random, blue=ExplaiNE).
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Figure 13. P -values that indicates the significance of the correlation between the genre recommended and the genres in the explanation.
Each p-value is computed against 50 random explanations. (a) Explanations are drawn from user’s watched movies. The empirical
distribution has Kolmogorov-Smirnov test statistic 0.32 and a p-value that is numerically 0.0 against uniform distribution. (b) Explanations
are drawn from all movies. The empirical distribution has Kolmogorov-Smirnov test statistic 0.42 and a p-value that is numerically 0.0
against uniform distribution. This shows the significance of positive correlation between the recommended movies and the explanations
made by ExplaiNE.


