18,285 research outputs found

    Execution Integrity with In-Place Encryption

    Full text link
    Instruction set randomization (ISR) was initially proposed with the main goal of countering code-injection attacks. However, ISR seems to have lost its appeal since code-injection attacks became less attractive because protection mechanisms such as data execution prevention (DEP) as well as code-reuse attacks became more prevalent. In this paper, we show that ISR can be extended to also protect against code-reuse attacks while at the same time offering security guarantees similar to those of software diversity, control-flow integrity, and information hiding. We present Scylla, a scheme that deploys a new technique for in-place code encryption to hide the code layout of a randomized binary, and restricts the control flow to a benign execution path. This allows us to i) implicitly restrict control-flow targets to basic block entries without requiring the extraction of a control-flow graph, ii) achieve execution integrity within legitimate basic blocks, and iii) hide the underlying code layout under malicious read access to the program. Our analysis demonstrates that Scylla is capable of preventing state-of-the-art attacks such as just-in-time return-oriented programming (JIT-ROP) and crash-resistant oriented programming (CROP). We extensively evaluate our prototype implementation of Scylla and show feasible performance overhead. We also provide details on how this overhead can be significantly reduced with dedicated hardware support

    SOFIA : software and control flow integrity architecture

    Get PDF
    Microprocessors used in safety-critical systems are extremely sensitive to software vulnerabilities, as their failure can lead to injury, damage to equipment, or environmental catastrophe. This paper proposes a hardware-based security architecture for microprocessors used in safety-critical systems. The proposed architecture provides protection against code injection and code reuse attacks. It has mechanisms to protect software integrity, perform control flow integrity, prevent execution of tampered code, and enforce copyright protection. We are the first to propose a mechanism to enforce control flow integrity at the finest possible granularity. The proposed architectural features were added to the LEON3 open source soft microprocessor, and were evaluated on an FPGA running a software benchmark. The results show that the hardware area is 28.2% larger and the clock is 84.6% slower, while the software benchmark has a cycle overhead of 13.7% and a total execution time overhead of 110% when compared to an unmodified processor

    Evaluating XMPP Communication in IEC 61499-based Distributed Energy Applications

    Full text link
    The IEC 61499 reference model provides an international standard developed specifically for supporting the creation of distributed event-based automation systems. Functionality is abstracted into function blocks which can be coded graphically as well as via a text-based method. As one of the design goals was the ability to support distributed control applications, communication plays a central role in the IEC 61499 specification. In order to enable the deployment of functionality to distributed platforms, these platforms need to exchange data in a variety of protocols. IEC 61499 realizes the support of these protocols via "Service Interface Function Blocks" (SIFBs). In the context of smart grids and energy applications, IEC 61499 could play an important role, as these applications require coordinating several distributed control logics. Yet, the support of grid-related protocols is a pre-condition for a wide-spread utilization of IEC 61499. The eXtensible Messaging and Presence Protocol (XMPP) on the other hand is a well-established protocol for messaging, which has recently been adopted for smart grid communication. Thus, SIFBs for XMPP facilitate distributed control applications, which use XMPP for exchanging all control relevant data, being realized with the help of IEC 61499. This paper introduces the idea of integrating XMPP into SIFBs, demonstrates the prototypical implementation in an open source IEC 61499 platform and provides an evaluation of the feasibility of the result.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA

    Cryptographically Secure Information Flow Control on Key-Value Stores

    Full text link
    We present Clio, an information flow control (IFC) system that transparently incorporates cryptography to enforce confidentiality and integrity policies on untrusted storage. Clio insulates developers from explicitly manipulating keys and cryptographic primitives by leveraging the policy language of the IFC system to automatically use the appropriate keys and correct cryptographic operations. We prove that Clio is secure with a novel proof technique that is based on a proof style from cryptography together with standard programming languages results. We present a prototype Clio implementation and a case study that demonstrates Clio's practicality.Comment: Full version of conference paper appearing in CCS 201

    Stacco: Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS Vulnerabilities in Secure Enclaves

    Full text link
    Intel Software Guard Extension (SGX) offers software applications enclave to protect their confidentiality and integrity from malicious operating systems. The SSL/TLS protocol, which is the de facto standard for protecting transport-layer network communications, has been broadly deployed for a secure communication channel. However, in this paper, we show that the marriage between SGX and SSL may not be smooth sailing. Particularly, we consider a category of side-channel attacks against SSL/TLS implementations in secure enclaves, which we call the control-flow inference attacks. In these attacks, the malicious operating system kernel may perform a powerful man-in-the-kernel attack to collect execution traces of the enclave programs at page, cacheline, or branch level, while positioning itself in the middle of the two communicating parties. At the center of our work is a differential analysis framework, dubbed Stacco, to dynamically analyze the SSL/TLS implementations and detect vulnerabilities that can be exploited as decryption oracles. Surprisingly, we found exploitable vulnerabilities in the latest versions of all the SSL/TLS libraries we have examined. To validate the detected vulnerabilities, we developed a man-in-the-kernel adversary to demonstrate Bleichenbacher attacks against the latest OpenSSL library running in the SGX enclave (with the help of Graphene) and completely broke the PreMasterSecret encrypted by a 4096-bit RSA public key with only 57286 queries. We also conducted CBC padding oracle attacks against the latest GnuTLS running in Graphene-SGX and an open-source SGX-implementation of mbedTLS (i.e., mbedTLS-SGX) that runs directly inside the enclave, and showed that it only needs 48388 and 25717 queries, respectively, to break one block of AES ciphertext. Empirical evaluation suggests these man-in-the-kernel attacks can be completed within 1 or 2 hours.Comment: CCS 17, October 30-November 3, 2017, Dallas, TX, US
    • …
    corecore