2 research outputs found

    Multi-tenant hybrid cloud architecture

    Get PDF
    This paper examines the challenges associated with the multi-tenant hybrid cloud architecture and describes how this architectural approach was applied in two software development projects. The motivation for using this architectural approach is to allow developing new features on top of monolithic legacy systems – that are still in production use – but without using legacy technologies. The architectural approach considers these legacy systems as master systems that can be extended with multi-tenant cloud-based add-on applications. In general, legacy systems are run in customer-operated environments, whereas add-on applications can be deployed to cloud platforms. It is thus imperative to have a means connectivity between these environments over the internet. The technology stack used within the scope of this thesis is limited to the offering of the .NET Core ecosystem and Microsoft Azure. In the first part of the thesis work, a literature review was carried out. The literature review focused on the challenges associated with the architectural approach, and as a result, a list of challenges was formed. This list was utilized in the software development projects of the second part of the thesis. It should be noted that there were very few high-quality papers available focusing exactly on the multi-tenant hybrid cloud architecture, so, in the end, source material for the review was searched separately for multi-tenant and for hybrid cloud design challenges. This factor is noted in the evaluation of the review. In the second part of the thesis work, the architectural approach was applied in two software development projects. Goals were set for the architectural approach: the add-on applications should be developed with modern technology stacks; their delivery should be automated; their subscription should be straightforward for customer organizations and they should leverage multi-tenant resource sharing. In the first project a data quality management tool was developed on top of a legacy dealership management system. Due to database connectivity challenges, confidentiality of customer data and authentication requirements, the implemented solution does not fully utilize the architectural approach, as having the add-on application hosted in the customer environment was the most reasonable solution. Despite this, the add-on application was developed with a modern technology stack and its delivery is automated. The subscription process does involve certain manual steps and, if the customer infrastructure changes over time, these steps must be repeated by the developers. This decreases the scalability of the overall delivery model. In the second project a PDA application was developed on top of a legacy vehicle maintenance tire hotel system. The final implementation fully utilizes the architectural approach. Support for multi-tenancy was implemented using ASP.NET Core Dependency Injection and Finbuckle.MultiTenancy-library. Azure Relay Hybrid Connection was used for hybrid cloud connectivity between the add-on application and the master system. The delivery model incorporates the same challenges regarding subscription and customer infrastructure changes as the delivery model of the data quality management tool. However, the manual steps associated with these challenges must be performed only once per customer – not once per customer per application. In addition, the delivery model could be improved to support customer self-service governance, enabling the delegation of any customer environment installations to the customers themselves. Even further, the customer environment installation could potentially cover an entire product family. As an example, instead of just providing access for the PDA application, the installation could provide access for all vehicle maintenance family add-on applications. This would make customer environment management easier and developing new add-on applications faster
    corecore