10 research outputs found

    Private information retrieval and function computation for noncolluding coded databases

    Get PDF
    The rapid development of information and communication technologies has motivated many data-centric paradigms such as big data and cloud computing. The resulting paradigmatic shift to cloud/network-centric applications and the accessibility of information over public networking platforms has brought information privacy to the focal point of current research challenges. Motivated by the emerging privacy concerns, the problem of private information retrieval (PIR), a standard problem of information privacy that originated in theoretical computer science, has recently attracted much attention in the information theory and coding communities. The goal of PIR is to allow a user to download a message from a dataset stored on multiple (public) databases without revealing the identity of the message to the databases and with the minimum communication cost. Thus, the primary performance metric for a PIR scheme is the PIR rate, which is defined as the ratio between the size of the desired message and the total amount of downloaded information. The first part of this dissertation focuses on a generalization of the PIR problem known as private computation (PC) from distributed storage system (DSS). In PC, a user wishes to compute a function of f variables (or messages) stored in n noncolluding coded databases, i.e., databases storing data encoded with an [n, k] linear storage code, while revealing no information about the desired function to the databases. Here, colluding databases refers to databases that communicate with each other in order to deduce the identity of the computed function. First, the problem of private linear computation (PLC) for linearly encoded DSS is considered. In PLC, a user wishes to privately compute a linear combination over the f messages. For the PLC problem, the PLC capacity, i.e., the maximum achievable PLC rate, is characterized. Next, the problem of private polynomial computation (PPC) for linearly encoded DSS is considered. In PPC, a user wishes to privately compute a multivariate polynomial of degree at most g over f messages. For the PPC problem an outer bound on the PPC rate is derived, and two novel PPC schemes are constructed. The first scheme considers Reed-Solomon coded databases with Lagrange encoding and leverages ideas from recently proposed star-product PIR and Lagrange coded computation. The second scheme considers databases coded with systematic Lagrange encoding. Both schemes yield improved rates compared to known PPC schemes. Finally, the general problem of PC for arbitrary nonlinear functions from a replicated DSS is considered. For this problem, upper and lower bounds on the achievable PC rate are derived and compared. In the second part of this dissertation, a new variant of the PIR problem, denoted as pliable private information retrieval (PPIR) is formulated. In PPIR, the user is pliable, i.e., interested in any message from a desired subset of the available dataset. In the considered setup, f messages are replicated in n noncolluding databases and classified into F classes. The user wishes to retrieve any one or more messages from multiple desired classes, while revealing no information about the identity of the desired classes to the databases. This problem is termed as multi-message PPIR (M-PPIR), and the single-message PPIR (PPIR) problem is introduced as an elementary special case of M-PPIR. In PPIR, the user wishes to retrieve any one message from one desired class. For the two considered scenarios, outer bounds on the M-PPIR rate are derived for arbitrary number of databases. Next, achievable schemes are designed for n replicated databases and arbitrary n. Interestingly, the capacity of PPIR, i.e., the maximum achievable PPIR rate, is shown to match the capacity of PIR from n replicated databases storing F messages. A similar insight is shown to hold for the general case of M-PPIR

    Improved Lower Bounds for Pliable Index Coding using Absent Receivers

    Full text link
    This paper studies pliable index coding, in which a sender broadcasts information to multiple receivers through a shared broadcast medium, and the receivers each have some message a priori and want any message they do not have. An approach, based on receivers that are absent from the problem, was previously proposed to find lower bounds on the optimal broadcast rate. In this paper, we introduce new techniques to obtained better lower bounds, and derive the optimal broadcast rates for new classes of the problems, including all problems with up to four absent receivers.Comment: An extended version of the same-titled paper submitted to a conferenc

    Optimal-Rate Characterisation for Pliable Index Coding using Absent Receivers

    Full text link
    We characterise the optimal broadcast rate for a few classes of pliable-index-coding problems. This is achieved by devising new lower bounds that utilise the set of absent receivers to construct decoding chains with skipped messages. This work complements existing works by considering problems that are not complete-S, i.e., problems considered in this work do not require that all receivers with a certain side-information cardinality to be either present or absent from the problem. We show that for a certain class, the set of receivers is critical in the sense that adding any receiver strictly increases the broadcast rate.Comment: Authors' cop

    Low Complexity Scheduling and Coding for Wireless Networks

    Get PDF
    The advent of wireless communication technologies has created a paradigm shift in the accessibility of communication. With it has come an increased demand for throughput, a trend that is likely to increase further in the future. A key aspect of these challenges is to develop low complexity algorithms and architectures that can take advantage of the nature of the wireless medium like broadcasting and physical layer cooperation. In this thesis, we consider several problems in the domain of low complexity coding, relaying and scheduling for wireless networks. We formulate the Pliable Index Coding problem that models a server trying to send one or more new messages over a noiseless broadcast channel to a set of clients that already have a subset of messages as side information. We show through theoretical bounds and algorithms, that it is possible to design short length codes, poly-logarithmic in the number of clients, to solve this problem. The length of the codes are exponentially better than those possible in a traditional index coding setup. Next, we consider several aspects of low complexity relaying in half-duplex diamond networks. In such networks, the source transmits information to the destination through nn half-duplex intermediate relays arranged in a single layer. The half-duplex nature of the relays implies that they can either be in a listening or transmitting state at any point of time. To achieve high rates, there is an additional complexity of optimizing the schedule (i.e. the relative time fractions) of the relaying states, which can be 2n2^n in number. Using approximate capacity expressions derived from the quantize-map-forward scheme for physical layer cooperation, we show that for networks with n≤6n\leq 6 relays, the optimal schedule has atmost n+1n+1 active states. This is an exponential improvement over the possible 2n2^n active states in a schedule. We also show that it is possible to achieve at least half the capacity of such networks (approximately) by employing simple routing strategies that use only two relays and two scheduling states. These results imply that the complexity of relaying in half-duplex diamond networks can be significantly reduced by using fewer scheduling states or fewer relays without adversely affecting throughput. Both these results assume centralized processing of the channel state information of all the relays. We take the first steps in analyzing the performance of relaying schemes where each relay switches between listening and transmitting states randomly and optimizes their relative fractions using only local channel state information. We show that even with such simple scheduling, we can achieve a significant fraction of the capacity of the network. Next, we look at the dual problem of selecting the subset of relays of a given size that has the highest capacity for a general layered full-duplex relay network. We formulate this as an optimization problem and derive efficient approximation algorithms to solve them. We end the thesis with the design and implementation of a practical relaying scheme called QUILT. In it the relay opportunistically decodes or quantizes its received signal and transmits the resulting sequence in cooperation with the source. To keep the complexity of the system low, we use LDPC codes at the source, interleaving at the relays and belief propagation decoding at the destination. We evaluate our system through testbed experiments over WiFi

    Cartesian closed bicategories: type theory and coherence

    Get PDF
    In this thesis I lift the Curry--Howard--Lambek correspondence between the simply-typed lambda calculus and cartesian closed categories to the bicategorical setting, then use the resulting type theory to prove a coherence result for cartesian closed bicategories. Cartesian closed bicategories---2-categories `up to isomorphism' equipped with similarly weak products and exponentials---arise in logic, categorical algebra, and game semantics. However, calculations in such bicategories quickly fall into a quagmire of coherence data. I show that there is at most one 2-cell between any parallel pair of 1-cells in the free cartesian closed bicategory on a set and hence---in terms of the difficulty of calculating---bring the data of cartesian closed bicategories down to the familiar level of cartesian closed categories. In fact, I prove this result in two ways. The first argument is closely related to Power's coherence theorem for bicategories with flexible bilimits. For the second, which is the central preoccupation of this thesis, the proof strategy has two parts: the construction of a type theory, and the proof that it satisfies a form of normalisation I call local coherence. I synthesise the type theory from algebraic principles using a novel generalisation of the (multisorted) abstract clones of universal algebra, called biclones. The result brings together two extensions of the simply-typed lambda calculus: a 2-dimensional type theory in the style of Hilken, which encodes the 2-dimensional nature of a bicategory, and a version of explicit substitution, which encodes a composition operation that is only associative and unital up to isomorphism. For products and exponentials I develop the theory of cartesian and cartesian closed biclones and pursue a connection with the representable multicategories of Hermida. Unlike preceding 2-categorical type theories, in which products and exponentials are encoded by postulating a unit and counit satisfying the triangle laws, the universal properties for products and exponentials are encoded using T. Fiore's biuniversal arrows. Because the type theory is extracted from the construction of a free biclone, its syntactic model satisfies a suitable 2-dimensional freeness universal property generalising the classical Curry--Howard--Lambek correspondence. One may therefore describe the type theory as an `internal language'. The relationship with the classical situation is made precise by a result establishing that the type theory I construct is the simply-typed lambda calculus up to isomorphism. This relationship is exploited for the proof of local coherence. It is has been known for some time that one may use the normalisation-by-evaluation strategy to prove the simply-typed lambda calculus is strongly normalising. Using a bicategorical treatment of M. Fiore's categorical analysis of normalisation-by-evaluation, I prove a normalisation result which entails the coherence theorem for cartesian closed bicategories. In contrast to previous coherence results for bicategories, the argument does not rely on the theory of rewriting or strictify using the Yoneda embedding. I prove bicategorical generalisations of a series of well-established category-theoretic results, present a notion of glueing of bicategories, and bicategorify the folklore result providing sufficient conditions for a glueing category to be cartesian closed. Once these prerequisites have been met, the argument is remarkably similar to that in the categorical setting

    Achievable Schemes and Performance Bounds for Centralized and Distributed Index Coding

    Get PDF
    Index coding studies the efficient broadcast problem where a server broadcasts multiple messages to a group of receivers with side information. Through exploiting the receiver side information, the amount of required communication from the server can be significantly reduced. Thanks to its basic yet highly nontrivial model, index coding has been recognized as a canonical problem in network information theory, which is fundamentally connected with many other problems such as network coding, distributed storage, coded computation, and coded caching. In this thesis, we study the index coding problem both in its classic setting where the messages are stored at a centralized server, and also in a more general and practical setting where different subsets of messages are stored at multiple servers. In both scenarios the ultimate goal is to establish the capacity region, which contains all the communication rates simultaneously achievable for all the messages. While finding the index coding capacity region remains open in general, we characterize it through developing various inner and outer bounds. The inner bounds we propose on the capacity region are achievable rate regions, each associated with a concrete coding scheme. Our proposed coding schemes are built upon a two-layer random coding scheme referred to as composite coding, introduced by Arbabjolfaei et al. in 2013 for the classic centralized index coding problem. We first propose a series of simplifications for the composite coding scheme, and then enhance it through utilizing more flexible fractional allocation of the broadcast channel capacity. We also show that one can strictly improve composite coding by adding one more layer of random coding into the coding scheme. For the multi-server scenario, we generalize composite coding to a distributed version. The outer bounds characterize the fundamental performance limits enforced by the problem setup that hold generally for any valid coding scheme. The performance bounds we propose are based on Shannon-type inequalities. For the centralized index coding problem, we define a series of interfering message structures based on the receiver side information. Such structures lead to nontrivial generalizations of the alignment chain model in the literature, based upon which we propose a series of novel iterative performance bounds. For the multi-server scenario, our main result is a general outer bound built upon the polymatroidal axioms of the entropy function. This outer bound utilizes general groupings of servers of different levels of granularity, allowing a natural tradeoff between tightness and computational complexity. The security aspect of the index coding problem is also studied, for which a number of achievability and performance bounds on the optimal secure communication rate are established. To conclude this thesis, we investigate a privacy-preserving data publishing problem, whose model is inspired by index coding, and characterize its optimal privacy-utility tradeoff
    corecore