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Abstract

In this thesis I lift the Curry–Howard–Lambek correspondence between the

simply-typed lambda calculus and cartesian closed categories to the bicategor-

ical setting, then use the resulting type theory to prove a coherence result for

cartesian closed bicategories. Cartesian closed bicategories—2-categories ‘up to

isomorphism’ equipped with similarly weak products and exponentials—arise in

logic, categorical algebra, and game semantics. However, calculations in such

bicategories quickly fall into a quagmire of coherence data. I show that there is

at most one 2-cell between any parallel pair of 1-cells in the free cartesian closed

bicategory on a set and hence—in terms of the difficulty of calculating—bring

the data of cartesian closed bicategories down to the familiar level of cartesian

closed categories.

In fact, I prove this result in two ways. The first argument is closely related

to Power’s coherence theorem for bicategories with flexible bilimits. For the

second, which is the central preoccupation of this thesis, the proof strategy has

two parts: the construction of a type theory, and the proof that it satisfies a form

of normalisation I call local coherence. I synthesise the type theory from algebraic

principles using a novel generalisation of the (multisorted) abstract clones of

universal algebra, called biclones. The result brings together two extensions of the

simply-typed lambda calculus: a 2-dimensional type theory in the style of Hilken,

which encodes the 2-dimensional nature of a bicategory, and a version of explicit

substitution, which encodes a composition operation that is only associative

and unital up to isomorphism. For products and exponentials I develop the

theory of cartesian and cartesian closed biclones and pursue a connection with

the representable multicategories of Hermida. Unlike preceding 2-categorical type

theories, in which products and exponentials are encoded by postulating a unit

and counit satisfying the triangle laws, the universal properties for products and

exponentials are encoded using T. Fiore’s biuniversal arrows.

Because the type theory is extracted from the construction of a free biclone,

its syntactic model satisfies a suitable 2-dimensional freeness universal property

generalising the classical Curry–Howard–Lambek correspondence. One may

therefore describe the type theory as an ‘internal language’. The relationship

with the classical situation is made precise by a result establishing that the type

theory I construct is the simply-typed lambda calculus up to isomorphism.

This relationship is exploited for the proof of local coherence. It is has been

known for some time that one may use the normalisation-by-evaluation strategy

to prove the simply-typed lambda calculus is strongly normalising. Using a

bicategorical treatment of M. Fiore’s categorical analysis of normalisation-by-
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evaluation, I prove a normalisation result which entails the coherence theorem

for cartesian closed bicategories. In contrast to previous coherence results for

bicategories, the argument does not rely on the theory of rewriting or strictify

using the Yoneda embedding. I prove bicategorical generalisations of a series

of well-established category-theoretic results, present a notion of glueing of

bicategories, and bicategorify the folklore result providing sufficient conditions

for a glueing category to be cartesian closed. Once these prerequisites have been

met, the argument is remarkably similar to that in the categorical setting.

A version of this thesis optimised for on-screen viewing is available at http:

//homepages.inf.ed.ac.uk/psaville/thesis-for-screen.pdf.

http://homepages.inf.ed.ac.uk/psaville/thesis-for-screen.pdf
http://homepages.inf.ed.ac.uk/psaville/thesis-for-screen.pdf
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Lay introduction

This introduction is for the friends and family who have occasionally asked what it is I

actually do, and to whom I don’t think I’ve ever managed a satisfactory answer. I hope this

goes some way to explaining what the next 200-odd pages are about.

Here’s the three-sentence explanation. This thesis is about using category theory and

type theory together to prove a coherence theorem. I construct a type theory—a kind of

mathematical language—to describe a category-theoretic structure which turns up in algebra

and logic. Then, by proving a property of the type theory, I deduce the category-theoretic

structure has a property called coherence.

Let’s flesh that out a bit more. Part I of the thesis is about syntax, while Part II is

about semantics. The distinction between the two is one we are used to in our day-to-day

lives. If you read a message from me and judge me for spelling ‘life’ as ‘liffe’, you are

judging the syntax: the string of symbols that make up the message. If you nonetheless

grasped what I meant by the whole phrase ‘what have I been doing with my liffe’, you

understood the semantics: the meaning I was trying to convey. When a translator translates

a sentence from English to Mandarin, they change the syntax (from Roman letters to

Chinese characters), but maintain the semantics: a Chinese reader should finish the Chinese

sentence understanding the same thing as an English reader who has just read the English

sentence.

The syntactic-semantic distinction is central to the study of programs and programming

languages. On the syntactic side, there is the literal string of characters making up a program.

If I write print(‘hello world’), the computer has to break this up into the command (print)

and the string that I’m telling it to print (hello world), and act accordingly. If I write

pp3` 6q ˆ 7q2, it has to break it up into the series of instructions

1. Add 3 to 6, then

2. Multiply the result by 7, then

3. Multiply this result by itself.

Anyone who has sat down to write a program will know that a fair amount of time is spent

chasing down the little syntactic mistakes (such as missing a crucial ‘;’) that, as far as the

computer is concerned, make what you have written unreadable.

Comparing programs only by their syntax is not very helpful, however. Here are three

v
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different programs that take in a number x and give back another number:

px2 ` 5q ˆ 6

3
p
x

2
` 5q ˆ 2 x` 10 (1)

The string of symbols in each case is different, so syntactically they are different programs.

But, as we learn in secondary school algebra, these all mean the same thing: they evaluate

to the same answer. Intuitively, we can think of all these programs as the same. From

the programmer’s perspective, writing any one of these is as good as the other. So if the

computer transforms between them (for example, because one of them is quicker to run),

then the programmer doesn’t care. But if the computer transforms one of these programs

into x` 1, then they most certainly will.

This suggests that we should study programming languages not just by thinking about

the syntax, but by making precise our intuitive idea of what a program ‘says’. First we

provide a mathematical description of what each part of a program means. For example,

the command add(2)(3) ‘means’ 2` 3. Then we say that two programs are the same if

they have the same mathematical description. The idea is that the mathematics captures

the meaning of the program (its semantics), and allows us to abstract away from its syntax.

We can then prove all kinds of useful guarantees. For example, we can show that every

syntactically correct program will eventually stop, and that the answer it will give is the

one you would expect.

What does this have to do with category theory, type theory, or coherence? It turns out

that type theory can be thought of as the logic of programs, and that category theory is

one of the best ways of describing what these programs mean.

Type theory grew up in the early 20th century in response to problems in logic, most

famously Russell’s paradox. One formulation of the paradox is this. Imagine you are a very

organised person, and are constantly making lists: to-do lists, shopping lists, and so on.

But one day you worry that you might be missing something, so you sit down to enumerate

all the things that do not appear on any of your lists. Do you add this list to this new list?

If you do, it appears on a list, so shouldn’t be on the list. If you don’t, it doesn’t appear on

any list, so should be on the list. It seems neither choice is correct! The solution suggested

by Russell is to stratify objects: at the first level are things that may appear in a list (things

you need to do, food you need to buy), at the second level are lists of things in the first

level, at the third level are lists of things at the second level, and so on. Every list has a

level, and a list can only contain things at lower levels, so you never encounter the question

of whether a list must contain the entry this list.

This kind of logic is governed by the principle that everything has a type, and a thing’s

type determines how it can behave. So you have a type of things that go in lists, a type of

lists of things that go in lists, a type of lists of these lists, and so on. Similarly, you might

have a type nat of natural (counting) numbers, and the numbers 0, 1, . . . all have type nat.

From this point of view, the expression 0 “ 1 is false, but expressions like 2
0 or print` 2

are ruled to be nonsense: the language of type theory simply doesn’t allow you to form such
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expressions. With enough types and enough ways of forming new types, one can go a long

way to formulating all of mathematics in a type theory.

This way of thinking has been absorbed into computer science as a way of structuring

programs. When a programmer sits down to write a program, they have in mind some kind

of input (say, a list of numbers) and an output (say, the highest number in the list). One

can therefore think of a program as something that takes in something of some type, and

gives out something of another type. For example, I can tell the computer that I want it to

treat add(2)(3) as something of type int—as a whole number, obtained by adding 2 to

3—or as something of type string—as a list of nine characters that happen to look like a

command to add two numbers. If I declare add(2)(3) to be of type string, I can’t treat it

as a number: I can ask for its length (9), but can’t multiply it by two. The more types you

have, and the more constructions for new types you allow, the more precise you can make

these restrictions.

Type theory, then, can be viewed in two ways. As a kind of logic, in which every true

or false statement is attached to a type. Or as a programming language, in which the

statements I can write down correspond to programs with a set input type and a set output

type.

Thinking of programs as processes which take an input and return an output helps

clarify the connection with category theory. Category theorists are mathematicians who

truly believe that it’s not about the destination, it’s about the journey. Instead of asking

about particular objects, category theorists study the way things are related. The diagrams

that you’ll see if you flick through this thesis say exactly this: if you walk around the

diagram following the arrows in one direction, and then walk around the diagram following

the arrows in the other direction, the two walks will be equal. The fundamental idea is

that, if I know all the ways to get into an object, and all the ways to get out of it, then I

can discover everything I need to know. More than this: I can discover other, seemingly

unrelated, objects that are related to the things around them in the same way. For example,

the ‘if . . . then’ construction of logic, the collection of ways to assign an object of a set B

to every object of a set A, and the notion of group from algebra—which axiomatises the

ways of rotating and reflecting shapes like triangles, squares, and cubes—are all examples

of the same categorical construction.

The categorical perspective has unearthed unexpected relationships between geometry,

algebra, and logic, but it also plays an important role as a mathematical description for

programming languages: category theory is the semantics for the syntax of type theory.

For a type theorist, a program is a particular way of constructing objects of a certain

type. For the category theorist, this is exactly a way of getting from one object (the input

type) to another (the output type). Type theory and category theory are intertwined: by

carefully choosing our categories, we can provide constructions that correspond exactly to

the allowed type-theoretic expressions. By studying these categories, we can learn about

type theory; by studying type theories, we can learn about their corresponding categories.

Broadly speaking, this is the what I do in this thesis: I construct a type theory, show it
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corresponds to a special class of categories, and then—by proving something about the type

theory—solve a problem about the class of categories.

The problem is called coherence. The special categories I work with—the ‘cartesian

closed bicategories’ of the title—have uses in other areas of category theory, as well as in

algebra and in the study of programming languages, but they are intricate. As well as the

ways of getting from A to B, they include the routes between these routes. Imagine A and

B are Cambridge and Oxford. Then the routes between them might be walking directions

for the various routes, and the routes-between-routes might be the ways you can change

one set of directions into the other: change ‘left’ for ‘right’ at this junction, replace ‘100

yards’ with ‘2 miles’, and so on. Or you can imagine studying programs, and the ways of

transforming them stage-by-stage into something that you can run in 0s and 1s on your

hardware. In this example, you might have two programs with the same input type and the

same output type—such as those in (1) above—and think about the ways of transforming

one into another: replacing yˆ6
3 by y ˆ 2, and x

2 ˆ 2 by just x, and so on.

Precisely describing these two levels, and the ways they must interact, requires many

axioms and many checks at every stage of a calculation. This quickly becomes tedious,

and leads to proofs that are so long it is hard to check they are correct, let alone fit them

onto a page so that they can be verified by the community. In this thesis I show that

cartesian closed bicategories have the property that any equation you can write down for

any cartesian closed bicategory (not relying on any special properties of a specific one) must

hold. This means that those long tedious calculations are dramatically simplified: all those

things that you had to check before are now guaranteed to hold by the theorem.

In Part I, then, I construct a type theory for describing cartesian closed bicategories. If

a type theory is a logic for programs, this is a logic for programs and ways of transforming

programs into one another. I show that expressions in this type theory correspond exactly

to data in any cartesian closed bicategory, so that a proof about the type theory is a proof

about every cartesian bicategory. Then, in Part II, I prove a property of the type theory

that guarantees that every cartesian closed bicategory is coherent. If you want to see what

it all looks like, the type theory is in Appendix C, and the big theorem is Theorem 8.4.6.
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Chapter 1

Introduction

The Curry–Howard–Lambek correspondence and beyond

The simply-typed lambda calculus lives a remarkable double life. It can be seen as a term

calculus for intuitionistic logic, or as the syntax of cartesian closed categories—a class of

algebraic structures encompassing many important examples. This two-fold relationship,

known as the Curry–Howard–Lambek correspondence, is fundamental to the study of logic,

type theory, and programming language theory.

In this thesis we are largely concerned with the relationship between type theory and

category theory. In the context of the simply-typed lambda calculus the crucial observation

is due to Lambek [Lam80, Lam86], who showed that the simply-typed lambda calculus may

be interpreted in any cartesian closed category, that any cartesian closed category gives

rise to a simply-typed lambda calculus, and moreover that these two operations are—in a

suitable sense—mutually inverse. For a computer scientist, this says that cartesian closed

categories capture the meaning, or semantics, of the simply-typed lambda calculus: to

give a model of the simply-typed lambda calculus is to give a cartesian closed category.

For a category theorist, this says that one may use the simply-typed lambda calculus as a

convenient syntax or internal language for constructing proofs in cartesian closed categories.

The simply-typed lambda calculus is just the starting point. Internal languages are a

key tool in topos theory [MR77, Joh02], and there are well-known versions of Lambek’s

correspondence for linear logic [BBdPH93] (see e.g. [Mel09] for an overview) and Martin-Löf

type theory [See84, CD14]. Meanwhile, categorical constructions such as monads have

become standard for semantic descriptions of so-called ‘effectful programs’, which display

behaviours beyond merely computing some result [Mog89, Mog91].

Latent within each of these developments is the notion of reduction or rewriting. In a

Lambek-style semantics one begins with a type theory together with rules specifying how

terms reduce to one another. These reduction rules generate an equational theory, and one

identifies terms modulo this theory with morphisms in a suitable category. This is generally

sufficient for type-theoretic applications, despite the loss of intensional information. To

study the behaviour of reductions, however, this information must be retained.

1



2 CHAPTER 1. INTRODUCTION

One way to retain this information is through 2-categories. A 2-category consists

of objects, morphisms, and 2-cells relating morphisms, subject to the usual unit and

associativity laws. In the late 1980s multiple authors suggested 2-categories as a semantics

for rewriting (e.g. [RS87, Pow89a]). In particular, Seely [See87] sketched a connection

between 2-categories equipped with a (lax) cartesian closed structure and the βη-rewriting

rules of the simply-typed lambda calculus. In this model, η-expansion and β-reduction

form the unit and counit of the adjunction defining 2-categorical cartesian closed structure.

Hilken [Hil96] then took the identification between cartesian closed 2-categories and the

rewriting theory of the simply-typed lambda calculus a step further by introducing a

‘2λ-calculus’ consisting of types, terms, and rewrites between terms. Syntactically, rewrites

model reduction rules—for example, the βη-rules of the simply-typed lambda calculus—while

semantically they play the role of 2-cells.

Since Hilken’s work, 2-dimensional type theories consisting of types, terms and rewrites

have been employed for a range of applications, from rewriting theory [Hir13] to the study

of Martin-Löf type theory and its connections to homotopy theory and higher category

theory (e.g. [Gar09, LH11, LH12]). In this thesis I also connect 2-dimensional type theory

to higher category theory, but with different aims. Here, the focus is on a class of higher

categories of recent importance for applications in logic [FGHW07, GJ17, Oli20], the

semantics of programming languages [Paq20], and the study of category theory itself [FJ15,

Fio16] known as cartesian closed bicategories. The copious data required to define a cartesian

closed bicategory makes calculations within them a demanding undertaking: the aim of this

thesis is to drastically reduce those demands.

‘The technical nightmares of bicategories’

Suppose given a pair of spans pAÐ B Ñ Cq and pC Ð D Ñ Eq in a category with finite

limits. By analogy with the category of sets, these could be thought of as ‘relations’ A ù C

and C ù E. How should the composite A ù E be defined? A natural suggestion is to

take the pullback of pB Ñ C Ð Dq and use the associated projection maps, thus:

B ˆC D

B D

A C E

x

Because limits are only unique up to unique isomorphism, this definition does not satisfy

the unit and associativity laws of a 2-category. However, such laws do hold up to specified

isomorphism, and these isomorphisms satisfy coherence axioms. The resulting structure is

called a bicategory. Bicategories are rife in mathematics and theoretical computer science,

arising for instance in algebra [Bén67, Str95], semantics of computation [GFW98, CCRW17],

datatype models [Abb03, DM13], categorical logic [FGHW07, GK13], and categorical

algebra [FJ15, GJ17, FGHW17]. More generally, one may (loosely) consider weak n-
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categories to have k-cells relating pk ´ 1q-cells for k “ 1, . . . , n, such that the coherence

axioms for k-cells are themselves witnessed by a specified pk ` 1q-cell.

Weak higher category theory entails layers of complexity that do not exist at the

1-categorical level. Morphisms (more generally, k-cells) satisfying axioms up to some higher

cell may exist in new relationships; specifying their behaviour leads to intimidating lists of

axioms, for which the intuitive content is not immediately obvious. Proofs become purgatorial

exercises in drawing pasting diagram after pasting diagram, or diagram chases in which an

intuitively-clear kernel is dominated by endless structural isomorphisms shifting data back

and forth. Even at the level k “ 2, Lack—certainly a member of the higher-categorical

cognoscenti—refers to (strict) 2-category theory as a “middle way”, avoiding “some of the

technical nightmares of bicategories” [Lac10].

A small example highlights how the step from categories to bicategories blows up the

length of a proof. Consider the following lemma, which is an elementary exercise in working

with cartesian closed categories.

Lemma 1.1.

1. Every object X in a category with finite products pC,ˆ, 1q has a canonical structure

as a commutative comonoid, namely
´

1
!
ÐÝ X

∆
ÝÑ X ˆX

¯

.

2. Every endo-exponential rX “BXs in a cartesian closed category pC,ˆ, 1,“Bq has a

canonical structure as a monoid, namely

1
IdX
ÝÝÑ rX “BXs

˝
ÐÝ rX “BXs ˆ rX “BXs

Following the principle that higher categories behave in roughly the same manner as

1-categories so long as care is taken to specify the behaviour of the higher cells, one expects

a version of this result to hold for cartesian closed bicategories. The bicategorical notion of

monoid is called a pseudomonoid [DS97]. In a bicategory B with finite products pˆ, 1q, this

is a structure p1
e
ÝÑM

m
ÐÝM ˆMq equipped with invertible 2-cells α, λ and ρ witnessing

the categorical unit and associativity laws:

1ˆM M ˆM M ˆ 1

M

λ
–

»

eˆM

m
ρ
–

Mˆe

»

pM ˆMq ˆM M ˆ pM ˆMq M ˆM

M ˆM M

α
–

mˆM

» Mˆm

m

m

These 2-cells are required to satisfy two coherence laws, corresponding to the triangle and

pentagon axioms for a monoidal category. Indeed, the prototypical example—obtained

by instantiating the definition in Cat—is of monoidal categories. Comparing with our

categorical lemma suggests the following.
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Conjecture 1.2.

1. Every object X in a bicategory with finite products pB,ˆ, 1q has a canonical structure

as a commutative pseudocomonoid, with 1-dimensional structure
´

1
!
ÐÝ X

∆
ÝÑ X ˆX

¯

.

2. Every endo-exponential rX “BXs in a cartesian closed bicategory pB,ˆ, 1,“Bq has a

canonical structure as a pseudomonoid, with 1-dimensional structure

1
IdX
ÝÝÑ rX “BXs

˝
ÐÝ rX “BXs ˆ rX “BXs

Moreover, in each case the 2-cells witnessing the 1-categorical axioms are canonical choices

arising from the cartesian (closed) structure of B. đ

Constructing the witnessing 2-cells α, λ and ρ is relatively straightforward: roughly

speaking, one can translate each equality used in the categorical proof into a 2-cell, and

then compose these together. The difficulty arises in checking the coherence laws, which

entails a series of long diagram chases unfolding the properties of these composites. It is

this extra work that makes bicategorical calculations more burdensome than their strict

counterparts: it is not enough to merely witness the axioms—which corresponds to checking

them in a strict setting—one must also check the witnesses are themselves coherent.

Not only do these checks entail extra work, they are often extremely tedious. Generally

one does not have to apply clever tricks or techniques, only plough through diagram chases

until the result falls out. This is the case, for example, when one sits down to verify the

coherence laws for Conjecture 1.2. This leads to a false sense of security: it is tempting to

believe that the coherence axioms ‘must’ work out as expected, and that these extra checks

may be omitted. As Power put it as long ago as 1989 [Pow89b]:

The verification is almost always routine, and one’s intuition is almost always

vindicated; but to check the detail is often a very tedious job. Of course,

one should still do it. . . [ignoring such details] can be dangerous, as illustrated

in [Bén85], because on rare occasions, one’s intuition fails. . .

Despite these difficulties, higher categories—either as 8-categories or as bicategories

and tricategories—present an intuitively appealing and technically rich setting for studying

phenomena arising throughout mathematics and theoretical computer science. Examples

arise in topology [Lei04], categorical logic [FGHW07], categorical algebra [Bén67], semantics

of computation [CFW98], and datatype semantics [Abb03], to name but a few. The success

of the ‘Australian school’ of the 1970s and 1980s highlights especially the fruitfulness of

studying categorical constructions in the bicategorical setting (e.g. [Str72, Str80, BKP89]).

One is, therefore, caught between interest and difficulty: one wants to be able to work

in higher categories, but the technicalities of doing so are formidable. And the squeeze only

becomes tighter as the structure becomes richer. The question then becomes: how can one

construct a way out?
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Coherence laws and coherence theorems

One solution to the difficulties of working in a higher category is to develop a formal calculus

that provides a pragmatic language for constructing and presenting proofs. In recent

years there has been a great deal of work along these lines (e.g. [RS17, CHTM19, Shu19]),

generally motivated by applications to 8-categories (although not always, see e.g. [Fre19]).

Much of the impetus stems from the connections between type theory, homotopy theory, and

8-categories (e.g. [Gar09, LH11]), particularly the versions of Martin-Löf type theory known

as homotopy type theory or univalent type theory (e.g. [The13]). The type theory is generally

strict—allowing for simpler reasoning—but satisfies an up-to-equivalence universal property

interpreting it in the weak structure in question; this is analogous to the relationship

between Martin-Löf type theory with extensional identity types and locally cartesian closed

categories [CD14]. A related strand of research is the development of computer-aided

systems such as Globular [BKV18], which aim to provide interactive theorem-proving tools

for certain weak n-categories.

An alternative approach is to show that the weak structure in question is (weakly)

equivalent to a strict structure: the so-called coherence property. To paraphrase Jane

Austen:

It is a truth universally acknowledged, that a higher category in possession

of a good structure, must be in want of a coherence theorem.

So long as equivalences are injective-on-cells in the appropriate sense, one can then parley

this into a result proving that classes of diagrams always commute. Since Mac Lane’s first

coherence theorem for monoidal categories, together with its pithy slogan all diagrams

commute [Mac63], a cottage industry has sprung up proving coherence results in various

forms (notable examples include e.g. [MP85, Pow89b, Pow89c, JS93, GPS95]). Coherence

proofs often rely on the Yoneda embedding, which allows one to embed a weak structure (such

as a bicategory) into a strict structure (such as the 2-category of Cat-valued pseudofunctors),

or on the sophisticated machinery of 2-dimensional universal algebra. Rewriting theory

provides an alternative, syntactic, approach (e.g. [Hou07, FM18]).

However, coherence turns out to be a subtle property. Certainly, one can not always show

that all diagrams commute: consider, for instance, the case of braided monoidal categories.

In general, the dividing line between ‘coherent’ and ‘non-coherent’ definitions may not be

where one would näıvely hope it to be, and the exact line can be surprising. Tricategories

are not generally triequivalent to strict 3-categories [GPS95], and the tricategory Bicat

is not triequivalent to the tricategory Gray of 2-categories, 2-functors, pseudonatural

transformations and modifications [Lac07].

The difficulty, therefore, is twofold: first, to identify the boundaries between commut-

ativity and its failure, and second, to prove that all diagrams within a conjectured boundary

do in fact commute.
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Coherence for cartesian closed bicategories

In this thesis I prove a coherence theorem for bicategories equipped with products and

exponentials in an ‘up to equivalence’ fashion. As far as I am aware, these were first studied

in [Mak96], and the coherence result I prove was first conjectured by Ouaknine [Oua97]. It

is an unfortunate accident of terminology that there is no connection to the ‘cartesian bicat-

egories’ of Carboni & Walters [CW87, CKWW08], nor to the ‘closed cartesian bicategories’

of Frey [Fre19]. Precisely, the theorem is the following.

Theorem. The free cartesian closed bicategory on a set of 0-cells has at most one 2-cell

between any parallel pair of 1-cells.

Note that this is a particularly concrete statement of coherence. In terms of Conjec-

ture 1.2, it goes further than showing that, once one has constructed witnessing 2-cells such

as α, λ and ρ using only the axioms of a cartesian closed bicategory, then the coherence laws

will hold. The theorem also guarantees that there is a unique choice of witnessing 2-cells.

Using this in tandem with a precise connection between the 2-cells of the free cartesian

closed bicategory and equality in the free cartesian closed category (Section 5.4), we shall

be able to show further that it suffices to calculate completely 1-categorically.

This work was initially motivated by the difficulty of proving statements such as

Conjecture 1.2 and the corresponding obstruction to the development of a theory of

8-categories [Fio16] in the cartesian closed bicategories of generalised species [FGHW07]

and cartesian distributors [FJ15]. However, cartesian closed bicategories appear more widely,

for example in categorical algebra [GJ17] and game semantics [YA18, Paq20].

The strategy has two parts. First, I develop a type theory Λˆ,Ñps for cartesian closed

bicategories and show that it satisfies a suitable 2-dimensional freeness property. This

extends the classical Curry–Howard–Lambek correspondence to the bicategorical setting.

The shape of the type theory follows the tradition of 2-dimensional type theory instigated by

Seely [See87] and Hilken [Hil96]. The up-to-isomorphism nature of bicategorical composition

is captured through an explicit substitution operation (c.f. [ACCL90]). Second, I adapt the

normalisation-by-evaluation technique introduced by Berger & Schwichtenberg [BS91] for

proving normalisation of the simply-typed lambda calculus to extract the theorem above.

Here I closely follow Fiore’s categorical treatment of the proof [Fio02].

Of course, for Λˆ,Ñps to be a type theory for cartesian closed bicategories, one must

impose some constraints. I stipulate the following three desiderata.

Internal language. The syntactic model of the type theory must be

free, in an appropriately bicategorical sense. From a logical perspective, this

corresponds to a soundness and completeness property. We shall not go so far

as, say, constructing a triadjunction between a tricategory of signatures and the

tricategory of cartesian closed bicategories. Instead, we prove strict universal

properties (c.f. [Gur06]) wherever possible. As well as being readily verifiable,

these properties are often easier to work with.
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Relationship to STLC. The type theory we construct must have the ‘fla-

vour’ of type theory. In particular, one should be able to recover the simply-typed

lambda calculus (STLC) as some kind of fragment: following the intuition that

cartesian closed bicategories are cartesian closed categories up-to-isomorphism,

a corresponding property should relate the simply-typed lambda calculus to

Λˆ,Ñps . This also imposes restrictions on the form of judgements and derivations:

they should be presented in a style recognisable as type theory.

Usability. This is connected to the preceding point. There is no gain in

constructing a syntactic calculus that merely re-phrases the axioms of a cartesian

closed bicategory. Instead, the type theory ought to be a reasonable tool for

constructing proofs. Its equational theory ought to be kept small, and express

requirements that are natural from the semantic perspective.

These desiderata are not merely stylistic: they will play a key part in our eventual

proof of coherence. The precise correspondence with the simply-typed lambda calculus,

for example, will allow us to leverage the categorical arguments of [Fio02] in a particularly

direct way. Moreover, they should also make the type theory amenable to deep embedding

in proof assistants such as Agda [Agd], and to extension with further structure in future

work.

Outline

The thesis is in two parts. Part I is devoted to the construction of Λˆ,Ñps and a proof of its

free property. Part II covers the normalisation-by-evaluation proof.

In Chapter 2 I present an overview of the basic theory of bicategories. Much of the theory

is well-known, but I take the opportunity to develop it with a focus on T. Fiore’s biuniversal

arrows [Fio06, Chapter 9]. This bicategorification of universal arrows encompasses both

biadjunctions and bilimits, and is particularly amenable to being translated into type theory.

Chapter 3 constructs the core part of Λˆ,Ñps , namely a type theory for mere bicategories.

This type theory is synthesised from an algebraic description of bicategorical substitution,

called a biclone, which generalises the abstract clones of universal algebra (e.g. [Coh81,

Plo94]). We also establish a coherence theorem for this fragment of the type theory,

generalising the Mac Lane-Paré coherence theorem for bicategories [MP85].

In Chapter 4 we extend the type theory with finite products. We pursue a connection

between the representable multicategories of Hermida [Her00], introducing the notion of

representable (bi)clone and showing that it coincides with a notion of (bi)clone with cartesian

structure. Thereafter we synthesise a type theory from the free such biclone, and show that

its syntactic model is free.

Chapter 5 follows a similar pattern: we define cartesian closed biclones and extract

a type theory from the construction of the free such. Establishing the free property for

cc-bicategories throws up more complications than the preceding two chapters, so we spend
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some time over this. Thereafter we establish that the simply-typed lambda calculus embeds

into Λˆ,Ñps and that, modulo the existence of invertible rewrites (2-cells), this restricts to

a bijection on βη-equivalence classes of terms. We also observe that Power’s coherence

theorem for bicategories with flexible bilimits [Pow89b] may be adapted to the case of

cc-bicategories (Proposition 5.1.10).

In each of Chapters 3–5, the development is motivated by the construction of a version

of the following diagram. This provides a technical statement of the intuitive fact that, in

order to construct a type theory for cartesian or cartesian closed (bi)categories, it suffices

to construct a type theory for the corresponding (bi)clones. As a slogan: (bi)clones are the

right intermediary between syntax and semantics.

structured (bi)clones
many-in one-out morphisms

signatures

unary signatures

structured (bi)categories
one-in one-out morphisms

restriction

%

inclusion

free

%

%

free restriction

%

We then move to the normalisation-by-evaluation proof. In Chapter 6 we prove bicat-

egorical correlates of three well-known facts about presheaf categories, namely:

1. Every presheaf category is complete,

2. Every presheaf category is cartesian closed,

3. For any presheaf P and representable presheaf ypXq on a small category with binary

products, the exponential ryX,P s is, up to isomorphism, the presheaf P p´ ˆXq.

The reader willing to believe versions of these results for every 2-category HompB,Catq of

Cat-valued pseudofunctors may safely skip this chapter.

Chapter 7 introduces the notion of glueing of bicategories and establishes mild conditions

for the glueing bicategory to be cartesian closed. In the 1-categorical setting, this implies

the so-called fundamental lemma of logical relations [Plo73, Sta85].

In Chapter 8 we complete the proof of the main result via a bicategorical adaptation of

Fiore’s [Fio02]. Much of the apparatus required is contained in the preceding two chapters.

Finally, Chapter 9 briefly lays out some applications and suggestions for further work.

Appendices A–C contain an index of the bicategorical free constructions and syntactic

models throughout this thesis, an overview of the cartesian closed structures we construct,

and the complete set of rules for Λˆ,Ñps together with their semantic interpretation.

Previous publication. The type theory Λˆ,Ñps was presented in the paper A type theory

for cartesian closed bicategories [FS19]. This is available online at https://ieeexplore.

ieee.org/document/8785708.

https://ieeexplore.ieee.org/document/8785708
https://ieeexplore.ieee.org/document/8785708
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Contributions

The most obvious contribution is the coherence theorem for cartesian closed bicategories.

In fact, we prove this in three different ways: two closely-related arguments using the

Yoneda lemma (Proposition 5.1.10 and Theorem 8.5.2) and the third by normalisation-by-

evaluation (Theorem 8.4.6). In each case the strategy is of interest in its own right. The

arguments from the Yoneda argument extend Power’s coherence argument for bicategories

with flexible bilimits [Pow89b] to closed structure for the first time. On the other hand, the

normalisation-by-evaluation argument shows potential for further development. First, it

is plausible that, by further refining the normalisation-by-evaluation one would be able to

extract a normalisation algorithm computing the canonical 2-cell between any given 1-cells

in the free cartesian closed bicategory. Second, the combination of syntactic and semantic

methods employed here is a novel approach to proving higher-categorical coherence theorems

(although Licata & Harper have gone some way in this direction, using a groupoidal model

to prove canonicity for their 2-dimensional type theory [LH12]). This approach may extend

to situations where other proofs of coherence—employing either syntactic approaches or the

apparatus of 2-dimensional universal algebra—are less successful.

From the type-theoretic perspective, I believe the view taken here—namely, that the

appropriate mediator between syntax and semantics is some version of abstract clones—

is a fruitful one. Indeed, the definition of the type theory Λˆ,Ñps follows automatically

from the definition of cartesian closed biclones. As far as I am aware, this is the first

attempt to construct a type theory describing higher categories from such universal-algebraic

grounds, and the first to exploit the machinery of explicit substitution (although Curien’s

diagrammatic calculus for locally cartesian closed categories shows similar ideas [Cur93]).

The theoretical development required for the normalisation proof—such as the work

on bicategorical glueing in Chapter 7—lays important foundations for further work. For

instance, the machinery of Part II is the groundwork for proving a conservative extension

result for cartesian closed bicategories over bicategories with finite products in the style

of [Laf87, FDCB02].

Finally, this thesis contains moderately detailed proofs of results that one would certainly

expect but I have not seen proved in the literature, such as the cartesian closure of the

2-category HompB,Catq of Cat-valued pseudofunctors, pseudonatural transformations and

modifications. At the very least, I hope this saves others the work of reproducing the

extensive calculations required.

Notation and prerequisites

I have tried to keep the presentation self-contained and accessible to type theorists with

a categorical bent, as well as to (higher) category theorists with less experience in type

theory. I recap the bicategory theory we shall need, and do not employ any heavyweight

results without proof. Similarly, I take the simply-typed lambda calculus and its semantics
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(as in e.g. [LS86, Cro94]) as known, but do not assume familiarity with strategies such as

glueing or normalisation-by-evaluation. This occasionally requires recapitulating folklore

or standard results, but I hope in these cases the presentation is original enough to be of

interest in itself.

I have attempted to generally (but not universally) maintain the following typographical

conventions:

• Named 1-categories are written in Roman font (e.g. Set); named higher categories

are in bold font (e.g. Cat). Arbitrary categories are written in blackboard bold

pC,D, . . . q and arbitrary bicategories in calligraphic font pB, C, . . . q.

• 2-cells are denoted either by lower-case Greek letters pα, β, τ, σ, . . . q or given suggestive

names in sans-serif (e.g. push).

An index of notation covering most of the recurring 1- and 2-cells is on page 308.

I have also borrowed the convention of Troelstra & Schwichtenberg [TS00] for denoting

the end of environments. The end of a proof is marked by a white square p q and the end

of a remark, definition or example by a black triangle pđq.



Chapter 2

Bicategories, bilimits and

biadjunctions

This chapter introduces the basic theory of bicategories, bilimits and biadjoints. Much of the

content is well-known, and many excellent overviews of the material are available (e.g. [Bén67,

Str80, Bor94, Str95, Lei04]). The intention behind recapitulating it here is two-fold. Firstly,

to fix notation. Second, to introduce concepts in a style that is convenient for later chapters.

There are many equivalent ways of formulating basic notions such as adjunction, adjoint

equivalence and universal arrow. In the categorical setting, translating between the various

formulations is generally straightforward. Bicategorically, however, such translations can

require extensive checking of coherence data. We avoid this by taking the most convenient

definition for our purposes as primitive, and by focussing on the biuniversal arrows of [Fio06,

Chapter 9]. These capture both bicategorical limits and adjunctions—and thereby cartesian

closed structure—in a uniform way. We therefore spend some time developing the theory of

biuniversal arrows before showing how it specialises to standard results about bilimits and

biadjunctions.

2.1 Bicategories

The fundamental notion is that of a bicategory, due to Bénabou [Bén67]. These structures

often arise when one defines composition by a universal property. Such an operation

will generally not be associative and unital up to equality, only up to some mediating

isomorphisms. A classical example is the bicategory of spans over a category C with

pullbacks. The objects are those of C, the morphisms A ù B are spans A
f
ÐÝ X

g
ÝÑ B, and

composition is given by pullback.

11
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Definition 2.1.1. A bicategory B consists of

• A class of objects obpBq,

• For every X,Y P obpBq a hom-category
`

BpX,Y q, ‚, id
˘

with objects 1-cells f : X Ñ Y

and morphisms 2-cells α : f ñ f 1 : X Ñ Y ; composition of 2-cells is called vertical

composition,

• For every X,Y, Z P obpBq an identity functor IdX : 1 Ñ BpX,Xq (for 1 the terminal

category) and a horizontal composition functor ˝X,Y,Z : BpY, Zq ˆ BpX,Y q Ñ BpX,Zq,

• Invertible 2-cells

ah,g,f : ph ˝ gq ˝ f ñ h ˝ pg ˝ fq : W Ñ Z

lf : IdX ˝ f ñ f : W Ñ X

rg : g ˝ IdX ñ g : X Ñ Y

for every f : W Ñ X, g : X Ñ Y and h : Y Ñ Z, natural in each of their arguments

and satisfying a triangle law and a pentagon law analogous to those for monoidal

categories:

`

pk ˝ hq ˝ g
˘

˝ f
`

k ˝ ph ˝ gq
˘

˝ f

pk ˝ hq ˝ pg ˝ fq k ˝
`

ph ˝ gq ˝ f
˘

k ˝
`

h ˝ pg ˝ fq
˘

ak˝h,g,f

ak,h,g˝f

ak,h˝g,f

ak,h,g˝f k˝ah,g,f

pg ˝ IdXq ˝ f g ˝ pIdX ˝ fq

g ˝ f
rg˝f

ag,Id,f

g˝lf

The functorality of horizontal composition gives rise to the so-called interchange law : for

suitable 2-cells τ, τ 1, σ, σ1 we have pτ 1 ‚ τq ˝ pσ1 ‚σq “ pτ 1 ˝ σ1q ‚pτ ˝ σq. đ

Notation 2.1.2. In the preceding we employ the standard notation for the whiskering

operations. For a 1-cell f : X Ñ Y and 2-cells σ : hñ h1 : W Ñ X and τ : g ñ g1 : Y Ñ Z

we write f ˝σ and τ ˝f for idf ˝σ : f ˝hñ f ˝h1 and τ ˝ idf : g ˝f ñ g1 ˝f , respectively. đ

The category Rel of sets and relations may be viewed as a locally posetal bicategory—i.e. a

bicategory in which each hom-category is a poset—by stipulating that R ď S : AÑ B if

and only if aRb implies aSb for all a P A and b P B. A relation R : AÑ B is equivalently

a map A ˆ B Ñ t0, 1u. Replacing sets by categories, one obtains the bicategory Prof :

this has objects categories, 1-cells C Û D the functors Dop ˆ C Ñ Set, and 2-cells natural

transformations. The identity on C is the hom-functor Homp´,“q, and composition is given

using the universal property of a presheaf category (see e.g. [Bén00]).
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Remark 2.1.3. The coherence theorem for monoidal categories [Mac98, Chapter VII]

generalises to bicategories: any bicategory is biequivalent to a 2-category [MP85]. Loosely

speaking, then, any diagram constructed from only the identity and the structural constraints

a, l, r with the operations of horizontal and vertical composition must commute (see [Lei04]

for a readable summary of the argument). We are therefore justified in treating a, l and r as

though they were the identity, and we will sometimes denote such 2-cells merely by –. đ

Every bicategory B has three duals. Following the notation of [Lac10, §1.6], these are

• Bop, obtained by reversing the 1-cells,

• Bco, obtained by reversing the 2-cells,

• Bcoop, obtained by reversing both.

We call the first option the opposite bicategory. This is the only form of dual we shall employ

in this thesis.

A morphism of bicategories is called a pseudofunctor (or homomorphism) [Bén67]. It

is a mapping on objects, 1-cells and 2-cells that preserves horizontal composition up to

isomorphism. Vertical composition is preserved strictly.

Definition 2.1.4. A pseudofunctor F : B Ñ C between bicategories B and C consists of

• A mapping F : obpBq Ñ obpCq,

• A functor FX,Y : BpX,Y q Ñ CpFX,FY q for every X,Y P obpBq,

• An invertible 2-cell ψX : IdFX ñ F pIdXq for every X P obpBq,

• An invertible 2-cell φf,g : F pfq ˝F pgq ñ F pf ˝ gq for every g : X Ñ Y and f : Y Ñ Z,

natural in f and g,

subject to two unit laws and an associativity law:

IdFX 1 ˝ Ff F pIdX 1q ˝ F pfq

Ff F pIdX 1 ˝ fq

ψX1˝Ff

lFf φId
X1
,f

F lf

Ff ˝ IdFX F pfq ˝ F pIdXq

Ff F pf ˝ IdXq

F pfq˝ψX

rFf φf,IdX

F rf

`

Fh ˝ Fg
˘

˝ Ff Fh ˝
`

Fg ˝ Ff
˘

F phq ˝ F pg ˝ fq

F ph ˝ gq ˝ Ff F
`

ph ˝ gq ˝ f
˘

F
`

h ˝ pg ˝ fq
˘

aFh,Fg,Ff

φh,g˝Ff

F phq˝φg,h

φh,g˝f

φh˝g,f Fah,g,f

A pseudofunctor for which ψ and φ are both the identity is called strict. đ

We often abuse notation by leaving ψ and φ implicit when denoting a pseudofunctor.
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Example 2.1.5.

1. A monoidal category is equivalently a one-object bicategory; a monoidal functor is

equivalently a pseudofunctor between one-object bicategories,

2. A 2-category is equivalently a bicategory in which a, l and r are all the identity. A strict

pseudofunctor F : B Ñ C between 2-categories B and C is equivalently a 2-functor.

3. For every locally small bicategory B (see Notation 2.1.10) and X P B there exists the

Yoneda pseudofunctor YX : B Ñ Cat, defined by YX :“ BpX,´q. The 2-cells φ and

ψ are structural isomorphisms. đ

Morphisms of pseudofunctors are called pseudonatural transformations [Gra74]. These

are 2-natural transformations (Cat-enriched natural transformations) in which every natur-

ality square commutes up to a specified 2-cell. Morphisms of pseudonatural transformations

are called modifications [Bén67, Str80].

Definition 2.1.6. A pseudonatural transformation pk, kq : F ñ G : B Ñ C between

pseudofunctors pF,ψF , φF q and pG,ψG, φGq consists of the following data:

1. A 1-cell kX : FX Ñ GX for every X P B,

2. An invertible 2-cell kf : kY ˝ Ff ñ Gf ˝ kX : FX Ñ GY for every f : X Ñ Y in B,

natural in f and satisfying the following unit and associativity laws for every X P B,

f : X 1 Ñ X2 and g : X Ñ X 1 in B. :

pGf ˝ kX 1q ˝ Fg

pkX2 ˝ Ffq ˝ Fg Gf ˝ pkX 1 ˝ Fgq

kX2 ˝ pFf ˝ Fgq Gf ˝ pGg ˝ kXq

kX2 ˝ F pf ˝ gq pGf ˝Ggq ˝ kX

Gpf ˝ gq ˝ kX

aGf,k,Fg

ak,Ff,Fg

kf˝Fg

Gpfq˝kg

kX2˝φFf,g a´1
Gf,Gg,k

kfg φGf,g˝kX

kX

kX ˝ IdFX IdGX ˝ kX

kX ˝ F IdX GIdX ˝ kX

l´1
k

kX˝ψFX

rk

ψGX˝kX

kIdX

A pseudonatural transformation for which every kf is the identity is called strict or

2-natural. đ
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Remark 2.1.7. Note that we orient the 2-cells of a pseudonatural transformation as in the

following diagram:

FX FY

GX GY

kf
ð

kX

Ff

kY

Gf

This is the reverse of [Lei98] but follows the direction of [Bén67, Str80]. Of course, since we

require each kf to be invertible, the two choices are equivalent. đ

Definition 2.1.8. A modification Ξ : pk, kq Ñ pj, jq between pseudonatural transformations

pk, kq, pj, jq : F ñ G : B Ñ C is a family of 2-cells ΞX : kX ñ jX , such that the following

commutes for every f : X Ñ X 1 in B:1

kX 1 ˝ Ff Gf ˝ kX

jX 1 ˝ Ff Gf ˝ jX

kf

ΞX1˝Ff Gf˝ΞX

jf

đ

Example 2.1.9. For every pair of bicategories B and C there exists a bicategory HompB, Cq
of pseudofunctors, pseudonatural transformations and modifications. If C is a 2-category, so

is HompB, Cq. In particular, for every bicategory B there exists a 2-category HompB,Catq,

which one might view as a bicategorical version of the covariant presheaf category SetC.

Where C is a mere category, pseudofunctors C Ñ Cat are called indexed categories [MP85].

đ

Bicategories, pseudofunctors, pseudonatural transformations and modifications organise

themselves into a tricategory (weak 3-category, see [GPS95, Gur06, Gur13]) we denote

Bicat [GPS95].

Notation 2.1.10. A bicategory B (resp. pseudofunctor F ) is said to be locally P if the

property P holds for each hom-category BpX,Y q (resp. functor FX,Y ). In particular, a

bicategory is locally small if every hom-category is a set, and small if it is locally small and

its class of objects is a set. We shall use Cat to denote the 2-category of small categories

and stipulate that, whenever we write HompB,Catq, then it is assumed that B is small. As

usual, such issues can be avoided using technical devices such as Groethendieck universes

(see e.g. [Shu08]). đ

The bicategorical Yoneda Lemma takes the following form, due to Street [Str80].2

1Leinster [Lei04] requires both the above coherence law and that the family of 2-cells ΞX be natural in
X; this appears to be an oversight, as neither Leinster’s own [Lei98] nor Street’s [Str95] mention naturality.

2The bicategorical Yoneda Lemma is an example of a result that one would certainly expect to hold—and
is generally only ever stated in the literature—but for which the proof actually requires a significant amount
of work: see [Bak] for the gory details.
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Lemma 2.1.11. For any bicategory B and pseudofunctor F : B Ñ Cat, evaluating at the

identity for each B P B provides the components HompB,Catq
`

BpB,´q, F
˘ »
ÝÑ FB of an

equivalence in HompB,Catq. Hence, the Yoneda pseudofunctor Y : B Ñ HompB,Catq :

X ÞÑ BpX,´q is locally an equivalence.

Bicategories provide a convenient setting for abstractly describing many categorical

concepts (e.g. [Law17]); this perspective that has been used to particular effect by the

Australian school (see for instance [LS12, LS14]). The following definition is a small example

of this general phenomenon.

Definition 2.1.12. Let B be a bicategory.

1. An adjunction pA,B, f, g, v,wq in B is a pair of objects pA,Bq with arrows f : A Ô

B : g and 2-cells v : IdA ñ g ˝ f and w : f ˝ g ñ IdB such that the bicategorical

triangle laws hold (e.g. [Gur12]):

f f ˝ IdX f ˝ pg ˝ fq

f IdY ˝ f pf ˝ gq ˝ f

r´1
f f˝v

a´1
f,g,f

lf w˝f

g IdY ˝ g pg ˝ fq ˝ g

g g ˝ IdX g ˝ pf ˝ gq

l´1
g v˝g

ag,f,g

rg g˝w

2. An equivalence pA,B, f, g, v,wq in B is a pair of objects pA,Bq with arrows f : A Ô B : g

and invertible 2-cells v : IdA
–
ùñ g ˝ f and w : f ˝ g

–
ùñ IdB,

3. An adjoint equivalence is an adjunction that is also an equivalence.

If 1-cells f and g are part of an equivalence, we refer to g as the pseudoinverse of f .

Pseudoinverses are unique up to invertible 2-cell. đ

In Cat, an (adjoint) equivalence is exactly an (adjoint) equivalence of categories.

Moreover, just as in Cat, every equivalence induces an adjoint equivalence with the same

1-cells (see e.g. [Lei98]). The appropriate notion of equivalence between bicategories is

called biequivalence [Str80].

Definition 2.1.13. A biequivalence between bicategories B and C consists of pseudofunctors

F : B Ô C : G and chosen equivalences G ˝ F » idB and F ˝ G » idC in the bicategories

HompB,Bq and HompC, Cq, respectively. đ

By a result of Gurski [Gur12], one may assume without loss of generality that a

biequivalence is an adjoint biequivalence, in which F and G also form a biadjunction (see

Definition 2.4.1).

Notation 2.1.14. Following standard practice from Cat, we shall sometimes refer to a

pair of arrows f : A Ô B : g as an (adjoint) equivalence, leaving the 2-cells implicit. When

we wish to emphasise that these 2-cells are given as data, we refer to a chosen or specified

equivalence.
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Similarly, we may sometimes leave most of the data implicit and refer to the pseudofunctor

F on its own as a biequivalence. Unlike the 1-categorical case, however, we shall always

assume this biequivalence to be chosen. đ

Example 2.1.15.

1. A biequivalence between one-object bicategories is exactly an equivalence of monoidal

categories (that is, an equivalence in the 2-category MonCat of monoidal categories,

monoidal functors and monoidal natural transformations).

2. Prof is biequivalent to its opposite bicategory [DS97, Section 7] (c.f. the fact that

the category Rel is isomorphic to its opposite). đ

Loosely speaking, an equivalence of categories relates objects that are the same up to

isomorphism, and a biequivalence of bicategories relates objects that are the same up to

equivalence. Indeed, since every pseudofunctor preserves (adjoint) equivalences, an (adjoint)

equivalence A » B in a bicategory B induces an (adjoint) equivalence BpA,´q » BpB,´q
in HompBop,Catq and hence an (adjoint) equivalence BpA,Xq » BpB,Xq for every X P B.

One consequence is that, if the pseudofunctor F : B Ñ C is a biequivalence, then

1. For every C P C there exists an object B P B and an equivalence C » FB,

2. F is locally an equivalence: for every B,B1 P B the functor FB,B1 is part of an

equivalence of categories BpB,B1q » CpFB,FB1q; in particular, every FB,B1 is fully

faithful and essentially surjective.

In the presence of the Axiom of Choice, this formulation is equivalent to the definition given

above (e.g. [Lei04, Proposition 1.5.13]).

In the categorical setting it is elementary to check that a natural isomorphism—as an

iso in a functor category—is exactly a natural transformation for which every component is

invertible. The bicategorical version of this result is the following.
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Lemma 2.1.16. Let F,G : B Ñ C be pseudofunctors and suppose pk, kq : F ñ G is a

pseudonatural transformation such that every kX : FX Ñ GX is part of a specified adjoint

equivalence pkX , k‹X ,wX : k‹X ˝ kX ñ IdFX , vX : IdFX ñ kX ˝ k‹Xq. Then:

1. The family of 1-cells k‹X : GX Ñ FX are the components of a pseudonatural

transformation pk‹, k‹q : G ñ F , where for f : X Ñ Y the 2-cell k‹f is defined by

commutativity of the following diagram:

k‹Y ˝Gf Ff ˝ k‹X

k‹Y ˝ pGf ˝ IdGXq IdFY ˝ pFf ˝ k‹Xq

k‹Y ˝ pGf ˝ pkX ˝ k‹Xqq pk‹Y ˝ kY q ˝ pFf ˝ k‹Xq

k‹Y ˝ ppGf ˝ kXq ˝ k‹Xq k‹Y ˝ ppkY ˝ Ffq ˝ k‹Xq

–

k‹f

k‹Y ˝Gf˝vX

–

–

wY ˝Ff˝k‹X

k‹Y ˝k
´1
f ˝k‹X

–

2. The pseudonatural transformations pk, kq : F Ô G : pk‹, k‹q are the 1-cells of an

equivalence F » G in HompB, Cq.

Proof. To see that pk‹, k‹q is a pseudonatural transformation, the naturality and the unit

laws follow from the corresponding laws for kf . For the associativity law the process is

similar, except one also applies the triangle law relating v and w.

For the second claim we construct invertible modifications pk‹, k‹q ˝ pk, kq – IdF and

IdG – pk, kq ˝ pk‹, k
‹
q. The obvious choices for the components are wX : k‹X ˝ kX ñ IdFX

and vX : IdGX ñ kX ˝ k‹X . It remains to check the modification axiom. To this end, observe

that for every f : X Ñ Y in B, is the composite

pk‹Y ˝ kY q ˝ Ff
wY ˝Ff
ùùùùñ IdFY ˝ Ff

–
ùñ Ff ˝ IdFX

Ff˝w´1
X

ùùùùùñ Ff ˝ pk‹X ˝ kXq

Similarly, pk ˝ k‹qf is the composite

pkY ˝ k‹Y q ˝Gf
v´1
Y ˝Gf
ùùùùñ IdGY ˝Gf

–
ùñ Gf ˝ IdGX

Gf˝vX
ùùùùñ Gf ˝ pkY ˝ k‹Y q

One then sees that

pk‹Y ˝ kY q ˝ Ff IdFY ˝ Ff

IdFY ˝ Ff

Ff ˝ IdFX

Ff ˝ pk‹X ˝ kXq Ff ˝ IdFX

pk‹Y ˝ kY qf

wY ˝Ff

wY ˝Ff

––

Ff˝w´1
X

Ff˝wX

so that pwXqXPB does indeed form a modification. The proof for v is similar.
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This lemma is particularly useful when it comes to constructing a biequivalence: to

construct an equivalence F ˝G » id it suffices to construct a pseudonatural transformation

for which each component is an equivalence.

The lemma also justifies the following terminology. We call a pseudonatural transform-

ation pk, kq a pseudonatural equivalence if every component kX is an equivalence, and a

pseudonatural isomorphism if every kX is invertible.

2.2 Biuniversal arrows

In his famous textbook [Mac98], Mac Lane makes precise the notion of universal property

by introducing universal arrows. The Yoneda Lemma, limits and adjunctions are then all

characterised in these terms. We adopt a similar approach, focussing on T. Fiore’s biuniversal

arrows [Fio06]. As well as providing a uniform way to describe bicategorical limits and

bicategorical adjunctions, this perspective is particularly amenable to syntactic description.

Biuniversal arrows are fundamental to the type theoretic description of bicategorical products

and exponentials we shall see in Chapters 4 and 5.

A detailed development of the relationship between biuniversal arrows and biadjoints,

complete with proofs, is available in [Fio06, Chapter 9]. The other results in what follows

are implicit in much historical work on bicategory theory (e.g. [Str80]), but—as far as I am

aware—have not previously been collected together in this form.

We begin by recapitulating the notion of universal arrow and its bicategorical counterpart.

Definition 2.2.1. Let F : B Ñ C be a functor and C P C. A universal arrow from F to

C is a pair pR P B, u : FRÑ Cq such that, for any B P B and f : FB Ñ C, there exists a

unique f : : B Ñ R such that u ˝ Ff : “ f . đ

It is an exercise to show that every universal arrow pR, uq from F to C is equivalently a

chosen family of natural isomorphisms Bp´, Rq – CpF p´q, Cq, or—equivalently again—a

terminal object in the comma category pF Ó Cq. It follows that a right adjoint to F : B Ñ C

is specified by a choice of universal arrow εC : FUC Ñ C for every C P C. The mapping U

extends to a functor with Uf :“ pf ˝ εCq
: for f : C Ñ C 1. The counit is then ε and the

unit η arises by applying the universal property to the identity: ηB :“ pidFBq
: : B Ñ UFB.

If both ε and η are invertible, the result is an adjoint equivalence.

To define biuniversal arrows, one weakens the isomorphisms defining a universal arrow

to equivalences. We take particular care in choosing how we spell these out. It is generally

convenient to require adjoint equivalences; by the well-known lifting theorem (e.g. [Lei04,

Proposition 1.5.7]) this entails no loss of generality, while providing a more structured

object to work with. We also go beyond T. Fiore’s definition by requiring that each adjoint

equivalence is determined by a choice of universal arrow.
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Definition 2.2.2 (c.f. [Fio06]). Let F : B Ñ C be a pseudofunctor and C P C. A biuniversal

arrow from F to C consists of a pair pR P B, u : FRÑ Cq and, for every B P B, a chosen

adjoint equivalence of categories

BpB,Rq »ÝÑ CpFB,Cq

pB
h
ÝÑ Rq ÞÑ pFB

Fh
ÝÝÑ FR

u
ÝÑ Cq

specified by choosing a family of invertible universal 2-cells as the counit.

Explicitly, a biuniversal arrow from F to C consists of the following data:

• A pair pR P B, u : FRÑ Cq,

• For every B P B and h : FB Ñ C, a map ψBphq : B Ñ R and an invertible 2-cell

εB,h : u ˝ FψBphq ñ h, universal in the sense that for any map f : B Ñ R and 2-cell

τ : u ˝ Ff ñ h there exists a 2-cell τ : : f ñ ψBphq, unique such that

FB FR

C

h

óFτ:

Ff

FψBphq

óεB,h

u “

FR

FB C

óτ
u

h

Ff (2.1)

such that the 2-cell pidu˝Ff q
: : f ñ ψBpu ˝ Ffq is invertible for every f : B Ñ R. đ

Remark 2.2.3. Pictorial representations such as (2.1) are known as pasting diagrams. It

is a consequence of the coherence theorem for bicategories that, once a choice of brack-

eting is made for the source and target 1-cells, a pasting diagram identifies a unique

2-cell (c.f. [Gur06, Remark 3.1.16]; for a detailed exposition, see [Ver92, Appendix A]). đ

On the face of it, a biuniversal arrow is only local structure: the data imposes a

requirement on each hom-category, but no global constraints. This property will be

particularly useful for our later work synthesising a type theory, where we shall encode

bicategorical products and exponentials as biuniversal arrows. Global structure arises in

the following way (c.f. [Mac98, III.2]).

Lemma 2.2.4. Let F : B Ñ C be a pseudofunctor and C P C. There exists a biuniversal

arrow pR, uq from F to C if and only if there exists an equivalence of pseudofunctors

Bp´, Rq » CpF p´q, Cq in HompBop,Catq,

Proof. For every equivalence of pseudofunctors Bp´, Rq γ
ÝÑ CpF p´q, Cq one obtains from the

Yoneda Lemma an arrow γRpIdRq : FRÑ C. This arrow is biuniversal: indeed, the image of

γRpIdRq under the pseudofunctor CpFR,Cq Ñ HompBop,Catq
`

Bp´, Rq, CpF p´q, Cq
˘

given

by the Yoneda Lemma is isomorphic to γ, and hence an equivalence. The converse is [Fio06,

Theorem 9.5].
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Remark 2.2.5. In Chapter 7 we shall see that a biuniversal arrow from F : B Ñ C to

C P C is equivalently a terminal object in the bicategorical comma category pF Ó constCq,

for constC the constant pseudofunctor at C. đ

Elementary properties of biuniversal arrows. Many standard properties of universal

arrows—such as those in [Mac98]—extend to biuniversal arrows. Biuniversal arrows are

unique up to equivalence, and the p´q: operation preserves both invertibility and naturality.

Notation 2.2.6. In the next lemma, and throughout, we shall abuse notation by writing

just – for the invertible 2-cell filling a square. Unless marked otherwise, it is assumed this

2-cell is oriented right-to-left (c.f. Remark 2.1.7). đ

Lemma 2.2.7 ([Fio06, Lemma 9.7]). Let F : B Ñ C be a pseudofunctor and C P C. For

any two biuniversal arrows pR, uq and pR1, u1q from F to C there exists an equivalence

e : RÑ R1 and an invertible 2-cell κ filling

FR C

FR1 C

u

Fe κ
–

u1

Moreover, for any other pair pf : RÑ R1, λ : u1 ˝ Fe
–
ùñ uq filling the above diagram, e and

f are isomorphic via λ:.

It follows from the essential uniqueness of equivalences that, if u : FR Ñ C is a

biuniversal arrow from F to C and u1 – u, then u1 is also a biuniversal arrow from F to C.

The next lemma follows from further standard facts about adjoint equivalences of categories.

Lemma 2.2.8. Let F : B Ñ C be a pseudofunctor and pR, uq a biuniversal arrow from F

to C P C. For every object B P B,

1. If f : B Ñ R is any morphism and α : u ˝ Ff ñ h is invertible, then so is α:.

2. If the 1-cells h, h1 : FB Ñ C and f, f 1 : B Ñ R and 2-cells α : u ˝ Ff ñ h and

β : u ˝ Ff 1 ñ h1 are related by a commutative diagram of 2-cells as on the left below

u ˝ Ff h

u ˝ Ff 1 h1

u˝Fσ

αf

τ

αf 1

f ψBphq

f 1 ψBph
1q

pαf q
:

σ ψBpτq

pαf 1 q
:

then the diagram on the right above commutes. In particular, if α : u ˝ F p´q ñ

idCpFB,Cq is a natural transformation, then so is α: : idBpB,Rq ñ ψBp´q.

It is sometimes convenient, for example when working with bilimits, to work with the

notion of birepresentable pseudofunctor.
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Definition 2.2.9 ([Str80]). Let F : B Ñ Cat be a pseudofunctor. A birepresentation pR, ρq

for F consists of an object R P B and an equivalence ρ : BpR,´q »ÝÑ H in HompB,Catq. đ

Representable functors F : B Ñ Set correspond to universal arrows from the terminal

object to F . Similarly, to relate biuniversal arrows to birepresentable functors we employ

the dual notion of a biuniversal arrow from an object to a pseudofunctor.

Lemma 2.2.10 (c.f. [Mac98, Proposition III.2.2]). A pseudofunctor F : B Ñ Cat is

birepresentable if and only if there exists a biuniversal arrow from the terminal category 1

to F .

Proof. It is certainly the case that Catp1, F p´qq » F in HompB,Catq. From birepresent-

ability and the closure of equivalences under composition one obtains Catp1, F p´qq » F »

BpR,´q, so the result follows from Lemma 2.2.4.

2.2.1 Preservation of biuniversal arrows

Preservation of biuniversal arrows will provide a systematic way to define preservation of

bilimits and preservation of biadjoints. We begin by examining preservation of universal

arrows. Using the fact that a right adjoint to F : B Ñ C is completely specified by a choice

of universal arrow pUC,F pUCq Ñ Cq for each C P C—namely, the counit—it is reasonable

to define morphisms of universal arrows analogously to morphisms of adjunctions [Mac98,

Chapter IV].

Definition 2.2.11. Let F : B Ñ C and F 1 : B1 Ñ C1 be functors and suppose pR, uq is a

universal arrow from F to C P C. A pair of functors pK,Lq preserves the universal arrow

pR, uq if the following diagram commutes

B C

B1 C1

F

L K

F 1

and F 1LR “ KFR
Ku
ÝÝÑ KC is a universal arrow from F 1 to KR. đ

Equivalently, we ask that the functor pF Ó Cq Ñ pF 1 Ó KCq defined by pB, h : FB Ñ

Cq ÞÑ pLB,F 1LB “ KFB
Kh
ÝÝÑ KCq preserves the terminal object. This is a slight

weakening of the definition of transformation of adjunctions given in [Mac98]: Mac Lane

asks that the unit (or counit) be strictly preserved.

The bicategorical translation is as one would expect.
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Definition 2.2.12. Let F : B Ñ C and F 1 : B1 Ñ C1 be pseudofunctors and suppose pR, uq

is a biuniversal arrow from F to C P C. A triple of pseudofunctors and pseudonatural

transformations pK,L, ρq as in the diagram

B C

B1 C1

F

L ρ
ñ K

F 1

(2.2)

preserves the biuniversal arrow pR, uq if F 1LR
ρR
ÝÑ KFR

Ku
ÝÝÑ KC is a biuniversal arrow

from F 1 to KC. đ

By Lemma 2.2.4, if pK,L, ρq preserves the universal arrow pR, uq as in (2.2) then one

obtains a pseudonatural family of equivalences B1pB1, LRq » C1pF 1B1,KCq.
Just as an equivalence of categories preserves all ‘categorical’ properties, so a biequi-

valence preserves all ‘bicategorical’ properties. In particular, a biequivalence preserves all

biuniversal arrows.

Lemma 2.2.13. Let H : C Ñ D be a biequivalence and F : B Ñ C be a pseudofunctor. If

pR, uq is a biuniversal arrow from F to C P C, then Hu is a biuniversal arrow from HF to

HX. Hence, the triple pH, idB, idq preserves the biuniversal arrow.

Proof. Since H is locally an equivalence, for every B P B there exists a composite adjoint

equivalence of categories BpB,Rq » CpFB,Cq
HFB,C
» DpHFB,HCq taking h : B Ñ R to

Hpu ˝ Fhq. Since Hpuq ˝HF p´q is naturally isomorphic to this adjoint equivalence, it is

an adjoint equivalence itself.

There are two ways of formulating that a functor F preserves limits: one can either

ask that the image of the terminal cone is also a terminal cone, or that the canonical map

F plimHq Ñ limpFHq is an isomorphism. Similar considerations apply to preservation of

biuniversal arrows.

Lemma 2.2.14. Consider a square of pseudofunctors K,L, F, F 1 related by a pseudonatural

transformation pρ, ρq : KF ñ F 1L as in (2.2), thus:

B C

B1 C1

F

L ρ
ñ K

F 1

For every pair of biuniversal arrows pR, uq and pR1, u1q from F to C P C and F 1 to KC P C1,
respectively, the following are equivalent:

1. pK,L, ρq preserves the biuniversal arrow pR, uq,

2. The canonical map ψ1LRpKu ˝ ρRq : LRÑ R1 is an equivalence, where we write ψ1LR
for the chosen pseudo-inverse to u1 ˝ F 1p´q : B1pLR,R1q Ñ C1pF 1LR,KCq.
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Proof. Suppose first that ψ1LRpKu ˝ ρRq is an equivalence. Since pseudofunctors preserve

equivalences, the composite B1pB1, LRq
ψ1LRpKu˝ρRq˝p´q
ÝÝÝÝÝÝÝÝÝÝÝÑ B1pB1, R1q u1˝F 1p´q

ÝÝÝÝÝÑ C1pF 1C 1,KCq
is an equivalence. Hence u1 ˝ F 1pψ1LRpKu ˝ ρRqq is a biuniversal arrow. But then the 2-cell

ε1LRpKu˝ρRq provides a natural isomorphism u1 ˝F 1pψ1LRpKu˝ρRqq
–
ùñ Ku˝ρR, so Ku˝ρR

is also a biuniversal arrow.

The converse is a straightforward application of universality (c.f. also Lemma 2.2.7): if

pLR,Ku ˝ ρRq and pR1, u1q are both biuniversal arrows from F 1 to KC, then the canonical

arrows LR Ñ R1 and R1 Ñ LR obtained from the universal property must form an

equivalence.

It will be useful to define strict preservation of biuniversal arrows. This strictness will

play an important role in later chapters, where we will ask that the syntactic models of our

type theories satisfy a strict freeness property. The aim of this definition is to ensure that

the chosen structure witnessed by a biuniversal arrow (e.g. a bilimit) is taken to exactly the

chosen structure in the target.

Definition 2.2.15. Let F : B Ñ C and F 1 : B1 Ñ C1 be pseudofunctors and suppose pR, uq

and pR1, u1q are biuniversal arrows from F to C P C and from F 1 to C 1 P C1, respectively.

A pair of pseudofunctors pK,Lq is a strict morphism of biuniversal arrows from pR, uq to

pR1, u1q if

1. K and L are strict pseudofunctors such that KF “ F 1L,

2. The data of the biuniversal arrow is preserved: LR “ R1, KC “ C 1 and Ku “ u1,

3. The mappings ψB : CpFB,Cq Ñ BpB,Rq and ψ1B1 : C1pF 1B1, C 1q Ñ B1pB1, R1q are

preserved, so that LψBpfq “ ψ1LBKpfq for every f : FB Ñ C,

4. For every B P B and equivalence u ˝ F p´q : BpB,Rq Ô CpFB,Cq : ψB the universal

arrow εB,h : u ˝ FψBphq ñ h is strictly preserved, in the sense that KFB,CpεB,hq “

ε1LB,Kh. đ

In bicategory theory it is usually good practice to specify data up to equivalence, as

pseudofunctors preserve equivalences but may not preserve isomorphisms or equalities.

The preceding definition abuses this convention, and so is not ‘bicategorical’ in style. A

consequence is that an arbitrary biequivalence may not strictly preserve biuniversal arrows

(c.f. the proof of Lemma 2.2.13). This level of strictness does, however, provide a way to talk

about free bicategories-with-structure using the language of 1-category theory (c.f. [Gur06,

Proposition 2.10]).

Remark 2.2.16. We distinguish between preservation of biuniversal arrows in the sense of

Definition 2.2.12 and a morphism of biuniversal arrows as in the preceding definition on

the following basis. In Definition 2.2.12 we require that the image of the given biuniversal

arrow is a biuniversal arrow, but do not specify its exact nature. In the preceding definition,

by contrast, we require that the pair pK,Lq takes the biuniversal arrow specified in the

source to exactly the biuniversal arrow specified in the target. đ
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Strict preservation of a biuniversal arrow is sufficient to imply preservation of the

corresponding universal property, in the following sense.

Lemma 2.2.17. Let F : B Ñ C and F 1 : B1 Ñ C1 be pseudofunctors and suppose pR, uq

and pR1, u1q are biuniversal arrows from F to C P C and from F 1 to C 1 P C1, respectively. If

pK,Lq is a strict morphism from pR, uq to pR1, u1q, then for every B P B, h : B Ñ R and

τ : u ˝ Fhñ f , Lτ : “ pKτq:.

Proof. It suffices to show that Lτ : satisfies the universal property of pKτq:. For this one

observes that

ε1LB,Kf ‚F
1Lτ : “ KpεB,f q ‚KF pτ

:q by strict preservation

“ KpεB,f ‚Fτ
:q

“ Kτ

as required.

A strict morphism of biuniversal arrows pK,Lq defines a morphism of adjunctions (in

the sense of Mac Lane) at every hom-category. Indeed, it follows directly from the definition

that for every B P B the following square commutes:

BpB,Rq CpFB,Cq

B1pLB,LRq B1pLB,R1q C1pF 1LB,C 1q C1pKFB,KCq

uC˝F p´q

LB,R KFB,C

u1LB˝F
1p´q

and KFB,C preserves the counit by assumption.

2.3 Bilimits

We are now in a position to introduce bilimits and preservation of bilimits. The formulation

in terms of biuniversal arrows is pleasingly concise. For every pair of bicategories J ,B one has

a diagonal pseudofunctor ∆ : B Ñ HompJ ,Bq taking B P B to the constant pseudofunctor

at B. Explicitly, ∆B : J Ñ B takes a 2-cell τ : h ñ h1 : j Ñ j1 to the identity 2-cell

idB : IdB ñ IdB : B Ñ B. The 2-cell ψj : Idp∆Bqpjq ñ p∆BqpIdjq is the identity and

for a composite j
g
ÝÑ j1

f
ÝÑ j2 in J the 2-cell φf,g : p∆Bqpfq ˝ p∆Bqpgq ñ p∆Bqpf ˝ gq is

lIdB : IdB ˝ IdB ñ IdB. A bilimit is then a biuniversal arrow.

Definition 2.3.1. A bilimit for F : J Ñ B is a biuniversal arrow from the diagonal

pseudofunctor ∆ : B Ñ HompJ ,Bq to F . đ

Unwrapping the definition, we require a pair pbilimF, λ : ∆pbilimF q ñ F q such that

for every object B P B and cone (pseudonatural transformation) κ : ∆B ñ F there exists a

map uκ : B Ñ bilimF and an invertible modification εB,κ filling
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∆B ∆pbilimF q

F

∆puκq

κ
εB,κ
ð

λ

This modification is required to be universal in the sense that, for any 1-cell v : B Ñ bilimF

and 2-cell β : λ ˝∆v ñ κ, there exists a unique β: : v ñ uκ such that

∆B ∆pbilimF q

F

κ

ó∆β:

∆v

∆uκ

óεB,κ

λ “

∆pbilimF q

∆B F

óβ
λ

κ

∆v

Finally, we require that for every w : B Ñ bilimF the 2-cell pidλ˝∆wq
: : w ñ uλ˝∆w is

invertible.

By Lemma 2.2.4 this definition can be rephrased as a pseudonatural family of ad-

joint equivalences BpB, bilimF q » HompJ ,Bqp∆B,F q. It therefore coincides with that of

Street [Str80] in terms of birepresentations. We say that a bicategory B is bicomplete or

admits all bilimits if for every small bicategory J and pseudofunctor F : J Ñ B the bilimit

bilimF exists in B.

Preservation of bilimits. We define preservation of bilimits as preservation of the

corresponding biuniversal arrows, via the following lemma.

Lemma 2.3.2. For any bicategory J and pseudofunctor H : B Ñ C the following diagram

commutes up to canonical isomorphism:

B HompJ ,Bq

C HompJ , Cq

–
ð

∆B

H H˝p´q

∆C

(2.3)

Proof. Let us writeH˚ :“ H˝p´q. Unwinding the respective definitions, pH˚˝∆
BqB : J Ñ C

is the pseudofunctor sending every j P J to HB, every p : j Ñ j1 to HIdB and every

2-cell σ : p ñ p1 to the identity. This coincides with p∆C ˝HqB everywhere except that

p∆C ˝HqpBqpj
p
ÝÑ j1q “ IdHB . So for every B P B there exists a pseudonatural isomorphism

αB :“ pH˚ ˝ ∆BqB ñ p∆C ˝ HqB with components αBpjq :“ IdHB for all j P J . The

witnessing 2-cell is the evident composite of ψH with structural isomorphisms. Thus

one obtains an invertible 1-cell αB in HompJ , Cq for every B P B. To extend this to a

pseudonatural isomorphism, one takes αf : αB1 ˝H˚p∆
Bfq ñ ∆CpHfq˝αB (for f : B Ñ B1)

to be the invertible modification with components given by the structural isomorphism

IdHB1 ˝Hf
–
ùñ Hf ˝ IdHB. Then pα, αq is the required isomorphism.
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Thus, assuming the bilimit exists in C, we say that H preserves the bilimit of F : J Ñ B if

pH˚, H, pα, αqq preserves the biuniversal arrow pbilimF, λq. By Lemma 2.2.14, this condition

is equivalent to requiring that the canonical map HpbilimF q Ñ bilimpHF q is an equivalence.

The general perspective of biuniversal arrows leads to a straightforward proof that

biequivalences preserve all bilimits.

Corollary 2.3.3. For any biequivalence H : B Ô B1 : G,

1. H preserves all bilimits that exist in B,

2. If B has all J -bilimits then B1 has all J -bilimits.

Proof. For (1), suppose F : J Ñ B has a bilimit. By Lemma 2.2.13 one obtains a biuniversal

arrow from H˚ ˝ ∆ to H˚pF q, which by (2.3) is biuniversal from ∆B1H to HF . So the

bilimit is preserved.

For (2), suppose F : J Ñ B1. Then GF : J Ñ B has a bilimit and hence, by the

previous part, so does HGF : J Ñ B1. Since HG » idB1 , it follows that F has a bilimit.

Two other classes of pseudofunctors that one would certainly expect to preserve bilimits

are right biadjoints (see Definition 2.4.1) and birepresentables. This is indeed the case.

Lemma 2.3.4.

1. If the pseudofunctor F : B Ñ C has a left biadjoint, then F preserves all bilimits that

exist in B.

2. If F : B Ñ Cat is a birepresentable pseudofunctor, then F preserves all bilimits that

exist in B.

Proof. These are [Str80, §1.32] and [Str80, §1.20], respectively.

2.4 Biadjunctions

Recalling that an adjunction is specified by a choice of universal arrows, we define a

biadjunction by a choice of biuniversal arrows (c.f. [Pow98]).

Definition 2.4.1. Let F : B Ñ C be a pseudofunctor. To specify a right biadjoint to F is

to specify a biuniversal arrow pUC, uC : FUC Ñ Cq from F to C for every C P C. đ

Spelling out the definition, to give a right biadjoint U : C Ñ B to F is to give:

• A mapping U : obpCq Ñ obpBq,

• A family of 1-cells puC : FUC Ñ CqCPC ,

• For every B P B and h : FB Ñ C a 1-cell ψBphq : B Ñ UC and an invertible 2-cell

εB,h : uC ˝ FψBphq ñ h that is universal in the sense of (2.1) (p. 20), such that the

unit ηh :“ piduC˝Fhq
: : hñ ψBpuC ˝ Fhq is invertible for every h.
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One thereby obtains a pseudofunctor U : C Ñ B by setting UpCq :“ UC on objects,

UpC
g
ÝÑ C 1q :“ ψUCpg ˝ uCq and Upg

σ
ùñ g1q :“ ppσ ˝ uCq ‚ εUC,gq

:. By Lemma 2.2.4, this

definition is equivalent to asking for a pair of pseudofunctors F : B Ô C : U together with

a pseudonatural family of equivalences BpB,UCq » CpFB,Cq. For detailed proofs of this

and related results, see [Fio06, Chapter 9].

The biuniversal arrow formulation of biadjoints, relying as it does on universal properties

at each level, is perhaps easiest to work with when it comes to calculations (c.f. [FGHW07]).

As we shall see in Chapters 4 and 5, it is also particularly amenable to being expressed

syntactically.

Remark 2.4.2. The definition of bilimit can now be rephrased in the following fashion:

the pseudofunctor bilim : HompJ ,Bq Ñ B, when it exists, is right biadjoint to the diagonal

pseudofunctor (c.f. [Fio06, Remark 9.2.1]). đ

We have chosen to place bilimits and biadjoints on a similar footing by presenting them

both as instances of biuniversal arrows. The preceding remark indicates that the theory

of bilimits could alternatively be phrased using biadjoints. For example, one may use the

fact that a right biadjoint preserves all bilimits, together with the observation that every

biequivalence can be ‘upgraded’ to an adjoint biequivalence [Gur12], to obtain an alternative

proof of Corollary 2.3.3(1).

Preservation of biadjunctions. We shall use the notion of preservation of biadjunctions

to define preservation of exponentials.

Definition 2.4.3. For any biadjoint pair F : B Ô C : U and pseudofunctor F 1 : B1 Ñ C1,
we say that the triple pK,L, ρq as below

B C

B1 C1

F

L ρ
ñ K

F 1

(2.4)

preserves the biadjunction if pK,L, ρq preserves each biuniversal arrow uC : FUC Ñ C. đ

A triple pK,L, ρq preserving a biadjunction preserves the corresponding counits up

to isomorphism. By definition, whenever pK,L, ρq preserves the biadjunction F % U as

in (2.4), then F 1LUC
ρUC
ÝÝÑ KFUC

KuC
ÝÝÝÑ KC is a biuniversal arrow from F 1L to KC. The

next lemma entails that, if F 1 has a right adjoint U 1, then

F 1U 1KC
»
ÝÑ F 1LUC

ρUC
ÝÝÑ KFUC

KuC
ÝÝÝÑ KC

is another such biuniversal arrow. By Lemma 2.2.7, this must be canonically isomorphic to

the biuniversal arrow u1KC witnessing the biadjunction F 1 % U 1.

Lemma 2.4.4. Let pK,L, ρq preserve the biadjunction F % U as in (2.4) and suppose F 1

has a right biadjoint U 1. Then U 1K » LU .
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Proof. The definition of preservation of a biuniversal arrow, together with the definition of

a biadjunction, entails that for any B P B and C P C:

B1pB,LUCq » C1pF 1B,KCq » B1pB,U 1KCq

By Lemma 2.2.4 these equivalences may equally be expressed as equivalences of pseudofunc-

tors. Hence, Y ˝ pLUq » Y ˝ pU 1Kq, for Y : B1 Ñ Hom ppB1qop,Catq the Yoneda embedding.

The Yoneda Lemma then entails that LU » U 1K, as claimed.

We end this chapter by instantiating Lemma 2.2.13 in the particular case of biadjunctions.

Lemma 2.4.5. Suppose that F : B Ñ C has a right biadjoint U and that H : C Ô C1 : G is

a biequivalence. Then HF : B Ô C1 : UG is a biadjunction.

Proof. By Lemma 2.2.13, each biuniversal arrow uC : FUC Ñ C defining the biadjunction

F % U is preserved. In particular, taking C 1 P C1 such that GC 1 » C and the biuniversal

arrow uGC1 : FUGC 1 Ñ GC 1, one obtains a biuniversal arrow HFUGC 1 Ñ HGC 1 from

HF to HGC 1. But from the biequivalence one has an adjoint equivalence HG » idC1 for

which the component at C 1 is an adjoint equivalence HGC 1 » C 1. Composing, there exists

a biuniversal arrow pHF qpUGqC 1 Ñ C 1 from HF to C 1, as required.





Part I

A type theory for cartesian closed

bicategories
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Chapter 3

A type theory for biclones

In this chapter we begin our construction of the type theory Λˆ,Ñps for cartesian closed

bicategories. We focus on the bicategorical fragment: we construct a type theory Λbicat
ps for

bicategories and use it to recover a version of the Mac Lane-Paré coherence theorem for

bicategories [MP85].

The work is driven by the theory of biclones, a bicategorification of the abstract clones

of universal algebra [Coh81]. Abstract clones axiomatise the notion of equational theory

with variables and a substitution operation, and provide a natural intermediary between

syntax (in the form of the set of terms generated from operators over a set of variables) and

semantics (in the form of categorical algebraic theories) (see e.g. [Plo94, p.129]). Biclones

will play the same role in our construction, axiomatising syntax with an up-to-isomorphism

substitution operation. We shall then synthesise the rules of our type theory Λbicl
ps from

biclone structure.

The resulting type theory varies from classical type theories such as the simply-typed

lambda calculus in two important respects. First, we make use of a form of explicit

substitution [ACCL90]; second, it is 2-dimensional in the sense that judgements relate types,

terms and rewrites between terms.

These two developments both arise in the study of rewriting in the lambda calculus, but

have previously only been studied independently. Explicit substitution calculi were first

studied as versions of the lambda calculus closer to machine implementation [ACCL90] and

have found applications in proof theory [RPW00] and programming language theory [LM99].

Much recent research (e.g. [DK97, Rit99]) has focussed on Melliès’ observation that, contrary

to what one might expect from the lambda calculus, such calculi may not be strongly

normalising [Mel95] (see e.g. [RBL11] for an overview).

Two-dimensional type theories, on the other hand, first arose from Seely’s observa-

tion [See87] that η-expansion and β-reduction form the unit and counit of a lax (directed)

cartesian closed structure, a perspective advocated further by Jay & Ghani [Gha95, JG95]

and put to use by Hilken [Hil96] for a proof-theoretic account of rewriting. In the strict

setting, Hirschowitz [Hir13] and Tabereau [Tab11] have constructed 2-dimensional type

theories to describe 2-categorical structures in rewriting theory and programming language

33
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design, respectively. The connection with intensional equality, meanwhile, has recently

sparked significant interest in type theories with a notion of ‘rewrite’ or ‘equality’ motivated

by the connection between higher category theory, topology and type theory. Examples

include Licata & Harper’s 2-dimensional directed type theory [LH11, LH12], Riehl & Shul-

man’s type theory for synthetic 8-categories [RS17], and Garner’s 2-dimensional type

theory [Gar09].

The type theory we shall construct brings together a novel combination of explicit

substitution and 2-dimensional judgements. Following Hilken, we relate terms by separate

syntactic entities called rewrites, and interpret these as 2-cells. This contrasts with many

type theories motivated by connections with homotopy type theory (e.g. the Riehl-Shulman

and Garner type theories), which capture 2-cells using Martin-Löf style identity types. The

relationship between the two approaches remains to be explored.

Outline. The chapter breaks up into three parts. In Section 3.1 we consider the appropriate

form of signature for a 2-dimensional type theory and construct the free biclone over such a

signature. This drives the second part (Section 3.2), where we synthesise the type theory

Λbicl
ps and show that it is the internal language of biclones; as a corollary, we obtain an

internal language for bicategories. Finally, in Section 3.3 we use Λbicl
ps to prove a coherence

result for biclones, amounting to a form of normalisation for the corresponding type theory.

3.1 Bicategorical type theory

3.1.1 Signatures for 2-dimensional type theory

A signature for the simply-typed lambda calculus is specified by a choice of base types and

constants (sometimes called a λ̂ -signature [Cro94]). A natural way of packaging such data,

exemplified by Lambek & Scott [LS86], is as a graph. Taking inspiration from Lambek’s

notion of multicategories as models of deductive systems [Lam69, LS86], one may extend

this using a multigraph (c.f. [Lam89, Her00, Lei04]). Here, one thinks of a judgement

px1 : A1, . . . , xn : An $ t : Bq as corresponding to an edge with source pA1, . . . , Anq and

target B.1

Definition 3.1.1. A multigraph G consists of a set G0 of nodes together with a set

GpA1, . . . , An;Bq of edges from pA1, . . . , Anq to B for every A1, . . . , An, B P G0 (we al-

low n “ 0). A homomorphism of multigraphs h “ ph, hA1, ... ,An;Bq : G Ñ G1 consists

of a function h : G0 Ñ G10 together with functions hA1, ... ,An;B : GpA1, . . . , An;Bq Ñ

G1phA1, . . . , hAn;hBq for every A1, . . . , An, B P G0 pn P Nq. We denote the category

of multigraphs and multigraph homomorphisms by MGrph. The full subcategory Grph

of graphs has objects those multigraphs G such that GpA1, . . . , An;Bq “ H whenever

n ‰ 1. đ

1This should not be confused with the terminology in graph theory, where a multigraph sometimes refers
to a graph in which there are allowed to be multiple edges between nodes (e.g. [Har69, p.10]).
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Example 3.1.2. Every graph freely generates a typed λ-calculus [LS86] with types the

nodes and a unary operator for each edge. Conversely, the simply-typed lambda calculus

over a fixed set of base types determines a multigraph with nodes the types and edges

pA1, . . . , Anq Ñ B the derivable terms x1 : A1, . . . , xn : An $ t : B up to α-equivalence

(we assume a fixed enumeration of variables x1, x2, . . . determining the name of the ith

variable in the context). đ

In this vein, the appropriate notion of signature for a 2-dimensional type theory is a

form of ‘2-multigraph’ (c.f. [Gur13, Chapter 2]).

Notation 3.1.3. In the following definition, and throughout, we write A‚ for a finite

sequence xA1, . . . , Any.
2 Following Example 3.1.2, we use Greek letters Γ,∆, . . . to denote

sequences xA1, . . . , Any in which the names of the terms Ai are not of importance. We use

Γ1,Γ2 or Γ1 @ Γ2 to denote the concatenation of Γ1 and Γ2, and write |Γ| for the length of

Γ. đ

Definition 3.1.4. A 2-multigraph G is a set of nodes G0 equipped with a multigraph

GpA‚;Bq of edges and surfaces for every A1, . . . , An, B P G0 (we allow n “ 0). A homo-

morphism of 2-multigraphs h “ ph, hA‚,B, hf,gq : G Ñ G1 is a map h : G0 Ñ G10 together with

functions

hA1, ... ,An;B : GpA‚;Bq Ñ G1phA1, . . . , hAn;hBq

hf,g : GpA‚;Bqpf, gq Ñ G1phA1, . . . , hAn;hBqphf, hgq

for every A1, . . . , An, B P G0 pn P Nq and f, g P GpA‚;Bq. We denote the category

of 2-multigraphs by 2-MGrph. The full subcategory 2-Grph of 2-graphs is formed by

restricting to 2-multigraphs G such that GpA1, . . . , An;Bq “ H whenever n ‰ 1. đ

Example 3.1.5.

1. Every category determines a graph; every bicategory determines a 2-graph.

2. Every monoidal category pC,b, Iq determines a multigraph GC with nodes pGCq0 :“

obpCq and GCpX1, . . . , Xn;Y q :“ CpX1 b . . .bXn, Y q (for some chosen bracketing of

the n-ary tensor product).

3. More generally, every multicategory [Lam69] determines a multigraph. đ

We shall see in Chapter 4 that every bicategory with finite products determines a

bi-multicategory and every bi-multicategory determines a 2-multigraph.

3.1.2 Biclones

We turn to constructing bicategorical substitution structure over a 2-multigraph. As

indicated above, our approach is to bicategorify the notion of abstract clone [Coh81].

2This notation is adopted from homological algebra, where one writes X‚ for a chain complex
X1 Ñ X2 Ñ ¨ ¨ ¨ (e.g. [Wei94]).
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Abstract clones. Abstract clones provide a presentation-independent description of

(algebraic) equational theories with variables and substitution. A leading example is the

clone of operations given by the set of terms over a fixed signature, subject to the substitution

operation. We shall recall only the basic properties we require: for an introduction to the

theory of clones from the perspective of universal algebra, see e.g. [Plo94, Tay99].

Definition 3.1.6. A (sorted) abstract clone pS,Cq consists of a set S of sorts with

• A set CpX1, . . . , Xn;Y q of operations t : X1, . . . , Xn Ñ Y for eachX1, . . . , Xn, Y P S pn P Nq,

• Distinguished projections ppiqX‚ P CpX1, . . . , Xn;Xiqpi “ 1, . . . , nq for eachX1, . . . , Xn P S pn P Nq,

• For all sequences of sorts Γ and sorts Y1, . . . , Yn, Z pn P Nq a substitution function

subΓ,Y‚,Z : CpY‚;Zq ˆ
śn
i“1CpΓ;Yiq Ñ CpΓ;Zq

we denote by sub
`

f, pg1, . . . , gnq
˘

:“ f rg1, . . . , gns,

such that

1. t
”

pp1qX‚ , . . . , p
pnq
X‚

ı

“ t for all t P CpX‚;Y q,

2. ppkqY‚ rt1, . . . , tns “ tk pk “ 1, . . . , nq for all pti P CpΓ;Yiqqi“1,...,n,

3. tru‚srv‚s “ tru‚rv‚ss for all vj P CpW‚;Xjq, ui P CpX‚;Yiq and t P CpY‚;Zq (i “

1, . . . , n and j “ 1, . . . ,m).

We write ptru‚sqrv‚s for the iterated substitution tru1, . . . , unsrv1, . . . , vms; by default, we

bracket substitution to the left. An operation of form t : X Ñ Y is called unary.

A morphism h “ ph, hX‚;Y q : pS,Cq Ñ pS1,C1q of abstract clones is a map h : S Ñ S1

together with functions hX‚;Y : CpX1, . . . , Xn;Y q Ñ C1phX1, . . . , hXn;hY q for each

X1, . . . , Xn, Y P S, such that the projections and substitution operation are preserved.

We denote the category of clones by Clone. đ

Following the terminology for multicategories, we occasionally refer to the operations

t : X1, . . . , Xn Ñ Y of a clone as multimaps or arrows. Where the context is unambiguous,

we refer to a sorted clone pS,Cq simply as an S-clone and denote it by C; a clone with a

single sort is called mono-sorted.

Example 3.1.7.

1. Every clone pS,Cq defines a category C by restricting to the unary operations. We

call this the nucleus of pS,Cq. Composition is given by substitution in pS,Cq and the

identity on X P S is pp1qX .

2. Any small category C with finite products defines an obpCq-clone ClpCq with ClpCqpX1, . . . , Xn;Y q :“

CpX1 ˆ ¨ ¨ ¨ ˆ Xn, Y q. The projections are the projections in C; the substitution

tru1, . . . , uns is the composite t ˝ xu1, . . . , uny. đ

One may read the two cases just presented as follows: every Lawvere theory defines a

mono-sorted clone, and every mono-sorted clone defines a Lawvere theory. In fact, the full
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subcategory of Clone consisting of just the mono-sorted clones is equivalent to the category

of Lawvere theories (see e.g. [Plo94]). This makes precise the sense in which clones capture

a notion of algebraic theory. In the next chapter we shall explore the relationship between

multi-sorted clones and cartesian categories more generally.

Clones and type-theoretic syntax. The definition of abstract clone isolates three

axioms sufficient to describe substitution. The next example shows how a clone augments a

graph with a notion of substitution (c.f. Example 3.1.2).

Example 3.1.8. For a chosen set of base types B and multigraph G with nodes generated

by the grammar

X,Y ::“ B | X ˆ Y | X “BY pB P Bq

the corresponding lambda calculus may be equipped with a simultaneous substitution

operation pt, pu1, . . . , unqq ÞÑ tru1{x1, . . . , un{xns which respects the typing in the sense

that the following rule is admissible:

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1, ... ,n

∆ $ tru1{x1, . . . , un{xns

One therefore obtains a clone with sorts the types and multimaps X1, . . . , Xn Ñ Y the

α-equivalence classes of derivable terms x1 : X1, . . . , xn : Xn $ t : Y . The three axioms

encapsulate the following standard properties of simultaneous substitution (c.f. the syntactic

substitution lemma [Bar85, p.27]):

xkru1{x1, . . . , un{xns “ uk trx1{x1, . . . , xn{xns “ t

trui{xisrvj{yjs “ t
“

uirvj{yjs{xi
‰

One still obtains a clone if one takes αβη-equivalence classes of terms; we denote this by

CΛ̂ ,ÑpGq. đ

Example 3.1.8 exemplifies the way in which clones provide an algebraic description of

(type-theoretic) syntax. The tradition of categorical algebra, on the other hand, describes

such syntax through the construction of a syntactic category, for which one aims to prove

a freeness universal property. Generally some massage is required to account for the fact

that categorical morphisms take a single object as their domain, but terms may exist in

contexts of arbitrary length. For example, one may take contexts as objects and morphisms

as lists of terms (e.g. [Pit00]), or restrict to unary contexts and take morphisms to be single

terms (e.g. [Cro94]). It turns out that, if one employs the latter strategy, the relationship

between the clone-theoretic and category-theoretic perspectives is particularly tight.
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Lemma 3.1.9.

1. The inclusion Grph ãÑ MGrph has a right adjoint given by restricting to edges of the

form X Ñ Y .

2. The forgetful functor Clone Ñ MGrph taking a clone to its underlying multigraph

has a left adjoint.

3. The functor p´q : Clone Ñ Cat restricting a clone to its nucleus has a left adjoint.

Proof. For (1) define a functor L : MGrph Ñ Grph by taking LG to be the graph with nodes

exactly the nodes of G and edges pLGqpX,Y q :“ GpX,Y q. The action on homomorphisms

is similar: for h : G Ñ G1 one obtains Lphq by restricting to edges of the form X Ñ

Y . Then, where ι : Grph ãÑ MGrph denotes the obvious embedding, a multigraph

homomorphism h : ιpGq Ñ G1 is a map on nodes h : pιGq0 Ñ G10 together with maps

hX‚;Y : pιGqpX1, . . . , Xn;Y q Ñ G1phX1, . . . , hXn;hY q for each X1, . . . , Xn, Y P pιGq0 pn P
Nq. Since pιGqpX1, . . . , Xn;Y q is empty except when n “ 0, this is equivalently a graph

homomorphism G Ñ LG1.
For (2) we construct the free clone FClpGq on a multigraph G. The construction is

similar to that for the free multicategory on a multigraph (c.f. [Lei04, Chapter 2]). The

sorts are the nodes of G, and the operations are given by the following deductive system:

c P GpX1, . . . , Xn;Y q

c P FClpGqpX1, . . . , Xn;Y q

Xi P tX1, . . . , Xnu

ppiqX1, ... ,Xn
P FClpGqpX1, . . . , Xn;Xiq

f P FClpGqpX1, . . . , Xn;Y q
`

gi P FClpGqpΓ;Xiq
˘

i“1,...,n

f rg1, . . . , gns P FClpGqpΓ;Y q

subject to the equational theory requiring the three axioms of a clone. To see this is free,

observe that for any clone pS,Cq and multigraph homomorphism h : G Ñ C from G to the

multigraph underlying pS,Cq, the unique clone homomorphism h# : FClpGq Ñ C extending

h must be defined by

h#pcq :“ hpcq h#pppiqA‚q :“ ppiq
h#A‚

h#pf rg1, . . . , gnsq :“ ph#fq
”

ph#g1q, . . . , ph
#gnq

ı

For (3), let C be a category. Define a clone PC with sorts the objects of C and hom-sets

constructed as follows:

f P CpX,Y q

f P pPCqpX;Y q

Xi P tX1, . . . , Xnu

ppiqX1, ... ,Xn
P pPCqpX1, . . . , Xn;Xiq

f P pPCqpX1, . . . , Xn;Y q
`

gi P pPCqpΓ;Xiq
˘

i“1,...,n

f rg1, . . . , gns P pPCqpΓ;Y q

The equational theory ” is the three laws of a clone, augmented by
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pp1qX ” idX P pPCqpX;Xq

f P CpY,Zq g P CpX,Y q

f ˝ g ” f rgs P pPCqpX;Zq

For any clone pT,Dq, a clone homomorphism h : PC Ñ D consists of a map of ob-

jects obpCq Ñ T together with substitution-preserving mappings pPCqpX1, . . . , Xn;Y q Ñ

DpX1, . . . , Xn;Y q for each X1, . . . , Xn, Y P obpCq pn P Nq. Restricting to unary operations,

this is exactly a functor C Ñ D. Conversely, since any clone homomorphism is fixed on the

projections, a functor C Ñ D corresponds uniquely to a clone homomorphism PC Ñ D.

In the light of the preceding lemma one obtains the diagram below. The adjunction

between the 1-category Cat and Grph is the usual free-forgetful adjunction, and the functor

p´q : Clone Ñ Cat restricts a clone pS,Cq to its unary operations (i.e. its nucleus). The

outer square commutes on the nose and hence the inner square commutes up to natural

isomorphism.

Clone

MGrph Cat

Grph

p´qforget

%

FClp´q

L

%P

forget

%FCat%

(3.1)

Indeed, examining the constructions one sees that p´q ˝ P – idCat and hence that

CatpFCatpGq,Cq – Cat
´

PpFCatpGqq,C
¯

– CatpFClpιGq,Cq (3.2)

For our purposes, the moral is the following: to provide a type-theoretic description of the

free category on a graph, it is sufficient to describe the free clone on a multigraph. One

thereby obtains a more natural type theory—one does not need to restrict the rules to

unary contexts—and the commutativity of this diagram guarantees that, when one does

perform such a restriction, the result is (up to isomorphism) as intended.

Our aim in what follows is to lift this story to the bicategorical setting, and use it to

extract a type theory for bicategories. We begin by defining a bicategorified notion of clone.
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Biclones. Abstract clones may be defined in any cartesian category (and much more

generally, see [Sta13, Fio17]). The bicategorified version arises by instantiating this definition

in Cat and weakening the axioms to natural isomorphisms.

Definition 3.1.10. A (sorted) biclone pS, Cq is a set S of sorts equipped with the following

data:

• For all X1, . . . , Xn, Y P S pn P Nq a category CpX1, . . . , Xn;Y q with objects mul-

timaps f : X‚ Ñ Y and morphisms 2-cells α : f ñ g : X‚ Ñ Y , subject to a vertical

composition operation,

• Distinguished projection functors ppiqX‚ : 1 Ñ CpX1, . . . , Xn;Xiq pi “ 1, . . . , nq for all

X1, . . . , Xn P S pn P Nq,

• For all sequences of sorts Γ and sorts Y1, . . . , Yn, Z pn P Nq a substitution functor

subΓ,Y‚,Z : CpY‚;Zq ˆ
śn
i“1CpΓ;Yiq Ñ CpΓ;Zq

we denote by sub
`

f, pg1, . . . , gnq
˘

:“ f rg1, . . . , gns,

• Natural families of invertible structural isomorphisms

assoct,u‚,v‚ : tru1, . . . , unsrv‚s ñ tru1rv‚s, . . . , unrv‚ss

ιu : uñ u
”

pp1qX‚ , . . . , p
pnq
X‚

ı

%pkqu1, ... ,un : ppkqY‚ ru1, . . . , uns ñ uk pk “ 1, . . . , nq

for every t P CpY‚, Zq, uj P CpX‚, Yjq, vi P CpW‚, Xiq and u P CpX‚, Y q (i “ 1, . . . , n

and j “ 1, . . . ,m),

This data is subject to coherence laws corresponding to the triangle and pentagon laws of a

bicategory:

trv‚s t
“

pp1q, . . . , ppnq
‰

rv‚s

trv‚s t
“

pp1qrv‚s, . . . , ppnqrv‚s
‰

ιtrv‚s

assoc
t;pp‚q;v‚

t
”

%
p1q
v‚ , ... ,%

pnq
v‚

ı

tru‚srv‚srw‚s tru‚rv‚ssrw‚s tru‚rv‚srw‚ss

tru‚srv‚rw‚ss tru‚rv‚rw‚sss

assoctru‚s;v‚;w‚

assoct;u‚;v‚ rw‚s assoct;u‚rv‚s;w‚

trassocu‚;v‚;w‚ s

assoct;u‚;v‚rw‚s

đ

Remark 3.1.11. Note that an invertible 2-cell is simply an iso in the relevant hom-category,

but the definition of invertible multimap is more subtle (see Definition 4.2.15). đ
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We direct the 2-cells to match the definition of a skew monoidal category [Szl12]; the

definition should therefore generalise to the lax setting. When we wish to emphasise the set

of sorts, we call a biclone pS, Cq an S-biclone; where the set of sorts is clear from context,

we refer to a biclone pS, Cq simply by C. One obtains a 2-clone—a clone enriched over

Cat—when all the structural isomorphisms assoc, ι, %piq pi “ 1, . . . , nq are the identity. The

second half of this chapter will be devoted to a coherence theorem showing that every

freely-generated biclone is suitably equivalent to a 2-clone.

Example 3.1.12 (c.f. Example 3.1.7).

1. Every clone defines a locally discrete biclone, in which each hom-category is discrete.

2. Every bicategory B with finite products defines a biclone; if B is a 2-category with

strict (2-categorical) products, this is a 2-clone.

3. Every biclone pS, Cq gives rise to a bicategory C by taking the unary hom-categories,

i.e.by taking CpX,Y q :“ CpX;Y q. We call this the nucleus of pS, Cq. đ

One may think of a biclone as a generalised deductive system in which the multimaps

f : A1, . . . , An Ñ B are judgements A1, . . . , An $ f : B, related by proof transformations

τ : f ñ f 1 (c.f. [See87]). Conversely, Example 3.1.12(3) shows that a type theory for

biclones would encompass bicategories as a special case. In Lemma 3.1.18 we shall see that

the type theory describing the free biclone on a 2-graph restricts to a type theory for the

free bicategory on a 2-graph (c.f. diagram (3.1)).

Remark 3.1.13. Biclones are objects worthy of further study in their own right. Thinking

of them as ‘bicategorified clones’ suggests a connection—to be fleshed out—with some

notion of ‘bicategorical Lawvere theory’, and with pseudomonads. On the other hand,

biclones provide a categorical description of certain kinds of explicit substitution; possible

connections with the categorical semantics of the simply-typed lambda calculus with explicit

substitution (e.g. [GdR99]) remain to be explored. đ

Free biclones and free bicategories. Defining a free biclone requires an appropriate

notion of morphism. The definitions are natural extensions of those for bicategories.

Definition 3.1.14. A pseudofunctor F : pS, Cq Ñ pS1, C1q between biclones consists of a

mapping F : obpCq Ñ obpC1q equipped with:

• A functor FX‚;Y : CpX1, . . . , Xn;Y q Ñ C1pFX1, . . . , FXn;FY q for allX1, . . . , Xn, Y P

S pn P Nq,

• Invertible 2-cells ψ
piq
X‚

: ppiqFX‚ ñ F pppiqX‚q pi “ 1, . . . , nq for each X P S,

• An invertible 2-cell φt,u‚ : pFtqrFu1, . . . , Funs ñ F ptru1, . . . , unsq for every

puj : X‚ Ñ Yiqj“1,...,n and t : Y‚ Ñ Z, natural in t and u1, . . . , un,
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subject to the following three coherence laws for i “ 1, . . . , n:

ppiqFX‚rFu1, . . . , Funs Fui

pFppiqX‚qrFu‚s F pppiqX‚ru‚sq

%
piq
Fu‚

ψ
piq
X‚
rFu‚s

φppiq,u‚

F%
piq
u‚

(3.3)

F ptq F
´

trpp1qX‚ , . . . , p
pnq
X‚
s

¯

pFtqrpp1qFX‚ , . . . , p
pnq
FX‚

s pFtqrFpp1qX‚ , . . . , FppnqX‚ s

Fιt

ιFt

pFtqrψp1q, ... ,ψp1qs

φ
t;pp‚q

(3.4)

F ptqrFu‚s rFv‚s F ptqrFu‚rFv‚ss

F ptru‚sqrFv‚s F ptqrF pu‚rv‚sqs

F ptru‚s rv‚sq F ptru‚rv‚ssq

assocFt;Fu‚;Fv‚

φt;u‚ rFv‚s F ptqrφu‚;v‚ s

φtru‚s;v‚ φt;u‚rv‚s

Fassoct;u‚;v‚

(3.5)

A pseudofunctor for which φ and every ψp1q, . . . , ψpnq is the identity is called strict. đ

Example 3.1.15. Every pseudofunctor of biclones F : pS, Cq Ñ pT,Dq restricts to a

pseudofunctor of bicategories F : C Ñ D between the nucleus of pS, Cq and the nucleus of

pT,Dq (recall Example 3.1.12(3)). đ

The construction of the free biclone on a 2-multigraph follows the pattern of its 1-

categorical counterpart.

Construction 3.1.16 (Free biclone on a 2-multigraph). Let G be a 2-multigraph. Define

a biclone FClpGq as follows. The sorts are nodes of G and the hom-categories are defined

by the following deductive system:

c P GpA1, . . . , An;Bq

c P FClpGqpA1, . . . , An;Bq

κ P GpA1, . . . , An;Bqpc, c1q

κ P FClpGqpA1, . . . , An;Bq

p1 ď i ď nq

ppiqA1, ... ,An
P FClpGqpA1, . . . , An;Aiq

f P FClpGqpA1, . . . , An;Bq
`

gi P FClpGqpX‚;Aiq
˘

i“1,...,n

f rg1, . . . , gns P FClpGqpX‚;Bq

τ P FClpGqpA1, . . . , An;Bqpf, f 1q
`

σi P FClpGqpX‚;Aiqpgi, g1iq
˘

i“1,...,n

τ rσ1, . . . , σns P FClpGqpX‚;Bqpf rg1, . . . , gns, f
1rg11, . . . , g

1
nsq
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f P FClpGqpA‚;Bq
idf P FClpGqpA‚;Bqpf, fq

τ P FClpGqpA‚;Bqpf 1, f2q σ P FClpGqpA‚;Bqpf, f 1q
τ ‚σ P FClpGqpA‚;Bqpf, f2q

f P FClpGqpB‚;Cq
`

gi P FClpGqpA‚;Biq
˘

i“1,...,n

`

hj P FClpGqpX‚;Bjq
˘

j“1,...,m

assocf,g‚,h‚ P FClpGqpX‚;Cqpf rg‚s rh‚s, f rg‚rh‚ssq

f P FClpGqpA1, . . . , An;Bq

ιf P FClpGqpA‚;Bq
´

f, f rpp1qA‚ , . . . , p
pnq
A‚
s

¯

`

gi P FClpGqpX‚;Aiq
˘

i“1,...,n
p1 ď i ď nq

%
piq
A1, ... ,An

P FClpGqpX‚;AiqpppiqA1, ... ,An
rg1, . . . , gns, giq

The equational theory ” requires that

• Every FClpGqpA1, . . . , An;Bq forms a category with composition the ‚ operation and

identity on f P FClpGqpA1, . . . , An;Bq given by idf ,

• The operation
`

f, pg1, . . . , gnq
˘

ÞÑ f rg1, . . . , gns is functorial with respect to this

category structure,

• The families of 2-cells assoc, ι and %piq pi “ 1, . . . , nq are invertible, natural and satisfy

the triangle and pentagon laws of a biclone. đ

It is clear that this construction yields a biclone. Indeed, Lambek’s definition of the

internal language of a multicategory [Lam89] transfers readily to clones, and the preceding

construction may be used to extend this definition to biclones. The only adjustment is that

the operation symbols f : A1, . . . , An Ñ B are now related by transformations τ : f ñ f 1.

The judgements in our type theory Λbicl
ps will match these sequents precisely.

We shall, so far as possible, phrase the free properties we prove in terms of a unique strict

pseudofunctor of biclones (c.f. [Gur13, Proposition 2.10]): this obviates the need to work with

uniqueness up to 2-cell, in which the 2-cells may themselves only be unique up to a unique

3-cell. In particular, we bicategorify diagram (3.1) by using 1-categories of bicategorical

objects (biclones and bicategories) in which the morphisms are strict pseudofunctors. Write

Biclone and Bicat for these two categories. The relevant freeness universal property of

Construction 3.1.16 is therefore the following.

Lemma 3.1.17. The forgetful functor Biclone Ñ 2-MGrph taking a biclone to its underlying

2-multigraph has a left adjoint.

Proof. Let G be a 2-multigraph and pT,Dq be a biclone. We show that for every 2-multigraph

morphism h : G Ñ D there exists a unique strict pseudofunctor of biclones h7 : FClpGq Ñ G
such that h7 ˝ ι “ h, for ι : G Ñ FClpGq the inclusion.
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Define h# by induction as follows:

h#pcq :“ hA‚;Bpcq for c P GpA1, . . . , An;Bq

h#pκq :“ hA‚;Bpκq for κ P GpA1, . . . , An;Bqpc, c1q

h#pidf q :“ idh#pfq

h#pτ ‚σq :“ h#pτq ‚h#pσq

We then require that h# strictly preserves the projections, the substitution operations

and the structural isomorphisms. This is a strict pseudofunctor FClpGq Ñ D extending h.

Uniqueness follows because any strict pseudofunctor must strictly preserve projections and

the substitution operations, and so also strictly preserve the structural isomorphisms.

The proof of Lemma 3.1.9 extends straightforwardly to an adjunction between 2-Grph

and 2-MGrph. The following lemma therefore completes our bicategorical adaptation of

diagram (3.1).

Lemma 3.1.18.

1. The forgetful functor Bicat Ñ 2-Grph taking a bicategory to its underlying 2-graph

has a left adjoint (c.f. [Gur13, Proposition 2.10]).

2. The functor p´q : Biclone Ñ Bicat restricting a biclone to its nucleus (recall Ex-

ample 3.1.12) has a left adjoint.

Proof. For (1) we define the free bicategory FBctpGq on a 2-graph G as the following deduct-

ive system (c.f. the description of bicategories as a generalised algebraic theory [Oua97]):

c P GpA,Bq
c P FBctpGqpA,Bq

κ P GpA,Bqpc, c1q
κ P FBctpGqpA,Bq IdA P FBctpGqpA,Aq

f P FBctpGqpA,Bq g P FBctpGqpX;Aq

f ˝ g P FBctpGqpX;Bq

τ P FBctpGqpA,Bqpf, f 1q σ P FBctpGqpX,Aqpg, g1q
τ ˝ σ P FBctpGqpX;Bqpf ˝ g, f 1 ˝ g1q

f P FBctpGqpA,Bq
idf P FBctpGqpA,Bqpf, fq

τ P FBctpGqpA,Bqpf 1, f2q σ P FBctpGqpA,Bqpf, f 1q
τ ‚σ P FBctpGqpA,Bqpf, f2q

f P FBctpGqpB,Cq g P FBctpGqpA,Bq h P FBctpGqpX,Bq
af ;g;h P FClpGqpX;Cqpf rgs rhs, f rgrhssq

f P BpA,Bq
lf P FBctpGqpA,BqpIdB ˝ f, fq

f P FBctpGqpA,Bq
rf P FBctpGqpA,Bq pf ˝ IdA, fq

subject to an equational theory requiring
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• Every FBctpGqpA,Bq forms a category with composition the ‚ operation and identity

on f P FBctpGqpA,Bq given by idf ,

• The operation pf, gq ÞÑ f ˝ g is functorial with respect to this category structure,

• The families of 2-cells a, l and r are invertible, natural and satisfy the triangle and

pentagon laws of a bicategory.

Since strict pseudofunctors are determined on all the structural data, any 2-graph homo-

morphism h : G Ñ C to the 2-graph underlying a bicategory C determines a unique strict

pseudofunctor h# : FClpGq Ñ C restricting to h on G.

For (2), let B be any bicategory. Define a biclone PB as follows. The sorts are objects

of B and the hom-categories pPBqpX1, . . . , Xn;Y q are those given by the deductive system

of Construction 3.1.16, adapted by replacing the first two rules by

f P BpX,Y q
f P pPBqpX;Y q

κ P BpX,Y qpf, f 1q
κ P pPBqpX;Y qpf, f 1q

and augmenting the equational theory with rules ensuring the biclone and bicategory

structures coincide wherever possible:

pp1qX ” IdX P pPBqpX;Xq

f P BpY,Zq g P BpX,Y q
f ˝ g ” f rgs P pPBqpX;Zq

f P BpX,Y q
pidf qB ” pidf qPB P pPBqpX;Y q

τ P BpY,Zqpf, f 1q σ P BpX,Y qpg, g1q
τ ˝ σ ” τ rσs P pPBqpX;Zqpf rgs, f 1rg1sq

τ P BpX,Y qpf, f 1q σ P BpX,Y qpf 1, f2q
τ ‚B σ ” τ ‚PB σ P pPBqpX;Y qpf, f2q

f P FBctpGqpB,Cq g P FBctpGqpA,Bq h P FBctpGqpX,Bq
assocf,g,h ” af,g,h P FBctpGqpX,Cq

f P BpX,Y q

ιf ” r´1
f : pPBqpX,Y qpf, f rpp1qX qs

f P BpX,Y q

%
p1q
f ” lf : pPBqpX,Y qppp1qY rf s, fq

The free property is a simple extension of that for clones (Lemma 3.1.9(3)).

One therefore obtains the following diagram of adjunctions, generalising diagram (3.1).

As for (3.1), the outer diagram commutes on the nose so the inner diagram commutes up to
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isomorphism.

Biclone

2-MGrph Bicat

2-Grph

p´qforget

%

FClp´q

L

%P

forget

%

FBctp´q

%

(3.6)

It follows that, modulo a natural isomorphism, the free bicategory on a 2-graph G is obtained

as the nucleus of the free biclone on G (regarded as a 2-multigraph). Indeed, examining

the constructions one sees that p´q ˝ P – idBicat, yielding the following chain of natural

isomorphisms (c.f. equation (3.2)):

BicatpFBctpGq,Bq – Bicat
´

PpFBctpGqq,B
¯

– BicatpFClpιGq,Bq (3.7)

For us, the moral is the following: Construction 3.1.16 gives precisely the rules required

to freely define bicategorical substitution structure. In Section 3.2, we shall use this to

construct a type theory for bicategories. Before that, we finish giving the definitions required

to specify an equivalence of biclones. These will be a key part of the coherence result at the

end of this chapter.

Relating biclone pseudofunctors. The definition of transformation between biclone

homomorphisms is rather involved. There is a well-known notion of transformation between

maps of multicategories (e.g. [Lei04, Definition 2.3.5]), but the cartesian nature of biclone

substitution means the definition is not directly applicable. However, every clone canonically

gives rise to a multicategory—we discuss this in some detail in Section 4.2—and this

suggests the definition of transformation should be a bicategorical adaptation of that for

multicategory maps. The definition of modification is then fixed.

The following notation is intended to be reminiscent of the notation f ˆ g for the action

of the categorical cartesian product on morphisms.

Notation 3.1.19. For multimaps pfi : Γi Ñ Yiqi“1,...,n and in a (bi)clone, one obtains the

composite

Γ1, . . . ,Γn
rpp1`

řk´1
i“1

|Γi|q, ... ,pp|Γk|`
řk´1
i“1

|Γi|qs
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Γk

fk
ÝÑ Yk

for k “ 1, . . . , n. For h : Y1, . . . Yn Ñ Z we therefore define hr
Òn

i“1 fis “ hrf1 b ¨ ¨ ¨ b fns :

Γ1, . . . ,Γn Ñ Z to be the composite

h
”

f1

”

pp1q, . . . , pp|Γ1|q
ı

, . . . , fn

”

pp1`
řn´1
i“1 |Γi|q, . . . , pp|Γn|`

řn´1
i“1 |Γi|q

ıı

đ
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In particular, for pgj : Γ Ñ Xjqj“1,...,n, pfi : Xi Ñ Yiqi“1,...,n and h : Y1, . . . , Yn Ñ Z

there exists a canonical isomorphism

fh;f‚;g‚ : hrf1 b ¨ ¨ ¨ b fns rg1, . . . , gns ñ hrf1rg1s, . . . , fnrgnss

given by applying assoc twice and then the projections %piq.

Definition 3.1.20. Let F,G : pC, Sq Ñ pC1, S1q be pseudofunctors of biclones. A transform-

ation pα, αq : F ñ G consists of the following data:

1. A multimap αX : FX Ñ GX for every X P S,

2. An invertible 2-cell

αt : αY rFts ñ GptqrαX1 b ¨ ¨ ¨ b αXns : FX1, . . . , FXn Ñ GY (3.8)

for every t : X1, . . . , Xn Ñ Y in C, natural in t and satisfying the following two laws

for k “ 1, . . . , n:

αY rF ptqrFu‚ss αY rF ptru‚sqs

αY rF ptqs rFu‚s Gptru‚sqr
Òn

i“1 αXis

Gptqr
Òn

i“1 αXis rFu‚s

GptqrαX1rFu1s, . . . , αXnrFunss

GptqrGpu‚qr
Òn

i“1 αXiss GptqrGpu‚qs r
Òn

i“1 αXis

αY rφt;u‚ s

αtru‚s

αtrFu‚s

assocα;Ft;Fu‚

fGt;α‚;Fu‚

Gptqrαu1 , ... ,αuns

assoc´1
Gt;Gu‚;

Ò

i αXi

φt;u‚r
Òn
i“1 αXis

ppkqGX‚rαX1 b ¨ ¨ ¨ b αXns GpppkqX‚qrαX1 b ¨ ¨ ¨ b αXns

αXk

”

ppkqFX‚
ı

αXk

”

FppkqX‚
ı

%
pkq
p
Ò

i αXi
q

ψ
pkq
X‚
rαX1

b ¨¨¨bαXns

αXk

”

ψ
pkq
X‚

ı

α
pppkq
X‚
q

đ

Definition 3.1.21. Let pα, αq, pβ, βq : F ñ G be transformations of pseudofunctors

pS, Cq Ñ pS1, C1q. A modification Ξ : pα, αq Ñ pβ, βq consists of a 2-cell ΞX : αX ñ βX for

every X P S, such that the following diagram commutes for every t : X1, . . . , Xn Ñ Y :

αY rFts βY rFts

GptqrαX1 b ¨ ¨ ¨ b αXns GptqrβX1 b ¨ ¨ ¨ b βXns

ΞY rFts

αt βt

GptqrΞX1
b ¨¨¨bΞXns
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đ

It is natural to conjecture that biclones together with their pseudofunctors, trans-

formations and modifications form a tricategory Biclone into which Bicat embeds as a

sub-tricategory. We do not pursue such considerations here, but we do give the definition of

equivalence they would suggest.

Definition 3.1.22. A biequivalence between biclones pS, Cq and pS1, C1q consists of

• Pseudofunctors F : C Ô C1 : G,

• Pairs of transformations pα, αq : F˝G Ô idC1 : pα1, α1q and pβ, βq : G ˝ F Ô idC : pβ1, β1q,

• Invertible modifications Ξ : α ˝ α1 Ñ ididC1
, Ξ1 : idFG Ñ α1 ˝ α, Ψ : β ˝ β1 Ñ ididC and

Ψ1 : idGF Ñ β1 ˝ β. đ

Lemma 3.1.23. For any biequivalence F : pS, Cq Ô pS1, C1q : G of biclones,

1. The pseudofunctor F is a local equivalence, i.e. every FX1, ... ,Xn;Y : CpX1, . . . , Xn;Y q Ñ

C1pFX1, . . . , FXn;FY q is full, faithful and essentially surjective,

2. For every X 1 P S1 there exists X P S such that FX » X 1 in C1.

Proof. Just as for categories and for bicategories, c.f. [Awo10, p. 173].

3.2 The type theory Λbicl
ps

We now turn to constructing the type theory Λbicl
ps that will be the internal language of

biclones. Following the general philosophy of Lambek’s internal language for multicategor-

ies [Lam89], our approach is to define a term calculus for the rules of Construction 3.1.16.

Thus, for every rule in the construction we postulate an introduction rule in the type

theory. These rules are collected in Figures 3.3–3.5. Note that we slightly abuse notation

by simultaneously introducing the structural isomorphisms (corresponding to assoc, ι and

%pkq) and their inverses.

The equational theory ” is derived directly from the axioms of a biclone; the rules are

collected together in Figures 3.6–3.11. The typing rules respect this equational theory in

the following sense.

Lemma 3.2.1. For any 2-multigraph G and derivable judgements Γ $ τ ” τ 1 : tñ t1 : B

in Λbicl
ps pGq, the judgements Γ $ τ : tñ t1 : B and Γ $ τ 1 : tñ t1 : B are derivable.

We denote the type theory over a fixed 2-multigraph G by Λbicl
ps pGq; when we do not

wish to specify a particular choice of signature, we simply write Λbicl
ps .

In what follows we provide a more leisurely introduction to Λbicl
ps and establish some

basic meta-theoretic properties.
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Judgements. We must capture the fact that a biclone has both 1-cells and 2-cells: for

this we follow the tradition of 2-dimensional type theories consisting of types, terms and

rewrites (c.f. [See87, Hil96, Hir13]). Accordingly, there are two forms of typing judgement.

Alongside the usual Γ $ t : A to indicate ‘term t has type A in context Γ’, we write

Γ $ τ : tñ t1 : A to indicate ‘τ is a rewrite from term t of type A to term t1 of type A, in

context Γ’.

Contexts are finite lists of (variable, type) pairs in which variable names must not occur

more than once: the relevant rules are given in Figure 3.1. Writing Var for the set of

variables, any context Γ determines a finite partial function from variables to types; we write

dompΓq for the domain of this function. The concatenation of contexts Γ and ∆ satisfying

dompΓq X domp∆q “ H is denoted Γ @ ∆.

˛ ctx
Γ ctx x R dompΓq

`

A P G0

˘

Γ, x : A ctx

Figure 3.1: Context-formation rules for Λbicl
ps pGq.

Raw terms. Following the template provided by clones, we may capture constants in a

signature—that is, edges in a 2-multigraph—by constants in the type theory, and projections

by variables. The outstanding question is how to model the substitution operation of a

biclone. This cannot be the standard meta-operation of substitution: Construction 3.1.16

requires that substitution is not associative on the nose, only up to the assoc 2-cell.

Our solution is to model the substitution operation of the free biclone by a form of

explicit substitution [ACCL90]. For every family of terms u1, . . . , un and term t with free

variables among x1, . . . , xn we postulate a term ttx1 ÞÑ u1, . . . , xn ÞÑ unu; this is the formal

analogue of the term tru1{x1, . . . , un{xns defined by the meta-operation of capture-avoiding

substitution (c.f. [ACCL90, RdP97]). The variables x1, . . . , xn are bound by this operation.

For a fixed 2-multigraph G the raw terms are therefore variables, constant terms and explicit

substitutions, as in the grammar

t, u1, . . . , un ::“ x | cpx1, . . . , xnq | ttx1 ÞÑ u1, . . . , xn ÞÑ unu pc P GpA1, . . . , An;Bqq

One may think of constants cpx1, . . . , xnq as n-ary operators: indeed, for every sequence of

n terms pu1, . . . , unq explicit substitution defines a mapping

pu1, . . . , unq ÞÑ cpx1, . . . , xnqtx1 ÞÑ u1, . . . , xn ÞÑ unu

This is emphasised by the following notational convention.
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Notation 3.2.2. We adopt the following abuses of notation:

1. Writing ttxi ÞÑ uiu or just ttuiu for ttx1 ÞÑ u1, . . . , xn ÞÑ unu,

2. Writing ctu1, . . . , unu for the explicit substitution cpx1, . . . , xnqtxi ÞÑ uiu whenever

c is a constant. đ

Remark 3.2.3. Alternative notations for explicit substitution include txx :“ uy and the

let-binding operation let x “ u in t (e.g. [RdP97, DL11]). đ

α-equivalence on terms. We work with terms up to α-equivalence defined in the stand-

ard way (c.f. [RdP97]).

Definition 3.2.4. For any 2-multigraph G we define the α-equivalence relation “α on raw

terms by the rules

refl
t “α t

t “α t
1

symm
t1 “α t

t “α t
1 t1 “α t

2

trans
t “α t

2

tryi{xis “α t
1ryi{x

1
is pui “α u

1
iqi“1, ... ,n y1, . . . , yn fresh

ttx1 ÞÑ u1, . . . , xn ÞÑ unu “α ttx
1
1 ÞÑ u11, . . . , x

1
1 ÞÑ x1nu

The simultaneous substitution operation trui{xis is defined by

xkrui{xis :“ uk

cpx1, . . . , xnqrui{xis :“ ctu1, . . . , unu

pttzj ÞÑ ujuqrvi{xis :“ ttzj ÞÑ ujrvi{xisu

where in the final rule we assume that each zj does not occur among the xi or freely in any

of the vi. đ

Raw rewrites. Following the pattern set for terms, we define the class of raw rewrites

between terms by the following grammar, where t, u‚ and v‚ are (families of) terms,

x1, . . . , xn are variables and 1 ď i ď n:

τ, σ, σ1, . . . , σn ::“ assoct;u‚;v‚ | ιt | %piqu‚ | idt | κpx1, . . . , xnq | τ ‚σ | τtx1 ÞÑ σn, . . . , xn ÞÑ σnu

with a family of inverses (for i “ 1, . . . , n), as follows:

assoc´1
t;u‚;v‚ | ι

´1
t | %p´iqu‚

Taking the rewrites in turn, we have invertible structural rewrites assoc, ι and %piq pi “

1, . . . , nq and an identity rewrite idt for every term t. Next, for every constant κ P

GpA1, . . . , An;Bq we have a constant rewrite κpx1, . . . , xnq. Vertical composition is cap-

tured by a binary operation on rewrites (c.f. [Hil96, Hir13, LSR17]), while the explicit

substitution operation mirrors that for terms. (Note that vertical composition follows func-

tion composition order, not diagrammatic order.) We adopt the standard category-theoretic
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convention of writing t for idt where no ambiguity may arise, as well as adapting the

conventions of Notation 3.2.2 to rewrites. In particular, one obtains whiskering operations

ttσu and τtuu for terms t, u and rewrites τ : tñ t1, σ : uñ u1.

α-equivalence on rewrites. The α-equivalence relation extends to rewrites in the way

one would expect: as for terms, the substitution operation binds the variables being explicitly

substituted for. The definition of the meta-operation of substitution on rewrites is analogous

to that employed by Hilken [Hil96] and Hirschowitz [Hir13].

Definition 3.2.5. For any 2-multigraph G we define the α-equivalence relation “α on

rewrites by the rules

reflτ “α τ
τ “α τ

1

symm
τ 1 “α τ

τ “α τ
1 τ 1 “α τ

2

trans
τ “α τ

2

t “α t
1

ιt “α ιt1

u1 “α u
1
1 . . . un “α u

1
n

1 ď k ď n

%
pkq
u1,...,un “α %

pkq
u11, ... ,u

1
n

puj “α u
1
jqj“1, ... ,m pvi “α v

1
iqi“1, ... ,n t “α t

1

assoct,v‚,u‚ “α assoct1,v1‚,u1‚

τ “α τ
1 σ “α σ

1

τ ‚σ “α τ
1 ‚σ1

τ ryi{xis “α τ
1ryi{x

1
is pσi “α σ

1
iqi“1, ... ,n y1, . . . , yn fresh

τtx1 ÞÑ σ1, . . . , xn ÞÑ σnu “α τtx
1
1 ÞÑ σ11, . . . , x

1
1 ÞÑ σ1nu

The meta-operation of capture-avoiding substitution is extended to rewrites as follows:

ιurui{xis :“ ιurui{xis

%
pkq
t1, ... ,tn

rui{xis :“ %
pkq
t‚rui{xis

assoct,u‚,v‚rui{xis :“ assoctrui{xis,u‚rui{xis,v‚rui{xis
κpx1, . . . , xnqrui{xis :“ κtu1, . . . , unu

pτ 1 ‚ τqrui{xis :“ τ 1rui{xis ‚ τ rui{xis

idtrui{xis :“ idtrui{xis

pτtzj ÞÑ σjuqrui{xis :“ τtzj ÞÑ σjrui{xisu

where in the final rule we assume that each zj does not occur among the xi or freely in any

of the ui. These rules extend to the inverses of rewrites in the obvious fashion. đ

A structural induction shows the typing judgement respects α-equivalence.

Lemma 3.2.6. Let G be a 2-multigraph. Then in Λbicl
ps pGq:

1. If Γ $ t : B and t “α t
1 then Γ $ t1 : B,

2. If Γ $ τ : tñ t1 : B and τ “α τ
1 then Γ $ τ : tñ t1 : B.
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In an explicit substitution calculus the structural operations manifest themselves in

a correspondingly explicit manner. Indeed, the fact that Λbicl
ps admits arbitrary context

renamings follows immediately from the horiz-comp rule.

Definition 3.2.7. Let Γ :“ pxi : Aiqi“1,...,n and ∆ :“ pyj : Bjqj“1,...,m be contexts. A

context renaming r : Γ Ñ ∆ is a mapping r : tx1, . . . , xnu Ñ ty1, . . . , ymu on variables

which respects typing in the sense that whenever rpxiq “ yj then Ai “ Bj . đ

The following rules are then derivable for any context renaming r.

Γ $ t : A r : Γ Ñ ∆
∆ $ ttx1 ÞÑ rpx1q, . . . , xn ÞÑ rpxnqu : A

Γ $ τ : tñ t1 : A r : Γ Ñ ∆

∆ $ τtxi ÞÑ rpxiqu : ttxi ÞÑ rpxiqu ñ t1txi ÞÑ rpxiqu : A

Figure 3.2: Context renaming as a derived rule (for Γ “ pxi : Aiqi“1,...,n)

Weakening arises as a special case: for a fresh variable x R dompΓq, one takes the

inclusion incx : Γ ãÑ Γ, x : A.

Notation 3.2.8. For a context renaming r we write ttru and τtru for the terms and rewrites

formed using the admissible rules of Figure 3.2. đ
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var p1 ď k ď nq
x1 : A1, . . . , xn : An $ xk : Ak

c P GpA1, . . . , An;Bq
const

x1 : A1, . . . , xn : An $ cpx1, . . . , xnq : B

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1,...,n
horiz-comp

∆ $ ttx1 ÞÑ u1, . . . , xn ÞÑ unu : B

Figure 3.3: Introduction rules on basic terms

x1 : A1, . . . , xn : An $ t : B
ι-intro

x1 : A1, . . . , xn : An $ ιt : tñ ttxi ÞÑ xiu : B

x1 : A1, . . . , xn : An $ ι´1
t : ttxi ÞÑ xiu ñ t : B

x1 : A1, . . . , xn : An $ xk : Ak p∆ $ ui : Aiqi“1,...,n
%pkq-intro p1 ď k ď nq

∆ $ %
pkq
u1,...,un : xktxi ÞÑ uiu ñ uk : Ak

∆ $ %
p´kq
u1,...,un : uk ñ xktxi ÞÑ uiu : Ak

p∆ $ uj : Ajqj“1,...m

px1 : A1, . . . , xm : Am $ vi : Biqi“1,...,n

y1 : B1, . . . , yn : Bn $ t : C
assoc-intro

∆ $ assoct,v‚,u‚ : ttyi ÞÑ viutxj ÞÑ uju ñ ttyi ÞÑ vitxj ÞÑ ujuu : C

∆ $ assoc´1
t,v‚,u‚ : ttyi ÞÑ vitxj ÞÑ ujuu ñ ttyi ÞÑ viutxj ÞÑ uju : C

Figure 3.4: Introduction rules on structural rewrites

Γ $ t : A
id-intro

Γ $ idt : tñ t : A

κ P GpA1, . . . , An;Bqpc, c1q
2-const

x1 : A1, . . . , xn : An $ κpx1, . . . , xnq : cpx1, . . . , xnq ñ c1px1, . . . , xnq : B

Γ $ τ : tñ t1 : A Γ $ τ 1 : t1 ñ t2 : A
vert-comp

Γ $ τ 1 ‚ τ : tñ t2 : A

x1 : A1, . . . , xn : An $ τ : tñ t1 : B p∆ $ σi : ui ñ u1i : Aiqi“1,...,n
horiz-comp

∆ $ τtxi ÞÑ σiu : ttxi ÞÑ uiu ñ t1txi ÞÑ u1iu : B

Figure 3.5: Introduction rules on basic rewrites

Introduction rules for terms, structural rewrites and basic rewrites in Λbicl
ps pGq.
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Γ $ τ : tñ t1 : A
‚-right-unit

Γ $ τ ‚ idt ” τ : tñ t1 : A

Γ $ τ : tñ t1 : A
‚-left-unit

Γ $ τ ” idt1 ‚ τ : tñ t1 : A

Γ $ τ2 : t2 ñ t3 : A Γ $ τ 1 : t1 ñ t2 : A Γ $ τ : tñ t1 : A
‚-assoc

Γ $ pτ2 ‚ τ 1q ‚ τ ” τ2 ‚pτ 1 ‚ τq : tñ t3 : A

Figure 3.6: Categorical structure of vertical composition

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1,...,n
id-preservation

∆ $ idttxi ÞÑ uiu ” idttxi ÞÑuiu : ttxi ÞÑ uiu ñ ttxi ÞÑ uiu : B

x1 : A1, . . . , xn : An $ τ : tñ t1 : B

x1 : A1, . . . , xn : An $ τ 1 : t1 ñ t2 : B

p∆ $ σi : ui ñ u1i : Aiqi“1,...,n

p∆ $ σ1i : u1i ñ u2i : Aiqi“1,...,n
interchange

∆ $ τ 1
 

xi ÞÑ σ1i
(

‚ τtxi ÞÑ σiu ” pτ
1
‚ τq

 

xi ÞÑ σ1i ‚σi
(

: ttxi ÞÑ uiu ñ t2
 

xi ÞÑ u2i
(

: B

Figure 3.7: Preservation rules

p∆ $ σi : ui ñ u1i : Aiqi“1,...,n
p1 ď k ď nq

∆ $ %
pkq
u11,...,u

1
n
‚xktxi ÞÑ σiu ” σk ‚ %

pkq
u1,...,un : xktxi ÞÑ uiu ñ u1k : Ak

x1 : A1, . . . , xn : An $ τ : tñ t1 : B

x1 : A1, . . . , xn : An $ ιt1 ‚ τ ” τtxi ÞÑ xiu ‚ ιt : tñ t1txi ÞÑ xiu : B

p∆ $ µj : uj ñ u1j : Ajqj“1,...m

px1 : A1, . . . , xm : Am $ σi : vi ñ v1i : Biqi“1,...,n

y1 : B1, . . . , yn : Bn $ τ : tñ t1 : C

∆ $ assoct1,v‚,u‚ ‚ τtyi ÞÑ σiutxj ÞÑ µju ” τtyi ÞÑ σitxj ÞÑ µjuu ‚ assoct,v‚,u‚
: ttyi ÞÑ viutxj ÞÑ uju ñ t1tyi ÞÑ v1itxj ÞÑ u1juu : C

Figure 3.8: Naturality rules on structural rewrites

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1,...,n

∆ $ ttxi ÞÑ %
piq
u‚ u ‚ assoct,x‚,u‚ ‚ ιttxi ÞÑ uiu ” idttxi ÞÑuiu : ttxi ÞÑ uiu ñ ttxi ÞÑ uiu : B

p∆ $ uj : Ajqj“1,...m

px1 : A1, . . . , xm : Am $ vi : Biqi“1,...,n

py1 : B1, . . . , yn : Bn $ wj : Ckqk“1,...,l

z1 : C1, . . . , zl : Cl $ t : D

∆ $ ttzk ÞÑ assocwk,v‚,u‚u ‚ assoct,w‚tyj ÞÑvju,u‚ ‚ assoct,w‚,v‚txj ÞÑ uju

” assoct,w‚,v‚txj ÞÑuiu ‚ assocttzk ÞÑwku,v‚,u‚
: ttzk ÞÑ wkutyi ÞÑ viutxj ÞÑ uju ñ ttzk ÞÑ wktyi ÞÑ vitxj ÞÑ ujuuu : D

Figure 3.9: Biclone laws

Equational theory for structural rewrites in Λbicl
ps pGq.
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Γ $ t : B

Γ $ ι´1
t ‚ ιt ” idt : tñ t : B

x1 : A1, . . . , xn : An $ t : B

x1 : A1, . . . , xn : An $ ιt ‚ ι
´1
t ” idt : ttxi ÞÑ xiu ñ ttxi ÞÑ xiu : B

x1 : A1, . . . , xn : An $ u1 : A1 . . . x1 : A1, . . . , xn : An $ un : An
p1 ď k ď n)

x1 : A1, . . . , xn : An $ %
p´kq
u‚ ‚ %

pkq
u‚ ” idxktxi ÞÑuiu : xktxi ÞÑ uiu ñ xktxi ÞÑ uiu : Ak

x1 : A1, . . . , xn : An $ u : B
p1 ď k ď n)

x1 : A1, . . . , xn : An $ %
pkq
u‚ ‚ %

p´kq
u‚ ” idu : uñ u : A

p∆ $ uj : Ajqj“1,...m

px1 : A1, . . . , xm : Am $ vi : Biqi“1,...,n y1 : B1, . . . , yn : Bn $ t : C

∆ $ assoc´1
t,v‚,u‚ ‚ assoct,v‚,u‚ ” idttviutuju : ttyi ÞÑ viutxj ÞÑ uju ñ ttyi ÞÑ viutxj ÞÑ uju : C

p∆ $ uj : Ajqj“1,...m

px1 : A1, . . . , xm : Am $ vi : Biqi“1,...,n y1 : B1, . . . , yn : Bn $ t : C

∆ $ assoct,v‚,u‚ ‚ assoc´1
t,v‚,u‚ ” idttvitujuu : ttyi ÞÑ vitxj ÞÑ ujuu ñ ttyi ÞÑ vitxj ÞÑ ujuu : C

Figure 3.10: Invertibility of the structural rewrites

Γ $ τ : tñ t1 : A
refl

Γ $ τ ” τ : tñ t1 : A

Γ $ τ ” τ 1 : tñ t1 : A symm
Γ $ τ 1 ” τ : tñ t1 : A

Γ $ τ 1 ” τ2 : tñ t1 : A Γ $ τ ” τ 1 : tñ t1 : A
trans

Γ $ τ ” τ2 : tñ t1 : A

Γ $ τ 1 ” σ1 : t1 ñ t2 : A Γ $ τ ” σ : tñ t1 : A

Γ $ pτ 1 ‚ τq ” pσ1 ‚σq : tñ t2 : A

x1 : A1, . . . , xn : An $ τ ” τ 1 : tñ t1 : B p∆ $ σi ” σ1i : ui ñ u1i : Aiqi“1,...,n

∆ $ τtxi ÞÑ σiu ” τ 1txi ÞÑ σ1iu : ttxi ÞÑ uiu ñ t1txi ÞÑ u1iu : B

Figure 3.11: Congruence laws

Equational theory for structural rewrites in Λbicl
ps pGq.
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Well-formedness properties of Λbicl
ps . We finish this introduction to Λbicl

ps by showing

that it satisfies versions of the standard syntactic properties of, for example, the simply-typed

lambda calculus (c.f. [Cro94, Chapter 4]). The intention is to justify the claim that the

properties one would expect by analogy with the simply-typed lambda calculus do in fact

hold. The proofs are all straightforward structural inductions.

Definition 3.2.9. Fix a 2-multigraph G. We define the free variables in a term t in Λbicl
ps pGq

as follows:

fvpxiq :“ txiu for xi a variable,

fv
`

cpx1, . . . , xnq
˘

:“ tx1, . . . , xnu for c P GpA1, . . . , An;Bq,

fvpttx1 ÞÑ u1, . . . , xn ÞÑ unuq :“ pfvptq ´ tx1, . . . , xnuq Y
Ťn
i“1fvpuiq

Similarly, define the free variables in a rewrite τ in Λbicl
ps pGq as follows:

fv
`

ιt
˘

:“ fvptq

fv
`

%pkqu1, ... ,un

˘

:“ fvpukq

fv
`

assoct,v‚,u‚
˘

:“
Ťn
i“1fvpuiq

fvpidtq :“ fvptq

fvpτ 1 ‚ τq :“ fvpτ 1q Y fvpτq

fv
`

σpx1, . . . , xnqq :“ tx1, . . . , xnu for σ P GpA1, . . . , An;Bqpc, c1q

fvpτtx1 ÞÑ σ1, . . . , xn ÞÑ σnuq :“ pfvpτq ´ tx1, . . . , xnuq Y
Ťn
i“1fvpσiq

We define the free variables of a specified inverse σ´1 to be exactly the free variables of σ.

An occurrence of a variable in a term (rewrite) is bound if it is not free. đ

Lemma 3.2.10. Let G be a 2-multigraph. For any derivable judgements Γ $ u : B and

Γ $ τ : tñ t1 : B in Λbicl
ps pGq,

1. fvpuq Ď dompΓq,

2. fvpτq Ď dompΓq,

3. The judgements Γ $ t : B and Γ $ t1 : B are both derivable.

Moreover, for any context Γ :“ pxi : Aiqi“1, ... ,n and derivable terms p∆ $ ui : Aiqi“1, ... ,n,

1. If Γ $ t : B, then ∆ $ trui{xis : B,

2. If Γ $ τ : tñ t1 : B, then ∆ $ τ rui{xis : trui{xis ñ trui{xis : B.

3.2.1 The syntactic model

The rules of Λbicl
ps are synthesised directly from the construction of the free biclone on a

2-multigraph. It is not surprising, therefore, that its syntactic model satisfies the same free

property, justifying our description of Λbicl
ps as a type theory for biclones. In this section we

spell out the construction and show that it restricts to bicategories.
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Constructing the syntactic model is a matter of reversing the correspondence between

the rules of Λbicl
ps and Construction 3.1.16.

Construction 3.2.11. For any 2-multigraph G define the syntactic model SynpGq of Λbicl
ps pGq

as follows. The sorts are nodes A,B, . . . of G. For A1, . . . , An, B P G0 the hom-category

SynpGqpA1, . . . , An;Bq has objects α-equivalence classes of terms px1 : A1, . . . , xn : An $ t : Bq

derivable in Λbicl
ps pGq. We assume a fixed enumeration x1, x2, . . . of variables, and that

the variable name in the ith position is determined by this enumeration. Morphisms in

SynpGqpA1, . . . , An;Bq are α”-equivalence classes of rewrites

px1 : A1, . . . , xn : An $ τ : tñ t1 : Bq

Composition is vertical composition and the identity is idt.

The substitution operation
`

t, pu1, . . . , unq
˘

ÞÑ tru1, . . . , uns is explicit substitution

t, pu1, . . . , umq ÞÑ ttx1 ÞÑ u1, . . . , xn ÞÑ unu

τ, pσ1, . . . , σmq ÞÑ τtx1 ÞÑ σ1, . . . , xn ÞÑ σnu

and the projections pA1, . . . , Anq Ñ Ak are instances of the var rule x1 : A1, . . . , xn : An $ xk : Ak

for k “ 1, . . . , n. The 2-cells assoc, ι and %pkq are the corresponding structural rewrites. đ

Notation 3.2.12. We shall generally play fast and loose with the requirement that the

variables in a context px1 : A1, . . . , xn : Anq are labelled in turn by the enumeration

x1, . . . , xn, . . . . We will allow ourselves to pick more meaningful variable names as a simple

form of syntactic sugar, and rely on the fact that the proper variable names can always be

recovered when required. đ

The equational theory guarantees that SynpGq is a biclone. The proof of the free property

mirrors Lemma 3.1.17.

Lemma 3.2.13. For any 2-multigraph G, biclone pS, Cq and 2-multigraph homomorphism

h : G Ñ C there exists a unique strict pseudofunctor hJ´K : SynpGq Ñ C such that

hJ´K ˝ ι “ h, for ι : G ãÑ SynpGq the inclusion.

Proof. Fix a context Γ :“ pxi : Aiqi“1,...,n. We define hJ´K by induction on the derivation

of judgements in Λbicl
ps :

hJBK :“ hpBq on types

hJΓ $ cpx1, . . . , xnq : BK :“ hpcq for c P GpA‚;Bq

hJ∆ $ ttxi ÞÑ uiu : BK :“
`

hJΓ $ t : BK
˘

rhJ∆ $ u‚ : A‚Ks

hJΓ $ idt : tñ t : BK :“ idhJΓ$t:BK

hJΓ $ κpx‚q : cpx‚q ñ c1px‚q : BK :“ hpκq for κ P GpA‚, Bqpc, c1q

hJΓ $ τ 1 ‚ τ : tñ t2 : BK :“ hJΓ $ τ 1 : t1 ñ t2 : BK ‚hJΓ $ τ : tñ t1 : BK

hJτtxi ÞÑ σiuK :“
`

hJΓ $ τ : tñ t1 : BK
˘

rhJ∆ $ σ‚ : u‚ ñ u1‚ : A‚Ks
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where we omit the full typing derivation ∆ $ τtxi ÞÑ σiu : ttxi ÞÑ uiu ñ t1txi ÞÑ u1iu : B in

the final case for reasons of space. In order for hJ´K to be strict we must require that it

strictly preserves the assoc, ι and %pkq 2-cells. Uniqueness holds just as in Lemma 3.1.17.

Theorem 3.2.14. For any 2-multigraph G, the syntactic model SynpGq of Λbicl
ps pGq is the

free biclone on G.

A type theory satisfying a property of this form, and which is therefore sound and

complete for reasoning in the freely constructed structure, is often referred to as the internal

language or internal logic (e.g. [MR77, LS86, Cro94, GK13]). This terminology is used

with varying degrees of precision, and generally not in the precise sense of Lambek [Lam89,

Definition 5.3]; nonetheless, we may now justifiably state that Λbicl
ps is the internal language

of biclones.

By the theorem, we may identify SynpGq with the free biclone FClpGq on G. The diagram

of adjunctions (3.6) (p. 46) then entails that for a 2-graph G the nucleus of SynpGq—obtained

by restricting the syntactic model of Λbicl
ps to unary multimaps—is the free bicategory on

G. Equivalently, one may restrict the type theory Λbicl
ps to unary contexts and construct its

syntactic model as in Construction 3.2.11. Let Λbicat
ps denote the type theory obtained by

replacing the context-formation rules of Figure 3.1 with the single rule of Figure 3.12.

`

A P G0

˘

x : A ctx

Figure 3.12: Context-formation rule for Λbicat
ps pGq.

Construction 3.2.15. For any 2-graph G, define a bicategory SynpGq
ˇ

ˇ

1
as follows. Objects

are unary contexts px : Aq for x a fixed variable name. The hom-category SynpGq
ˇ

ˇ

1

`

px : Aq, px : Bq
˘

has objects α-equivalence classes of derivable terms px : A $ t : Bq in Λbicat
ps and morphisms

α”-equivalence classes of rewrites px : A $ τ : tñ t1 : Bq in Λbicat
ps . Vertical composition is

the ‚ operation. Horizontal composition is given by explicit substitution and the identity

on px : Aq by the var rule px : A $ x : Aq. The structural isomorphisms l, r and a are %,

ι´1 and assoc, respectively. đ

Remark 3.2.16. The structural isomorphism r is given by ι´1 because we have directed

the structural isomorphisms in a biclone to match that of a skew monoidal category, but

followed Bénabou’s convention [Bén67] directing the unitors in a bicategory to remove

compositions with the identity. đ

The required theorem follows immediately from Theorem 3.2.14 and the chain of

isomorphisms (3.7) (p. 46).

Theorem 3.2.17. For any 2-graph G, the syntactic model SynpGq
ˇ

ˇ

1
of Λbicat

ps pGq is the free

bicategory on G.
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The restriction to a fixed variable name is necessary for the free property to be strict.

Without such a restriction there are countably many equivalent objects px1 : Aq, px2 : Aq, . . .

in SynpGq
ˇ

ˇ

1
, and the action of the pseudofunctor defined in Lemma 3.2.13 is unique only up

to its action on each variable name. The next lemma shows that—up to biequivalence—this

restriction is immaterial.

Lemma 3.2.18. Let B be a bicategory and S a sub-bicategory. Suppose that for every

X P B there exists a chosen rXs P S with a specified adjoint equivalence fX : X Ô rXs : gX

in B such that

1. For X P S the equivalence X » rXs is the identity, and

2. If h : X Ñ Y is a 1-cell in S, then so is the composite pgY ˝ hq ˝ fX : rXs Ñ rY s.

Then B and S are biequivalent.

Proof. Let us denote the 2-cells witnessing the equivalence X » rXs by

vX : IdrXs ñ gX ˝ fX

wX : fX ˝ gX ñ IdX

There exists an evident pseudofunctor ι : S ãÑ B given by the inclusion. In the other

direction, we define E : B Ñ S by setting

EpXq :“ rXs and Epτ : tñ t1 : X Ñ Y q :“ pgY ˝ τq ˝ fX

We then define ψX :“ IdrXs
vX
ùñ gX ˝ fX

–
ùñ pgX ˝ IdXq ˝ hX “ EpIdXq. For a composable

pair X
u
ÝÑ Y

t
ÝÑ Z we define φt,u by commutativity of the following diagram:

pgZ ˝ pt ˝ fY qqq ˝ pgY ˝ pu ˝ fXqq gZ ˝ ppt ˝ uq ˝ fXq

pgZ ˝ tq ˝ ppfY ˝ gY q ˝ pu ˝ fXqq pgZ ˝ tq ˝ pIdY ˝ pu ˝ fXqq

–

φt,u

pgZ˝tq˝pwY ˝pu˝fXqq

–

The unit and associativity laws for a pseudofunctor follow from coherence and the triangle

laws of an adjoint equivalence. We then need to construct pseudonatural transformations

pα, αq : idB Ô ι ˝ E : pβ, βq and pγ, γq : idS Ô E ˝ ι : pδ, δq.

For α, we take αX :“ gX and αt to be the composite

gY ˝ t pgY ˝ pt ˝ fXqq ˝ gX

pgY ˝ tq ˝ IdX pgY ˝ tq ˝ pfX ˝ gXq

αt

–

gY ˝t˝w´1
X

–

for t : X Ñ Y . For β and β the idea is the same. We define βX :“ fX and for t : X Ñ Y

we set
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fY ˝ pgY ˝ pt ˝ fY qq t ˝ fX

pfY ˝ gY q ˝ pt ˝ fXq IdY ˝ pt ˝ fXq

–

βt

wY ˝t˝fX

–

The definitions of pγ, γq and pδ, δq are identical. One then obtains modifications Ξ : id
–
ÝÑ α˝β

and Ψ : β ˝ α
–
ÝÑ id by taking ΞX :“ IdX

vX
ùñ gX ˝ fX and ΨX :“ fX ˝ gX

wX
ùùñ X; similarly

γ ˝ δ – id and δ ˝ γ – id.

Hence, Λbicat
ps is the internal language for bicategories. If one restricts to a single variable

name the universal property is strict, else it is up to biequivalence. In the next section we

show that the syntactic model of Λbicl
ps is biequivalent as a biclone to the syntactic model of a

strict type theory. From this we deduce a coherence result for biclones, which amounts to a

form of normalisation for the rewrites of Λbicl
ps . All of this will restrict to unary contexts, and

hence to Λbicat
ps , recovering a version of the coherence theorem of Mac Lane & Paré [MP85].

3.3 Coherence for biclones

In practice, the coherence theorem for bicategories [MP85] entails that one may treat any

bicategory as though it were a 2-category: roughly, one may assume that the structural

isomorphisms a, l and r behave as though they were the identity (see e.g. [Lei04, Chapter 1]

for a detailed exposition). In terms of Λbicat
ps , this amounts to treating assoc, %piq and ι as

though they were all identities. Our aim in this section is to extend this result to Λbicl
ps .

The motivation is three-fold. First, the coherence theorem will simplify the calculations

we shall require in future chapters. Second, the proof involves some of the calculations

we shall need to extend when it comes to defining a pseudofunctorial interpretation of the

full type theory Λˆ,Ñps (see Section 5.3.3). Finally, the proof strategy is of interest in itself.

The strategy may be regarded as a version of Mac Lane’s classical strategy for monoidal

categories [Mac98, Chapter VII], in which the syntax of the respective type theories provide

structural induction principles. It is reasonable to imagine that one may prove similar

results for monoidal bicategories (via a linear calculus), tricategories (via a 3-dimensional

calculus) or even higher-dimensional structures, by an analogous strategy.

To foreshadow the coherence result we shall prove in later chapters, let us make precise

the notion of normalisation we are interested in. We wish to lift the standard notion of

normalisation for systems such as the (untyped) λ-calculus (e.g. [GTL89]) to a normalisation

property on rewrites. More precisely, we wish to consider versions of abstract reduction

systems [Hue80] in which one also tracks how a reduction might happen; that is, the possible

witnesses of a reduction. Our notion of normalisation then becomes: there is at most one

witness to any possible reduction. This suggests the following definitions. We use the term

constructive by analogy with constructive proofs, in which one requires an explicit witness

to the truth of a statement, to emphasise that we are requiring an explicit witnesses to the

existence of a reduction.
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Definition 3.3.1.

1. An abstract reduction system (ARS) pA,Ñq is a set A equipped with a binary reduction

relation Ñ Ď AˆA.

2. A constructive abstract reduction system (CARS) consists of a set A together with a

family of sets WApa, bq of reduction witnesses indexed by a, b P A. A CARS is coherent

if for every a, b P A and u, v PWApa, bq, one has u “ v. đ

In a CARS we are not merely interested in the existence of a reduction: we are also

interested in the equality relation on reductions. In particular, an ARS in the usual sense is

a CARS in which every W pa, a1q is either empty or a singleton: either a reduces to a, or it

does not.

The term ‘coherent’ is motivated by the following example.

Example 3.3.2.

1. Every graph G defines a CARS ApGq with underlying set G0 and reduction witnesses

WApGqpt, t
1q :“ Gpt, t1q.

2. Every category C defines a CARS C on obpCq by taking WCpA,Bq :“ CpA,Bq. The

coherence theorem for monoidal categories of [Mac98, Chapter VII] then states that the

CARS corresponding to the free monoidal category on one generator is coherent. đ

In the bicategorical setting, we are interested in coherence in each hom-category.

Definition 3.3.3.

1. A 2-multigraph G is locally coherent if for every A1, . . . , An, B P G0 the associated

CARS A
`

GpA1, . . . , An;Bq
˘

is coherent.

2. A biclone (bicategory) is locally coherent if its underlying 2-multigraph is locally

coherent. đ

Spelling out the definitions, a 2-multigraph G is locally coherent if for all edges

e, e1 P GpA1, . . . , An;Bq there exists at most one surface κ : e ñ e1, and a biclone is

locally coherent if there is at most one 2-cell between any parallel pair of terms. The

coherence theorem for bicategories [MP85] can therefore be rephrased as stating that the

free bicategory on a 2-multigraph is locally coherent.

Now, every type theory consisting of types, terms and rewrites has an underlying

2-multigraph with nodes given by the types, edges A1, . . . , An Ñ B by the α-equivalence

classes of derivable terms x1 : A1, . . . , xn : An $ t : B and surfaces by the derivable rewrites

modulo α-equivalence and the equational theory. We call the type theory locally coherent if

this 2-multigraph is locally coherent. We spend the rest of this chapter proving that Λbicl
ps is

locally coherent.

Our strategy is the following. We shall adapt the calculi of Hilken [Hil96] and Hirschow-

itz [Hir13] to construct a type theory that matches Λbicl
ps but has a strict substitution
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operation; the syntactic model will be the free 2-clone (c.f. Construction 3.1.16). We

shall then construct an equivalence between the two syntactic models by induction on

the respective type theories. We finish by briefly commenting how the result restricts to

bicategories.

3.3.1 A strict type theory

The first step is the construction of a strict type theory. Since we draw heavily on previous

work, our presentation will be brief. Fix some 2-multigraph G. The type theory HclpGq
(where H stands for both Hilken and Hirschowitz ) is constructed as follows. Contexts are as

in Λbicl
ps . The raw terms are either variables or constants, given by the following grammar:

u1, . . . , un ::“ x | cpu1, . . . , unq

As for Λbicl
ps , we think of constants cpx1, . . . , xnq as n-ary operators. The raw rewrites are

vertical composites of identity maps and constant rewrites:

σ1, . . . , σn, τ, σ ::“ idt | κpu1, . . . , unq | cpσ1, . . . , σnq | τ ‚σ pu1, . . . , un termsq

Note that we require two forms of constant rewrite, corresponding to substitution of terms

into rewrites and substitution of rewrites into terms: these form the right and left whiskering

operations in the syntactic model.

The typing rules for HclpGq are collected in Figure 3.13.

var
x1 : A1, . . . , xn : An $ xk : Ak

c P GpA1, . . . , An;Bq p∆ $ ui : Aiqi“1,...,n
const

x1 : A1, . . . , xn : An $ cpu1, . . . , unq : B

Γ $ t : B
id

Γ $ idt : tñ t : B

Γ $ τ 1 : t1 ñ t2 : B Γ $ τ : tñ t1 : B
vert-comp

Γ $ τ 1 ‚ τ : tñ t2 : B

κ P GpA1, . . . , An;Bqpc, c1q p∆ $ ui : Aiqi“1,...,n
right-whisker

∆ $ κpu1, . . . , unq : cpu1, . . . , unq ñ c1pu1, . . . , unq : B

c P GpA1, . . . , An;Bq p∆ $ σi : ui ñ u1i : Aiqi“1,...,n
left-whisker

∆ $ cpσ1, . . . , σnq : cpu1, . . . , unq ñ c1pu1, . . . , unq : B

Figure 3.13: Introduction rules for HclpGq.
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Γ $ τ : tñ t1 : A
‚-right-unit

Γ $ τ ‚ idt ” τ : tñ t1 : A

Γ $ τ : tñ t1 : A
‚-left-unit

Γ $ τ ” idt1 ‚ τ : tñ t1 : A

Γ $ τ2 : t2 ñ t3 : A Γ $ τ 1 : t1 ñ t2 : A Γ $ τ : tñ t1 : A
‚-assoc

Γ $ pτ2 ‚ τ 1q ‚ τ ” τ2 ‚pτ 1 ‚ τq : tñ t3 : A

Figure 3.14: Categorical rules for vertical composition

c P GpA1, . . . , An;Bq p∆ $ σ1i : u1i ñ u2i : Aiqi“1,...,n p∆ $ σi : ui ñ u1i : Aiqi“1,...,n

∆ $ cpτ 11, . . . , τ
1
nq ‚ cpτ1, . . . , τnq ” cpτ 11 ‚ τ1, . . . , τ

1
n ‚ τnq : cpu1, . . . , unq ñ cpu21, . . . , u

2
nq : B

c P GpA1, . . . , An;B p∆ $ ui : Aiqi“1,...,n

∆ $ cpidu1 , . . . , idunq ” idcpu1,...,unq : cpu1, . . . , unq ñ cpu1, . . . , unq : B

κ P GpA1, . . . , An;Bqpc, c1q p∆ $ σi : ui ñ u1i : Aiqi“1,...,n

∆ $ κpu11, . . . , u
1
nq ‚ cpσ1, . . . , σnq ” c1pσ1, . . . , σnq ‚κpu1, . . . , unq : cpu‚q ñ c1pu1‚q : B

Figure 3.15: Compatibility laws for constants

Γ $ τ : tñ t1 : A
refl

Γ $ τ ” τ : tñ t1 : A

Γ $ τ ” τ 1 : tñ t1 : A
symm

Γ $ τ 1 ” τ : tñ t1 : A

Γ $ τ 1 ” τ2 : tñ t1 : A Γ $ τ ” τ 1 : tñ t1 : A
trans

Γ $ τ ” τ2 : tñ t1 : A

Γ $ τ 1 ” σ1 : t1 ñ t2 : A Γ $ τ ” σ : tñ t1 : A

Γ $ τ 1 ‚ τ ” σ1 ‚σ : tñ t2 : A

c P GpA1, . . . , An;Bq p∆ $ σi ” σ1 : ui ñ u1i : Aiqi“1,...,n

∆ $ cpσ1, . . . , σnq ” cpσ11, . . . , σ
1
nq : cpu1, . . . , unq ñ cpu11, . . . , u

1
nq

Figure 3.16: Congruence rules
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For Hcl to be a strict biclone we require a strictly associative and unital substitution

operation. Accordingly, we define substitution of terms into terms, of terms into rewrites,

and of rewrites into terms as follows.

xkrui{xis :“ uk

cpu1, . . . , unqrvj{yjs :“ c
`

u1rvj{yjs, . . . , unrvj{yjs
˘

idtrui{xis :“ idtrui{xis

pτ 1 ‚ τqrui{xis :“ τ 1rui{xis ‚ τ rui{xis

cpσ1, . . . , σnqrui{xis :“ c
`

σ1rui{xis . . . , σnrui{xis
˘

σpu1, . . . , unqrvj{yjs :“ σ
`

u1rvj{yjs, . . . , unrvj{yjs
˘

xkrσi{xis :“ σk

cpu1, . . . , unqrσj{yjs :“ c
`

u1rσj{yjs, . . . , unrσj{yjs
˘

The Substitution Lemma holds for all three forms of substitution.

Lemma 3.3.4. For any 2-multigraph G, the following rules are admissible in HclpGq:

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1, ... ,n

∆ $ trui{xis : B

x1 : A1, . . . , xn : An $ τ : tñ t1 : B p∆ $ ui : Aiqi“1, ... ,n

∆ $ τ rui{xis : trui{xis ñ t1rui{xis : B

x1 : A1, . . . , xn : An $ t : B p∆ $ σi : ui ñ u1i : Aiqi“1, ... ,n

∆ $ trσi{xis : trui{xis ñ tru1i{xis : B

As there are no operations that bind variables, the definition of α-equivalence is trivial.

The equational theory ” is defined in Figures 3.14–3.16. The rules diverge from Λbicl
ps most

importantly in Figure 3.15, which ensures the meta-operation of substitution is functorial,

and that the two different ways of composing with constant rewrites are equal. This

guarantees that the composites τ ru1i{xis ‚ trσi{xis and t1rσi{xis ‚ τ rui{xis coincide (c.f. the

permutation equivalence of [Hir13]).

Following the pattern of [Hil96, Hir13], we define a substitution operation making the

following rule admissible, where τ rσi{xis :“ t1rσi{xis ‚ τ rui{xis:

x1 : A1, . . . , xn : An $ τ : tñ t1 : B p∆ $ σi : ui ñ u1i : Aiqi“1, ... ,n
subst

∆ $ τ rσi{xis : trui{xis ñ t1ru1i{xis : B

We could have defined vertical composition by whiskering in the opposite order, thus:

τ rσi{xis :“ τ ru1i{xis ‚ trσi{xis. The next lemma guarantees that these two coincide. The

proof is by structural induction, using Figure 3.15 for the constant cases.
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Lemma 3.3.5. For any 2-multigraph G, the following rule is admissible in HclpGq:

x1 : A1, . . . , xn : An $ τ : tñ t1 : B p∆ $ σi : ui ñ u1i : Aiqi“1, ... ,n

∆ $ t1rσi{xis ‚ τ rui{xis ” τ ru1i{xis ‚ trσi{xis : trui{xis ñ t1ru1i{xis : B

Further structural inductions establish the key properties we shall be relying on.

Lemma 3.3.6. For any 2-multigraph G and terms t, u1, . . . , un in Λbicl
ps pGq:

1. xkrui{xis “ uk,

2. trxi{xis “ t,

3. trui{xisrvj{yjs “ t
“

uirvj{yjs{xi
‰

.

Moreover, for any rewrites τ, σ1, . . . , σn,

1. idxkrσi{xis ” σk,

2. τ ridxi{xis ” τ ,

3. τ rσi{xisrµj{yjs ” τ
“

σirµj{yjs{xi
‰

.

Hence the three laws of an abstract clone hold on both terms and rewrites. It is

similarly straightforward to establish that trσ1i ‚σi{xis ” trσ1i{xis ‚ trσi{xis and hence de-

duce the interchange law pτ 1 ‚ τqrσ1i ‚σi{xis ” τ 1rσ1i{xis ‚ τ rσi{xis. Finally we observe that

idtridui{xis ” idtrui{xis. Together these considerations establish the following does indeed

define a strict biclone.

Construction 3.3.7. For any 2-multigraph G, define a strict biclone HpGq as follows. The

sorts are nodes in G. The 1-cells are terms px1 : A1, . . . , xn : An $ t : Bq derivable in HclpGq,
for x1, x2, . . . a chosen enumeration of variables, and the 2-cells are ”-classes of rewrites

px1 : A1, . . . , xn : An $ τ : tñ t1 : Bq. Composition is the ‚ operation and the identity on

a term-in-context t is idt.

Substitution is the meta-operation of substitution in HclpGq:

t, pu1, . . . , unq ÞÑ tru1{x1, . . . , un{xns

τ, pσ1, . . . , σnq ÞÑ τ rσ1{x1, . . . , σn{xns

The projections ppiqA‚ : A1, . . . , An Ñ Ai are given by the var rule. đ

It is not hard to see that HpGq is the free 2-clone on G.
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Lemma 3.3.8. For any 2-multigraph G, strict biclone pT,Dq and 2-multigraph homomorph-

ism h : G Ñ D, there exists a unique strict pseudofunctor hJ´K : HpGq Ñ D such that

hJ´K ˝ ι “ h, for ι : G ãÑ HpGq the inclusion.

Proof. A straightforward adaptation of the proof of Lemma 3.2.13. The most significant

work is showing that the pseudofunctor hJ´K respects substitution, in the sense that

hJ∆ $ τ rσi{xis : trui{xis ñ t1ru1i{xis : BK

“
`

hJx1 : A1, . . . , xn : An $ τ : tñ t1 : BK
˘“

∆ $ σ‚ : u‚ ñ u1‚ : A‚
‰

for all judgements x1 : A1, . . . , xn : An $ τ : tñ t1 : B and p∆ $ σi : ui ñ u1i : Aiqi“1,...,n.

This is proven by two structural inductions, one for each of the whiskering operations.

3.3.2 Proving biequivalence

The next stage of the proof is to construct a biequivalence of biclones HpGq » SynpGq over a

fixed 2-multigraph G. We shall then see how this restricts to a biequivalence of bicategories

when G is a 2-graph and Hcl and Λbicl
ps are restricted to unary contexts.

Fix a 2-multigraph G. We begin by constructing pseudofunctors L´ M : HpGq Ô SynpGq : p´q.

The definition of p´q is simpler, so we do this first. Intuitively, this mapping is a strictifica-

tion evaluating away explicit substitutions; for constants we exploit the fact the underlying

signatures are the same.

Construction 3.3.9. For any 2-multigraph G, we define a mapping from raw terms in

Λbicl
ps pGq to raw terms in HclpGq as follows:

xk :“ xk

cpx1, . . . , xnq :“ cpx1, . . . , xnq

ttxi ÞÑ uiu :“ trui{xis

This extends to a map on raw rewrites:

assoct,u‚,v‚ :“ idtrui{xisrvj{yjs

ιt :“ idt

%
pkq
u‚ :“ iduk

idt :“ idt

κpx1, . . . , xnq :“ κpx1, . . . , xnq

τ ‚σ :“ τ ‚σ

τtxi ÞÑ σiu :“ τ rσi{xis

đ

This mapping respects typing and the equational theory.

Lemma 3.3.10. For any 2-multigraph G,

1. For all derivable terms t, t1 in Λbicl
ps pGq, if t “α t

1 then t “ t1,

2. For all derivable rewrites τ, τ 1 in Λbicl
ps pGq, if τ “α τ

1 then τ “ τ 1,
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3. If Γ $ t : B in Λbicl
ps pGq then Γ $ t : B in HclpGq,

4. If Γ $ τ : tñ t1 : B in Λbicl
ps pGq then Γ $ τ : tñ t1 : B in HclpGq,

5. If Γ $ τ ” τ 1 : tñ t1 : B in Λbicl
ps pGq then Γ $ τ ” τ 1 : tñ t1 : B in HclpGq.

Proof. By structural induction.

Proposition 3.3.11. For any 2-multigraph G the mapping p´q extends to a pseudofunctor

SynpGq Ñ HpGq.

Proof. By Lemma 3.3.10 and the definition of p´q on identities and vertical compositions,

the mapping p´q defines a functor SynpGqpA‚;Bq Ñ HpA‚;Bq on each hom-category by

pΓ $ τ : tñ t1 : Bq :“ pΓ $ τ : tñ t1 : Bq. For preservation of projections and substitution,

one notes that

x1 : A1, . . . , xn : An $ xk : Ak “ px1 : A1, . . . , xn : An $ xk : Akq

and that, for Γ “ pxi : Aiqi“1, ... ,n,

pΓ $ t : Bq
“

∆ $ u1 : A1, . . . ,∆ $ un : An
‰

“ pΓ $ t : Bqr∆ $ u‚ : A‚s

“ p∆ $ trui{xis : Bq

“ ∆ $ ttxi ÞÑ uiu : B

so p´q is indeed a strict pseudofunctor.

Now we turn to defining the pseudofunctor L´ M : HpGq Ñ SynpGq. The mapping we

choose makes precise the sense in which Hcl is a fragment of Λbicl
ps .

Construction 3.3.12. For any 2-multigraph G, define a mapping from raw terms in HclpGq
to raw terms in Λbicl

ps pGq as follows:

Lxk M :“ xk

L cpu1, . . . , unq M :“ ctLu1 M, . . . , Lun Mu

Extend this to a map on raw rewrites as follows:

L idt M :“ idL t M

L τ ‚σ M :“ L τ M ‚Lσ M

L cpσ1, . . . , σnq M :“ ctxi ÞÑ Lσi Mu

Lκpu1, . . . , unq M :“ κtxi ÞÑ Lui Mu

đ

Once again, the mapping respects typings and the equational theory.
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Lemma 3.3.13. For any 2-multigraph G,

1. For all derivable terms t, t1 in HclpGq, if t “ t1 then L t M “α L t1 M,

2. For all derivable rewrites τ, τ 1 in HclpGq, if τ “ τ 1 then L τ M “α L τ 1 M,

3. If Γ $ t : B in HclpGq then Γ $ L t M : B in Λbicl
ps pGq,

4. If Γ $ τ : tñ t1 : B in HclpGq then Γ $ L τ M : L t M ñ L t1 M : B in Λbicl
ps pGq,

5. If Γ $ τ ” τ 1 : t ñ t1 : B in HclpGq then Γ $ L τ M ” L τ 1 M : L t M ñ L t1 M : B in

Λbicl
ps pGq.

It is immediate from the preceding lemma that L´ M defines a functorHpGqpA‚;Bq Ñ SynpGqpA‚;Bq
on each hom-category, and that L´ M strictly preserves identities. For preservation of substitu-

tion, however, we are required to construct a family of 2-cells L t Mtxi ÞÑ Lui Mu ñ L trui{xis M.
This should be compared to [RdP97], where a similar translation is constructed at the

meta-level.

Construction 3.3.14. For any 2-multigraph G, define a family of rewrites sub in Λbicl
ps pGq

so that the rule

x1 : A1, . . . , xn : An $ L t M : B p∆ $ Lui M : Aiqi“1, ... ,n

∆ $ subpt;u‚q : L t Mtxi ÞÑ Lui Mu ñ L trui{xis M : B

is admissible by setting

subpxk;u‚q :“ xktxi ÞÑ Lui Mu
%
pkq
Lu‚ M
ùùùñ Luk M

subpcpu‚q; v‚q :“ ctuiutvju
assoccpx‚q,u‚,v‚
ùùùùùùùùùñ ctuitvjuu

ctsubpui;v‚qu
ùùùùùùùùñ ctLuirvj{yjs Mu đ

We establish the various properties required of sub by induction. The naturality of

structural rewrites implies the following.

Lemma 3.3.15. For any 2-multigraph G, the following judgements are derivable in SynpGq:

Γ $ L t M : B p∆ $ Lσi M : Lui M ñ Lu1i M : Aiqi“1, ... ,n

∆ $ subpt;u1‚q ‚ L t MtLσi Mu ” L trσi{xis M ‚ subpt;u‚q : L t MtLui Mu ñ L t1 MtLui Mu : B

Γ $ L τ M : L t M ñ L t1 M : B p∆ $ Lui M : Aiqi“1, ... ,n

∆ $ subpt1;u‚q ‚ L τ MtLui Mu ” L τ rui{xis M ‚ subpt;u‚q : L t MtLui Mu ñ L t MtLu1i Mu : B

Hence the following judgement is derivable:

Γ $ L τ M : L t M ñ L t1 M : B p∆ $ Lσi M : Lui M ñ Lu1i M : Aiqi“1, ... ,n

∆ $ subpt1;u1‚q ‚ L τ MtLσi Mu ” L τ rσi{xis M ‚ subpt;u‚q : L t MtLui Mu ñ L t1 MtLu1i Mu : B

and the sub rewrites are natural.
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Next we want to prove the three coherence laws for a pseudofunctor. The law for

%piq (3.3) holds by definition. We prove the other two laws using correlates of Mac Lane’s

original five axioms of a monoidal category [Mac63].

Lemma 3.3.16. For any biclone pS, Cq the following diagrams commute:

ppkq ppkq
“

pp1q, . . . , ppnq
‰

ppkq
“

pp1q, . . . , ppnq
‰

ι

%pkq

ppkq
“

pp1q, . . . , ppnq
‰

ppkq

ppkq

%pkq

ι

tru‚s
“

pp1q, . . . , ppnq
‰

t
“

u‚
“

pp1q, . . . , ppnq
‰‰

tru‚s

assoc

ι
trι,...,ιs

ppkqru‚srv‚s ukrv‚s

ppkqru‚s rv‚s

%pkq

assoc
%pkqrv‚s

Proof. By adapting Kelly’s arguments for monoidal categories [Kel64].

Lemma 3.3.17. For any 2-multigraph G and derivable terms px1 : A1, . . . , xn : An $ L t M : Cq,

py1 : B1, . . . , ym : Bm $ ui : Aiqi“1,...,m and p∆ $ vj : Bjqj“1, ... ,m in Λbicl
ps pGq, the following

diagrams commute in SynpGq:

L t Mtxi ÞÑ xiu L t M

L t M

subpt;x‚q

ι

L t MtLui MutL vj Mu L trui{xis MtL vj Mu

L t MtLui MtL vj Muu

L t MtLuirvj{yjs Mu L t
“

uirvj{yjs{xi
‰

M

subpt;u‚qtvju

assoc

subptrui{xis;v‚q

L t Mtsubpui;v‚qu

subpt;u‚rvj{yjsq

Proof. Both claims are proven by induction using the laws of Lemma 3.3.16. For the unit

law one uses the two laws on ι; for the associativity law one uses naturality and the law

relating %piq and assoc.

We have shown that sub is natural and satisfies the three laws of a pseudofunctor.

Corollary 3.3.18. For any 2-multigraph G the mapping L´ M extends to a pseudofunctor

HpGq Ñ SynpGq.
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Relating the two composites. With the two pseudofunctors in hand, we next examine

the composites L´ M ˝ p´q and p´q ˝ L´ M. Our first observation is that the strictification of

an already-strict term L t M is simply t.

Lemma 3.3.19. For any 2-multigraph G, the composite p´q ˝ L´ M is the identity on HpGq.

Proof. On objects the claim is trivial. On multimaps one proceeds inductively:

xk ÞÑ Lxk M “ xk ÞÑ xk “ xk

cpu1, . . . , unq ÞÑ ctLu1 M, . . . , Lun Mu ÞÑ cpx1, . . . , xnq
”

Lui M{xi
ı

“ cpu1, . . . , unq

The induction for 2-cells is similar:

idt ÞÑ idL t M ÞÑ idL t M “ idt by the preceding

τ 1 ‚ τ ÞÑ L τ 1 M ‚L τ M ÞÑ L τ 1 M ‚ L τ 1 M “ τ 1 ‚ τ by inductive hypothesis

κpu1, . . . , unq ÞÑ κtLu1 M, . . . , Lun Mu ÞÑ κpx1, . . . , xnqrLui M{xis “ κpu1, . . . , unq

cpσ1, . . . , σnq ÞÑ ctLσ1 M, . . . , Lσn Mu ÞÑ cpx1, . . . , xnqrLσi M{xis “ cpσ1, . . . , σnq

We finish our construction of the biequivalence HpGq » SynpGq by defining an invertible

pseudonatural transformation L´ M ˝ p´q – idSynpGq. This amounts to defining a reduction

procedure within Λbicl
ps pGq taking a term to one in which explicit substitutions occur as far

to the left as possible. The sub rewrites of Construction 3.3.14 will play a crucial role.

Construction 3.3.20. For any 2-multigraph G, define a rewrite reduce typed by the rule

Γ $ t : B

Γ $ reduceptq : tñ L t M : B

inductively as follows:

reducepxkq :“ xk
idxk
ùùñ xk

reducepcpx1, . . . , xnqq :“ cpx1, . . . , xnq
ι
ùñ ctx1, . . . , xnu “ cpx1, . . . , xnq

reducepttxi ÞÑ uiuq :“ ttxi ÞÑ uiu
reduceptqtreducepuiqu
ùùùùùùùùùùùùñ L t Mtxi ÞÑ Lui Mu

subpt;u‚q
ùùùùùñ L trui{xis M

đ

We think of reduce as a normalisation procedure on terms. When such a procedure is

defined as a meta-operation, it passes through the term constructors; in Λbicl
ps , it is natural.

Lemma 3.3.21. For any 2-multigraph G, the following rule is admissible in Λbicl
ps pGq:

Γ $ τ : tñ t1 : B

Γ $ L τ M ‚ reduceptq ” reducept1q ‚ τ : tñ L t1 M : B
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Proof. By induction on the derivation of τ . For the structural maps one uses the fact

the structural maps are all natural; for ι and assoc one also makes use of the unit and

associativity laws of Lemma 3.3.17, respectively. The other cases are straightforward.

Terms in which no substitutions occur do not reduce any further.

Lemma 3.3.22. For any 2-multigraph G and judgement Γ $ t : B derivable in HclpGq, the

rule

Γ $ L t M : B

Γ $ reducepL t Mq ” idL t M : L t M ñ L t M : B

is admissible in Λbicl
ps pGq.

Proof. The claim is well-typed because L L t M M “ L t M by Lemma 3.3.19. The result then

follows by structural induction: the var case holds by definition, while the const case is

just the triangle law of a biclone.

The reduce rewrite is central to our definition of the invertible transformation idSynpGq ñ L p´q M;
the rest of the work is book-keeping. We define a transformation of pseudofunctors (Defin-

ition 3.1.20) as follows. Take the identity %
p1q
B : B Ñ B on multimaps; as a term this is

px1 : B $ x1 : Bq. For each Γ :“ pxi : Aiqi“1, ... ,n and derivable term pΓ $ t : Bq we are now

required to give a 2-cell

pΓ $ x1tx1 ÞÑ tu : Bq ñ pΓ $ L t Mtxi ÞÑ xitxi ÞÑ xiuu : Bq

For this, take the composite rrptq defined by

x1tx1 ÞÑ tu L t Mtxi ÞÑ xitxi ÞÑ xiuu

t L t M L t Mtxi ÞÑ xiu

%p1q

rrptq

reduceptq ι

L t Mtxi ÞÑιu (3.9)

in context Γ. The composite is natural because reduce is.

Corollary 3.3.23. For any 2-multigraph G, the multimaps %
p1q
B : B Ñ B together with the

2-cells rrptq defined in (3.8) form an invertible transformation idSynpGq
–
ùñ L p´q M.

Proof. By induction, the 2-cell reduce is invertible, so rrptq is invertible for every derivable

term t. It remains to check the two axioms, for which one uses naturality and the laws of

Lemma 3.3.16.

Let us summarise what we have seen in this section. We have a pair of pseudofunctors

L´ M : HpGq Ô SynpGq : p´q related by invertible transformations L´ M ˝ p´q – idSynpGq and

p´q ˝ L´ M “ idHpGq. Together these form the claimed biequivalence.
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Theorem 3.3.24. For any 2-multigraph G, the pseudofunctors L´ M : HpGq Ô SynpGq : p´q

form a biequivalence of biclones.

We restate the result as a statement of coherence in the style of [JS93].

Corollary 3.3.25. For any 2-multigraph G, the free biclone on G is biequivalent to the free

strict biclone on G.

We can use Lemma 3.1.23 to parlay the preceding corollary into a normalisation result

for Λbicl
ps . Since we have no control over the behaviour of constant rewrites, we restrict to

2-multigraphs with no surfaces.

Theorem 3.3.26. Let G be a 2-multigraph such that for any nodes A1, . . . , An, B P G0

and edges f, g : A1, . . . , An Ñ B the set GpA‚;Bqpf, gq of surfaces f ñ g is empty. Then

Λbicl
ps pGq is locally coherent.

Proof. The approach is standard (c.f. [Lei04, p. 16]). Suppose given a pair of rewrites in

Λbicl
ps pGq typed by Γ $ τ : t ñ t1 : B and Γ $ σ : t ñ t1 : B. Since there are no constant

rewrites, the definition of p´q entails that τ “ idt “ σ in HclpGq. By Lemma 3.1.23 the

pseudofunctor p´q is locally faithful, so τ ” σ, as required.

Loosely speaking, any diagram of rewrites in Λbicl
ps formed from assoc, ι, %piq and id using

the operations of vertical composition and explicit substitution must commute. We shall

freely make use of this property from now on.

Adapting the preceding argument to apply to bicategories—and hence recover a version

of the classic result of [MP85]—is a minor adjustment. Fix a 2-graph G. Restricting the

construction of Hp´q to unary contexts and a fixed variable name (c.f. Construction 3.2.15)

yields a 2-category; this is free on G by Lemma 3.1.18. Similarly, the biequivalence of

biclones L´ M : HpGq Ô SynpGq : p´q restricts to a biequivalence of bicategories. One

therefore obtains the following.

Corollary 3.3.27. For any 2-graph G, the free bicategory on G is biequivalent to the free

2-category on G.

Alternatively, one may observe that since the internal language for bicategories Λbicat
ps is

constructed by restricting the internal language Λbicl
ps for biclones to unary contexts, any

composite of the rewrites assoc, ι and %piq in Λbicat
ps must exist in Λbicl

ps . Hence the local

coherence of Λbicl
ps entails the local coherence of Λbicat

ps .

Corollary 3.3.28. Let G be a 2-graph such that for any nodes A,B P G0 and edges

f, g : AÑ B the set GpA,Bqpf, gq of surfaces f ñ g is empty. Then Λbicat
ps pGq is locally

coherent.



Chapter 4

A type theory for fp-bicategories

In this chapter we extend the type theory Λbicl
ps with finite products. We develop a theory

of product structures in biclones, and use this to synthesise our type theory Λˆps. Along

the way we pursue a connection with the representable multicategories of Hermida [Her00].

Hermida’s work can be seen as bridging multicategories and monoidal categories; we show

that similar connections hold between clones and cartesian categories, and also between

biclones and bicategories with finite products. The resulting translation mediates between

products presented by biuniversal arrows (in the style of Hermida’s representability) and

the presentation in terms of natural isomorphisms or pseudonatural equivalences.

With this abstract framework in place, we examine its implications for the construction

of an internal language for biclones with finite products and—by extension—for bicategories

with finite products. The resulting type theory provides a calculus for the kind of universal-

property reasoning commonly employed when dealing with (bi)limits, and contrasts with

previous work on type-theoretic descriptions of 2-dimensional cartesian (closed) structure,

in which products are defined by an invertible unit and counit satisfying the triangle laws

of an adjunction (e.g. [See87, Hil96, Hir13]).

4.1 fp-Bicategories

Let us begin by recalling the notions of bicategory with finite products and product-

preserving pseudofunctor. It will be convenient to directly consider all finite products, so

that the bicategory is equipped with n-ary products for each n P N. This reduces the

need to deal with the equivalent objects given by re-bracketing binary products. To avoid

confusion with the ‘cartesian bicategories’ of Carboni and Walters [CW87, CKWW08], we

call a bicategory with all finite products an fp-bicategory. (We will, however, freely make use

of the term ‘cartesian’ when defining finite products in (bi)clones and (bi)multicategories.)

We define n-ary products in a bicategory as a bilimit over a discrete bicategory (set)

with n objects. As we saw in Remark 2.4.2, this can be expressed equivalently as a

right biadjoint. For bicategories B1, . . . ,Bn the product bicategory
śn
i“1 Bi has objects

pB1, . . . , Bnq P
śn
i“1 obpBiq and structure given pointwise. An fp-bicategory is a bicategory

73
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B equipped with a right biadjoint to the diagonal pseudofunctor ∆n : B Ñ Bˆn : B ÞÑ

pB, . . . , Bq for every n P N. Applying Definition 2.4.1 in this context, one may equivalently

ask for a biuniversal arrow pπ1, . . . , πnq : ∆n
`
ś

npA1, . . . , Anq
˘

Ñ pA1, . . . , Anq for every

A1, . . . , An P B pn P Nq.

Definition 4.1.1. An fp-bicategory pB,Πnp´qq is a bicategory B equipped with the following

data for every A1, . . . , An P B pn P Nq:

1. A chosen object
ś

npA1, . . . , Anq,

2. Chosen arrows πk :
ś

npA1, . . . , Anq Ñ Ak pk “ 1, . . . , nq, referred to as projections,

3. For every X P B an adjoint equivalence

BpX,
ś

npA1, . . . , Anqq
śn
i“1 BpX,Aiq

pπ1˝´, ... ,πn˝´q

%
»

x´, ... ,“y

(4.1)

defined by choosing a family of universal arrows we denote $ “ p$p1q, . . . , $pnqq.

We call the right adjoint x´, . . . ,“y the n-ary tupling. đ

Remark 4.1.2. The preceding definition admits two degrees of strictness. Requiring the

equivalence (4.1) to be an isomorphism, and B to be a 2-category, yields the definition of

2-categorical (Cat-enriched) products. These products are not strict in the 1-categorical sense,

however: as the example of pCat,ˆ, 1q shows, it may not be the case that pAˆBq ˆ C “

Aˆ pB ˆ Cq. In this thesis, we shall generally write strict to mean only that (4.1) is an

isomorphism, and specify explicitly when we mean the stronger sense. đ

Explicitly, the universal arrows of (4.1) may be specified as follows. For any finite family

of 1-cells pti : X Ñ Aiqi“1, ... ,n, one requires a 1-cell xt1, . . . , tny : X Ñ
ś

npA1, . . . , Anq and

a family of invertible 2-cells p$
pkq
t1, ... ,tn

: πk ˝ xt‚y ñ tkqk“1, ... ,n. These 2-cells are universal

in the sense that, for any family of 2-cells pαi : πi ˝ uñ ti : Γ Ñ Aiqi“1, ... ,n, there exists a

2-cell p:pα1, . . . , αnq : uñ xt1, . . . , tny : Γ Ñ
śn
i“1Ai, unique such that

$
pkq
t1, ... ,tn

‚
`

πk ˝ p:pα1, . . . , αnq
˘

“ αk : πk ˝ uñ tk (4.2)

for k “ 1, . . . , n. One thereby obtains a functor x´, . . . ,“y and an adjoint equival-

ence as in (4.1) with counit $ “ p$p1q, . . . , $pnqq and unit p:pidπ1˝t, . . . , idπn˝tq : t ñ

xπ1 ˝ t, . . . , πn ˝ ty. This defines a lax n-ary product structure: one merely obtains an ad-

junction in (4.1). One turns this into a bicategorical (pseudo) product by further requiring

the unit and counit to be invertible. The terminal object 1 arises as
ś

0pq.

Remark 4.1.3. Throughout we shall assume that the chosen unary product structure on an

fp-bicategory is trivial, in the sense that
ś

1pAq “ A, xty “ t and $
p1q
A “ lA : Id ˝ tñ t. đ
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Notation 4.1.4.

1. We denote the unit p:pIdπ1˝t, . . . , Idπn˝tq : tñ xπ1 ˝ t, . . . , πn ˝ ty by ςt. (We reserve

η and ε for the unit and counit of exponential structure.)

2. We write A1 ˆ ¨ ¨ ¨ ˆAn or
śn
i“1Ai for

ś

npA1, . . . , Anq,

3. We write xfiyi“1, ... ,n or simply xf‚y for the n-ary tupling xf1, . . . , fny,

4. Following the 1-categorical notation, for any family of 1-cells fi : Ai Ñ A1i pi “ 1, . . . , nq

we write
ś

npf1, . . . , fnq or
śn
i“1 fi for the n-ary tupling xf1 ˝ π1, . . . , fn ˝ πny :

śn
i“1Ai Ñ

śn
i“1A

1
i, and likewise on 2-cells. đ

One must take treat the
ś

i fi notation with some care. In a 1-category, the morphism

f ˆA “ f ˆ idA is equal to the pairing xf ˝ π1, π2y. In an fp-bicategory, this may not be

the case: f ˆA “ f ˆ IdA “ xf ˝ π1, IdA ˝ π2y.

Remark 4.1.5. Like any biuniversal arrow, products are unique up to equivalence (c.f. Lemma 2.2.7).

Explicitly, given adjoint equivalences pg : C Ô
śn
i“1Bi : hq and pei : Bi Ô Ai : fiqi“1, ... ,n

in a bicategory B, the composite

BpX,
śn
i“1Biq

śn
i“1 BpX,Biq

BpX,Cq
śn
i“1 BpX,Aiq

pπ1˝´, ... ,πn˝´q

h˝´

%

»

x´, ... ,“y

Πni“1pei˝´q

%

»
%

»

g˝´

Πni“1pfi˝´q

yields an adjoint equivalence

BpX,Cq
śn
i“1 BpX,Aiq

p ppe1˝π1q˝gq˝´,...,ppen˝πnq˝gq˝´ q

%

»

h˝xf1˝´,...,fn˝“y

presenting C as the product of A1, . . . , An. đ

One may generally think of bicategorical product structure as an intensional version

of the familiar categorical structure, except the usual equations (e.g. [Gib97]) are now

witnessed by natural families of invertible 2-cells. It will be useful to have explicit names

for these 2-cells.

Construction 4.1.6. Let pB,Πnp´qq be an fp-bicategory. We define the following families

of invertible 2-cells:

1. For phi : Y Ñ Aiqi“1,...,n and g : X Ñ Y , we define

postph‚; gq : xh1, . . . , hny ˝ g ñ xh1 ˝ g, . . . , hn ˝ gy

as p:pα1, . . . , αnq, where αk is the composite

πk ˝ pxh1, . . . , hny ˝ gq
–
ùñ pπk ˝ xh1, . . . , hnyq ˝ g

$pkq˝g
ùùùùñ hk ˝ g

for k “ 1, . . . , n.
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2. For phi : Ai Ñ Biqi“1,...,n and pgi : X Ñ Aiqi“1,...,n, we define

fuseph‚; g‚q : p
śn
i“1hiq ˝ xg1, . . . , gny ñ xh1 ˝ g1, . . . , hn ˝ gny

as p:pβ1, . . . , βnq, where βk is defined by the diagram

πk ˝ pp
śn
i“1hiq ˝ xg1, . . . , gnyq hk ˝ gk

pπk ˝
śn
i“1hiq ˝ xg1, . . . , gny phk ˝ πkq ˝ xg1, . . . , gny hk ˝ pπk ˝ xg1, . . . , gnyq

–

βk

$pkq˝xg1, ... ,gny
–

hk˝$
pkq

for k “ 1, . . . , n.

3. For phi : Ai Ñ Biqi“1,...,n and pgj : Xj Ñ Ajqj“1,...,n we define

Φh‚,g‚ : p
śn
i“1hiq ˝ p

śn
i“1giq ñ

śn
i“1phigiq

to be the composite xa´1
h1,g1,π1

, . . . , a´1
hn,gn,πn

y ‚ fuseph‚; g1 ˝ π1, . . . , gn ˝ πnq. This 2-cell

witnesses the pseudofunctoriality of
ś

n p´, . . . ,“q. đ

Informally, one can use the preceding construction to translate a sequence of equalities

relating the product structure of a cartesian category into a composite of invertible 2-cells—

the difficulty, as outlined in the introduction to this thesis, is verifying such a composite

satisfies the required coherence laws. As a further step to simplifying this effort, we observe

that each of the 2-cells just constructed is natural and satisfies the expected equations. The

many isomorphisms required to state these lemmas in their full bicategorical generality tend

to obscure the ‘self-evident’ nature of these results, so we state them for 2-categories with

pseudo (bicategorical) products.

Lemma 4.1.7. Let B be a 2-category with finite pseudo-products. Then for all families of

suitable 1-cells f, g, h, fi, gi, hi pi “ 1, . . . , nq, the following diagrams commute whenever

they are well-typed:

xf1, . . . , fny xf1, . . . , fny ˝ Id

xf1 ˝ Id, . . . , fn ˝ Idy

post

(4.3)

śn
i“1 fi p

śn
i“1 fiq ˝ xπ1, . . . , πny

xf ˝ π1, . . . , fn ˝ πny

p
ś

i fiq˝ςId

fuse

(4.4)

In Lemma 4.3.14 we shall see that these laws hold equally within the syntax of the type

theory Λˆ,Ñps for fp-bicategories.

The restriction to a base 2-category, rather than a bicategory, turns out to be of no

great consequence. Indeed, Power’s coherence result restricts as follows to fp-bicategories.
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f ˝ g xπ1 ˝ f, . . . , πn ˝ fy ˝ g

xπ1 ˝ f ˝ g, . . . , πn ˝ f ˝ gy

ςf˝g

ςfg post

(4.5)

xf‚y ˝ g ˝ h xf‚ ˝ gy ˝ h

xf‚ ˝ g ˝ hy

post˝h

post
post (4.6)

`
śn
i“1 fi

˘

˝
`
śn
i“1 gi

˘

˝ xh1, . . . , hny
śn
i“1pfi ˝ giq ˝ xh1, . . . , hny

`
śn
i“1 fi

˘

˝ xg1 ˝ h1, . . . , gn ˝ hny xf1 ˝ g1 ˝ h1, . . . , fn ˝ gn ˝ hny

Φf‚,g‚˝xh1, ... ,hny

p
ś

i fiq˝fuse fuse

fuse

(4.7)

`
śn
i“1 fi

˘

˝ xg1, . . . , gny ˝ h
`
śn
i“1 fi

˘

˝ xg1 ˝ h, . . . , gn ˝ hy

xf1 ˝ g1, . . . , fn ˝ gny ˝ h xf1 ˝ g1 ˝ h, . . . , fn ˝ gn ˝ hy

p
ś

i fiq˝post

fuse˝h fuse

post

(4.8)

Proposition 4.1.8 ([Pow89b, Theorem 4.1]). Every fp-bicategory is biequivalent to a

2-category with strict (2-categorical) products.

Proof. We present Power’s proof, adapted to the special case of products. Let pB,Πnp´qq

be an fp-bicategory. By the Mac Lane-Paré coherence theorem, B is biequivalent to a

2-category; by Lemma 2.2.13, this is a 2-category with bicategorical products. We may

therefore assume without loss of generality that pB,Πnp´qq is a 2-category with bicategorical

products. Now let Y : B Ñ HompBop,Catq be the Yoneda embedding and B be the closure

of obpYBq in HompBop,Catq under equivalences. The Yoneda embedding factors as a

composite B i
ÝÑ B j

ÝÑ HompBop,Catq. Since Y is locally an equivalence, the inclusion

i : B Ñ B is a biequivalence. Choose a pseudoinverse k : B Ñ B.

Now, for any P1, . . . , Pn P B pn P Nq a 2-categorical product
ś

npjP1, . . . , jPnq exists

(pointwise) in the 2-category HompBop,Catq: one can show this by a direct calculation

or by applying general theory as in [Pow89b, Proposition 3.6] (see also Chapter 6). We

show this product also lies in B. Since an isomorphism of hom-categories is certainly an

equivalence of hom-categories,
ś

npjP1, . . . , jPnq is (up to equivalence) the bicategorical

product of jP1, . . . , jPn in HompBop,Catq. Moreover, since i and k form a biequivalence,

Y ˝ k “ pj ˝ iq ˝ k » j ˝ idB “ j. So, applying the uniqueness of products up to equivalence

and the fact that Y preserves products (Lemma 2.3.4):

ś

npjP1, . . . , jPnq »
ś

nppYkqP1, . . . , pYkqPnq » Yp
ś

npkP1, . . . , kPnqq

Since Yp
ś

npkP1, . . . , kPnqq certainly lies in B, it follows that
ś

npjP1, . . . , jPnq also lies

in B, as claimed.
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This result obviates the need to deal with the various 2-cells of Construction 4.1.6. The

reader may therefore simplify some of the longer 2-cells we shall construct (for example, in

Chapter 7). However, we shall not rely on it in what follows.

4.1.1 Preservation of products

fp-Pseudofunctors. Defining preservation of products is straightforward: it is just an

instance of preservation of bilimits. We ask that for each n P N the biuniversal arrow

defining the n-ary product is preserved. Strict preservation of these biuniversal arrows

amounts to requiring that the chosen product structure in the domain is taken to exactly

the chosen product structure in the target.

Definition 4.1.9. An fp-pseudofunctor pF, qˆq between fp-bicategories pB,Πnp´qq and

pC,Πnp´qq is a pseudofunctor F : B Ñ C equipped with specified adjoint equivalences

xFπ1, . . . , Fπny : F p
śn
i“1Aiq Ô

śn
i“1pFAiq : qˆA‚

for every A1, . . . , An P B pn P Nq. We denote the 2-cells witnessing these equivalences as

follows:

uˆA‚ : Idp
ś

i FAiq
ñ xFπ1, . . . , Fπny ˝ qˆA‚

cˆA‚ : qˆA‚ ˝ xFπ1, . . . , Fπny ñ IdpFΠiAiq

We call pF, qˆq strict if F is strict and satisfies

F p
ś

npA1, . . . , Anqq “
ś

npFA1, . . . , FAnq

F pπA1,...,An
i q “ πFA1,...,FAn

i

F xt1, . . . , tny “ xFt1, . . . , F tny

F$
piq
t1,...,tn

“ $
piq
Ft1,...,F tn

qˆA1,...,An
“ IdΠnpFA1,...,FAnq

with adjoint equivalences canonically induced by the 2-cells p:prπ1 , . . . , rπnq : Id
–
ùñ xπ1, . . . , πny.

đ

By Lemma 2.2.17, a strict fp-pseudofunctor commutes with the p:p´, . . . ,“q operation

on 2-cells: F
`

p:pα1, . . . , αnq
˘

“ p:pFα1, . . . , Fαnq.

Remark 4.1.10. The fact that products are unique up to equivalence has the following

consequence for fp-pseudofunctors. If B is a bicategory equipped with two product structures,

say pB,Πnp´qq and
`

B,Prodnp´q
˘

, then for any fp-pseudofunctor pF, qˆq : pB,Πnp´qq Ñ

pC,Πnp´qq there exists an (equivalent) fp-pseudofunctor
`

B,Prodnp´q
˘

Ñ pC,Πnp´qq with

witnessing equivalence

F pProdnpA1, . . . , Anqq » F p
ś

npA1, . . . , Anqq
qˆA‚
ÝÝÑ

ś

npFA1, . . . , FAnq

arising from the tupling map xπ1, . . . , πny : ProdnpA1, . . . , Anq Ñ
ś

npA1, . . . , Anq. đ
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We saw in Lemma 2.4.4 that, when a biadjunction is preserved, one obtains an equivalence

of pseudofunctors relating the two biadjunctions. We shall make use of the following concrete

instance of this fact.

Lemma 4.1.11. For any fp-pseudofunctor pF, qˆq : pB,Πnp´qq Ñ pC,Πnp´qq the family

of 1-cells qˆA‚ :
śn
i“1 FAi Ñ F p

śn
i“1Aiq are the components of a pseudonatural trans-

formation
śn
i“1 pF p´q, . . . , F p“qq ñ pF ˝

śn
i“1qp´, . . . ,“q, and hence an equivalence in

Homp
śn
i“1 B, Cq.

Proof. The witnessing 2-cells natf‚ filling

śn
i“1 FAi

śn
i“1 FA

1
i

F p
śn
i“1Aiq F p

śn
i“1A

1
iq

qˆA‚

ś

i Ffi

qˆ
A1‚

natf‚
ð

F p
ś

i fiq

are defined as the following composite:

qˆA1‚
˝
śn
i“1 Ffi F p

śn
i“1fiq ˝ qˆA‚

`

qˆA1‚
˝ p

śn
i“1 Ffiq

˘

˝ Idp
ś

n FA‚q
IdF p

ś

n A
1
‚q
˝

´

F p
śn
i“1fiq ˝ qˆA‚

¯

`

qˆA1‚
˝
śn
i“1 F pfiq

˘

˝

´

xF pπ‚qy ˝ qˆA‚

¯ ´

qˆA1‚
˝ xFπ‚y

¯

˝
`

F p
śn
i“1fiq ˝ qˆA‚

˘

qˆA1‚
˝
``

śn
i“1 F pfiq ˝ xF pπ‚qy

˘

˝ qˆA‚
˘

qˆA1‚
˝
``

xFπ‚y ˝ F p
śn
i“1fiq

˘

˝ qˆA‚
˘

qˆA1‚
˝

´

xF pf‚q ˝ F pπ‚qy ˝ qˆA‚

¯

qˆA1‚
˝

´

xF pπ‚q ˝ F p
śn
i“1fiqy ˝ qˆA‚

¯

qˆA1‚
˝

´

xF pf‚ ˝ π‚qy ˝ qˆA‚

¯

qˆA1‚
˝

´

xF pπ‚ ˝
śn
i“1fiqy ˝ qˆA‚

¯

–

natf‚

qˆ
A1‚
˝p

śn
i“1 Ffiq˝u

ˆ
A‚

–

–

cˆ
A1‚
˝F p

ś

i fiq˝q
ˆ
A‚

qˆ
A1‚
˝fuse˝qˆA‚

–

qˆ
A1‚
˝xφFf‚;π‚

y˝qˆA‚

qˆ
A1‚
˝fuse´1˝qˆA‚

qˆ
A1‚
˝xF p$p´1qq, ... ,F p$p´nqqy˝qˆA‚

qˆ
A1‚
˝

A

pφF
π‚;

ś

i fi
q´1

E

˝qˆA‚

In a cartesian category it is is often useful to ‘unpack’ an n-ary tupling from inside a

cartesian functor in the following manner:

xFπ1, . . . , Fπny ˝ F xf1, . . . , fny “ xF pπ‚q ˝ F xf1, . . . , fnyy

“ xF pπ‚ ˝ xf1, . . . , fnyqy

“ xFf1, . . . , Ffny

In an fp-bicategory, one obtains a natural family of 2-cells we call unpack.
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Construction 4.1.12. For any fp-pseudofunctor F : pB,Πnp´qq Ñ pC,Πnp´qq the invert-

ible 2-cell unpackf‚ : xFπ1, . . . , Fπny˝F xf1, . . . , fny ñ xFf1, . . . , Ffny : FX Ñ
śn
i“1 FBi

is defined to be p:pτ1, . . . , τnq, where τk pk “ 1, . . . , nq is given by the following diagram:

πk ˝ pxFπ1, . . . , Fπny ˝ F xf1, . . . , fnyq Ffk

pπk ˝ xFπ1, . . . , Fπnyq ˝ F xf1, . . . , fny

F pπkq ˝ F xf1, . . . , fny F pπi ˝ xf1, . . . , fnyq

τk

–

$pkq˝F xf1, ... ,fny

φF
πk,xf‚y

F$pkq

đ

As with the 2-cells of Construction 4.1.6, it is useful to have certain coherence properties

ready-made. For unpack one has the following.

Lemma 4.1.13. For any fp-pseudofunctor pF, qˆq : pB,Πnp´qq Ñ pC,Πnp´qq and family

of 1-cells pfi : Xi Ñ Yiqi“1, ... ,n in B, the following diagram commutes:

pxFπ1, . . . , Fπny ˝ F p
śn
i“1 fiqq ˝ qˆX‚ xF pf1 ˝ π1q, . . . , F pfn ˝ πnqy ˝ qˆX‚

xFπ1, . . . , Fπny ˝
´

F p
śn
i“1 fiq ˝ qˆX‚

¯

xFf1 ˝ Fπ1, . . . , Ffn ˝ Fπny ˝ qˆX‚

xFπ1, . . . , Fπny ˝
´

qˆY‚ ˝ p
śn
i“1 Ffiq

¯

pp
śn
i“1 Ffiq ˝ xFπ1, . . . , Fπnyq ˝ qˆX‚

´

xFπ1, . . . , Fπny ˝ qˆY‚

¯

˝ p
śn
i“1 Ffiq p

śn
i“1 Ffiq ˝

´

xFπ1, . . . , Fπny ˝ qˆX‚

¯

Idp
ś

i FYiq
˝ p

śn
i“1 Ffiq p

śn
i“1 Ffiq ˝ Idp

ś

i FXiq

–

unpack˝qˆX‚

xFπ1, ... ,Fπny˝natf‚

A

φFf1,π1
,...,φFfn,πn

E

˝qˆX‚

–

fuse˝qˆX‚

puˆY‚ q
´1˝p

ś

i Ffiq

–

–

p
ś

i Ffiq˝u
ˆ
X‚

Morphisms of fp-pseudofunctors. The tricategorical nature of Bicat leads naturally to

a consideration of 2- and 3-cells relating fp-pseudofunctors. Experience from the 1-categorical

setting, however, suggests that new definitions are not needed. For cartesian functors

F,G : pC,Πnp´qq Ñ pD,Πnp´qq it is elementary to check that every natural transformation

α : F ñ G satisfies

F
`
śn
i“1Ai

˘
śn
i“1 F pAiq

G
`
śn
i“1Ai

˘
śn
i“1GpAiq

xFπ1, ... ,Fπny

αp
ś

n A‚q
śn
i“1 αAi

xGπ1,...,Gπny

(4.9)
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The corresponding bicategorical fact is the following: every pseudonatural transformation

extends canonically to an fp-transformation (c.f. the monoidal pseudonatural transformations

of [Hou07, Chapter 3]).

Definition 4.1.14. Let pF, qˆq and pG, uˆq be fp-pseudofunctors pB,Πnp´qq Ñ pC,Πnp´qq.

An fp-transformation pα, α, αˆq is a pseudonatural transformation pα, αq : F ñ G equipped

with a 2-cell αˆA1, ... ,An
as in the following diagram for every A1, . . . , An P B pn P Nq:

F
`
śn
i“1Ai

˘
śn
i“1 F pAiq

G
`
śn
i“1Ai

˘
śn
i“1GpAiq

αˆA1, ... ,An
ð

xFπ1, ... ,Fπny

αp
ś

n A‚q
śn
i“1 αAi

xGπ1,...,Gπny

These 2-cells are required to satisfy

πk ˝ pp
śn
i“1 αAiq ˝ xFπ1, . . . , Fπnyq πk ˝

´

xGπ1, . . . , Gπny ˝ αp
ś

n A‚q

¯

pπk ˝
śn
i“1 αAiq ˝ xFπ1, . . . , Fπny pπk ˝ xGπ1, . . . , Gπnyq ˝ αp

ś

n A‚q

pαAk ˝ πkq ˝ xFπ1, . . . , Fπny

αAk ˝ pπk ˝ xFπ1, . . . , Fπnyq αAk ˝ Fπk Gπk ˝ αp
ś

n A‚q

–

πk˝α
ˆ
A1, ... ,An

–

$pkq˝xFπ‚y

$pkq˝αp
ś

n A‚q

–

αAk˝$
pkq απk

đ

Lemma 4.1.15. Let pF, qˆq and pG,uˆq be fp-pseudofunctors pB,Πnp´qq Ñ pC,Πnp´qq

and pα, αq : F ñ G a pseudonatural transformation. Then, where αˆA1, ... ,An
is defined to

be the composite

p
śn
i“1 αAiq ˝ xFπ1, . . . , Fπny xGπ1, . . . , Gπny ˝ αA1ˆ¨¨¨ˆAn

xαA1 ˝ Fπ1, . . . , αAn ˝ Fπny
A

Gπ1 ˝ αp
ś

n A‚q
, . . . , Gπn ˝ αp

ś

n A‚q

E

fuse

αˆA1, ... ,An

xαπ1 , ... ,απny

post´1

the triple pα, α, αˆq is an fp-transformation.

Proof. A straightforward diagram chase unwinding the definitions of fuse and post.

In a similar vein, one might define an fp-biequivalence of fp-bicategories to consist of

a pair of fp-pseudofunctors pF, qˆq and pG,uˆq, with fp-transformations FG Ô id and

GF Ô id and invertible modifications forming equivalences FG » id and GF » id. The

composition of fp-transformations is the usual composition of pseudonatural transformations,
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with the composite witnessing 2-cell for (4.9) given by the evident pasting diagram. However,

this apparently more-structured notion of biequivalence may always be constructed from a

biequivalence of the underlying bicategories.

Lemma 4.1.16. For any fp-bicategories pB,Πnp´qq and pC,Πnp´qq, there exists an fp-biequivalence

pB,Πnp´qq » pC,Πnp´qq if and only if there exists a biequivalence of the underlying bicat-

egories.

Proof. The reverse direction is immediate. The forward direction follows from Lemma 2.2.13

and Lemma 4.1.15.

In this thesis we will only ever be concerned with the existence of a biequivalence

between fp-bicategories, not its particular structure. It will therefore suffice to work with

biequivalences throughout.

4.2 Product structure from representability

In Chapter 3 we saw that a type theory for biclones—and, by restriction to unary contexts,

bicategories—could be extracted directly from the construction of the free biclone on a

signature. In order to take a similar approach in the case of fp-bicategories, we develop the

theory of product structures in biclones.

What does it mean to define products in a biclone? As usual, the categorical case is

informative. Thinking of (sorted) clones as cartesian versions of multicategories suggests

that products in a clone ought to arise in a way paralleling tensor products in a multicategory.

Translating the work of Hermida [Her00] to clones in the most näıve way possible, one might

require a family of arrows ρX‚ : X1, . . . , Xn Ñ
ś

npX1, . . . , Xnq in a clone C inducing

isomorphisms CpX1, . . . , Xn;Aq – Cp
ś

npX1, . . . , Xnq;Aq by precomposition. On the other

hand, Lambek [Lam89] defines products in a multicategory L by requiring isomorphisms

of the form LpΓ;
ś

npX1, . . . , Xnqq –
śn
i“1 LpΓ;Aiq. Connecting these two approaches to

product structure will be the focus of the next section.

Taking multicategories as our starting point, we shall study two forms of universal

property, corresponding to Hermida’s and Lambek’s definitions, respectively. We shall show

how these notions may be applied to clones and, moreover, demonstrate that for clones they

actually coincide (Theorem 4.2.20).

Thereafter, in Section 4.2.2, we shall see how one can extract the usual product structure

of the simply-typed lambda calculus from the theory of such cartesian clones. This will

provide the template for lifting this work to the bicategorical setting, and hence for the

product structure of the type theory Λˆps.

4.2.1 Cartesian clones and representability

We start by recalling a little of the theory of (representable) multicategories and their

relationship to monoidal categories. Extensive overviews are available in [Lei04, Yau16].
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Representable multicategories. The notion of multicategory is a crucial part of Lam-

bek’s extended study of deductive systems [Lam69, Lam80, Lam86, Lam89]. The motivating

example takes objects to be types in some sequent calculus and multimaps X1, . . . , Xn $ Y

to be derivable sequents; composition is given by a cut rule. Lambek defines tensor products

and (left and right) internal homs in a multicategory by the existence of certain natural

isomorphisms. More recent work by Hermida [Her00] connects these ideas to the categorical

setting by making precise the correspondence between monoidal categories and so-called

representable multicategories.

Definition 4.2.1 ([Lam69, Lam89]). A multicategory L consists of the following data:

• A set obpLq of objects,

• For every sequenceX1, . . . , Xnpn P Nq of objects and object Y a hom-set LpX1, . . . , Xn;Y q

consisting of multimaps or arrows f : X1, . . . , Xn Ñ Y (here n may be zero). As

with (bi)clones, we sometimes denote sequences X1, . . . , Xn by Greek letters Γ,∆, . . .

to emphasise the connection with contexts,

• For every X P obpLq an identity multimap idX : X Ñ X,

• For every set of sequences Γ1, . . . ,Γn and objects Y1, . . . , Yn, Z, a composition oper-

ation

˝Γ‚;Y‚;Z : LpY1, . . . , Yn;Zq ˆ
śn
i“1LpΓi;Yiq Ñ LpΓ1, . . . ,Γn;Zq

we denote by ˝Γ‚;Y‚;Z

`

f, pg1, . . . , gnq
˘

:“ f ˝ xg1, . . . , gny.

This is subject to three axioms requiring that composition is associative and unital. We call

multimaps of the form X Ñ Y linear. đ

Notation 4.2.2. Note that we write composition in a multicategory as f ˝ xg1, . . . , gny

and substitution in a clone as f rg1, . . . , gns. đ

Multicategories are also known as coloured (planar) operads (e.g. [Yau16]). Multicat-

egories form a category MultiCat of multicategories and their functors, and also a 2-category

of multicategories, multicategory functors, and transformations (e.g. [Lei04, Chapter 2]).

Definition 4.2.3.

1. A functor F : L Ñ M between multicategories L and M consists of:

• A mapping F : obpLq Ñ obpMq on objects,

• For every X1, . . . , Xn, Y P L pn P Nq a mapping on hom-sets

FX‚;Y : LpX1, . . . , Xn;Y q Ñ MpFX1, . . . , FXn;FY q

such that composition and the identity are preserved.

2. A transformation α : F ñ G between multicategory functors F,G : L Ñ M is a family

of multimaps pαX : FX Ñ GXqXPobpLq such that for every f : X1, . . . , Xn Ñ Y the

equation Ff ˝ pαX1 , . . . , αXnq “ αY ˝ pGfq holds. đ
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From the perspective of deductive systems, moving from multicategories to clones

amounts to changing the composition operation from a cut rule to a substitution operation.

The composition operation of a multicategory is linear : given maps phi : Γ Ñ Yiqi“1, ... ,m

and f : Y1, . . . , Ym Ñ Z in a multicategory, the composite f ˝ xh1, . . . , hmy has type

Γ, . . . ,Γ Ñ Z. By contrast, the substitution operation in a clone is cartesian: given maps

hi and f as above, the substitution f rh1, . . . , hms has type Γ Ñ Z.

Every multicategory L defines a category L by restricting to linear morphisms. Conversely,

every monoidal category pC,b, Iq canonically defines a multicategory with objects those of

C and multimaps X1, . . . , Xn Ñ Y given by morphisms X1b ¨ ¨ ¨ bXn Ñ Y (for a specified

bracketing of the n-ary tensor product). A natural question is therefore the following: under

what conditions is the category L corresponding to a multicategory monoidal? Hermida

answers this by showing that there exists a 2-equivalence between the 2-category MonCat

of monoidal categories and the 2-category of representable multicategories.

Definition 4.2.4. A representable multicategory L is a multicategory equipped with a

chosen object TnpX1, . . . , Xnq P L and a chosen multimap ρX1, ... ,Xn : X1, . . . , Xn Ñ

TnpX1, . . . , Xnq for every X1, . . . , Xn P L pn P Nq such that

1. Each chosen ρX1, ... ,Xn is representable: for every Y P L, precomposition with ρX1, ... ,Xn

induces an isomorphism LpX1, . . . , Xn;Y q – LpTnpX1, . . . , Xnq, Y q of hom-sets, and

2. The representable arrows are closed under composition. đ

Thus, a multimap ρX‚ is representable if and only if for every h : X1, . . . , Xn Ñ Y

there exists a unique multimap h7 :
ś

npX1, . . . , Xnq Ñ Y such that h7 ˝ ρX1, ... ,Xn “ h.

Remark 4.2.5. It is common to refer to the arrows ρX‚ of the preceding definition as

universal ; we change the terminology slightly because we will imminently define a mul-

ticategorical version of universal arrows in the sense of Chapter 2. The two concepts

are related: the representability condition (1) above is equivalent to requiring that each

LpX1, . . . , Xn;´q : L Ñ Set is representable, which is in turn equivalent to specifying a

universal arrow from the terminal set to this functor (c.f. [Mac98, Chapter III]). đ

We briefly recapitulate Hermida’s construction.

Lemma 4.2.6 ([Her00, Definition 9.6]). For every representable multicategory L, the

associated category L is monoidal.

Proof. The tensor product XbY is T2pX,Y q and the unit I arises from the empty sequence,

as T0pq. The map f b g is defined by the universal property, as the unique linear map filling

the following diagram:

T2pX,Y q T2pX
1, Y 1q

X,Y X 1, Y 1

fbg

ρX,Y

pf,gq

ρX1,Y 1
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The second condition (2) is necessary: it allows one to use the universal property to

check the axioms of a monoidal category involving iterated tensors pAbBq b C (c.f. the

preservation conditions for lifting monoidal structure to a category of algebras [Sea13], in

particular the left-linear classifiers of [FS18]).

Cartesian multicategories. Representability is a universal property that allows us to

construct monoidal structure. To construct cartesian structure, however, one requires more.

In particular, one ought to obtain Lambek’s definition of cartesian multicategory [Lam89,

§4], requiring multimaps πi :
ś

npA1, . . . , Anq Ñ Ai pi “ 1, . . . , nq inducing natural

isomorphisms LpΓ;
ś

npX1, . . . , Xnqq –
śn
i“1 LpΓ;Aiq. Next we shall see how to obtain a

definition equivalent to Lambek’s, but phrased in terms of universal arrows. This will be

the starting point for our comparison between product structure and representability.

Definition 4.2.7. Let F : L Ñ M be a functor of multicategories and X P M. A universal

arrow from F to X is a pair pR, u : FRÑ Xq such that for every h : FA1, . . . , FAn Ñ X

there exists a unique multimap h: : A1, . . . , An Ñ R such that u ˝ pFh:q “ h. đ

Remark 4.2.8. One could define universal arrows slightly more generally, by taking a

universal arrow from F to X to be a sequence of objects R1, . . . , Rn with a universal

multimap FR1, . . . , FRn Ñ X. The definition given seems sufficient for our purposes, so

we do not seek this extra generality. đ

As in the categorical case, we can rephrase the definition of universal arrow as a natural

isomorphism.

Lemma 4.2.9. Let F : L Ñ M be a functor of multicategories and X P M. The following

are equivalent:

1. A specified universal arrow pR, uq from F to X,

2. A choice of objectR P L and an isomorphism LpA1, . . . , An;Rq – MpFA1, . . . , FAn;Xq,

multinatural in the sense that for any f : A1, . . . , An Ñ B the following diagram

commutes:

LpB;Rq MpFB;Xq

LpA1, . . . , An;Rq MpFA1, . . . , FAn;Xq

–

p´q˝xfy p´q˝xFfy

–

Proof. The direction (1)ñ(2) is clear. For the reverse, denote the isomorphism by φA‚ :

LpA1, . . . , An;Rq Ñ MpFA1, . . . , FAn;Xq and its inverse by ψA‚ . We show that u :“

φRpidRq : FRÑ X is a universal arrow by showing that that ψA‚p´q is inverse to φRpidRq ˝

xF p´qy.

First, for any h : FA1, . . . , FAn Ñ X, naturality of φ with respect to the multimap

ψA‚phq : A1, . . . , An Ñ R gives the equation φRpidRq ˝ xFψA‚phqy “ φA‚ψA‚phq “ h.
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Second, let g : A1, . . . , An Ñ R. The naturality of ψ with respect to g entails that

ψA‚pφRpidRq ˝ xFgyq “ ψRφRpidRq ˝ xgy “ g, as required.

The category of multicategories MultiCat has products given as follows. For mul-

ticategories L and M the product L ˆ M has objects pairs pM,Nq P obpLq ˆ obpMq and

hom-sets

pLˆ MqppA1, B1q, . . . , pAn, Bnq; pX,Y qq :“ LpA1, . . . , An;Xq ˆ MpB1, . . . , Bn;Y q

Composition is defined pointwise:

LpA‚;Xq ˆ MpB‚;Y q ˆ
śn
i“1 pLpΓi, Aiq ˆ Mp∆i, Biqq LpΓ‚;Xq ˆ Mp∆‚;Y q

pLpA‚;Xq ˆ
śn
i“1pLpΓi, Aiqq ˆ pMpB‚;Y q ˆ

śn
i“1 Mp∆i, Biqq

–

˝LˆM

˝Lˆ˝M

(4.10)

The product structure is then almost identical to that in Cat. Then for every multicategory

L and n P N there exists a diagonal functor ∆n : L Ñ Lˆn : X ÞÑ pX, . . . ,Xq, and

Definition 4.2.7 provides a natural notion of multicategory with finite products.

Definition 4.2.10. A cartesian multicategory is a multicategory L equipped with a choice

of universal arrow ∆n
ś

npX1, . . . , Xnq Ñ pX1, . . . , Xnq from ∆n to pX1, . . . , Xnq for every

X1, . . . , Xn P L pn P Nq. đ

Applying Lemma 4.2.9, asking for a multicategory to have finite products is equivalent

to asking for a chosen sequence of linear multimaps pπi :
ś

npX1, . . . , Xnq Ñ Xiqi“1, ... ,n,

inducing a multinatural family of isomorphisms

LpΓ;
ś

npX1, . . . , Xnqq – Lˆn
`

pΓ, . . . ,Γq; pX1, . . . , Xnq
˘

“
śn
i“1LpΓ;Xiq (4.11)

for every X1, . . . , Xn P L pn P Nq. One thereby recovers Lambek’s definition of cartesian

products in a multicategory [Lam89, §4].

Cartesian clones. We wish to extend the two definitions we have just seen from multicat-

egories to clones. Thinking of (sorted) clones as cartesian versions of multicategories suggests

the following construction, in which we re-use the notation of Notation 3.1.19 (p. 46).

Construction 4.2.11. Every clone pS,Cq canonically defines a multicategory MC with

• obpMCq :“ S,

• pMCqpX1, . . . , Xn;Y q :“ CpX1, . . . , Xn;Y q

Composition is defined as follows. For every family of multimaps gi : Γi Ñ Yi pi “ 1, . . . , nq

and multimap f : Y1, . . . , Yn Ñ Z we define the composite f ˝ xg1, . . . , gny in MC to be the

substitution f rg1 b ¨ ¨ ¨b gns in C. The identity idX,X P pMCqpX;Xq is the unary projection

pp1q P CpX,Xq, and the axioms follow directly from the three laws of a clone. đ
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Notation 4.2.12. Motivated by the preceding construction, we shall sometimes write idA

for the projection pp1q1 : AÑ A in a clone, and refer to it as the identity on A. đ

It is clear that this construction extends to a faithful functor Mp´q : Clone Ñ MultiCat,

yielding a commutative diagram

Clone MultiCat

Cat
p´q

Mp´q

p´q

(4.12)

in which the downward arrows restrict to unary/linear arrows. We define representability

and products in Clone by applying the definition to the image of Mp´q.

Definition 4.2.13.

1. A representable clone is a clone pS,Cq equipped with a choice of representable structure

on MC.

2. A cartesian clone is a clone pS,Cq equipped with a choice of cartesian structure on

MC. đ

Example 4.2.14. Every category with finite products pC,Πnp´qq defines a clone ClpCq

(recall Example 3.1.7(2) on page 36). This clone is cartesian, with product structure exactly

as in C. đ

A clone may therefore be equipped with two kinds of tensor. In the representability

case, one asks for representable arrows X1, . . . , Xn Ñ TnpX1, . . . , Xnq. In the cartesian

case, one asks for universal arrows
ś

npX1, . . . , Xnq Ñ Xi for i “ 1, . . . , n. In terms of the

internal language, these may be thought of as tupling and projection operations, respectively.

Identifying representable arrows with a tupling operation (an identification we shall make

precise in Corollary 4.2.21), the question then becomes: how does one construct a tupling

operation given only projections, and how does one construct projections given only a

tupling operation?

In the light of Lemma 4.2.9, we can already construct a tupling operation from projections,

and so from cartesian structure. If MC has finite products witnessed by a universal arrow

π “ pπ1, . . . , πnq :
ś

npX1, . . . , Xnq Ñ pX1, . . . , Xnq for each X1, . . . , Xn P S pn P Nq,

then for every sequence of objects Γ one obtains a mapping ψΓ :
śn
i“1pMCqpΓ;Xiq Ñ

pMCq
`

Γ;
ś

npX1, . . . , Xnq
˘

such that the following equations hold for every multimap

h : Γ Ñ
ś

npX1, . . . , Xnq and sequence of multimaps pfi : Γ Ñ Xiqi“1, ... ,n:

ψΓpπ1rhs, . . . , πnrhsq “ h and πirψΓpf1, . . . , fnqs “ fi pi “ 1, . . . , nq (4.13)

Thus, ψΓp´, . . . ,“q provides a ‘tupling’ operation. This is substantiated by the next lemma.
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Definition 4.2.15. Let pS,Cq be a clone. A multimap f : X1, . . . , Xn Ñ Y in C is

invertible or an iso if there exists a family of unary multimaps pgi : Y Ñ Xiqi“1, ... ,n in

C such that f rg1, . . . , gns “ idY and girf s “ ppiqX‚ for i “ 1, . . . , n. If there exists an

invertible multimap f : X1, . . . , Xn Ñ Y we say X1, . . . , Xn and Y are isomorphic, and

write X1, . . . , Xn – Y . đ

A small adaptation of the usual categorical proof shows that inverses in a clone are

unique, in the sense that if f has inverses pg1, . . . , gnq and pg11, . . . , g
1
nq then gi “ g1i for

i “ 1, . . . , n.

Lemma 4.2.16. Let pS,Cq be a cartesian clone. Then, where the n-ary product of

X1, . . . , Xn P S pn P Nq is witnessed by the universal arrow pπ1, . . . , πnq :
ś

npX1, . . . , Xnq Ñ

pX1, . . . , Xnq,

ψX‚pp
p1q
X‚
, . . . , ppnqX‚ qrπ1, . . . , πns “ idś

npX1,...,Xnq

Hence X1, . . . , Xn –
ś

npX1, . . . , Xnq.

Proof. For the first part one uses the two equations of (4.13):

ψX‚pp
p1q
X‚
, . . . , ppnqX‚ qrπ1, . . . , πns “ ψp

ś

nX‚q

´

π‚

”

ψX‚pp
p1q
X‚
, . . . , ppnqX‚ qrπ1, . . . , πns

ı¯

by p4.13q

“ ψp
ś

nX‚q

´

π‚

”

ψX‚pp
p1q
X‚
, . . . , ppnqX‚ q

ı

rπ1, . . . , πns
¯

“ ψp
ś

nX‚q

´

pp‚qX‚rπ1, . . . , πns
¯

by p4.13q

“ ψp
ś

nX‚q
pπ1, . . . , πnq

“ ψp
ś

nX‚q

´

π1

”

idp
ś

nX‚q

ı

, . . . , πn

”

idp
ś

nX‚q

ı¯

“ idp
ś

nX‚q
by p4.13q

Then pπi :
ś

npX1, . . . , Xnq Ñ Xiqi“1,...,n and ψX‚pp
p1q
X‚
, . . . , ppnqX‚ q form the claimed iso-

morphism.

We now turn to examinining how representability (thought of as ‘tupling’) gives rise to

‘projections’. The next lemma is the key construction.

Lemma 4.2.17. For any representable clone pS,Cq and X1, . . . , Xn P S pn P Nq there exist

multimaps πi : TnpX1, . . . , Xnq Ñ Xi pi “ 1, . . . , nq such that

πi ˝ ρX‚ “ ppiqX‚ and ρX‚rπ1, . . . , πns “ idś

X‚

where ρX‚ is the representable arrow.

Proof. By representability, we may define πi :“ pppiqX‚q
7

. The first claim then holds by

assumption. For the second, observing that pρX‚q
7
“ idś

X‚ , it suffices to show that

ρX‚rπ1, . . . , πns rρX‚s “ ρX‚ . But this is straightforward:

ρX‚rπ1, . . . , πns rρX‚s “ ρX‚rπ‚rρX‚ss “ ρX‚

”

pp1q, . . . , ppnq
ı

“ ρX‚
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Another important consequence of Lemma 4.2.17 is that, in the case of clones, repres-

entable arrows are always closed under composition.

Lemma 4.2.18. For any clone pS,Cq, the multicategory MC is representable if and only

if for every X1, . . . , Xn P S pn P Nq there exists a chosen object TnpX1, . . . , Xnq and a

representable multimap ρX‚ : X1, . . . , Xn Ñ TnpX1, . . . , Xnq.

Proof. It suffices to show that, for any clone pS,Cq, the representable multimaps in MC are

closed under composition. Suppose given representable multimaps

ρX‚ : X1, . . . , Xn Ñ TnpX1, . . . , Xnq

ρY‚ : Y1, . . . , Ym Ñ TmpY1, . . . , Ymq

ρpTX‚,TY‚q : TnX‚,TmY‚ Ñ T2pTnX‚,TmY‚q

We want to show that the composite ρpTX‚,TY‚q ˝ xρX‚ , ρY‚y in MC, which is the compos-

ite ρpTX‚,TY‚qrρX‚ b ρY‚s “ ρpTX‚,TY‚q
“

ρX‚
“

pp1q, . . . , ppnq
‰

, ρY‚
“

ppn`1q, . . . , ppn`mq
‰‰

in C, is

representable.

By Lemma 4.2.17, we may define multimaps

πXi : TnpX1, . . . , Xnq Ñ Xi for i “ 1, . . . , n

πYj : TmpY1, . . . , Ymq Ñ Yj for j “ 1, . . . ,m

πX,Y1 : T2pTnX‚,TmY‚q Ñ TnX‚

πX,Y2 : T2pTnX‚,TmY‚q Ñ TmY‚

Then, setting

Zi :“

$

&

%

Xi for i “ 1, . . . , n

Yi´n for i “ n` 1, . . . , n`m

we define πi : T2pTnX‚,TmY‚q Ñ Zi by iterated applications of πi:

πi :“

$

&

%

πXi

”

πX,Y1

ı

for 1 ď i ď n

πYi´n

”

πX,Y2

ı

for n` 1 ď i ď n`m
(4.14)

The rest of the proof revolves around proving the following two equalities in C:

X1, . . . , Xn, Y1, . . . , Ym Zi

TnX‚,TmY‚ T2pTnX‚,TmY‚q

ppiq

rρX‚bρY‚ s

ρpTX‚,TY‚q

πi (4.15)

T2pTnX‚,TmY‚q T2pTnX‚,TmY‚q

X1, . . . , Xn, Y1, . . . , Ym TnX‚,TmY‚

rπ1, ... ,πn`ms

rρX‚bρY‚ s

ρpTX‚,TY‚q (4.16)
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Indeed, if these two diagrams commute, then for any g : X1, . . . , Xn, Y1, . . . , Ym Ñ A one

may define g7 : T2pTnX‚,TmY‚q Ñ A to be the composite grπ1, . . . , πn`ms. It then follows

that that p´q7 is the inverse to precomposing with ρ :“ ρpTX‚,TY‚qrρX‚ b ρY‚s:

grπ1, . . . , πn`ms rρs “ grπ1rρs, . . . , πn`mrρss
p4.15q
“ g

”

pp1q, . . . , ppn`mq
ı

“ g

while, for any h : T2pTnX‚,TmY‚q Ñ A,

hrρs rπ1, . . . , πn`ms
p4.16q
“ h

”

pp1qTpTX‚,TY‚q

ı

“ h

as required.

It therefore remains to establish the commutativity of the two diagrams above. We

compute (4.15) directly. For example, for 1 ď i ď n, unfolding the universal property of

each of the projections gives

πi
“

ρpTX‚,TY‚q
‰

rρX‚ b ρY‚s “ πXi

”

πX,Y1

ı

“

ρpTX‚,TY‚q
‰

rρX‚ b ρY‚s

“ πXi

”

πX,Y1

“

ρpTX‚,TY‚q
‰

ı

rρX‚ b ρY‚s

“ πXi

”

pp1q
pTX‚,TY‚q

ı

rρX‚ b ρY‚s

“ πXi

”

pp1q
pTX‚,TY‚q

rρX‚ b ρY‚s
ı

“ πXi

”

ρX‚

”

pp1q, . . . , ppnq
ıı

“ πXi rρX‚s
”

pp1q, . . . , ppnq
ı

“ ppiq
”

pp1q, . . . , ppnq
ı

“ ppiq

as required. For (4.16), Lemma 4.2.17 entails that

ρX‚rπ1, . . . , πns “ ρX‚

”

πX1

”

πX,Y1

ı

, . . . , πXn

”

πX,Y1

ıı

“ ρX‚
“

πX‚
‰

”

πX,Y1

ı

“ πX,Y1

and hence that

ρpTX‚,TY‚q

”

ρX‚

”

pp‚q
ı

, ρY‚

”

pp‚q
ıı

rπ‚s “ ρpTX‚,TY‚qrρX‚rπ‚s, ρY‚rπ‚ss

“ ρpTX‚,TY‚q

”

πX,Y1 , πX,Y2

ı

“ idTpTX‚,TY‚q

as required.

We now make precise the sense in which the inverse to precomposing with a representable

arrow provides a tupling operation. The product structure on a representable clone is, as

expected, given by the 1-cells constructed in Lemma 4.2.17.



4.2. PRODUCT STRUCTURE FROM REPRESENTABILITY 91

Lemma 4.2.19. For any clone pS,Cq, the following are equivalent:

1. pS,Cq is representable,

2. pS,Cq is cartesian.

Proof. ñ We prove the forward direction first. Suppose ρX‚ : X1, . . . , Xn Ñ TnpX1, . . . , Xnq

is representable; we claim the required universal arrow is given by the sequence of multimaps

pπ1, . . . , πnq : ∆TnpX1, . . . , Xnq Ñ pX1, . . . , Xnq defined in Lemma 4.2.17. To this end,

let pfi : Γ Ñ Xiqi“1, ... ,n in C. We set ψΓpf1, . . . , fnq : Γ Ñ TnpX1, . . . , Xnq to be the

composite ρX‚rf1, . . . , fns.

By Lemma 4.2.17,

πi ˝
`

ψΓpf1, . . . , fnq
˘

“ πirρX‚rf1, . . . , fnss “ ppiqX‚rf1, . . . , fns “ fi

for i “ 1, . . . , n, so it remains to show that ψΓpπ1rhs, . . . , πnrhsq “ h for every h :

Γ Ñ TnpX1, . . . , Xnq. Applying the lemma again,

ψΓpπ1rhs, . . . , πnrhsq “ ρX‚rπ1rhs, . . . , πnrhss “ ρX‚rπ1, . . . , πns rhs “ h

as required.

ð We claim that ρX‚ :“ ψX‚pp
p1q
X‚
, . . . , ppnqX‚ q : X1, . . . , Xn Ñ

ś

npX1, . . . , Xnq is repres-

entable.

To this end, suppose h : X1, . . . , Xn Ñ A. We define h: :
ś

npX1, . . . , Xnq Ñ A to be

the composite hrπ1, . . . , πns. Then

h:rρX‚s “ hrπ1, . . . , πns
”

ψΓppp1qX‚ , . . . , p
pnq
X‚
q

ı

“ h
”

π‚

”

ψΓppp1qX‚ , . . . , p
pnq
X‚
q

ıı

“ h
”

pp1qX‚ , . . . , p
pnq
X‚

ı

“ h

so the existence part of the claim holds. It remains to check the equality pf rρX‚sq
:
“ f for

an arbitrary f :
ś

npX1, . . . , Xnq Ñ A. Examining the equality

pf rρX‚sq
:
“ f rρX‚s rπ1, . . . , πns “ f

”

ψX‚pp
p1q
X‚
, . . . , ppnqX‚ qrπ1, . . . , πns

ı

it suffices to show that ψX‚pp
p1q
X‚
, . . . , ppnqX‚ qrπ1, . . . , πns is the identity. This is Lemma 4.2.16.

We summarise the last two results in the following theorem. The final case is Lemma 4.2.9.
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Theorem 4.2.20. For any clone pS,Cq, the following are equivalent:

1. pS,Cq is representable,

2. For every X1, . . . , Xn P S pn P Nq there exists a choice of object
ś

npX1, . . . , Xnq P S

together with a representable multimap ρX‚ : X1, . . . , Xn Ñ
ś

npX1, . . . , Xnq,

3. pS,Cq is cartesian,

4. For any X1, . . . , Xn P S pn P Nq there exists a chosen object
ś

npX1, . . . , Xnq P S

and an isomorphism pMCq
`

Γ;
ś

npX1, . . . , Xnq
˘

–
śn
i“1pMCqpΓ;Xiq, multinatural in

the sense that for any f : Γ Ñ A the following diagram commutes:

pMCq
`

Γ;
ś

npX1, . . . , Xnq
˘

śn
i“1pMCqpΓ;Xiq

pMCq
`

A;
ś

npX1, . . . , Xnq
˘

śn
i“1pMCqpA;Xiq

–

–

p´q˝xfy p´q˝xfy

In the case of clones, therefore, the two approaches to defining product structure—

Hermida’s representability or Lambek’s natural isomorphisms—actually coincide. We

tie this back to Hermida’s equivalence between monoidal categories and representable

multicategories with the following observation.

Corollary 4.2.21. For any representable clone pS,Cq, the monoidal structure on the

category MC associated to MC is cartesian.

Proof. The required natural isomorphism follows by restricting the isomorphism (4.11) to

linear multimaps. Explicitly, the n-ary product of X1, . . . , Xn is
ś

npX1, . . . , Xnq, and the

projections are πi :
ś

npX1, . . . , Xnq Ñ Xi. The n-ary tupling of maps pfi : AÑ Xiqi“1, ... ,n

is given via the representable arrow ρX‚ for X1, . . . , Xn, as ρX‚rf1, . . . , fns.

It is reasonable to suggest that one could refine Hermida’s 2-equivalence between

monoidal categories and representable multicategories to a 2-equivalence between cartesian

categories and representable clones; the calculations required would take us beyond the

theory we shall actually need, so we do not pursue the point here. Instead we turn to the

syntactic implications of the theory just developed.

4.2.2 From cartesian clones to type theory

From cartesian clones to cartesian categories. In Chapter 3 we saw that the free

category on a graph could be constructed by restricting the free clone on that graph to its

unary operations. This fact extends to cartesian clones and cartesian categories. To show

this, we need to enrich our notion of signature to include product structure. The definition

was already hinted at in Example 3.1.8.
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Definition 4.2.22. A Λˆ-signature S “ pB,Gq consists of

1. A set of base types B,

2. A multigraph G with nodes generated by the grammar

A1, . . . , An ::“ B |
ś

npA1, . . . , Anq pB P B, n P Nq (4.17)

If the graph G is a 2-graph we call the signature unary. A homomorphism of Λˆ-signatures

h : S Ñ S 1 is a multigraph homomorphism h : G Ñ G1 which respects the product structure

in the sense that hp
ś

npA1, . . . , Anqq “
ś

n phA1, . . . , hAnq. We denote the category

of Λˆ-signatures and their homomorphisms by Λˆ-sig, and the full subcategory of unary

Λˆ-signatures by Λˆ-sig
ˇ

ˇ

1
. đ

Notation 4.2.23. For any Λˆ-signature S “ pB,Gq we write rB for the set generated from

B by the grammar (4.17) (equivalently, the set G0 of nodes in G). In particular, when the

signature is just a set (i.e. the graph G has no edges) we denote the signature S “ pB,Sq
simply by rB. đ

The following lemma mirrors the situation for graphs and 2-multigraphs.

Lemma 4.2.24. The embedding ι : Λˆ-sig
ˇ

ˇ

1
ãÑ Λˆ-sig has a right adjoint.

Proof. Define the functor rL : Λˆ-sig Ñ Λˆ-sig
ˇ

ˇ

1
to be the restriction of the corresponding

functor L : MGrph Ñ Grph. Thus, rL restricts a signature pB,Gq to the signature with base

types B and multigraph LG containing only edges of the form X Ñ Y . This is a right adjoint

to the given inclusion because L is right adjoint to the inclusion Grph ãÑ MGrph.

Every cartesian category pC,Πnp´qq has an underlying unary Λˆ-signature with edges

X Ñ Y given by morphisms X Ñ Y in C (c.f. [Cro94, Theorem 4.9.2]). Similarly, every

cartesian clone pS,C,Πnp´qq has an underlying Λˆ-signature with the edges given by mul-

timaps. We wish to construct the free cartesian clone over such a signature. Theorem 4.2.20

guarantees that it is sufficient to add a representable arrow A1, . . . , An Ñ
ś

npA1, . . . , Anq

for every sequence of types A1, . . . , An pn P Nq. For the construction we follow the forward

direction of the proof of Lemma 4.2.19.
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Construction 4.2.25. For any Λˆ-signature S “ pB,Gq, define a clone pG0,FClˆpSqq with

sorts generated from B by the rules

A1, . . . , An ::“ B |
ś

npA1, . . . , Anq pB P B, n P Nq

as the following deductive system:

c P GpA1, . . . , An;Bq

c P FClˆpSqpA1, . . . , An;Bq

p1 ď i ď nq

ppiqA1, ... ,An
P FClˆpSqpA1, . . . , An;Aiq

f P FClˆpSqpA1, . . . , An;Bq
`

gi P FClˆpSqpX‚;Aiq
˘

i“1,...,n

f rg1, . . . , gns P FClˆpSqpX‚;Bq

tupA‚ P FClˆpSq pA1, . . . , An;
ś

npA1, . . . , Anqq

p1 ď i ď nq

projpiqA‚ P FClˆpSq p
ś

npA1, . . . , Anq;Aiq

subject to an equational theory requiring

• The clone laws hold with projection ppiqA‚ and substitution f rg1, . . . , gns,

• projpiqA‚
“

tupA‚
‰

” ppiqA‚ for i “ 1, . . . , n,

• tupA‚
”

projpnqA‚ , . . . , projpnqA‚
ı

” pp1q
p
ś

n A‚q
. đ

The clone FClˆpSq is cartesian because it is representable. Indeed, for anyA1, . . . , An, B P

G0, the equational laws ensure that the map p´q˝tupA‚ has inverse p´q
”

projpnqA‚ , . . . , projpnqA‚
ı

,

giving rise to the required natural isomorphism FClˆpSqp
ś

npA1, . . . , Anq;Bq – FClˆpSqpA1, . . . , An;Bq.

In order to state that this construction yields the free cartesian clone, we need to define

a notion of product-preserving clone homomorphism. This is the clone-theoretic translation

of Definition 2.2.11, requiring that the universal arrow is preserved.

Definition 4.2.26. A cartesian clone homomorphism h : pS,C,Πnp´qq Ñ pT,D,Πnp´qq is a

clone homomorphism h : pS,Cq Ñ pT,Dq such that the canonical map ψś

A‚phπ1, . . . , hπnq :

hp
ś

npA1, . . . , Anqq Ñ
ś

n phA1, . . . , Anq is invertible for every A1, . . . , An P S pn P Nq.

We call h strict if

hp
ś

npA1, . . . , Anqq “
ś

n phA1, . . . , hAnq

hpπA‚i q “
´

ś

nphA1, . . . , hAnq
πi
ÝÑ hpAiq

¯

pi “ 1, . . . , nq

for every A1, . . . , An P S pn P Nq. đ

Lemma 4.2.27. For any cartesian clone pT,D,Πnp´qq, Λˆ-signature S and Λˆ-signature

homomorphism h : S Ñ D, there exists a unique strict cartesian clone homomorphism

h# : FClˆpSq Ñ D such that h# ˝ ι “ h, for ι : S ãÑ FClˆpSq the inclusion.
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Proof. We define h# by induction. The requirement that h# ˝ ι “ h completely determines

the action of h# on objects, and also entails that h#pcq “ hpcq on constants. On multimaps,

the clone homomorphism axioms require that we set

h#pppiqA‚q :“ ppiq
h#A‚

h#pf rg1, . . . , gnsq :“ h#pfq
”

h#pg1q, . . . , h
#pgnq

ı

The definition on projpiq is determined by the hypothesis. Finally, on tup we set h#
`

tupA‚
˘

:“

ρh#pA‚q, so that h# sends tupA‚ to the representable arrow on A1, . . . , An (which exists

by Lemma 4.2.19). For uniqueness, it remains to show that the action of h# on tup is

determined by the hypotheses. For this, consider

ρph#A‚q “ ρph#A‚q

”

pp1q
h#pA‚q

, . . . , ppnq
h#pA‚q

ı

“ ρph#A‚q

”

h#ppp1qA‚ q, . . . , h
#pppnqA‚ q

ı

“ ρph#A‚q

”

h#pprojp1qrρA‚sq, . . . , h#pprojpnqrρA‚sq
ı

by Lemma 4.2.17

“ ρph#A‚q

”

h#pprojp1qq
”

h#pρA‚q
ı

, . . . , h#pprojpnqq
”

h#pρA‚q
ıı

“ ρph#A‚q

”

π1

”

h#pρA‚q
ı

, . . . , πn

”

h#pρA‚q
ıı

by cartesian

“ ρph#A‚qrπ1, . . . , πns
”

h#pρA‚q
ı

by Lemma 4.2.17

“ pp1q
p
ś

n A‚q

”

h#pρA‚q
ı

“ h#pρA‚q

Hence, the action of any clone homomorphism satisfying the two hypotheses is completely

determined, and h# is unique.

The term calculus corresponding to the deductive system of Construction 4.2.25 is

specified by the following rules:

1. For every sequence of types A1, . . . , An pn P Nq, there exists a type
ś

npA1, . . . , Anq,

2. For every context x1 : A1, . . . , xn : An there exists a multimap with components

A1, . . . , An Ñ
ś

npA1, . . . , Anq; that is, a rule

x1 : A1, . . . , xn : An $ xx1, . . . , xny :
ś

npA1, . . . , Anq
(4.18)

3. An inverse to precomposing with xx1, . . . , xny; following the proof of the forward

direction of Lemma 4.2.19, we require multimaps

p1 ď i ď nq
p :

ś

npA1, . . . , Anq $ πippq : Ai

such that the equations of Lemma 4.2.17 hold, i.e. that the equations

πipxx1, . . . , xnyq ” xi pi “ 1, . . . , nq and p ” xπ1ppq, . . . , πnppqy

obtained by substitution both hold for any x1 : A1, . . . , xn : An and p :
ś

npA1, . . . , Anq.
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Thus, we recover the laws for products in the simply-typed lambda calculus, restricted to

variables, from purely clone-theoretic reasoning. The usual rules, defined on all terms, also

arise from our abstract considerations. Inspecting the proof of Lemma 4.2.19, one sees that

for every pti : Γ Ñ Xiqi“1, ... ,n the corresponding multimap Γ Ñ
ś

npX1, . . . , Xnq is given

by the composite ρX‚rt1, . . . , tns. Translating this into the syntax and using the standard

equality xx1, . . . , xny rti{xis “ xt1, . . . , tny defining the meta-operation of substitution, one

arrives at the rule

pΓ $ ti : Aiqi“1,...,n

Γ $ xt1, . . . , tny :
ś

npA1, . . . , Anq

which, in the presence of substitution, is equivalent modulo admissibility to (4.18). This is

subject to the two equations πi pxt1, . . . , tnyq ” ti pi “ 1, . . . , nq and t ” xπ1ptq, . . . , πnptqy.

We therefore recover a presentation of products—modulo βη—in the simply-typed

lambda calculus. More precisely, it is straightforward to see that for any Λˆ-signature S
the clone FClˆpSq of Construction 4.2.25 is canonically isomorphic to the syntactic clone

CΛ̂ pSq of the simply-typed lambda calculus with products but not exponentials (recall

Example 3.1.8 on page 37). Lemma 4.2.27 then implies that ΛˆpSq is the internal language

of the free cartesian clone on S.

We are ultimately interested in the internal language of the free cartesian category on a

(unary) signature. For this we need to show that the cartesian category CΛ̂ pSq, obtained

by restricting CΛ̂ pSq to unary morphisms, is the free cartesian category on S. This is the

content of the next lemma, in which we call a cartesian functor strict if it strictly preserves

the product-forming operation and each projection. We write CartClone and CartCat for

the categories of cartesian clones and cartesian categories with their strict morphisms.

As a technical convenience—in order to obtain a strict universal property—we shall

assume that all the cartesian categories (resp. cartesian clones) under consideration have

unary products given in the canonical way: for every object A the unary product
ś

1pAq is

exactly A (recall from Remark 4.1.3 that this is a standing assumption for fp-bicategories).

Lemma 4.2.28. The functor p´q : CartClone Ñ CartCat restricting a cartesian clone to

its nucleus has a left adjoint.

Proof. We show that for any cartesian category pC,Πnp´qq, cartesian clone pT,D,Πnp´qq

and strict cartesian functor F : C Ñ D there exists a cartesian clone PC and a strict

cartesian clone homomorphism F# : PC Ñ D, unique such that F# “ F .

Define PC as follows. The sorts are the objects of C and for hom-sets we take

pPCqpX1, . . . , Xn;Y q :“ CpX1 ˆ ¨ ¨ ¨ ˆXn;Y q

The substitution tru1, . . . , uns is defined to be the composite t ˝ xu1, . . . , uny and the

projections ppiqX‚ are the projections πi :
ś

npX1, . . . , Xnq Ñ Xi for i “ 1, . . . , n. Since we

assume the unary product structure on C is the identity, its cartesian structure immediately

defines a cartesian structure on PC. Note in particular that PC has the property that

pPCqpX1, . . . , Xn;Y q “ pPCqp
ś

npX1, . . . , Xnq;Y q.
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Now, PC is the cartesian category with objects those of C and hom-sets of form

Cp
ś

1pXq, Y q. So PC “ C. We therefore take the unit to be ηC :“ idC.

Next suppose that F : C Ñ D is a strict cartesian functor. The functor F# is exactly F

on objects, while for a multimap t : X1, . . . , Xn Ñ Y in PC we define

F#ptq :“
`

FX1, . . . , FXn
ψFX‚ ppp1q, ... ,ppnqq
ÝÝÝÝÝÝÝÝÝÝÝÝÑ

śn
i“1FXi “ F p

śn
i“1Xiq

Ft
ÝÑ FY

˘

By the assumption that unary products are the identity, F#puq “ F puq for every unary

morphism u : X Ñ Y . In particular, this holds for the projections πi, so F# is a strict

cartesian clone homomorphism.

Finally, suppose that G : PC Ñ D is any strict cartesian clone homomorphism satisfying

G “ F . Since obPC “ obC we must have FX “ GX on objects. On arrows, note first that

G preserves the tupling operation:

GpψX‚ppp1q, . . . , ppnqqq

“ Idś

nGX‚
rGpψX‚ppp1q, . . . , ppnqqqs

“ ψGX‚ppp1q, . . . , ppnqqrπ1, . . . , πns
”

GpψX‚ppp1q, . . . , ppnqqq
ı

by Lemma (4.2.16)

“ ψGX‚ppp1q, . . . , ppnqqrGπ1, . . . , Gπns
”

GpψX‚ppp1q, . . . , ppnqqq
ı

by strict preservation

“ ψGX‚ppp1q, . . . , ppnqq
”

Gpπ‚rψX‚ppp1q, . . . , ppnqqsq
ı

“ ψGX‚ppp1q, . . . , ppnqq
”

Gppp1qq, . . . , Gpppnqq
ı

by equation (4.13)

“ ψGX‚ppp1q, . . . , ppnqq

It follows that, for any t : X1, . . . , Xn Ñ Y in PC,

F#ptq “ pFtqrψFX‚ppp1q, . . . , ppnqqs

“ pGtqrψGX‚ppp1q, . . . , ppnqqs

“ pGtqrψGX‚ppp1q, . . . , ppnqqs

“ GptrψX‚ppp1q, . . . , p
pnq
q
sq

“ Gpt ˝ xπ1, . . . , πnyq

“ Gt

where the penultimate equality uses the fact that the cartesian structure of the clone PC is

inherited from that of the category C. Hence G “ F#, as required.

With this lemma in hand, one obtains a diagram restricting (3.1) (p. 39) to the cartesian

setting; the construction of the free cartesian category FCatˆpSq on a unary Λˆps-signature S
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is standard (c.f. the construction of the free cartesian closed category in [Cro94, Chapter 4]):

CartClone

Λˆ-sig CartCat

Λˆ-sig
ˇ

ˇ

1

p´qforget

%

FClˆp´q

rL

%P

forget

%

FCatˆp´q

%

(4.19)

Moreover, the outer diagram commutes and, as we observed in the proof of the preceding

lemma, p´q ˝ P “ idCartCat. One thereby obtains the following chain of natural isomorph-

isms (c.f. equation (3.2)):

CartCatpFCatˆpSq,Cq “ CartCat
´

PpFCatˆpSqq,C
¯

– CartCat
´

FCl p̂ιSqq,C
¯

(4.20)

Hence, just as it was sufficient to construct an internal language for (bi)clones to describe

(bi)categories, so it is sufficient to construct an internal language for cartesian clones—namely

the simply-typed lambda calculus with just products—to describe cartesian categories.

Our aim in the next section is to reverse this process: we shall lift the theory just

presented to the bicategorical setting, and use it to extract a principled construction of the

type theory Λˆps with finite products.

4.2.3 Cartesian biclones and representability

Representable bi-multicategories. Our first step is to bicategorify the definition of

multicategory. Multicategories can be defined in any monoidal category (e.g. [Yau16,

Definition 11.2.1]); taking the definition in Cat with the product monoidal structure and

weakening the equalities to isomorphisms suggests the following definition (c.f. also the

definition of cartesian 2-multicategory [LSR17]).

Definition 4.2.29. A bi-multicategory M consists of the following data:

• A class obpMq of objects,

• For every X1, . . . , Xn, Y P obpMq pn P Nq a hom-category pMpX1, . . . , Xn;Y q, ‚, idq

consisting of multimaps or 1-cells f : X1, . . . , Xn Ñ Y and 2-cells τ : f ñ f 1, subject

to a vertical composition operation,

• For every X P obpMq an identity functor IdX : 1 ÑMpX;Xq,

• For every family of sequences Γ1, . . . ,Γn and objects Y1, . . . , Yn, Z pn P Nq a horizontal

composition functor :

˝Γ‚;Y‚;Z :MpY1, . . . , Yn;Zq ˆ
śn
i“1MpΓi;Yiq ÑMpΓ1, . . . ,Γn;Zq

We denote the composition ˝Γ‚;Y‚;Z

`

f, pg1, . . . , gnq
˘

by f ˝ xg1, . . . , gny,
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• Natural families of invertible 2-cells

af ;g‚;h‚ : pf ˝ xg‚yq ˝ xh
p1q
1 , . . . , hp1qm1

, . . . , h
pnq
1 , . . . , hpnqmny ñ f ˝ xg1 ˝ xh

p1q
‚ y, . . . , gn ˝ xh

pnq
‚ yy

rf : f ñ f ˝ xIdY1 , . . . , IdYny

lf : IdZ ˝ xfy ñ f

for all f : Y1, . . . , Yn Ñ Z, pgi : X
piq
1 , . . . , X

piq
mn Ñ Yiqi“1, ... ,n and ph

piq
j : ∆

piq
j Ñ X

piq
j qj“1, ... ,mi

i“1, ... ,n
.

This data is subject to a triangle law and a pentagon law:

f ˝ xg1, . . . , gny pf ˝ xId, . . . , Idyq ˝ xg1, . . . , gny

f ˝ xg1, . . . , gny f ˝ xId ˝ xg1, . . . , gny, . . . , Id ˝ xg1, . . . , gnyy

rf˝xg1, ... ,gny

apf ;IdY‚
;g‚q

f˝xlg1 , ... ,lgny

`

pf ˝ xg‚yq ˝ xh‚y
˘

˝ xi‚y pf ˝ xg‚yq ˝ xh‚ ˝ xi‚yy

`

f ˝ xg‚ ˝ xh‚yy
˘

˝ xi‚y f ˝ xpg‚ ˝ xh‚yq ˝ xi‚yy f ˝ xg‚ ˝ xh‚ ˝ xi‚yyy

apf˝xg‚y;h‚;i‚q

apf ;g‚;i‚q˝xi‚y apf ;g‚;h‚˝xi‚yq

apf ;g‚˝xh‚y;i‚q
f˝xapg1;h‚;i‚q, ... ,apgn;h‚;i‚qy

A multimap (resp. 2-cell) of form f : X Ñ Y (resp. τ : f ñ f 1 : X Ñ Y ) is called linear. đ

Notation 4.2.30. Note that, just as for clones and multicategories, we use square brackets

to denote biclone substitution and angle brackets to denote bi-multicategory composi-

tion (c.f. Notation 4.2.2). đ

Remark 4.2.31. It is natural to conjecture that a construction similar to Construc-

tion 3.1.16 would enable one to construct the free bi-multicategory on a 2-multigraph

and hence a linear version of Λbicl
ps . Then the argument of Section 3.3 should readily extend

to a coherence theorem for bi-multicategories. đ

Examples of bi-multicategories arise naturally, mirroring the 1-categorical situation.

Every bi-multicategoryM gives rise to a bicategoryM by restricting to the linear multimaps

and their 2-cells
`

c.f. Example 3.1.12(3)
˘

, and—by the following lemma—every monoidal

bicategory gives rise to a bi-multicategory (c.f. [Her00, Definition 9.2]).

Lemma 4.2.32. Every monoidal bicategory pB,b, Iq induces a bi-multicategory.

Proof. By the coherence theorem for tricategories [GPS95], we may assume without loss of

generality that the monoidal bicategory is a Gray monoid, i.e. a monoid in the monoidal

category Gray (see e.g. [Gur13, Chapter 3] and [Hou07, Definition 3.8]). Since Gray

monoids also satisfy a coherence theorem, we may assume that the underlying bicategory

B is a 2-category, and that any pair of composites of the structural equivalences aA,B,C :

pAbBq b C Ñ Ab pB b Cq, lA : I bAÑ A and rA : Ab I Ñ A are related by a unique

isomorphism (see [Gur06, Theorem 10.4] and [Hou07, Theorem 4.1]).

The bi-multicategory
ş

B has objects those of B and hom-categories p
ş

BqpX1, . . . , Xn;Y q :“

BpX1b¨ ¨ ¨bXn, Y q, where we specify the left-most bracketing
`

ppX1bX2qbX3qb¨ ¨ ¨
˘

bXn.
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For sequences of objects Γi :“ pA
piq
j qj“1, ... ,mipi “ 1, . . . , nq and multimaps pgi : Γi Ñ Xiqi“1, ... ,n

and f : X1 b ¨ ¨ ¨ bXn Ñ Y , the composite f ˝ xg1, . . . , gny is defined to be

A
p1q
1 b ¨ ¨ ¨ bA

piq
1 b ¨ ¨ ¨ bApiqmi b ¨ ¨ ¨ bA

pnq
1 b ¨ ¨ ¨ bApnqmn

»
ÝÑ

n
â

i“1

Γi

Ân
i“1 gi

ÝÝÝÝÝÑ X1b ¨ ¨ ¨ bXn
f
ÝÑ Y

where the equivalence is the canonical such. By the coherence theorem for Gray monoids,

there is a unique choice of isomorphism for each of the structural 2-cells, and these must

satisfy the triangle and pentagon laws.

For morphisms of bi-multicategories we borrow the terminology from Bicat. Thus,

bi-multicategories are related by pseudofunctors, transformations and modifications.

Definition 4.2.33.

1. A pseudofunctor F :MÑM1 of bi-multicategories consists of:

a) A map F : obpMq Ñ obpM1q on objects,

b) A functor FX‚;Y : MpX1, . . . , Xn;Y q Ñ M1pFX1, . . . , FXn;FY q for every

sequence of objects X1, . . . , Xn, Y P obpMq pn P Nq,

c) An invertible 2-cell ψX : IdFX ñ F IdX for every X P obpMq,

d) An invertible 2-cell φf ;g‚ : F pfq ˝ xFg1, . . . , Fgny ñ F pf ˝ xg1, . . . , gnyq for

every f : X1, . . . , Xn Ñ Y pn P Nq and pgi : Γi Ñ Xiqi“1, ... ,n in M, natural in

the sense of Definition 4.2.3(2).

This data is subject to the following three coherence laws:

IdFZ ˝ xFfy Ff

F pIdZq ˝ xFfy F
`

IdZ ˝ xfy
˘

lFf

ψZ˝xFfy

φpIdZ ;fq

F lf

Ff F pf ˝ xIdY1
, . . . , IdYnyq

F pfq ˝ xIdFY1 , . . . , IdFYny F pfq ˝ xF IdY1 , . . . , F IdYny

F rf

rFf

F pfq˝xψY1
, ... ,ψYny

φpf;IdFY‚
q

pFf ˝ xFg‚yq ˝ xFh‚y F pfq ˝
A

Fg1 ˝ xFh
p1q
‚ y, . . . , Fgn ˝ xFh

pnq
‚ y

E

F pf ˝ xg‚yq ˝ xFh‚y Ff ˝
A

F
`

g1 ˝ xh
p1q
‚ y

˘

, . . . , F
`

gn ˝ xh
pnq
‚ y

˘

E

F ppf ˝ xg‚yq ˝ xh‚yq F
´

f ˝
A

g1 ˝ xh
p1q
‚ y, . . . , gn ˝ xh

pnq
‚ y

E¯

apFf ;Fg‚;Fh‚q

φpf ;g‚q˝xFh‚y F pfq˝xφpg1;h‚q, ... ,φpgn;h‚qy

φpf˝xg‚y;h‚q
φ
pf ;g‚˝xh

p‚q
‚ yq

Fapf ;g‚;h‚q
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2. A transformation pα, αq : F ñ F 1 between pseudofunctors F, F 1 : M Ñ M of

bi-multicategories consists of

a) A linear multimap αX : FX Ñ F 1X for every X PM,

b) A 2-cell αf : αZ ˝ xFfy ñ Gf ˝ xαY1 , . . . , αYny for every f : Y1, . . . , Yn Ñ Z in

M, natural in f in the sense of Definition 4.2.3(2).

This data is subject to the following associativity and unit laws for every f :

Y1, . . . , Yn Ñ Z and pgi : Γi Ñ Yiqi“1, ... ,n in M:

IdGY ˝ xαY y GIdY ˝ xαY y

αY αY ˝ xIdFY y αY ˝ xF IdY y

lαY

ψY ˝xαY y

rαY αY ˝xψY y

αIdY

pαY ˝ xFfyq ˝ xFg‚y αY ˝ xpF pfq ˝ xFg‚yqy αY ˝ xF pf ˝ xg‚yqy

pGpfq ˝ xαY1
, . . . , αYnyq ˝ xFg‚y

Gpfq ˝ xαY1
˝ xFg1y, . . . , αYn ˝ xFgnyy

Gpfq ˝ xGg1 ˝ xαΓ1y, . . . , Ggn ˝ xαΓnyy

pGpfq ˝ xGg1, . . . , Ggnyq ˝ xα‚y G
`

f ˝ xg‚y
˘

˝ xα‚y

apαY ;Ff;Fg‚q

αf˝xFg‚y

αY ˝xφpf;g‚ qy

αf˝xg‚y

apGf;αY‚
;Fg‚q

Gpfq˝xαg1 , ... ,αgny

a´1
pGf;Gg‚;α‚q

φpf;g‚q˝xα‚y

Note that, where Γi :“ A
piq
1 , . . . , A

piq
mi , we write αΓi for the sequence α

A
piq
1
, . . . , α

A
piq
mi

.

3. A modification Ξ : pα, αq Ñ pβ, βq between transformations pα, αq, pβ, βq : F ñ F 1 is

a family of 2-cells ΞX : αX ñ βX such that the following diagram commutes for every

f : Y1, . . . , Yn Ñ Z:

αZ ˝ xFfy βZ ˝ xFfy

Gpfq ˝ xαY1 , . . . , αYny Gpfq ˝ xβY1 , . . . , βYny

ΞZ˝xFfy

αf βf

Gpfq˝xΞY1
, ... ,ΞYny

đ

One would expect that bi-multicategories, pseudofunctors, transformations and modific-

ations organise themselves into a tricategory; we do not pursue such considerations here.

Instead, we lift Hermida’s notion of representability to bi-multicategories. As usual, it is

convenient to require as much as possible of the definition to be data.
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Definition 4.2.34. A representable bi-multicategory pM,Tnq consists of the following data:

1. For every X1, . . . , Xn P M pn P Nq, a chosen object TnpX1, . . . , Xnq P M and

chosen birepresentable multimap ρX‚ : X1, . . . , Xn Ñ TnpX1, . . . , Xnq, such that the

birepresentable multimaps are closed under composition,

2. For every A,X1, . . . , Xn PM pn P Nq, an adjoint equivalence

MpTnpX1, . . . , Xnq;Aq MpX1, . . . , Xn;Aq

p´q˝xρX‚y

%

»

ψX‚

specified by a choice of universal arrow εX‚ . đ

The birepresentability of ρX‚ entails the following. For every f : X1, . . . , Xn Ñ A we

require a choice of multimap ψX‚pfq : TnpX1, . . . , Xnq Ñ A and 2-cell εX‚;f : ψX‚pfq ˝

xρX‚y ñ f . This 2-cell is universal in the sense that for any g : TnpX1, . . . , Xnq Ñ A and

σ : g ˝ xρX‚y ñ f there exists a unique 2-cell σ: : g ñ ψX‚pfq such that

g ˝ xρX‚y ψX‚pfq ˝ xρX‚y

f

σ:˝xρX‚y

σ εX‚;f

(4.21)

Remark 4.2.35. Hermida’s construction suggests that every representable bi-multicategory

ought to induce a monoidal bicategory, and indeed that there exists a triequivalence between

representable bi-multicategories and monoidal bicategories. Here we shall restrict ourselves

to proving that every representable biclone induces an fp-bicategory: a considerably easier

task, as one only needs to check a universal property, rather than many coherence axioms. đ

Following the 1-categorical template of Section 4.2.1, we next examine the construction

of finite products in a bi-multicategory. To avoid the double prefix in ‘fp-bi-multicategories’

we refer to such objects as ‘cartesian bi-multicategories’.

Cartesian bi-multicategories. Once again, we translate between the categorical and

bicategorical settings by replacing universal arrows with biuniversal arrows.

Definition 4.2.36. Let F :MÑM1 be a pseudofunctor of bi-multicategories and X PM1.

A biuniversal arrow pR, uq from F to X consists of

1. An object R PM,

2. A linear multimap u : FRÑ X,

3. For every A PM, a chosen adjoint equivalence
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MpA1, . . . , An;Rq M1pFA1, . . . , FAn;Xq

u˝xF p´qy

%

»

ψA‚

specified by a choice of universal arrow εh : u ˝ xFψA‚phqy ñ h : FA1, . . . , FAn Ñ X

(c.f. Definition 2.2.2). đ

We translate this into a ‘global’ definition in the by-now-familiar way.

Lemma 4.2.37. For any pseudofunctor of bi-multicategories F :MÑM1 and X PM1,

the following are equivalent:

1. A choice of biuniversal arrow from F to X,

2. Chosen adjoint equivalences κA‚ :MpA1, . . . , An;Rq ÔM1pFA1, . . . , FAn;Xq : δA‚

for A1, . . . , An PMpn P Nq, specified by a choice of universal arrow and pseudonatural

in the sense that for every f : A1, . . . , An Ñ R and pgi : Γi Ñ Aiqi“1, ... ,n there

exists an invertible 2-cell νf ;g‚ : κA‚pfq ˝ xFg1, . . . , Fgny ñ κA‚ pf ˝ xg1, . . . , gnyq,

multinatural in f, g1, . . . , gn and satisfying

κA‚pfq κA‚ pf ˝ xIdA‚yq

κA‚pfq ˝ xIdA‚y κA‚pfq ˝ xF IdA‚y

κA‚ prf q

rκA‚ pfq

κA‚ pfq˝xψ‚y

pνf ;IdA‚
q

(4.22)

pκA‚pfq ˝ xFg‚yq ˝ xFh‚y κA‚pfq ˝
A

Fg1 ˝ xFh
p1q
‚ y, . . . , Fgn ˝ xFh

pnq
‚ y

E

κΓ‚pf ˝ xg‚yq ˝ xFh‚y κA‚pfq ˝
A

F
`

g1 ˝ xh
p1q
‚ y

˘

, . . . , F
`

gn ˝ xh
pnq
‚ y

˘

E

κ∆‚ppf ˝ xg‚yq ˝ xh‚yq κ∆‚

´

f ˝
A

g1 ˝ xh
p1q
‚ y, . . . , gn ˝ xh

pnq
‚ y

E¯

νpg;f‚q˝xFh‚y

apκA‚ pfq;Fg‚;Fh‚q

κA‚ pfq˝xφpg1;h‚q, ... ,φpgn;h‚qy

νpf˝xg‚y;hq νpf ;g‚˝xh‚yq

κ∆‚ papf ;g‚;h‚qq

(4.23)

for Γi :“ X
piq
1 , . . . , X

piq
mi and ph

piq
j : ∆

piq
j Ñ X

piq
j qj“1, ... ,mi

i“1,...,n
.

Proof. (1)ñ(2) By biuniversality, u ˝ xF p´qy is part of an adjoint equivalence for every

A1, . . . , An P M pn P Nq, so it remains to check pseudonaturality. Taking κA‚ to be

u˝xF p´qy, we are required to provide 2-cells νf ;g‚ of type pu˝xFfyq˝xFg1, . . . , Fgny ñ u˝

xF
`

f˝xg1, . . . , gny
˘

y, for which we take
`

u˝xφf ;g‚y
˘

‚ au;Ff ;Fg‚ . The naturality condition and

two axioms (4.22) and (4.23) then follow directly from the coherence laws of a pseudofunctor.
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(2)ñ(1) This direction is a little more delicate, but we can follow the template provided

by Lemma 4.2.9. Let us first make explicit the content of the adjoint equivalence

κA‚ :MpA1, . . . , An;Rq ÔM1pFA1, . . . , FAn;Xq : δA‚

Choosing a universal arrow entails that for every f : FA1, . . . , FAn Ñ X there exists

a multimap δA‚pfq : A1, . . . , An Ñ R and a 2-cell δf : κA‚δA‚pfq ñ f , universal in the

sense that for any g : A1, . . . , An Ñ R and σ : κA‚pgq ñ f there exists a unique 2-cell

σ7 : g ñ δA‚pfq such that

κA‚pgq κA‚δA‚pfq

f

σ

κA‚ pσ
7q

δf

(4.24)

We claim that u :“ κRpIdRq : FRÑ X is biuniversal. Thus, for every f : FA1, . . . , FAn Ñ

X we need to provide an arrow f : A1, . . . An Ñ R and a universal 2-cell εA‚;f : u˝xFfy ñ f .

For the arrow we take f :“ δA‚pfq. For the 2-cell we make use of the naturality condition

to define εA‚;f as the invertible composite

u ˝ xFδA‚pfqy f

κRpIdRq ˝ xFδA‚pfqy κA‚ pIdR ˝ xδA‚pfqyq κA‚δA‚pfq

εA‚;f

νpIdR;δA‚
pfqq κA‚ plδA‚ pfqq

δf

To establish universality, let g : A1, . . . , An Ñ R be a multimap and γ : u ˝ xFgy ñ f be

any 2-cell. We need to show there exists a unique 2-cell γ: : g ñ f such that

u ˝ xFgy u ˝ xFfy

f

u˝xFγ:y

γ εA‚;f

(4.25)

By the universal property (4.24), to define γ: : g ñ f “ δA‚pfq it suffices to define a 2-cell

κA‚pgq ñ f , for which we take

αγ,f,g :“ κA‚pgq
κA‚ pl

´1
g q

ùùùùùñ κA‚pIdR ˝ xgyq
ν´1
IdR;g

ùùùñ κA‚pIdRq ˝ xFgy
γ
ùñ f

We define γ: :“ pαγ,f,gq
7. That this fills (4.25) is an easy check using the definition and

naturality of ν. For uniqueness, suppose σ : g ñ f “ δA‚pfq also fills (4.25). By the

universal property defining γ: it suffices to show that σ is the unique 2-cell corresponding

to αγ,f,g via (4.24). This follows from the naturality of ν and l and the definition of αγ,f,g.

This completes the construction of an adjunctionMpA1, . . . , An;Rq ÔM1pFA1, . . . , FAn;Xq;

to show this is an adjoint equivalence, we need to show the unit is also invertible. But

the unit is given by applying the p´q: operation to the identity, i.e. by applying the p´q7

operation to an invertible 2-cell. This is invertible by Lemma 2.2.8.
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The definition of product of multicategories lifts straightforwardly to bi-multicategories.

For bi-multicategoriesM andM1, the bi-multicategoryMˆM1 has objects pairs pX,X 1q P

obpMq ˆ obpM1q and composition as in (4.10) on page 86. The structural isomorphisms are

given pointwise. Then there exists a canonical diagonal pseudofunctor ∆n :MÑMˆn for

every bi-multicategory M and n P N. This suggests the following definition.

Definition 4.2.38. A cartesian bi-multicategory pM,Πnp´qq consists of a bi-multicategory

M equipped with the following data for every X1, . . . , Xn PM pn P Nq:

1. A chosen object
ś

npX1, . . . , Xnq,

2. A choice of biuniversal arrow π “ pπ1, . . . , πnq : ∆np
ś

npX1, . . . , Xnqq Ñ pX1, . . . , Xnq

from ∆n to pX1, . . . , Xnq PMˆn. đ

By the preceding lemma, a bi-multicategory is cartesian if and only if there exists a

pseudonatural family of adjoint equivalences

M
`

Γ;
ś

npX1, . . . , Xnq
˘

»Mˆnp∆npΓq; pX1, . . . , Xnqq “
śn
i“1MpΓ;Xiq

The universal property therefore manifests itself as follows. For every sequence of multimaps

pti : Γ Ñ Xiqi“1, ... ,n there exists a multimap tuppt1, . . . , tnq : Γ Ñ
ś

npX1, . . . , Xnq and

a 2-cell $ with components $
piq
t‚ : πi ˝ xtuppt1, . . . , tnqy ñ ti for i “ 1, . . . , n. This 2-cell

is universal in the sense that, if u : Γ Ñ
ś

npX1, . . . , Xnq and αi : πi ˝ xuy ñ ti for

i “ 1, . . . , n, then there exists a unique 2-cell p:pα1, . . . , αnq : u ñ tuppt1, . . . , tnq filling

the following diagram for i “ 1, . . . , n:

πi ˝ xuy πi ˝ xtuppt1, . . . , tnqy

ti

αi

πi˝xαy

$
piq
t‚

(4.26)

Finally, the unit ηu :“ p:pidπ1˝xuy, . . . , idπn˝xuyq : uñ tuppπ1 ˝ xuy, . . . , πn ˝ xuyq is required

to be invertible for every u : Γ Ñ
ś

npX1, . . . Xnq.

Our next task is to extend the theory of representable and cartesian bi-multicategories

to biclones.
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Cartesian biclones. As we did for clones, we define products in a biclone by first defining

a bi-multicategory structure on each biclone (c.f. Construction 4.2.11).

Construction 4.2.39. Every biclone pS, Cq canonically defines a bi-multicategory MC as

follows:

• obpMCq :“ S,

• pMCqpX1, . . . , Xn;Y q :“ CpX1, . . . , Xn;Y q,

• IdX :“ pp1q1 : 1 Ñ pMCqpX;Xq,

• The composition functor pMCqpY1, . . . , Yn;Zqˆ
śn
i“1pMCqpΓi;Yiq Ñ pMCqpΓ1, . . . ,Γn;Zq

is defined by

f ˝ xg1, . . . , gny :“ f rg1 b ¨ ¨ ¨b gns

using the notation of Notation 3.1.19,

• The unitor structural isomorphisms are defined as follows, for f : X1, . . . , Xn Ñ Y :

rf :“ f
ι
ùñ f

”

pp1qX‚ , . . . , p
pnq
X‚

ı fr%p´1q, ... ,%p´1qs
ùùùùùùùùùùñ f

”

pp1qX1

”

pp1qX‚
ı

, . . . , pp1qXn
”

ppnqX‚
ıı

lf :“ pp1qY
”

f
”

pp1qX‚ , . . . , p
pnq
X‚

ıı

%p1q

ùùñ f
”

pp1qX‚ , . . . , p
pnq
X‚

ı

ι´1

ùùñ f

The associativity structural isomorphism is a little complex. Suppose given sequences

of objects Γi :“ B
piq
1 , . . . , B

piq
mi pi “ 1, . . . , nq and multimaps pgi : Γi Ñ Yiqi“1,...,n

and f : Y1, . . . , Yn Ñ Z. Moreover suppose that ∆
piq
j :“ A

pi,jq
1 , . . . , A

pi,jq
kpi,jq, and that

h
piq
j : ∆

piq
j Ñ B

piq
j for j “ 1, . . . ,mi and i “ 1, . . . , n.

Now, writing ppRq for the projection picking out the element R in the codomain, there

exists a map

h
piq
j

”

ppApi,jq1 q, . . . , ppApi,jqkpi,jqq

ı

: ∆
p1q
1 , . . . ,∆p1q

m1
, . . . ,∆

pnq
1 , . . . ,∆pnq

mn Ñ B
piq
j (4.27)

for every i “ 1, . . . , n and j “ 1, . . . ,mi. On the other hand, one may first

project out from the full sequence ∆
p1q
1 , . . . ,∆

p1q
m1 , . . . ,∆

pnq
1 , . . . ,∆

pnq
mn to the sub-

sequence ∆
piq
1 , . . . ,∆

piq
mi and then project again before applying h

piq
j . Abusively writ-

ing
”

pp∆piq
1 q, . . . , pp∆

piq
miq

ı

for the sequence
”

ppApi,1q1 q, . . . , ppApi,miqkpi,miq
q

ı

, one thereby

obtains

h
piq
j

”

ppApi,jq1 q, . . . , ppApi,jqkpi,jqq

ı ”

pp∆piq
1 q, . . . , pp∆piq

miq

ı

(4.28)

The pair of parallel multimaps (4.27) and (4.28) are related by a canonical composite

of structural isomorphisms:

h
piq
j

”

ppApi,jq1 q, . . . , ppApi,jqkpi,jqq

ı”

pp∆piq
1 q, . . . , pp∆piq

miq

ı

– h
piq
j

”

. . . , ppApi,jql qrpp∆piq
1 q, . . . , pp∆piq

miqs, . . .
ı

– h
piq
j

”

ppApi,jq1 q, . . . , ppApi,jqkpi,jqq

ı

(4.29)

Making use of the same notation, pf ˝xg1, . . . , gnyq˝xh
p1q
1 , . . . , h

p1q
m1 , . . . , h

pnq
1 , . . . , h

pnq
mny

is
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f
”

. . . , gi

”

ppBpiq1 q, . . . , ppB
piq
miq

ı

, . . .
ı ”

. . . , h
piq
j

”

pp∆piq
1 q, . . . , pp∆

pjq
mj q

ı

, . . .
ı

and f ˝
A

g1 ˝ xh
p1q
1 , . . . , h

p1q
m1y, . . . , gn ˝ xh

pnq
1 , . . . , h

pnq
mny

E

is

f
”

. . . , gi

”

. . . , h
piq
j

”

ppApi,jq1 q, . . . , ppApi,jqkpi,jqq

ı

, . . .
ı ”

pp∆piq
1 q, . . . , pp∆

piq
miq

ı

, . . .
ı

so af ;g‚;h‚ is the composite

f rg1 b ¨ ¨ ¨b gns
”

h
p1q
1 b ¨ ¨ ¨b h

piq
j b ¨ ¨ ¨b h

pnq
mn

ı

f
”

g1

”

h
p1q
1 b ¨ ¨ ¨b h

p1q
m1

ı

, . . . , gn

”

h
pnq
1 b ¨ ¨ ¨b h

pnq
mn

ıı

f
”

. . . , gi

”

. . . , h
piq
j

”

ppApi,jq1 q, . . . , ppApi,jqkpi,jqq

ı ”

pp∆piq1 q, . . . , pp∆
piq
miq

ı

, . . .
ı

, . . .
ı

f
”

. . . , gi

”

. . . , h
piq
j

”

ppApi,jq1 q, . . . , ppApi,jqkpi,jqq

ı

, . . .
ı ”

pp∆piq1 q, . . . , pp∆
piq
miq

ı

, . . .
ı

ff;g‚;h‚

– p4.29q

–

where the final isomorphism is the evident composite of structural isomorphisms in

pS, Cq and ff ;g‚;h‚ is defined after Notation 3.1.19 (page 46).

The two coherence laws hold by the coherence of biclones. đ

We now see where the awkwardness in the definition of pseudofunctors and transforma-

tions of biclones arises (Definitions 3.1.14 and 3.1.20): the more natural definitions are for

bi-multicategories, and the versions for biclones arise via Construction 4.2.39.

Notation 4.2.40. Following the preceding construction, we sometimes write IdA for the

projection pp1qA in a biclone, and refer to it as the identity on A. đ

Remark 4.2.41. For a biclone pS, Cq, the bicategory C obtained by restricting to unary

hom-categories is biequivalent to the restriction MC of the corresponding bi-multicategory

to linear hom-categories
`

c.f. (4.12)
˘

. Indeed, the objects and hom-categories are equal: the

only difference is that for f : X Ñ Y and g : Y Ñ Z in pS, Cq the corresponding composite

in C is f rgs while in MC it is f
”

g
”

pp1qY
ıı

. đ

The definitions of representable and cartesian biclones are now induced from their

bi-multicategorical counterparts (c.f. Definition 4.2.13).

Definition 4.2.42.

1. A representable biclone is a biclone pS, Cq equipped with a choice of representable

structure Tnp´q on MC.

2. A cartesian biclone is a biclone pS, Cq equipped with a choice of cartesian structure
ś

np´q on MC. đ
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Remark 4.2.43. As for fp-bicategories, we stipulate that the unary product structure in a

cartesian biclone is the identity (c.f. Remark 4.1.3). đ

For a clone pS,Cq, the mapping p´qrhs composing with a single multimap h : X1, . . . , Xn Ñ R

is equal to the mapping p´q ˝ xhy performing the same composition in MC, since for any

g : R Ñ A one has g ˝ xhy
def.
“ g

”

h
”

pp1qX‚ , . . . , p
pnq
X‚

ıı

“ grhs. In the world of biclones,

however, the functors p´qrhs and p´q ˝ xhy are related by a structural isomorphism (c.f. Re-

mark 4.2.41). Since pMCqpΓ;Aq “ CpΓ;Aq for every Γ and A, a choice of adjoint equivalence

ψX‚ : pMCqpX1, . . . , Xn;Aq Ô pMCqpR;Aq : p´q ˝ xhy is equivalently a choice of adjoint

equivalence ψ1X‚ : CpX1, . . . , Xn;Aq Ô CpR;Aq : p´qrhs. (To see this, apply the fact that

for any morphisms f : X Ñ Y and g, g1 : Y Ñ X in a 2-category, if g – g1 then f and g

are the 1-cells of an equivalence X » Y if and only if f and g1 are the 1-cells of such an

equivalence.)

It follows that a representable biclone pS, C,Tnq is equivalently a biclone pS, Cq equipped

with a choice of object TnpX1, . . . , Xnq and multimap ρX‚ : X1, . . . , Xn Ñ TnpX1, . . . , Xnq

for every X1, . . . , Xn P S pn P Nq, together with a choice of adjoint equivalence

CpX1, . . . , Xn;Aq » C pTnpX1, . . . , Xnq;Aq

induced by pre-composing with ρX‚ for every A P S. Explicitly, this entails that for every

t : X1, . . . , Xn Ñ A there exists a chosen multimap ψX‚ptq : TnpX1, . . . , Xnq Ñ A and a

2-cell εX‚;f : ψX‚pfqrρX‚s ñ f , universal in the sense that for any g : TnpX1, . . . , Xnq Ñ A

and σ : grρX‚s ñ f there exists a unique 2-cell σ: : g ñ ψX‚pfq such that

grρX‚s ψX‚pfqrρX‚s

f

σ:rρX‚ s

σ εX‚;f

(4.30)

A similar story holds for cartesian biclones. For a sequence of multimaps pπi : RÑ Xiqi“1,.,n

and u : Γ Ñ Ai in the bi-multicategory MC associated to a cartesian biclone pS, C,Πnp´qq,

there exists the following composite of structural isomorphisms:

πi ˝ xuy “ πi

”

u
”

pp1qΓ , . . . , pp|Γ|qΓ

ıı

– πirus
”

pp1qΓ , . . . , pp|Γ|qΓ

ı

– πirus

It follows that the functor pπ1 ˝ x´y, . . . , πn ˝ x´yq : pMCqpΓ;Rq Ñ
śn
i“1pMCqpΓ;Xiq

is naturally isomorphic to the functor pπ1r´s, . . . , πnr´sq : CpΓ;Rq Ñ
śn
i“1CpΓ;Xiq.

A cartesian biclone pS, C,Πnp´qq is therefore equivalently a biclone equipped with a

choice of object
ś

npX1, . . . , Xnq and multimaps pπi :
ś

npX1, . . . , Xnq Ñ Xiqi“1, ... ,n for

every sequence X1, . . . , Xn P S pn P Nq, together with a choice of adjoint equivalence

CpΓ;
ś

npX1, . . . , Xnqq »
śn
i“1CpΓ;Xiq. The counit of this adjoint equivalence is then

characterised by the following universal property. For every sequence of multimaps

pti : Γ Ñ Xiqi“1, ... ,n there exists a multimap tuppt1, . . . , tnq : Γ Ñ
ś

npX1, . . . , Xnq and

a 2-cell $ with components $
piq
t‚ : πirtuppt1, . . . , tnqs ñ ti for i “ 1, . . . , n. This 2-cell is
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universal in the sense that, if u : Γ Ñ
ś

npX1, . . . , Xnq and αi : πirus ñ ti for i “ 1, . . . , n,

then there exists a unique 2-cell p:pα1, . . . , αnq : uñ tuppt1, . . . , tnq filling the following

diagram for i “ 1, . . . , n:

πirus πirtuppt1, . . . , tnqs

ti

αi

πirαs

$
piq
t‚

(4.31)

Rather than translating between compositions f ˝xg‚y and f rg‚s throughout, in what follows

we employ the biclone version of the universal property.

Remark 4.2.44. We have just shown that a biuniversal arrow in a biclone—defined

exactly as in Definition 4.2.36—exists if and only if there exists a biuniversal arrow in the

corresponding bi-multicategory. đ

Example 4.2.45. Every fp-bicategory pB,Πnp´qq defines a biclone BiclpBq with sorts obpBq
and hom-categories BiclpBqpX1, . . . , Xn;Y q :“ Bp

ś

npX1, . . . , Xnq, Y q (c.f. Example 4.2.14

on page 87). The substitution f rg1, . . . , gns is f ˝ xg1, . . . , gny. This biclone is cartesian: for

the adjoint equivalence (4.31) one takes the adjoint equivalence defining finite products in

B. đ

The equivalence between representability and cartesian structure. Our aim now

is to prove a version of Theorem 4.2.20 for biclones, establishing that a biclone admits a

representable structure (embodied by (4.30)) if and only if it admits a cartesian structure

(embodied by (4.31)). In the 1-categorical case the key to this equivalence is the construction

of a sequence of multimaps πi : TnpX1, . . . , Xnq Ñ Xi satisfying two equations for i “

1, . . . , n. The corresponding bicategorical construction is up-to-isomorphism.

Lemma 4.2.46. For any representable biclone pS, C,Tnq and X1, . . . , Xn P S pn P Nq there

exist multimaps πi : TnpX1, . . . , Xnq Ñ Xi and invertible 2-cells µ
piq
X‚

: πirρX‚s ñ ppiqX‚ and

ςX‚ : IdTnpX1,...,Xnq ñ ρX‚rπ1, . . . , πns (for i “ 1, . . . , n), as in the diagrams below:

TnpX1, . . . , Xnq

X1, . . . , Xn Xi

πi
óµ

piq
X‚

ppiqX‚

ρX‚

X1, . . . , Xn

TnpX1, . . . , Xnq TnpX1, . . . , Xnq

ρX‚

Id

rπ1, ... ,πns

ò ςX‚

Proof. Define πi :“ ψX‚pp
piq
X‚
q. For µ

piq
X‚

, we may immediately take the universal 2-cell εX‚;ppiq

of (4.30). For ςX‚ we apply the universal property (4.30) to the structural isomorphism

%
p1q
pTnX‚q

to obtain an invertible 2-cell p%
p1q
X‚
q
:

: IdpTnX‚q ñ ψX‚pρX‚q. We complete the
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construction by defining a 2-cell ρX‚rπ1, . . . , πns ñ ψX‚pρX‚q. Define αX‚ to be the

composite

ρX‚rπ1, . . . , πns rρX‚s
–
ùñ ρX‚rπ‚rρX‚ss

ρX‚

”

µ
p‚q

X‚

ı

ùùùùùùñ ρX‚

”

pp1qX‚ , . . . , p
pnq
X‚

ı

ι´1

ùùñ ρX‚

Since this composite is invertible, by the universal property (4.30) there exists an invertible

2-cell pαX‚q
: : ρX‚rπ1, . . . , πns ñ ψX‚pρX‚q. We therefore define ςX‚ to be the composite

IdpTX‚q
%
p1q
X‚

:

ùùùñ ψX‚pρX‚q
pα:X‚ q

´1

ùùùùùñ ρX‚rπ1, . . . , πns

To bicategorify Lemma 4.2.19 we shall also employ a kind of ‘mirror image’ of the

preceding lemma, capturing the crucial construction available in the presence of cartesian

structure; this should be compared to the discussion preceding Definition 4.2.15 (page 88).

Just as we had to generalise the notion of isomorphism for the clone case, so we need to

generalise the notion of (adjoint) equivalence for the biclone case.

Definition 4.2.47. Let pS, Cq be a biclone.

1. An adjunction X1 . . . , Xn Ô Y in pS, Cq consists of 1-cells e : X1, . . . , Xn Ñ Y and

fi : Y Ñ Xi pi “ 1, . . . , nq with 2-cells

η : pp1qY ñ erf1, . . . , fns : Y Ñ Y

εi : fires ñ ppiqX1, ... ,Xn
: X1, . . . , Xn Ñ Xi pi “ 1, . . . , nq

such that the following diagrams commute for i “ 1, . . . , n:

pp1qY res erf‚sres erf‚ress

e e
”

pp1qX‚ , . . . , p
pnq
X‚

ı

%
p1q
e

ηres assoce;f‚;e

erε1, ... ,εns

ιe

(4.32)

fi fi

”

pp1qY
ı

firerf1, . . . , fnss

fi ppiqrf1, . . . , fns firesrf1, . . . , fns

ιfi firηs

assoc´1
fi;e;f‚

%
piq
f‚ εirf1, ... ,fns

(4.33)

2. An equivalence in pS, Cq consists of 1-cells e : X1, . . . , Xn Ñ Y and fi : Y Ñ Xi pi “

1, . . . , nq with invertible 2-cells

η : pp1qY
–
ùñ erf1, . . . , fns : Y Ñ Y

εi : fires
–
ùñ ppiqX1, ... ,Xn

: X1, . . . , Xn Ñ Xi pi “ 1, . . . , nq

3. A adjoint equivalence in pS, Cq is an adjunction for which η and εi are invertible for

i “ 1, . . . , n. đ

In particular, a unary (adjoint) equivalence X » Y is just an (adjoint) equivalence in

the usual, bicategorical sense.
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Lemma 4.2.48. For any sequence of objects X1, . . . , Xn pn P Nq in a cartesian biclone

pS, C,Πnp´qq, there exists an adjoint equivalence between X1, . . . , Xn »
ś

npX1, . . . , Xnq.

Proof. We employ the notation of (4.31) for cartesian structure. For the 2-cell

πirtupppp1qX‚ , . . . , p
pnq
X‚
qs ñ ppiqX‚

we can immediately take $
piq
X‚

. The real work is in providing a 2-cell γ : Idp
ś

X‚q ñ

tupppp1q, . . . , ppnqqrπ1, . . . , πns. By the universality of the counit $ “ p$p1q, . . . , $pnqq it

suffices to define a family of invertible 2-cells ζi : πi
“

tupppp1q, . . . , ppnqqrπ1, . . . , πns
‰

ñ πi

for i “ 1, . . . , n. We may then define γ to be the composite

Idp
ś

X‚q

ςIdp
ś

X‚q
ùùùùùñ tuppπ‚

“

Idp
ś

X‚q

‰

q
tuppι´1,...,ι´1q
ùùùùùùùùùñ tuppπ‚q

pp:pζ1, ... ,ζnqq´1

ùùùùùùùùùùñ tupppp‚qqrπ‚s

where ς is the unit of the adjoint equivalence witnessing pπ1, . . . , πnq as a biuniversal arrow.

The 2-cells ζi are defined as follows:

πi

”

tupppp1q, . . . , ppnqqrπ‚s
ı assoc´1

ùùùùñ πi

”

tupppp1q, . . . , ppnqq
ı

rπ‚s
$
piq
X‚
rπ‚s

ùùùùùñ ppiqrπ‚s
%piq

ùùñ πi

Since each ζi is invertible, p:pζ1, . . . , ζnq is also invertible. Checking that diagram (4.33)

commutes is straightforward; for (4.32) one must use the universal property, checking that

both routes around the diagram are the unique 2-cell corresponding to the composite

πi

”

tupppp1q, . . . , ppnqqrπ‚srtupppp1q, . . . , ppnqqs
ı

πirβ‚s
ùùùñ πi

”

tupppp1q, . . . , ppnqq
ı $

piq
X‚

ùùñ ppiq

where βi is defined to be

tupppp‚qqrπ‚s
”

tupppp‚qq
ı assoc
ùùùñ tupppp‚qq

”

π‚

”

tupppp‚qq
ıı tupppp‚qq

”

$
p‚q

X‚

ı

ùùùùùùùùùñ tupppp‚qq
”

pp‚q
ı

ι´1

ùùñ tupppp‚qq

for i “ 1, . . . , n.

As for clones, the extra structure of a biclone entails that birepresentable arrows are

closed under composition. The strategy for the proof is familiar from Lemma 4.2.18.

Lemma 4.2.49. A biclone pS, Cq admits a representable structure if and only if for every

X1, . . . , Xn PM pn P Nq there exists a chosen object TnpX1, . . . , Xnq PM and a birep-

resentable multimap ρX‚ : X1, . . . , Xn Ñ TnpX1, . . . , Xnq.

Proof. It suffices to show that birepresentable multimaps are closed under composition.

Mirroring the proof of Lemma 4.2.18, suppose given birepresentable multimaps

ρX‚ : X1, . . . , Xn Ñ TnpX1, . . . , Xnq

ρY‚ : Y1, . . . , Ym Ñ TmpY1, . . . , Ymq

ρp
ś

X‚,
ś

Y‚q : TnX‚,TmY‚ Ñ T2pTnX‚,TmY‚q
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We want to show that the composite ρp
ś

X‚,
ś

Y‚q ˝ pρX‚ , ρY‚q in MC, which is the com-

posite ρ :“ ρp
ś

X‚,
ś

Y‚q

“

ρX‚
“

pp1q, . . . , ppnq
‰

, ρY‚
“

ppn`1q, . . . , ppn`mq
‰‰

in C, is birepresent-

able. Define projections πXi : TnpX1, . . . , Xnq Ñ Xi, π
Y
j : TmpY1, . . . , Ymq Ñ Yj

and πX,Y as in the proof of Lemma 4.2.18, and likewise define a family of multimaps

πi : T2pTnX‚,TmY‚q Ñ Zi for i “ 1, . . . , n `m (where Zi is Xi for 1 ď i ď n and Yi´n

for n ` 1 ď i ď n ` m) as in (4.14). Finally, for 1 ď i ď n define an invertible 2-cell

βp1q : ρX‚rπ1, . . . , πns ñ πX,Y1 : T2pTnX‚,TmX‚q Ñ TnX‚ by

ρX‚rπ1, . . . , πns πX,Y1

ρX‚

”

πX1

”

πX,Y1

ı

, . . . , πXn

”

πX,Y1

ıı

ρX‚
“

πX1 , . . . , π
X
n

‰

”

πX,Y1

ı

IdpTX‚

”

πX,Y1 q

ı

βp1q

assoc´1
ρX‚

;π‚;π1

ς´1
X‚
rπ
X,Y
1 s

%
p1q
π1

We define βp2q : ρY‚rrn`1, . . . , πn`ms ñ πX,Y2 : T2pTnX‚,TmX‚q Ñ TmY‚ similarly.

We are now in a position to define the pseudo-inverse to p´q˝xρy :M
`

T2pTnX‚,TmY‚q;A
˘

Ñ

MpX1, . . . , Xn, Y1, . . . , Ym;Aq. For h : X1, . . . , Xn, Y1, . . . , Ym Ñ A we define ψphq to be

the composite

T2pTnX‚,TmY‚q
rπ1, ... ,πn`ms
ÝÝÝÝÝÝÝÝÑ X1, . . . , Xn, Y1, . . . , Ym

h
ÝÑ A

in C; this mapping is clearly functorial. It therefore suffices to construct natural isomorphisms

idMpTpTX‚,TY‚q;Aq – ψ
`

p´q˝xρy
˘

and idMpX1,...,Xn,Y1, ... ,Ym;Aq –
`

ψp´q
˘

˝xρy; this lifts to an

adjoint equivalence between the same 1-cells by the usual well-known argument (e.g. [Mac98,

IV.3]).

To this end, let us define invertible 2-cells τ and σi pi “ 1, . . . , n`mq that will make

up the bulk of the required isomorphisms. The 2-cell τ is defined as follows:

ρpTX‚,TY‚q
“

ρX‚
“

pp1q, . . . , ppnq
‰

, ρY‚
“

ppn`1q, . . . , ppn`mq
‰‰

rπ1, . . . , πn`ms IdTpTX‚,TY‚q

ρpTX‚,TY‚q
“

ρX‚
“

pp‚qrπ‚s
‰

, ρY‚
“

pp‚qrπ‚s
‰‰

ρpTX‚,TY‚qrρX‚rπ1, . . . , πns, ρY‚rπn`1, . . . , πn`mss ρpTX‚,TY‚q

”

πX,Y1 , πX,Y2

ı

–

τ

ρpTX‚,TY‚qrρX‚r%
p‚qs,ρY‚r%

p‚qss

ρpTX‚,TY‚qrβ
p1q,βp2qs

ς´1
pTX‚,TY‚q

The 2-cells σ1, . . . , σn, on the other hand, are defined by the following diagram; the

definitions of σn`1, . . . , σn`m are the same, modulo the obvious adjustments.
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πi
“

ρpTX‚,TY‚q
“

ρX‚
“

pp1q, . . . , ppnq
‰

, ρY‚
“

ppn`1q, . . . , ppn`mq
‰‰‰

ppiqX1, ... ,Xn,Y1, ... ,Ym

πXi

”

πX,Y1

ı

“

ρpTX‚,TY‚q
“

ρX‚
“

pp1q, . . . , ppnq
‰

, ρY‚
“

ppn`1q, . . . , ppn`mq
‰‰‰

πXi
“

πX1
“

ρpTX‚,TY‚q
‰‰ “

ρX‚
“

pp1q, . . . , ppnq
‰

, ρY‚
“

ppn`1q, . . . , ppn`mq
‰‰

πXi

”

pp1qX‚
ı

“

ρX‚
“

pp1q, . . . , ppnq
‰

, ρY‚
“

ppn`1q, . . . , ppn`mq
‰‰

πXi rρX‚s
“

pp1q, . . . , ppnq
‰

ppiq
“

pp1q, . . . , ppnq
‰

σi

–

πXi

”

µ
p1q
TX‚,TY‚

ı

rρX‚rp
p‚qs,ρY‚rp

p‚qss

–

µ
piq
X‚
rpp1q, ... ,ppnqs

%
piq

pp‚q

The required natural isomorphisms are then defined to be the composites

ψpgq ˝ xρy “ grπ1, . . . , πn`ms rρs
assoc
ùùùñ grr‚rρss

grσ‚s
ùùùñ g

”

pp1q, . . . , ppn`mq
ı

ι´1

ùùñ g

ψph ˝ xρyq “ hrρs rπ1, . . . , πn`ms
assoc
ùùùñ hrρrπ1, . . . , πn`mss

hrτ s
ùùñ h

“

IdTpTX‚,TY‚q

‰ ι´1

ùùñ h

for g : T2pTnX‚,TmY‚q Ñ A and h : X1, . . . , Xn, Y1, . . . , Ym Ñ A.

We now prove the central result of this section.

Lemma 4.2.50. A biclone pS, Cq admits a choice of representable structure if and only if it

admits a choice of cartesian structure.

Proof. ñ Let ρX‚ : X1, . . . , Xn Ñ TnpX1, . . . , Xnq be a birepresentable multimap. We

claim the sequence of multimaps pπi : TnpX1, . . . , Xnq Ñ Xiqi“1,...,n defined in Lemma 4.2.46

form a biuniversal multimap. We are therefore required to provide a mapping tup :
śn
i“1MpΓ;Xiq ÑMpΓ; TnpX1, . . . , Xnq

˘

and a universal 2-cell with components $
piq
X‚

:

πirtuppf1, . . . , fnqs ñ fi for i “ 1, . . . , n. We define tuppf1, . . . , fnq :“ ρX‚rf1, . . . , fns

and set $
piq
X‚

to be the composite

πirρX‚rf1, . . . , fnss
assoc´1

ùùùùñ πirρX‚s rf1, . . . , fns
µ
piq
X‚
rf‚s

ùùùùñ ppiqrf1, . . . , fns
%piq

ùùñ fi

For universality, suppose g : Γ Ñ TnpX1, . . . , Xnq and αi : πirgs ñ fi for i “ 1, . . . , n. We

define 2-cell p:pα1, . . . , αnq : g ñ tuppf1, . . . , fnq by the commutativity of the following

diagram:

g ρX‚rf1, . . . , fns

IdpTX‚qrgs ρX‚rπ1, . . . , πns rgs ρX‚rπ1rgs, . . . , πnrgss

%
p´1q
g

p:pα1, ... ,αnq

ςX‚ rgs
assocρX‚ ;π‚;g

ρX‚ rα‚s

(4.34)
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where we employ the 2-cell ςX‚ defined in Lemma 4.2.46. For the existence part of the claim,

we need to check that the composite

πirgs
πirp:pα1, ... ,αnqs
ùùùùùùùùùùñ πirtuppf1, . . . , fnqs

$
piq
X‚

ùùñ fi

is equal to αi for i “ 1, . . . , n. Most of the calculation is straightforward; the key lemma is

that the following diagram commutes for i “ 1, . . . , n:

πi πi

πi
“

IdpTX‚q
‰

πirρX‚rπ1, . . . , πnss

πirρX‚s rπ1, . . . , πns ppiqrπ1, . . . , πns

ιπi

πirςX‚ s

assoc´1
πi;ρX‚

;π‚

µ
piq
X‚
rπ‚s

%
piq
π‚

For uniqueness, let g : Γ Ñ TnpX1, . . . , Xnq be any multimap and suppose that σ : g ñ

tuppf1, . . . , fnq satisfies$
piq
X‚
‚πirσs “ αi for i “ 1, . . . , n. Substituting this equation into the

definition of p:pα1, . . . , αnq and using the above diagram, one sees that σ “ p:pα1, . . . , αnq

as required.

Finally, it remains to check that the unit and counit of the adjunction we have just

constructed are invertible. The counit is the universal 2-cell, which is certainly invertible.

The unit is constructed by applying p:p´, . . . ,“q to the identity, which is invertible since it

is a composite of invertible 2-cells.

ð For the converse, we claim that ρX‚ :“ tupppp1qX‚ , . . . , p
pnq
X‚
q : X1, . . . , Xn Ñ

ś

npX1, . . . , Xnq

is birepresentable. We therefore need to supply a mapping ψX‚ : pMCqpX1, . . . , Xn;Aq Ñ

pMCq
`
ś

npX1, . . . , Xnq;A
˘

and a universal 2-cell εA,g : ψX‚pgqrρX‚s ñ g. We define

ψX‚pgq :“ grπ1, . . . , πns and set εA,g to be the invertible composite

grπ1, . . . , πns
”

tupppp1qX‚ , . . . , p
pnq
X‚
q

ı

g

g
”

π‚

”

tupppp1qX‚ , p
pnq
X‚
q

ıı

g
”

pp1qX‚ , . . . , p
pnq
X‚

ı

assoc´1

g;π‚;tupppp‚qq

εA,g

g
”

$
p‚q

X‚

ı

ι´1
g

For universality, let f :
ś

npX1, . . . , Xnq Ñ A by any multimap and δ : f
“

tupppp1q, . . . , ppnqq
‰

ñ

g be any 2-cell. We define δ: as the following invertible composite, using the 2-cell γ from

the adjoint equivalence of Lemma 4.2.48:

f
ι
ùñ f

”

pp1q
p
ś

X‚
q

ı

f rγ´1s
ùùùùñ f

”

tupppp‚qX‚qrπ1, . . . , πns
ı assoc´1

ùùùùñ f
”

tupppp‚qX‚q
ı

rπ‚s
δrπ‚s
ùùùñ grπ‚s

The rest of the proof is a diagram chase. To check the existence part of the universal

property one uses law (4.32) of an adjoint equivalence; for uniqueness one uses (4.33). Since
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δ: is invertible whenever δ is, the unit is invertible and one obtains the required adjoint

equivalence.

We collect these results together to obtain a bicategorical version of Theorem 4.2.20.

The final case is Lemma 4.2.37.

Theorem 4.2.51. Let pS, Cq be a biclone. Then the following are equivalent:

1. pS, Cq admits a representable structure,

2. For every X1, . . . , Xn P S pn P Nq there exists a choice of object
ś

npX1, . . . , Xnq

and a birepresentable multimap ρX‚ : X1, . . . , Xn Ñ
ś

npX1, . . . , Xnq,

3. pS, Cq admits a cartesian structure,

4. For every X1, . . . , Xn P S pn P Nq there exists a choice of object
ś

npX1, . . . , Xnq

together with a chosen family of adjoint equivalences pMCq
`

Γ;
ś

npX1, . . . , Xnq
˘

»
śn
i“1pMCqpΓ;Xiq, pseudonatural in the sense of Lemma 4.2.37(2).

Restricting to unary hom-categories, case (4) of the theorem entails the following.

Corollary 4.2.52. For any representable biclone pS, C,Tnq, the nucleus C is an fp-bicategory

with product structure defined as in C.

4.2.4 Synthesising a type theory for fp-bicategories

fp-Bicategories from cartesian biclones. On page 98 we used diagram (4.19) and

the isomorphisms following to argue that, in order to construct a type theory describing

cartesian categories, it is sufficient to construct a type theory for cartesian clones. Moreover,

we showed how such a type theory could be synthesised from the construction of the free

cartesian clone on a Λˆ-signature.

We repeat this process to synthesise the type theory Λˆps. The starting point is an

appropriate notion of signature. To extend from clones to biclones we extended from

multigraphs to 2-multigraphs; to extend from cartesian clones to cartesian biclones we

extend Λˆ-signatures in the same way.

Definition 4.2.53. A Λˆps-signature S “ pB,Gq consists of

1. A set of base types B,

2. A 2-multigraph G for which the set of nodes G0 is generated by the grammar

A1, . . . , An ::“ B |
ś

npA1, . . . , Anq pB P B, n P Nq (4.35)

A homomorphism h : S Ñ S 1 of Λˆps-signatures is a 2-multigraph homomorphism h : G Ñ G1

that respects products, in the sense that h0p
ś

npA1, . . . , Anqq “
ś

n ph0A1, . . . , h0Anq for

all A1, . . . , An P G0 pn P Nq.

We denote the category of Λˆps-signatures by Λˆps-sig and the full sub-category of unary

Λˆps-signatures—in which the 2-multigraph G is a 2-graph—by Λˆps-sig
ˇ

ˇ

1
. đ
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Every cartesian bi-multicategory (resp. cartesian biclone) determines an Λˆps-signature,

and every fp-bicategory determines a unary Λˆps-signature.

Notation 4.2.54 (c.f. Notation 4.2.23). For any Λˆps-signature S “ pB,Gq we write rB for

the set generated from B by the grammar (4.35). In particular, when the signature is just

a set (i.e. the graph G has no edges) we denote the signature S “ pB,Sq simply by rB. đ

The following result is proven in exactly the same way as Lemma 4.2.24.

Lemma 4.2.55. The inclusion ι : Λˆps-sig
ˇ

ˇ

1
ãÑ Λˆps-sig has a right adjoint.

The construction of the free cartesian clone on a cartesian category (Lemma 4.2.28) relies

crucially on the identity xπ1, . . . , πny “ idp
śn
i“1Xiq

in a cartesian category so we cannot

directly import this into the bicategorical setting. In place of diagram (4.19), therefore, one

obtains a slightly restricted result. We will construct the following diagram of adjunctions,

in which CartBiclone denotes the category of cartesian biclones and strict pseudofunctors

strictly preserving the product structure, and fp-Bicat denotes the category of fp-bicategories

and strict fp-pseudofunctors:

CartBiclone

Λˆps-sig fp-Bicat

Λˆps-sig
ˇ

ˇ

1

%

%%

(4.36)

We shall then show that the free fp-bicategory on a unary Λˆps-signature S is obtained by

restricting the construction of the free cartesian biclone on S to unary multimaps. Thus,

the internal language of the free fp-bicategory on S is the internal language of the free

cartesian biclone on S, in which every rule is restricted to unary multimaps. Here some care

is required: as we shall see, this is not the same as taking the nucleus of the free cartesian

biclone.

Let us begin by making precise the notion of a (strict) morphism of cartesian biclones.

The notion of biuniversal arrow for biclones is defined exactly as for bi-multicategories

(Definition 4.2.36); the corresponding notion of preservation extends that for bicategories

(Definition 2.2.15).
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Definition 4.2.56. Let F : pS, Cq Ñ pT,Dq and F 1 : pS1, C1q Ñ pT 1,D1q be pseudofunctors

of biclones and suppose pR, uq and pR1, u1q are biuniversal arrows from F to C P T and

from F 1 to C 1 P T 1, respectively. A pair of pseudofunctors pK : D Ñ D1, L : C Ñ C1q is a

strict morphism of biuniversal arrows from pR, uq to pR1, u1q if

1. K and L are strict pseudofunctors satisfying KF “ F 1L,

2. LR “ R1, KC “ C 1 and Ku “ u1,

3. The mappings ψB : DpFB,Cq Ñ CpB,Rq and ψ1B1 : D1pF 1B1, C 1q Ñ C1pB1, R1q are

preserved, so that LψBpfq “ ψ1LBKpfq for every f : FB Ñ C,

4. For every B P S and equivalence urF p´qs : BpB,Rq Ô CpFB,Cq : ψB the universal

arrow εB,h : urFψBphqs ñ h is strictly preserved, in the sense that KFB,CpεB,hq “

εLB,Kh. đ

We instantiate this in the case of cartesian biclones using the notation of (4.31) (page 109).

Definition 4.2.57. A cartesian pseudofunctor pF, qˆq : pS, C,Πnp´qq Ñ pS1, C1,Πnp´qq

of cartesian biclones is a pseudofunctor F : C Ñ C1 equipped with a choice of equi-

valences tuppFπ1, . . . , Fπnq : F p
ś

npA1, . . . Anqq Ô
ś

n pFA1, . . . , FAnq : qˆA‚ for each

A1, . . . , An P S pn P Nq.

We call pF, qˆq strict if F is a strict pseudofunctor and satisfies

F p
ś

npA1, . . . , Anqq “
ś

npFA1, . . . , FAnq

F pπA1,...,An
i q “ πFA1,...,FAn

i

F ptuppt1, . . . , tnqq “ tuppFt1, . . . , F tnq

F$
piq
t1,...,tn

“ $
piq
Ft1,...,F tn

qˆA1,...,An
“ IdΠnpFA1,...,FAnq

and the equivalences are canonically induced by the 2-cells Id
–
ùñ tuppπ1rIds, . . . , πnrIdsq

–
ùñ

tuppπ1, . . . , πnq. đ

If pF, qˆq : pS, C,Πnp´qq Ñ pS1, C1,Πnp´qq is a cartesian pseudofunctor of biclones,

one obtains an fp-pseudofunctor between the associated fp-bicategories by restriction. To

complete our diagram of adjunctions (4.36) it remains to construct free cartesian biclones

and free fp-bicategories. We begin with the former.

Theorem 4.2.20 presents us with a choice. We can encode either representability (via the

universal property (4.30)) or cartesian structure (via the universal property (4.31)). In type-

theoretic terms, this amounts to defining the universal property with respect to a pairing op-

eration x1 : X1, . . . , xn : Xn $ xx1, . . . , xny :
ś

npX1, . . . , Xnq or, alternatively, to defining

the universal property with respect to projections pp :
ś

npX1, . . . , Xnq $ πippq : Xiqi“1, ... ,n.

We choose the latter because it more closely matches our definition of fp-bicategory.
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Construction 4.2.58. For any Λˆps-signature S, define a cartesian biclone FClˆpSq with

sorts

A1, . . . , An ::“ B |
ś

npA1, . . . , Anq pB P B, n P Nq

by extending the construction of the free biclone (Construction 3.1.16) with the following

rules:

p1 ď i ď nq

πA‚i P FClˆpSq p
ś

npA1, . . . , Anq;Aiq

pti P FClˆpSqpΓ;Aiqqi“1, ... ,n

tuppt1, . . . , tnq P FClˆpSq pΓ;
ś

npA1, . . . , Anqq

pti P FClˆpSqpΓ;Aiqqi“1, ... ,n
p1 ď i ď nq

$
piq
t‚ P FClˆpSq pΓ;Aiq ptuppt1, . . . , tnq, tiq

´

αi P FClˆpSqpΓ;Aiqpπ
A‚
i rus, tiq

¯

i“1, ... ,n

p:pα1, . . . , αnq P FClˆpSq pΓ;
ś

npA1, . . . , Anqq pu, tuppt1, . . . , tnqq

Moreover, extend the equational theory ” of Construction 3.1.16 with the following rules

encoding the universal property (4.31):

• If αi : u ñ ti : Γ Ñ Ai for i “ 1, . . . , n, then αi ” $
piq
t‚ ‚ p:pα1, . . . , αnq for i “

1, . . . , n,

• If γ : uñ tuppt1, . . . , tnq : Γ Ñ
ś

npA1, . . . , Anq, then γ ” p:p$p1qt‚ ‚ Idπ1rγs, . . . , $
pnq
t‚ ‚ Idπnrγsq,

• If αi ” α1i for αi, α
1
i 2-cells of type πA‚i rus ñ ti for i “ 1, . . . , n, then p:pα1, . . . , αnq ”

p:pα11, . . . , α1nq.

Finally, we require that every $
piq
t‚ and ςt :“ p:pIdπ1rts, . . . , Idπnrtsq is invertible. đ

Lemma 4.2.59. For any Λˆps-signature S and any finite family of 2-cells pαi : πituu ñ ti :

Γ Ñ Aiqi“1,...,n in FClˆpSq, then p:pα1, . . . , αnq is the unique 2-cell γ (modulo ”) such

that αi ” $
piq
t‚ ‚ γ for i “ 1, . . . , n.

Proof. The existence part of the claim is immediate. For uniqueness, if γ satisfies the given

equation then γ ” p:p$p1qt‚ ‚ Idπ1rγs, . . . , $
pnq
t‚ ‚ Idπnrγsq ” p:pα1, . . . , αnq, as claimed.

It follows that FClˆpSq is cartesian. The associated free property is then straightforward.

Lemma 4.2.60. For any Λˆps-signature S, cartesian biclone pT,D,Πnp´qq and Λˆps-signature

homomorphism h : S Ñ D from S to the Λˆps-signature underlying pT,D,Πnp´qq there

exists a strict cartesian pseudofunctor h# : FClˆpSq Ñ D, unique such that h# ˝ ι “ h, for

ι : S ãÑ FClˆpSq the inclusion.

Proof. We extend the pseudofunctor h# defined in Lemma 3.1.17 by setting

h#p
ś

npA1, . . . , Anqq :“
ś

n

`

h#pA1q, . . . , h
#pAnq

˘
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h#pπA‚i q :“ π
h#pA‚q
i

h#ptuppt1, . . . , tnqq :“ tupph#pt1q, . . . , h
#ptnqq

h#p$
piq
t‚ q :“ $

piq

h#pt‚q

h#
`

p:pα1, . . . , αnq
˘

:“ p:ph#pα1q, . . . , h
#pαnqq

It is clear this defines a strict cartesian pseudofunctor. For uniqueness, all the cases apart

from p:pα1, . . . , αnq are determined by the definition of strict cartesian pseudofunctor. To

complete the proof, we adapt the argument of Lemma 2.2.17. For any strict cartesian

pseudofunctor F : FClˆpSq Ñ D and 2-cells pαi : πA‚i rus ñ ti : Γ Ñ Aiqi“1, ... ,n,

$
piq
Ft‚
‚F

`

p:pα1, . . . , αnq
˘

“ F p$
piq
t‚ q ‚F

`

p:pα1, . . . , αnq
˘

“ F
´

$
piq
Ft‚
‚ p:pα1, . . . , αnq

¯

“ Fαi

for i “ 1, . . . , n. Hence, by the universal property (4.31) of a cartesian biclone,

F
`

p:pα1, . . . , αnq
˘

“ p:pFα1, . . . , Fαnq

as required.

Remark 4.2.61. The preceding proof should be compared to that for the free cartesian

clone on a Λˆ-signature (Lemma 4.2.28). The argument for uniqueness lifts to 2-cells by

virtue of the fact that pseudofunctors strictly preserve vertical composition. đ

It remains to construct the free fp-bicategory on a unary Λˆ-signature and relate it

to the free cartesian biclone over the same signature. The proof is straightforward: one

restricts Lemma 4.2.60 to unary multimaps and observes the same universal property holds.

Example 4.2.63 shows that it is important to restrict every rule to unary multimaps—

i.e. require that |Γ| “ 1 for every rule in Construction 4.2.58—rather than simply taking

the nucleus of FClˆpSq.

Lemma 4.2.62. For any unary Λˆps-signature S, let FBctˆpSq denote the fp-bicategory

obtained by restricting every rule of Construction 4.2.58 to unary multimaps and 2-cells

between them, and let h : S Ñ C be a Λˆps-signature homomorphism from S to the Λˆps-

signature underlying an fp-bicategory pC,Πnp´qq. Then there exists a strict fp-pseudofunctor

h# : FBctˆpSq Ñ C, unique such that h# ˝ ι “ h, for ι : S ãÑ FBctˆpSq the inclusion.

Example 4.2.63. Fix a Λˆps-signature S “ pB,Gq. Then the nucleus FCl p̂Sq of FClˆpSq
is not isomorphic to FBctˆpSq. Roughly speaking, the composite pp1qA,Brπ1, π2s : AˆB Ñ A

exists in the free cartesian biclone on a signature S, but not in the free fp-bicategory on S.

Let us make this precise.

Since the freeness universal property of FBctˆpSq is strict we may exploit the following

principle, which restates the fact that free objects are unique up to canonical isomorphism:
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if B and B1 are both the free fp-bicategory on S, then the canonical map B Ñ B1 extending

the unit is an isomorphism. We claim that the canonical map ι# : FBctˆpSq Ñ FCl p̂Sq
extending the inclusion ι : S ãÑ FCl p̂Sq is not an isomorphism. Since an isomorphism is

necessarily a bijection on hom-sets, it suffices to find a morphism in FCl p̂Sq that is not in

the image of ι#. We claim that, where X,Y P rB, then pp1qX,Y rπ1, π2s : X ˆ Y Ñ X is not in

the image of ι#. To see this is the case, observe that a morphism h is in the image of ι# if

and only if it falls into one of the following (disjoint) sets:

1. The basic maps πi, eval and Id,

2. Maps in the image of an operator : λf or xf1, . . . , fny for f, f1, . . . , fn in the image of

ι#,

3. The composites f ˝ g where f and g are both in the image of ι#.

It is clear that pp1qX,Y rπ1, π2s is not of any of these types, and so is not in the image of ι#. It

follows that ι# is not an isomorphism, and hence that FCl p̂Sq is not the free fp-bicategory

on S. đ

Lemma 4.2.62 guarantees that the free fp-bicategory on a Λˆps-signature S arises by

restricting every rule of the type theory for cartesian biclones to unary contexts and

constructing the syntactic model. Hence, it suffices to construct a type theory for cartesian

biclones. We do this by extending the type theory Λbicl
ps for biclones with rules corresponding

to those of Construction 4.2.58.

4.3 The type theory Λˆps

For a Λˆps-signature S “ pB,Gq we denote the associated type theory by ΛˆpspSq. The

types of ΛˆpspSq are the nodes of G. The rules are all those of Λbicl
ps together with those of

Figures 4.1–4.4. Note that we specify the invertibility of the unit and counit by introducing

explicit inverses for these rewrites (Figure 4.4).

The tupling operation is functorial with respect to vertical composition and the unit

of the adjunction is obtained by applying the universal property to the identity (see also

Lemma 4.3.12).

Definition 4.3.1.

1. For any family of derivable rewrites pΓ $ τi : ti ñ t1i : Aiqi“1,...,n we define tuppτ1, . . . , τnq :

tuppt1, . . . , tnq ñ tuppt11, . . . , t1nq to be the rewrite p:pτ1 ‚$
p1q
t1, ... ,tn

, . . . , τn ‚$
pnq
t1, ... ,tn

q

in context Γ.

2. For any derivable term Γ $ t :
ś

npA1, . . . , Anq we define the unit ςt : t ñ

tuppπ1ttu, . . . , πnttuq to be the rewrite p:pidπ1ttu, . . . , idπnttuq in context Γ. đ

The rules of Λˆps provide a relatively compact way to construct the structure required

for cartesian clones. In particular, the focus on (global) biuniversal arrows and (local)

universal arrows—and the corresponding fact that one does not need to specify a triangle
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law relating the unit and counit—contrasts with all previous work on type theories for

cartesian closed 2-categories [See87, Hil96, Tab11, Hir13], which encode the pairing and

projection operations on rewrites directly. Reproducing the triangle-law approach in the

context of fp-bicategories would require:

1. For every sequence of types A1, . . . , An a product type
ś

npA1, . . . , Anq,

2. Projection and tupling operations on terms as in the usual simply-typed lambda

calculus,

3. Tupling and projection operations on rewrites,

4. An invertible unit ςu : u ñ xπ1puq, . . . , πnpuqy in context Γ for every Γ $ u :
ś

npA1, . . . , Anq and an invertible counit $
piq
t‚ : πitxt1, . . . , tnyu ñ ti pi “ 1, . . . , nq

in context Γ for every pΓ $ ti : Aiqi“1, ... ,n.

This data must be subject to an equational theory requiring naturality of each ςu and $
piq
t‚ ,

the two triangle laws, functorality of the tupling and projection operations on rewrites,

and that the equational theory is a congruence with respect to these operations. Such

an approach, therefore, requires many more rules. Moreover, the calculus of (bi)universal

arrows provided by Λˆps captures a categorical style of reasoning, because the syntax allows

one to manipulate the universal property through primitives in the type theory.

α-equivalence and free variables. The well-formedness properties of Λbicl
ps extend to

Λˆps; we briefly note them here. As we have not introduced any binding constructs, the

definition of α-equivalence extends straightforwardly from that for Λbicl
ps .

Definition 4.3.2. For any Λˆps-signature S we extend Definition 3.2.4 to define the α-

equivalence relation “α for ΛˆpspSq. For terms we take the same set of rules; the substitution

operation trui{xis is extended by the rules

πkppqru{ps :“ πktuu and tuppt1, . . . , tnqrui{xis :“ tuppt1rui{xis, . . . , tnrui{xisq

For rewrites, we add the rules

pti “α t
1
iqi“1, ... ,n

p1 ď k ď nq

$
pkq
t1, ... ,tn

“α $
pkq
t11, ... ,t

1
n

σ1 “α σ
1
1 . . . σn “α σ

1
n

p:pσ1, . . . , σnq “α p:pσ11, . . . , σ1nq

where the meta-operation of capture-avoiding substitution is extended by the rules

$
pkq
t1, ... ,tn

rui{xis :“ $
pkq
t1rui{xis, ... ,tnrui{xis

and p:pα‚qrui{xis :“ p:pα‚rui{xisq

Finally, we define fvpσ´1q :“ fvpσq. đ

As for Λbicat
ps , we work up to α-equivalence of terms and rewrites, silently identifying

terms and rewrites with their α-equivalence classes.

Extending the definition of free variables is similarly straightforward.
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k-proj (1 ď k ď n)
p :

ś

npA1, . . . , Anq $ πkppq : Ak

Γ $ t1 : A1 . . . Γ $ tn : An
n-tuple

Γ $ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq

Figure 4.1: Terms for product structure

Γ $ t1 : A1 . . . Γ $ tn : An
$pkq-intro (1 ď k ď n)

Γ $ $
pkq
t1,...,tn : πkttuppt1, . . . , tnqu ñ tk : Ak

Γ $ u :
ś

npA1, . . . , Anq pΓ $ αi : πituu ñ ti : Aiqi“1,...,n
p:pα1, . . . , αnq-intro

Γ $ p:pα1, . . . , αnq : uñ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq

Figure 4.2: Rewrites for product structure

Γ $ α1 : π1tuu ñ t1 : A1 . . . Γ $ αn : πntuu ñ tn : An
U1 (1 ď k ď n)

Γ $ αk ” $
pkq
t1,...,tn ‚πk

 

p:pα1, . . . , αnq
(

: πktuu ñ tk : Ak

Γ $ γ : uñ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq
U2

Γ $ γ ” p:p$p1qt‚ ‚π1tγu, . . . , $
pnq
t‚ ‚πntγuq : uñ tuppt1, . . . , tnq :

ś

npA1, . . . , Anq

`

Γ $ αi ” α1i : πituu ñ ti : Ai
˘

i“1,...,n
cong

Γ $ p:pα1, . . . , αnq ” p:pα11, . . . , α1nq : uñ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq

Figure 4.3: Universal property and congruence laws for p:pα1, . . . , αnq

Γ $ t1 : A1 . . . Γ $ tn : An
$p´kq-intro p1 ď k ď nq

Γ $ $
p´kq
t1,...,tn : tk ñ πkttuppt1, . . . , tnqu : Ak

Γ $ t :
ś

npA1, . . . , Anq
ς´1-intro

Γ $ ς´1
t : tuppπ1ttu, . . . , πnttuq ñ t :

ś

npA1, . . . , Anq

Γ $ t1 : A1 . . . Γ $ tn : An

Γ $ $
p´kq
t1,...,tn ‚$

pkq
t1,...,tn ” idπkttuppt1,...,tnqu : πkttuppt1, . . . , tnqu ñ πkttuppt1, . . . , tnqu : Ak

Γ $ t1 : A1 . . . Γ $ tn : An

Γ $ $
pkq
t1,...,tn ‚$

p´kq
t1,...,tn ” idtk : tk ñ tk : Ak

Γ $ t :
ś

npA1, . . . , Anq

Γ $ ς´1
t ‚ ςt ” idt : tñ t :

ś

npA1, . . . , Anq

Γ $ t :
ś

npA1, . . . , Anq

Γ $ ςt ‚ ς
´1
t ” idtuppπ1ttu,...,πnttuq : tuppπ‚ttuq ñ tuppπ‚ttuq :

ś

npA1, . . . , Anq

Figure 4.4: Inverses for the unit and counit

Rules for ΛˆpspGq.
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Definition 4.3.3. Fix a Λˆps-signature S. We define the free variables in a term t in ΛˆpspSq
by extending Definition 3.2.9 as follows:

fv
`

tuppt1, . . . , tnq
˘

:“
Ťn
i“1 fvptiq and fv

`

πkppq
˘

:“ tpu

Define the free variables in a rewrite τ in ΛˆpspSq by extending Definition 3.2.9 as follows:

fvp$
pkq
t1, ... ,tn

q :“ fvptkq and fv
`

p:pα1, . . . , αnq
˘

:“
Ťn
i“1 fvpαiq

We define the free variables of a specified inverse σ´1 to be exactly the free variables of σ.

An occurrence of a variable in a term (resp. rewrite) is bound if it is not free. đ

The next two lemmas—both of which are proven by structural induction—show that

the preceding definitions behave in the way one would expect.

Lemma 4.3.4. Let S be a Λˆps-signature. Then in ΛˆpspSq:

1. If Γ $ t : B and t “α t
1 then Γ $ t1 : B,

2. If Γ $ τ : tñ t1 : B and τ “α τ
1 then Γ $ τ 1 : tñ t1 : B,

3. If τi “α τ
1
i for i “ 1, . . . , n, then tuppτ1, . . . , τnq “α tuppτ 11, . . . , τ 1nq,

4. If u “α u
1 then ςu “α ςu1 .

Lemma 4.3.5. Let S be a Λˆps-signature. For any derivable judgements Γ $ u : B and

Γ $ τ : tñ t1 : B in ΛˆpspSq,

1. fvpuq Ď dompΓq,

2. fvpτq Ď dompΓq,

3. The judgements Γ $ t : B and Γ $ t1 : B are both derivable.

Moreover, whenever p∆ $ ui : Aiqi“1, ... ,n and Γ :“ pxi : Aiqi“1, ... ,n, then

1. If Γ $ t : B, then ∆ $ trui{xis : B,

2. If Γ $ τ : tñ t1 : B, then ∆ $ τ rui{xis : trui{xis ñ t1rui{xis : B.

4.3.1 The syntactic model for Λˆps

Lemma 4.2.62 guarantees that, in order to construct a type theory for fp-bicategories, it

suffices to construct a type theory for cartesian biclones. To verify that Λˆps is such a type

theory, furthermore, it suffices to show that its syntactic model is canonically isomorphic to

the free cartesian biclone FClˆpSq over the same signature in the category CartBiclone.

The syntactic model is constructed by extending Construction 3.2.11.

Construction 4.3.6. For any Λˆps-signature S define the syntactic model SynˆpSq of

ΛˆpspSq as follows. The sorts are nodes A,B, . . . of G. For A1, . . . , An, B P B pn P

Nq the hom-category SynˆpSqpA1, . . . , An;Bq has objects α-equivalence classes of terms

px1 : A1, . . . , xn : An $ t : Bq derivable in ΛˆpspSq. We assume a fixed enumeration x1, x2, . . .
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of variables, and that the variable name in the ith position is determined by this enu-

meration. Morphisms in SynˆpSqpA1, . . . , An;Bq are α”-equivalence classes of rewrites

px1 : A1, . . . , xn : An $ τ : tñ t1 : Bq. Composition is vertical composition with identity

idt; the substitution operation is explicit substitution and the structural rewrites are assoc, ι
and %piq. đ

Inspecting each rule in turn, one sees that SynˆpSq is merely FClˆpSq, presented with

the notation x1 : X1, . . . , xn : Xn $ t : B instead of t : X1, . . . , Xn Ñ B. We make this

statement precise by establishing it satisfies the same universal property.

Lemma 4.2.59, restated in type-theoretic notation, becomes the following.

Lemma 4.3.7. For any Λˆps-signature S, if the judgements pΓ $ αi : πituu ñ ti : Aiqi“1, ... ,n

are derivable in ΛˆpspSq then p:pα1, . . . , αnq is the unique rewrite γ (modulo α”) such that

the equality

Γ $ $
pkq
t1, ... ,tn

‚πktγu ” αk : πituu ñ tk : Ak (4.37)

is derivable for k “ 1, . . . , n.

Proof. By U1 (Figure 4.3) the rewrite p:pα1, . . . , αnq certainly satisfies (4.37). For any

other γ satisfying the equation, γ
U2
” p:p$p1qt‚ ‚π1tγu, . . . , $

pnq
t‚ ‚πntγuq

cong
” p:pα1, . . . , αnq,

as claimed.

Remark 4.3.8. In the light of the preceding lemma, for any Λˆps-signature S the mappings

pα1, . . . , αnq ÞÑ p:pα1, . . . , αnq

p$
p1q
t‚ ‚π1tτu, . . . , $

pnq
t‚ ‚πntτuq Ð[ τ

define the following bijective correspondence of rewrites, derivable in ΛˆpspSq:

πktuu ñ tk pk “ 1, . . . , nq

uñ tuppt1, . . . , tnq

It is natural to conjecture that a calculus for fp-tricategories (resp. fp-8-categories) would

have three (resp. a countably infinite tower of) such correspondences. Similar considerations

will apply to exponentials. đ

It also follows from the preceding lemma that SynˆpSq is cartesian: the adjoint equival-

ence is exactly

SynˆpSq
`

Γ,
ś

npA1, . . . , Anq
˘ »
ÝÑ

śn
i“1SynˆpSqpΓ;Aiq

`

Γ $ u :
ś

npA1, . . . , Anq
˘

ÞÑ pΓ $ πituu : Aiqi“1,...,n

where the pseudoinverse
śn
i“1 SynˆpSqpΓ;Aiq Ñ SynˆpSq

`

Γ,
ś

npA1, . . . , Anq
˘

is the tup
operation. The universal property of SynˆpSq interprets each term as its corresponding

construct.
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Proposition 4.3.9. For any Λˆps-signature S “ pB,Gq, cartesian biclone pT,D,Πnp´qq and

Λˆps-signature homomorphism h : S Ñ C, there exists a unique strict cartesian pseudofunctor

hJ´K : SynˆpSq Ñ C such that hJ´K ˝ ι “ h, for ι : S ãÑ SynˆpSq the inclusion.

Proof. The pseudofunctor is constructed by induction on the syntax of ΛˆpspSq as follows:

hJBK :“ hpBq on base types

hJ
ś

mpB1, . . . , BmqK :“
ś

m phJB1K, . . . , hJBmKq

hJΓ $ xk : AiK :“ ppkqhJA1K, ... ,hJAnK

hJΓ $ cpx1, . . . , xnq : BK :“ hpcq for c P GpA‚;Bq

hJ∆ $ ttxi ÞÑ uiu : BK :“
`

hJΓ $ t : BK
˘

rhJ∆ $ u‚ : A‚Ks

hJΓ $ tuppt1, . . . , tmq :
ś

mpB1, . . . , BmqK :“ tupphJΓ $ t1 : B1K, . . . , hJΓ $ tm : BmKq

hJp :
ś

mpB1, . . . , Bmq $ πkppq : BkK :“ π
hJB1K, ... ,hJBmK
k

hJΓ $ idt : tñ t : BK :“ idhJΓ$t:BK

hJΓ $ κpx‚q : cpx‚q ñ c1px‚q : BK :“ hpκq for κ P GpA‚, Bqpc, c1q

hJΓ $ $
pkq
t1, ... ,tm

: πkttuppt1, . . . , tmqu ñ tk : BkK :“ $
pkq
hJt1K, ... ,hJtmK

hJΓ $ p:pα1, . . . , αmq : uñ tuppt‚q :
ś

mB‚K :“ p:phJΓ $ α‚ : π‚tuu ñ t‚ : B‚Kq

hJΓ $ τ 1 ‚ τ : tñ t2 : BK :“ hJΓ $ τ 1 : t1 ñ t2 : BK ‚hJΓ $ τ : tñ t1 : BK

hJ∆ $ τtσiu : ttuiu ñ t1tu1iu : BK :“
`

hJΓ $ τ : tñ t1 : BK
˘

rhJσ1K, . . . , hJσnKs

where Γ :“ pxi : Aiqi“1,...,n and we abbreviate hJ∆ $ σi : ui ñ u1i : AiK by hJσiK in the final

rule. It is clear that this defines a strict pseudofunctor; the p:pα1, . . . , αmq case is required

by the strict preservation of universal and biuniversal arrows (c.f. Lemma 4.2.60).

Lemma 4.2.62, together with the preceding proposition, entail that the free fp-bicategory

on a unary Λˆps-signature is obtained as follows. First, one restricts Λˆps to unary contexts.

Then one constructs the syntactic model in the same manner as Construction 4.3.6, except

morphisms and 2-cells are equivalence classes of terms and rewrites in this restricted type

theory. Thus, define Λˆps

ˇ

ˇ

1
to be the type theory obtained by restricting Λˆps to contexts

of the form x : A (defined by Figure 3.12 on page 58. The resulting free property is the

following.

Theorem 4.3.10. For any unary Λˆps-signature S, the bicategory SynˆpSq
ˇ

ˇ

1
constructed by

restricting Construction 4.3.6 to the type theory Λˆps

ˇ

ˇ

1
is the free fp-bicategory on S, in the

sense of Lemma 4.2.62.

Proof. For any fp-bicategory pC,Πnp´qq and Λˆps-signature homomorphism h : S Ñ C the

extension fp-pseudofunctor h# : SynˆpSq
ˇ

ˇ

1
Ñ C is defined inductively as in Proposition 4.3.9,

with the following adjustments:
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hJx : A $ x : AK :“ IdhJAK

hJz : Z $ ttx ÞÑ uu : BK :“ hJx : A $ t : BK ˝ hJz : Z $ u : AK

hJx : A $ tuppt‚q :
ś

mpB1, . . . , BmqK :“ xhJx : A $ t1 : B1K, . . . , hJx : A $ tm : BmKy

hJz : Z $ τtσu : ttuu ñ t1tu1u : BK :“ hJx : A $ τ : tñ t1 : BK ˝ hJz : Z $ σ : uñ u1 : AK

Remark 4.3.11. As with the construction of FBctˆpSq, it is important that we first restrict

Λˆps to unary contexts, then construct the syntactic model (recall Example 4.2.63). đ

In the semantics of the simply-typed lambda calculus it is common to restrict the syntactic

model to unary contexts in order to achieve the desired universal property (see e.g. [Cro94,

Chapter 4]). Hence, we are still justified in calling Λˆps the internal language of fp-bicategories.

4.3.2 Reasoning within Λˆps

In later chapters we shall reason within Λˆps—and its extension Λˆ,Ñps for cartesian closed

bicategories—to prove various properties of the syntactic models and their semantic inter-

pretation. We collect together some results to simplify such calculations.

All the rules of the triangle-law approach to defining products are derivable. For example,

from Lemma 4.3.7 one recovers the functoriality of the tupling operation and the unit-counit

presentation of products (see Figure 4.5). These derived rules should be compared to the

primitive rules of [See87, Hil96].

Lemma 4.3.12. For any Λˆps-signature S, the rules of Figure 4.5 are all admissible.

Proof. The proofs are all similar; we prove naturality of ς as an example of equational

reasoning in ΛˆpspSq. One can either use the universal property (Lemma 4.3.7) or reason

directly using both the equational rules U1 and U2. We opt for the former. Let Γ $ σ : uñ

u1 :
ś

npA1, . . . , Anq be any rewrite. Then for k “ 1, . . . , n:

$
pkq
π‚u1

‚πktςu1 ‚σu ” $
pkq
π‚u1

‚πktςu1u ‚πktσu

U1
” idπktuu ‚πktσu

” πktσu

$
pkq
π‚u1

‚πkttuppπ1tσu, . . . , πntσuq ‚ ςuu ” $
pkq
π‚u1

‚πkttuppπ1tσu, . . . , πntσuqu ‚πktςuu

U1
” πktσu ‚$

pkq
π‚tuu

‚πktςuu

” πktσu

Applying the universal property of p:pπ1tσu, . . . , πntσuq, one sees that

ςu1 ‚σ ” tuppπ1tσu, . . . , πntσuq

as required.
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pΓ $ idti : ti ñ ti : Aiqi“1,...,n

Γ $ tuppidt1 , . . . , idtnq ” idtuppt1,...,tnq : tuppt1, . . . , tnq ñ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq

pΓ $ τ 1i : t1i ñ t2i : Aiqi“1,...,n pΓ $ τi : ti ñ t1i : Aiqi“1,...,n

Γ $ tuppτ 11, . . . , τ 1nq ‚ tuppτ1, . . . , τnq ” tuppτ 11 ‚ τ1, . . . , τ 1n ‚ τnq : tuppt‚q ñ tuppt2‚q :
ś

npA‚q

Γ $ σ : uñ u1 :
ś

npA1, . . . , Anq
ς-nat

Γ $ ςu1 ‚σ ” tuppπ1tσu, . . . , πntσuq ‚ ςu : uñ tuppπ‚tu1uq :
ś

npA1, . . . , Anq

pΓ $ τi : ti ñ t1i : Aiqi“1,...,n
$pkq-nat p1 ď k ď nq

Γ $ $
pkq
t11,...,t

1
n
‚πkttuppτ1, . . . , τnqu ” τk ‚$

pkq
t1,...,tn : πkttuppt‚qu ñ tk : Ak

Γ $ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq
triangle-law-1

Γ $ tupp$p1qt‚ , . . . , $
pnq
t‚ q ‚ ςtuppt‚q ” idtuppt‚q : tuppt‚q ñ tuppt‚q :

ś

npA‚q

Γ $ πktuu : Ak
triangle-law-2 p1 ď k ď nq

Γ $ $
pkq
t1,...,tn

‚πktςuu ” idπktuu : πktuu ñ πktuu : Ak

Figure 4.5: Admissible rules for ΛˆpspGq

We also give the syntactic constructions of the 2-cells post and fuse (recall Construc-

tion 4.1.6 on page 75). Intuitively, the rewrite post witnesses the identity xt1, . . . , tny rui{xis “

xt1rui{xis, . . . , tnrui{xisy for capture-avoiding substitution in the simply-typed lambda cal-

culus.

Construction 4.3.13. Let S be a Λˆps-signature. Define a 2-cell post in ΛˆpspSq with typing

x1 : A1, . . . , xn $ tuppt1, . . . , tmq :
ś

mpB1, . . . , Bmq p∆ $ ui : Aiqi“1,...,n

∆ $ postpt‚;u‚q : tuppt1, . . . , tmqtuiu ñ tuppt1tuiu, . . . , tmtuiuq :
ś

mpB1, . . . , Bmq

by setting postpt‚;u‚q :“ p:pα1, . . . , αmq where

αk :“ πkttuppt1, . . . , tmqtuiuu
assoc´1

ùùùùñ πkttuppt1, . . . , tmqutuiu
$pkqtuiu
ùùùùùñ tktuiu

Also define a 2-cell fuse with signature

pxi : Ai $ ti : Aiqi“1, ... ,n p∆ $ ui : Aiqi“1, ... ,n

∆ $ fusept‚;u‚q : tuppt‚tπ‚ppquqttuppu1, . . . , unqu ñ tuppt1tu1u, . . . , tntunuq :
ś

npB1, . . . , Bnq

by setting fusept‚;u‚q :“ p:pβ1, . . . , βnq for βk the composite
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πkttuppt‚tπ‚ppquqttuppu1, . . . , unquu tktuku

πkttuppt‚tπ‚ppququttuppu1, . . . , unqu

tktπkppquttuppu1, . . . , unqu tktπkttuppu1, . . . , unquu

assoc´1

βk

$pkqttuppu1,...,unqu

assoc

tkt$pkqu

đ

Since they are defined by applying the universal property to rewrites that are both

natural and invertible, it follows that post and fuse are also invertible, as well as being

natural in the sense that the following rules are admissible:

px1 : A1, . . . , xn : An $ τj : tj ñ t1j : Bjqj“1,...,m p∆ $ σi : ui ñ u1i : Aiqi“1,...,n

∆ $ postpt1‚;u1‚q ‚ tuppτ‚qtσiu ” tuppτ‚tσiuq ‚ postpt‚;u‚q : tuppt‚qtuiu ñ tuppt1‚tu1iuq :
ś

B‚

pxi : Ai $ τi : ti ñ t1i : Aiqi“1, ... ,n p∆ $ σi : ui ñ u1i : Aiqi“1, ... ,n

∆ $ fusept1‚;u1‚q ‚ tuppτ‚tπ‚ppquqttuppσ‚qu ” tuppτ‚tσ‚uq ‚ fusept‚;u‚q :

: tuppt‚tπ‚ppquqttuppu1, . . . , unqu ñ tuppt11tu11u, . . . , t1ntu1nuq :
ś

nB‚

Moreover, the proofs of Lemma 4.1.7 translate readily to the type theory.

Lemma 4.3.14. Let Γ :“ pxi : Aiqi“1,...,n and ∆ :“ pyl : Blql“1,...,k be contexts and suppose

p∆ $ σi : ui ñ u1i : Aiqi“1, ... ,n. Then

1. (Naturality). If pΓ $ τj : tj ñ t1j : Bjqj“1,...,m, then

tuppt1, . . . , tmqtu‚u tuppt1tu‚u, . . . , tmtu‚uq

tuppt11, . . . , t1mqtu1‚u tuppt11tu1‚u, . . . , t1mtu1‚uq

post

tuppτ1, ... ,τmqtσ‚u tuppτ1tσ‚u, ... ,τmtσ‚uq

post

2. (Compatibility with ι). If pΓ $ tm : Bmqj“1,...,m then

tuppt1, . . . , tmq tuppt1, . . . , tmqtx‚u

tuppt1tx‚u, . . . , tmtx‚uq
tuppι, ... ,ιq

ι

post
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3. (Compatibility with assoc). For terms pΓ $ tm : Cmqj“1,...,m and pΣ $ vl : Blql“1,...,k

then

tuppt1, . . . , tmqtu‚utv‚u tuppt1tu‚u, . . . , tmtu‚uqtv‚u

tuppt1tu‚utv‚u, . . . , tmtu‚utv‚uq

tuppt1, . . . , tmqtu‚tv‚uu tuppt1tu‚tv‚uu, . . . , tmtu‚tv‚uuq

assoc

posttv‚u

post

tuppassoc, ... ,assocq

post

4. (Compatibility with ς). If Γ $ t :
ś

mpB1, . . . , Bmq then

ttu‚u tuppπ1ttu, . . . , πmttuqtu‚u

tuppπ1tttu‚uu, . . . , πmtttu‚uuq tuppπ1ttutu‚u, . . . , πmttutu‚uq

ςtu‚u

ς post

tuppassoc, ... ,assocq

Proof. The proofs are straightforward calculations using the universal property of Lemma 4.3.7.

For example, for naturality we simply observe that

$
pkq
t11tu

1
‚u, ... ,t

1
mtu

1
‚u
‚πkttuppτ1tσ‚u, . . . , τmtσ‚uq ‚ postpt‚;u‚qu

“ $
pkq
t11tu

1
‚u, ... ,t

1
mtu

1
‚u
‚πkttuppτ1tσ‚u, . . . , τmtσ‚uqu ‚πktpostpt‚;u‚qu

“ τktσ‚u ‚$
pkq
t1, ... ,tm

‚πktpostpt‚;u‚qu

“ τktσ‚u ‚$
pkq
t1,...,tm

tu‚u ‚ assoc´1
πkppq;tuppt1, ... ,tmq;u‚

and that

$
pkq
t11tu

1
‚u, ... ,t

1
mtu

1
‚u
‚πk

 

postpt1‚;u1‚q ‚ tuppτ1, . . . , τmqtσ‚u
(

“ $
pkq
t11tu

1
‚u, ... ,t

1
mtu

1
‚u
‚πk

 

postpt1‚;u1‚q
(

‚πkttuppτ1, . . . , τmqtσ‚uu

“ $
pkq
t11,...,t

1
m

 

u1‚
(

‚ assoc´1
πkppq;tuppt11, ... ,t1mq;u1‚

‚πkttuppτ1, . . . , τmqtσ‚uu

“ $
pkq
t11,...,t

1
m

 

u1‚
(

‚πkttuppτ1, . . . , τmqutσ‚u ‚ assoc´1
πkppq;tuppt1, ... ,tmq;u‚

“ τktσ‚u ‚$
pkq
t1,...,tm

tu‚u ‚ assoc´1
πkppq;tuppt1, ... ,tmq;u‚

Hence, by the universal property of Lemma 4.3.7, the required equality holds. The other

cases are similar.

4.3.3 Products from context extension

We end this chapter by noting a ‘degenerate’ or ‘implicit’ way for a deductive system

to exhibit product structure. The construction gives rise to a syntactic model that is

an fp-bicategory, but does not arise via a cartesian biclone or provide a type-theoretic

description of bicategorical products. While this structure is not in the vein of those we
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have discussed above, it will play an important role: exponentials in the simply-typed

lambda calculus are defined with respect to these products. The product structure is given

by context concatenation.

Construction 4.3.15. For any Λˆps-signature S, define a bicategory T @,ˆ
ps pSq as follows.

Fix an enumeration of variables x1, . . . , xn, . . . . The objects are then contexts Γ,∆, . . . in

which the ith entry has variable name xi. The 1-cells Γ Ñ pyj : Bjqj“1, ... ,m are m-tuples

of α-equivalence classes of terms pΓ $ tj : Bjqj“1, ... ,m derivable in ΛˆpspSq; the 2-cells are

m-tuples of α”-equivalence classes of rewrites pΓ $ τ : tj ñ t1j : Bjqj“1, ... ,m.

Vertical composition is given pointwise by the ‚ operation, and horizontal composition

by explicit substitution:

pt1, . . . , tlq, pu1, . . . , umq ÞÑ pt1txi ÞÑ uiu, . . . , tmtxi ÞÑ uiuq

pτ1, . . . , τlq, pσ1, . . . , σmq ÞÑ pτ1txi ÞÑ σiu, . . . , τmtxi ÞÑ σiuq

The identity on ∆ “ pyj : Bjqj“1, ... ,m is the var rule p∆ $ yj : Bjqj“1, ... ,m, and the

structural isomorphisms l, r and a are given pointwise by %, ι´1 and assoc, respectively. đ

Since Λˆps comes equipped with a product structure, this bicategory has two product

structures: one given by the product structure in the type theory, and the other by context

extension. We emphasise this with the notation.

The type-theoretic product structure is induced from that on the full sub-bicategory of

unary contexts via the following lemma, which can be seen as the type-theoretic translation

of Lemma 4.2.48 on page 111.

Lemma 4.3.16. For any Λˆ,Ñps -signature S and context Γ “ pxi : Aiqi“1, ... ,n, there exists

an adjoint equivalence Γ Ô
`

p :
ś

npA1, . . . , Anq
˘

in T @,ˆ
ps pSq.

Proof. Take the 1-cells

pΓ $ tuppx1, . . . , xnq :
ś

npA1, . . . , Anqq : Γ Ñ pp :
ś

npA1, . . . , Anqq

pp :
ś

npA1, . . . , Anq $ πippq : Aiqi“1,...,n : pp :
ś

npA1, . . . , Anqq Ñ Γ

For the unit and counit of the required adjoint equivalence we take

´

Γ $ $piqx‚πittuppx1, . . . , xnqu ñ xi : Ai

¯

i“1,...,n

and the composite

p tuppx1, . . . , xnqtπippqu

tuppπ1tpu, . . . , πntpuq tuppx1tπ‚tpuu, . . . , xntπ‚tpuuq tuppx1, . . . , xnqtπ‚tpuu

ςp

tupp%p´1q, ... ,%p´nqq postpx‚;π‚tpuq´1

tuppx1, ... ,xnq
!

ι´1
π‚ppq

)
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The proof then amounts to making use of naturality to the point where one can apply the

triangle laws of Figure 4.5.

Remark 4.3.17. The preceding lemma, together with Lemma 3.2.18 on page 59, in fact

entails that T @,ˆ
ps pSq » SynˆpSq

ˇ

ˇ

1
for every unary Λˆps-signature S. đ

We define the product px
p1q
i : A

p1q
i qi“1, ... ,m1 ˆ ¨ ¨ ¨ ˆ px

pnq
i : A

pnq
i qi“1, ... ,mn of arbitrary

contexts to be the product pp1 :
śm1
i“1A

p1q
i q ˆ ¨ ¨ ¨ ˆ ppn :

śmn
i“1A

pnq
i q of the corresponding

unary contexts. The ith projection is the |Γpiq|-tuple

´

p :
ś

n

`
ś

|Γp1q|A
p1q
‚ , . . . ,

ś

|Γpnq|A
pnq
‚

˘

$ πjtπippqu : A
piq
j

¯

j“1,...,|Γpiq|
(4.38)

and the tupling of nmaps p∆ Ñ Γpiqqi“1,...,n, that is, of |Γpiq|-tuples p∆ $ t
piq
j : A

piq
j qj“1,...,|Γpiq|

i“1,...,n

,

is

∆ $ tup
´

tupptp1q‚ q, . . . , tupptpnq‚ q
¯

:
ś

n

`
ś

|Γp1q|A
p1q
‚ , . . . ,

ś

|Γpnq|A
pnq
‚

˘

The counit $piq is the composite indicated by the pasting diagram

ś

n

`
ś

|Γp1q|A
p1q
‚ , . . . ,

ś

|Γpnq|A
pnq
‚

˘
ś

|Γpiq|A
piq
‚ Γpiq

∆

πippq

$piq

–

pπ1ppq,...,π
|Γpiq|

ppqq

–

tup
´

tupptp1q‚ q,...,tupptpnq‚ q

¯

tupptpiq‚ q

t
piq
1 ,...,t

piq

|Γpiq|

That is, the |Γpiq|-tuple with jth component the composite rewrite

πjtπippqu
!

tup
´

tupptp1q‚ q, . . . , tupptpnq‚ q
¯)

t
piq
j

πj

!

πi

!

tup
´

tupptp1q‚ q, . . . , tupptpnq‚ q
¯))

πj

!

tupptpiq1 , . . . , t
piq

|Γpiq|
q

)

–

πjt$piqu

$pjq

The next lemma encapsulates the required universal property.

Lemma 4.3.18. For any unary Λˆps-signature S, the 1-cell

´

p :
ś

n

`
ś

|Γp1q|A
p1q
‚ , . . . ,

ś

|Γpnq|A
pnq
‚

˘

$ πjtπippqu : A
piq
j

¯

j“1,...,|Γpiq|

of (4.38) is a biuniversal arrow defining an fp-structure on T @,ˆ
ps pSq.
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Proof. Taking the structure described above, it remains to check the universal property

of the counit. Suppose that ∆ $ u :
`
ś

|Γp1q|A
p1q
‚ , . . . ,

ś

|Γpnq|A
pnq
‚

˘

and that p∆ $ t
piq
j :

A
piq
j qj“1,...,|Γpiq| for i “ 1, . . . , n, and consider a family of rewrites

´

∆ $ α
piq
j : πjtπippqutuu ñ t

piq
j : A

piq
j

¯

j“1,...,|Γpiq|
i“1,...,n

One thereby obtains composites rα
piq
j :“ πjtπituuu

–
ùñ πjtπippqutuu

α
piq
j
ùùñ t

piq
j for j “

1, . . . , |Γpiq| and i “ 1, . . . , n. Applying the universal property of $ (Lemma 4.3.7) for

each i, one obtains p:prαpiq1 , . . . , rα
piq

|Γpiq|
q : πktuu ñ tupptpiq1 , . . . , t

piq

|Γpiq|
q for i “ 1, . . . , n. Finally

applying the universal property to this family of rewrites, one obtains

p:
´

p:prαp1q1 , . . . , rα
p1q

|Γp1q|
q, . . . , p:prαpnq1 , . . . , rα

pnq

|Γpnq|
q

¯

: uñ tup
´

tupptp1q‚ q, . . . , tupptpnq‚ q
¯

To see that this 2-cell satisfies the required universal property, apply the corresponding

property from Lemma 4.3.7 twice.

We now turn to the second, strict, product structure. This arises from context extension.

Constructing products in this way is a standard method in the categorical setting (e.g. [Pit00])

and is also employed by Hilken [Hil96] in the 2-categorical case to obtain a strict product.

Taken on its own, however, it does not enable one to reason about products within the type

theory.

Lemma 4.3.19. For any Λˆps-signature S the syntactic model T @,ˆ
ps pSq of ΛˆpspSq is an

fp-bicategory with product structure given by context extension.

Proof. We claim first that every context Γ :“ pxi : Aiqi“1, ... ,n is the n-ary product
śn
i“1pxi :

Aiq of unary contexts px1 : A1q, . . . , pxn : Anq. Define projections πk : Γ Ñ Ak for

k “ 1, . . . , n by Γ $ xk : Ak. Then, given 1-cells ∆ $ ti : Ai for i “ 1, . . . , n, define the

n-ary tupling to be the n-tuple p∆ $ ti : Aiqi“1, ... ,n. The unit and counit are the 2-cells

with components %p´iq and %piq, respectively.

We extend this to all contexts in the obvious way. For contexts Γi pi “ 1, . . . , nq such

that Γi :“ pxj : A
piq
j qj“1, ... ,|Γi| the product

śn
i“1 Γi is the concatenated context Γ1, . . . ,Γn

(the enumeration of variables ensures no variable names are duplicated). The kth projection

is the |Γk|-tuple pΓ1, . . . ,Γn $ xj : A
pkq
j q1`

řk´1
l“1 |Γl|ďjď|Γk|`

řk´1
l“1 |Γl|

and the n-ary tupling

of 1-cells pt̄i : ∆ Ñ Γiqi“1, ... ,n with t̄i :“ p∆ $ t
piq
j : A

piq
j qj“1, ... ,|Γi| is just the unfolded

řn
i“1 |Γi|-tuple p∆ $ t

piq
j : A

piq
j q i“1, ... ,n

j“1, ... ,|Γi|

. The unit and counit are as in the unary case.



Chapter 5

A type theory for cartesian closed

bicategories

We now build on the preceding chapters, and the type theory Λˆps, to construct a type theory

for cartesian closed bicategories. First we extend the theory of clones with finite products

to include exponentials via a version of Lambek’s internal hom of a multicategory [Lam89].

Next we extend this to (cartesian) biclones and use it to extract a type theory Λˆ,Ñps for which

the syntactic model is free among cartesian closed biclones. The proof of the corresponding

bicategorical free property, however, throws up a subtlety: exponentials in the Lambek

style are defined as a right (bi)adjoint to context extension rather than the type-theoretic

product. In terms of the syntactic models of the preceding chapter, exponentials appear

with respect to the context extension product structure, rather than the type-theoretic

product structure (recall Section 4.3.3). As we shall see, it follows that the restriction of

Λˆ,Ñps to unary contexts cannot satisfy a strict free property mirroring that of Λbicat
ps and

Λˆps. We address this by showing that the syntactic model of Λˆ,Ñps is biequivalent to the

cartesian closed bicategory enjoying such a strict free property. (Table A.1 on page 288

provides an index of the various free constructions and syntactic models we employ.) We

end the chapter by making precise the claim that Λˆ,Ñps is the simply-typed lambda calculus

up to isomorphism.

133
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5.1 Cartesian closed bicategories

Let us start by recapitulating the definition of cartesian closed bicategory. To give a

cartesian closed structure on an fp-bicategory pB,Πnp´qq is to specify a biadjunction

p´q ˆA % pA“B´q for every A P B. Following Definition 2.4.1, this amounts to choosing

an object pA“BBq and a biuniversal arrow evalA,B : pA“BBq ˆAÑ B for every A,B P B.

We unfold the definition as follows.

Definition 5.1.1. A cartesian closed bicategory or cc-bicategory is an fp-bicategory pB,Πnp´qq

equipped with the following data for every A,B P B:

1. A chosen object pA“BBq,

2. A specified 1-cell evalA,B : pA“BBq ˆAÑ B,

3. For every X P B, an adjoint equivalence

BpX,A“BBq BpX ˆA,Bq

evalA,B˝p´ˆAq
%

»

λ

(5.1)

specified by a family of universal arrows εf : evalA,B ˝ pλf ˆAq ñ f .

We call the functor λp´q currying and refer to λf as the currying of f . đ

Remark 5.1.2. As for products, we shall call an exponential structure strict if the equival-

ences (5.1) are isomorphisms. When the underlying bicategory B is a 2-category, this yields

the definition of cartesian closure in the Cat-enriched sense (c.f. Remark 4.1.2). đ

Explicitly, the equivalences (5.1) are given by the following universal property. For

every 1-cell t : X ˆ AÑ B we require a 1-cell λt : X Ñ pA“BBq and an invertible 2-cell

εt : evalA,B ˝ pλtˆAq ñ t, universal in the sense that for any 2-cell α : evalA,B ˝ puˆAq ñ t

there exists a unique 2-cell e:pαq : u ñ λt such that εt ‚
`

evalA,B ˝ pe:pαq ˆ Aq
˘

“ α.

Moreover, we require that the unit ηt :“ e:pidevalA,B˝ptˆAqq is also invertible.

Notation 5.1.3. Following the categorical notation, for 1-cells f : A1 Ñ A and g : B Ñ B1

we write pf “B gq : pA“BBq Ñ pA1“BB1q for the exponential transpose of the composite

pg ˝ evalA,Bq ˝ pIdA“BB ˆ fq, thus:

pf “B gq :“ λ
`

pA“BBq ˆA1
pA“BBqˆf
ÝÝÝÝÝÝÝÑ pA“BBq ˆA

evalA,B
ÝÝÝÝÑ B

g
ÝÑ B1

˘

and likewise on 2-cells. đ

As for products, 1-category theoretic notation can be misleading when the identity is

referred to explicitly. Consider the identities

pf “B IdBq “ λppIdB ˝ evalA,Bq ˝ pf ˆ IdAqq

pIdA“B gq “ λppg ˝ evalA,Bq ˝ pIdA“BB ˆ IdAqq
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In a 2-category with pseudo-products and pseudo-exponentials, one may safely write

pf “B IdBq as simply λpevalA,B ˝ pf ˆAqq, but cannot simplify pIdA“B gq in a similar way

to λpg ˝ evalA,Bq. Note, however, that this simplification is possible in the presence of strict

products, when the unit is an identity.

Remark 5.1.4. The uniqueness of exponentials up to equivalence manifests itself in the same

way as for products. For instance, given an adjoint equivalence e : E » pA“BBq : f , the

object E inherits an exponential structure by composition with e and f (c.f. Remark 4.1.5).

đ

In Construction 4.1.6 we saw that standard properties of cartesian categories are

witnessed by natural families of 2-cells in an fp-bicategory. The same principle holds for

cc-bicategories.

Construction 5.1.5. Let pB,Πnp´q,“Bq be a cc-bicategory. For g : X Ñ Y and f :

Y ˆAÑ B we define pushpf, gq : λpfq ˝ g ñ λ
`

f ˝ pg ˆAq
˘

as e:pτq, for τ the composite

evalA,B ˝ ppλf ˝ gq ˆAq f ˝ pg ˆAq

evalA,B ˝ ppλf ˆAq ˝ pg ˆAqq pevalA,B ˝ pλf ˆAqq ˝ pg ˆAq

eval˝pΦf,gq
´1

τ

–

εf˝pgˆAq

where Φf,g : pf ˆ Aq ˝ pg ˆ Aq ñ pfg ˆ Aq witnesses
ś

2p´,“q as a pseudofunctor (re-

call Construction 4.1.6(3)).

đ

This family of 2-cells is natural in each of its arguments and satisfies the expected

equations, some of which are collected in the following lemma. As for Lemma 4.1.7, we

assume the underlying bicategory is strict for the sake of clarity.

Lemma 5.1.6. Let pB,Πnp´q,“Bq be a 2-category with finite pseudo-products and pseudo-

exponentials. Then for all 1-cells f, g and h, the following diagrams commute whenever

they are well-typed:

pλfq ˝ Id λ
`

f ˝ pIdˆAq
˘

λf λpf ˝ xπ1, π2yq

push

λpf˝ςf q

(5.2)

f ˝ g λ
`

eval ˝ pfg ˆAq
˘

λ
`

eval ˝ pf ˆAq
˘

˝ g λ
`

eval ˝ pf ˆAq ˝ pg ˆAq
˘

ηf˝g

ηf˝g

push

λpeval˝Φf,g;Idq (5.3)

pf “B gq ˝ Id λ
`

g ˝ eval ˝ ppA“BBq ˆ fq ˝ pIdˆBq
˘

pf “B gq λ
`

g ˝ eval ˝ ppA“BBq ˆ fq
˘

push

λpg˝eval˝ΦId;f,Idq (5.4)
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λpfq ˝ g ˝ h λ
`

f ˝ pg ˆAq
˘

˝ h λ
`

f ˝ pg ˆAq ˝ phˆAq
˘

λ
`

f ˝ ppg ˝ hq ˆAq
˘

λ
`

f ˝ pghˆAq
˘

push˝h

push

push

λpf˝Φg,h;Idq (5.5)

A pseudofunctor between cartesian closed bicategories is cartesian closed if it pre-

serves both the biuniversal arrows defining products and the biuniversal arrows defining

exponentials.

Definition 5.1.7. A cartesian closed pseudofunctor or cc-pseudofunctor between cc-bicategories

pB,Πnp´q,“Bq and pC,Πnp´q,“Bq is an fp-pseudofunctor pF, qˆq equipped with specified

adjoint equivalences

mA,B : F pA“BBq Ô pFA“BFBq : q“BA,B

for every A,B P B, where mA,B : F pA“BBq Ñ pFA“BFBq is the exponential transpose

of F pevalA,Bq ˝ qˆA“BB,A. We denote the 2-cells witnessing that q“BA,B and mA,B form an

equivalence by

u“BA,B : IdpFA“BFBq ñ mA,B ˝ q“BA,B

c“BA,B : q“BA,B ˝mA,B ñ IdF pA“BBq

A cc-pseudofunctor pF, qˆ, q“Bq is strict if pF, qˆq is a strict fp-pseudofunctor such that

F pA“BBq “ pFA“BFBq

F pevalA,Bq “ evalFA,FB

F pλtq “ λpFtq

F pεtq “ εFt

q“BA,B “ IdFA“BFB

with equivalences canonically induced by the 2-cells

e:pevalFA,FB ˝ κq : IdpFA“BFBq
–
ùñ λpevalFA,FB ˝ IdpFA“BFBqˆFAq

for κ is the canonical isomorphism IdFA“BFB ˆ FA – IdpFA“BFBqˆFA. đ

Remark 5.1.8 (c.f. Remark 4.1.10). If B is a bicategory equipped with two cartesian closed

structures, say pB,Πnp´q,“Bq and
`

B,Prodnp´q, r´,´s
˘

, then for any cc-pseudofunctor

pF, qˆ, q“Bq : pB,Πnp´q,“Bq Ñ pC,Πnp´q,“Bq there exists an (equivalent) cc-pseudofunctor

`

B,Prodnp´q, r´,´s
˘

Ñ pC,Πnp´q,“Bq

with witnessing equivalences arising from the uniqueness of products and exponentials up

to equivalence. đ
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cc-Biequivalences from biequivalences. In the preceding chapter (page 81) we saw

that, so far as we are concerned, it is unnecessary to distinguish between pseudonatural

transformations and their product-respecting counterparts. A similar situation holds in

the cartesian closed case. For cartesian closed pseudofunctors pF, qˆ, q“Bq, pG,uˆ,u“Bq :

pB,Πnp´q,“Bq Ñ pC,Πnp´q,“Bq, a cc-transformation F ñ G is an fp-transformation

pα, α, αˆq : pF, qˆq ñ pG, uˆq (recall Definition 4.1.14) equipped with a 2-cell α“BA,BpA,B P Bq
as in the diagram below

F pA“BBq ˆ FA pFA“BFBq ˆ FA FB

GpA“BBq ˆGA pGA“BGBq ˆGA GB

evalFA,FB ˝ pm
F
A,B ˆ FAq

mF
A,BˆFA

αA“BBˆαA

evalFA,FB

α“BA,B
ð

αBαB

evalGA,GB ˝ pm
G
A,B ˆGAq

mG
A,BˆGA

evalGA,GB

such that the following pasting diagram is equal to αevalA,B :

F
`

pA“BBq ˆA
˘

F
`

pA“BBq ˆA
˘

F pA“BBq ˆ FA FB

G
`

pA“BBq ˆA
˘

GpA“BBq ˆGA GB

G
`

pA“BBq ˆA
˘

F evalA,B

F evalA,B

–

xFπ1,Fπ2y

αpA“BBqˆA

IdF ppA“BBqˆAq

αˆA“BB,A
ð

αA“BBˆαA

evalFA,FB˝pm
F
A,BˆFAq

–
qˆ
pA“BB,Aq

α“BA,B
ð

ε
–

αB

GevalA,B

–

xGπ1,Gπ2y

IdGppA“BBqˆAq

evalGA,GB˝pm
G
A,BˆGAq

qˆA“BB,B
–

ε
– GevalAB

We call the transformation strong if every αf , αˆA1, ... ,An
and α“BA,B is invertible.

In a cc-bicategory, every fp-transformation—and hence every pseudonatural transformation—

lifts canonically to a cc-transformation: one simply inverts the coherence law to obtain a

definition of α“BA,B . Moreover, by Lemma 2.2.13 every biequivalence extends canonically to a

cc-pseudofunctor. Thus, in order to construct a cc-biequivalence between cc-bicategories—

namely a biequivalence of the underlying bicategories in which the pseudofunctors are

cc-pseudofunctors and the pseudonatural transformations are cc-transformations—it suffices

to construct a biequivalence of the underlying bicategories (c.f. Lemma 4.1.16).



138 CHAPTER 5. A TYPE THEORY FOR CARTESIAN CLOSED BICATEGORIES

Lemma 5.1.9. Let pB,Πnp´q,“Bq and pC,Πnp´q,“Bq be cc-bicategories. Then there exists

a biequivalence B » C if and only if there exists a cc-biequivalence pB,Πnp´q,“Bq »

pC,Πnp´q,“Bq.

5.1.1 Coherence via the Yoneda embedding.

It turns out that one may refine the Yoneda-style proof of coherence for fp-bicategories

given on page 77 (Proposition 4.1.8) to encompass exponentials.1 The proof does not go

through verbatim, because the exponentials in HompB,Catq are not generally strict. The

solution is to first strictify the bicategory B to a 2-category C, then pass to the 2-category

rC,Cats of 2-functors, 2-natural transformations, and modifications. This is cartesian closed

as a 2-category—and hence as a bicategory—by general enriched category theory [Day70,

Example 5.2].

Proposition 5.1.10. For any cc-bicategory pB,Πnp´q,“Bq there exists a strictly cartesian

closed 2-category pC,Πnp´q,“Bq such that B » C.

Proof. By Proposition 4.1.8 we may assume without loss of generality that B is a 2-category

with 2-categorical products and pseudo-exponentials. It therefore admits a 2-categorical

Yoneda embedding Y : B ãÑ rBop,Cats. Let B denote the closure of YpobpBqq under

equivalences and factor the Yoneda embedding as B i
ÝÑ B j

ÝÑ rBop,Cats. By the 2-categorical

Yoneda lemma, i is a biequivalence.

The rest of the argument runs as for Proposition 4.1.8. For any P,Q P B the strict

exponential pjP “B jQq exists in rBop,Cats. But then

pjP “B jQq “
`

pYi´1qP “BpYi´1qQ
˘

» Y
`

i´1P “B i´1Q
˘

so the exponential pjP “B jQq P B, as required.

In a sense, of course, this proposition solves the problem we set ourselves in the

introduction to this thesis: cc-bicategories are coherent. However, the normalisation-by-

evaluation proof is valuable in itself. First, it is a new approach to higher-categorical

coherence; second, the speculation that it may be refinable to a normalisation algorithm

on 2-cells; and third, it makes use of machinery that will play an important role in other,

further developments. We therefore keep this result in mind, but do not let it deter us from

our work in the rest of this thesis.

5.2 Cartesian closed (bi)clones

We shall follow the procedure of the previous two chapters, synthesising our type theory

from the construction of a free biclone. The 1-categorical setting remains an enlightening

starting point: in this setting, the type theory we synthesise ought to be the familiar

1I am grateful to André Joyal for suggesting this is possible, especially so because at the time I thought
it was not.
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simply-typed lambda calculus. To show this is indeed the case, we shall extend the diagram

of adjunctions (4.19) on page 98 to the cartesian closed setting. The ideas involved are not

especially novel; however, to the best of my knowledge they have not been presented in this

style elsewhere (although Jacobs’ [Jac92] shares many of the same basic insights).

5.2.1 Cartesian closed clones

Lambek [Lam89] defines a (right) internal hom in a multicategory L to be a choice of object

A“BB for every A,B P L, together with a family of multimaps evalA,B : pA“BBq, AÑ B

inducing isomorphisms

LpΓ;A“BBq
–
ÝÑ LpΓ, A;Bq

ph : Γ Ñ A“BBq ÞÑ pΓ, A
evalA,B˝xh,idAy
ÝÝÝÝÝÝÝÝÝÝÑ Bq

for every Γ, A and B. This suggests the following definition for clones (c.f. Definition 4.2.13).

Definition 5.2.1. A clone pS,Cq has a (right) internal hom if the corresponding mul-

ticategory MC has a right internal hom. If C is also cartesian, we say C is cartesian

closed. đ

Example 5.2.2. The cartesian clone ClpCq constructed from a cartesian closed category

pC,Πnp´q,“Bq (recall Example 4.2.14 on page 87) is cartesian closed. The exponential of

A,B P C is A“BB, the evaluation multimap is the evaluation map of C, and the currying

of f :
ś

n`1pA1, . . . , An, Xq Ñ Y is the exponential transpose of

ś

2p
ś

npA1, . . . , Anq, Xq
–
ÝÑ

ś

n`1pA1, . . . , An, Xq
f
ÝÑ Y

đ

Since every cartesian clone is representable, for any cartesian closed clone pS,C,Πnp´q,“Bq

one obtains the following chain of natural isomorphisms for every A1, . . . , An, B,C P S pn P

Nq:

C
`
ś

n`1pA1, . . . , An, Bq;C
˘

– CpA1, . . . , An, B;Cq by representability

– CpA1, . . . , An;B“BCq by cartesian closure

– Cp
ś

npA1, . . . , Anq;B“BCq by representability

(5.6)

Thus, for any multimap t : A1, . . . , An, B Ñ C in a cartesian closed clone pS,C,Πnp´q,“Bq

there exists a multimap λt : A1, . . . , An Ñ pB“BCq (called the currying of t), which is the

unique g : A1, . . . , An Ñ pB“BCq satisfying

t “ evalA,B

”

grpp1qA‚;B, . . . , p
pnq
A‚;B

s, ppn`1q
A‚;B

ı

Observe in particular how the requirement that the isomorphisms are defined on MC—rather

than on C—abstractly enforces the use of the weakening operation taking h : X1, . . . , Xn Ñ

Z to the multimap h
”

pp1qX‚,Y , . . . , p
pnq
X‚,Y

ı

: X1, . . . , Xn, Y Ñ Z.
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Remark 5.2.3. For any cartesian closed clone pS,C,Πnp´q,“Bq the isomorphisms (5.6)

entail that the nucleus C is also cartesian closed. Thus products are given as in pS,Cq, and

exponentials are given by the composite natural isomorphism

CpX ˆA,Bq “ CpX ˆA,Bq – CpX,A;Bq – CpX,A“BBq “ CpX,A“BBq (5.7)

However, the evaluation map evalA,B : pA“BBq, AÑ B witnessing exponentials in C is not

a morphism in C. Chasing through the isomorphism (5.7), one sees that the evaluation

map pA“BBq ˆ A Ñ B in C is evalA,Brπ1, π2s and the currying of f : X ˆ A Ñ B is the

1-cell λ
`

X,A
tupppp1qX,A,p

p2q
X,Aq

ÝÝÝÝÝÝÝÝÝÑ X ˆA
f
ÝÑ B

˘

. To see this is the case, observe first that for any

u : X Ñ pA“BBq one has:

evalA,B

”

urpp1qX,As, p
p2q
X,A

ı

rπ1, π2s “ evalA,B

”

urpp1qX,Asrπ1, π2s, pp2qX,Arπ1, π2s

ı

“ evalA,Brurπ1s, π2s

Next recall that for any u : X Ñ Y in C the corresponding morphism uˆA : XˆAÑ Y ˆA

is tuppurπ1s, π2q. Putting these components together, one sees that for any f : X ˆAÑ B,

evalA,Brπ1, π2s

”

tup
´

λ
`

f rtupppp1qX,A, p
p2q
X,Aqs

˘

rπ1s, π2

¯ı

“ evalA,B

”

λ
`

f rtupppp1qX,A, p
p2q
X,Aqs

˘

rπ1s, π2

ı

cartesian structure of C

“ evalA,B

”

λ
`

f rtupppp1qX,A, p
p2q
X,Aqs

˘

rpp1qX,As, p
p2q
X,A

ı

rπ1, π2s

“ f rtupppp1qX,A, p
p2q
X,Aqsrπ1, π2s exponentials in C

“ f

The final line follows by Lemma 4.2.17. On the other hand, for any u : X Ñ pA“BBq,

λ
`

evalA,Brπ1, π2srtuppurπ1s, π2qsrtupppp1qX,A, p
p2q
X,Aqs

˘

“ λ
´

evalA,Brurπ1s, π2s

”

tupppp1qX,A, p
p2q
X,Aq

ı¯

“ λ
´

evalA,B

”

urpp1qX,As, p
p2q
X,A

ı¯

“ u

where the final line follows again from the cartesian closed structure in pS,Cq. It follows

that evalA,Brπ1, π2s is the universal arrow defining exponentials, as claimed.

This structure is not surprising: it corresponds to the cartesian closed structure

on the syntactic model of the simply-typed lambda calculus, restricted to unary con-

texts (e.g. [Cro94, Theorem 4.8.4]). đ

The following two definitions follow the schema of Chapters 3 and 4.

Definition 5.2.4. A Λˆ,Ñ-signature S “ pB,Gq consists of

1. A set of base types B,

2. A multigraph G with nodes generated by the grammar

A1, . . . , An, C,D ::“ B |
ś

npA1, . . . , Anq | C “BD pB P B, n P Nq (5.8)
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If the multigraph G is a graph we call the signature unary. A homomorphism of Λˆ,Ñ-

signatures h : S Ñ S 1 is a morphism h : G Ñ G1 of the underlying multigraphs such that,

additionally,

hp
ś

npA1, . . . , Anqq “
ś

nphA1, . . . , hAnq

hpC “BDq “ phC “BhDq

We denote the category of Λˆ,Ñ-signatures and their homomorphisms by Λˆ,Ñ-sig, and the

full subcategory of unary Λˆ,Ñ-signatures by Λˆ,Ñ-sig
ˇ

ˇ

1
. đ

Notation 5.2.5 (c.f. Notation 4.2.23). For any Λˆ,Ñ-signature S “ pB,Gq we write rB for

the set generated from B by the grammar (5.8). In particular, when the signature is just a

set (i.e. the graph G has no edges) we denote the signature S “ pB,Sq simply by rB. đ

Definition 5.2.6. A cartesian closed clone homomorphism

h : pS,C,Πnp´q,“Bq Ñ pT,D,Πnp´q,“Bq

is a cartesian clone homomorphism pS,C,Πnp´qq Ñ pT,D,Πnp´qq such that the canonical

map λphpevalA,Bqq : hpA“BBq Ñ phA“BhBq is invertible. We call h strict if

hpA“BBq “ phA“BhBq

hpevalA,Bq “ evalhA,hB

for every A,B P S. đ

In a similar fashion, we call a cartesian closed functor strict if it strictly preserves

exponentials and the evaluation map.

We now construct the following diagram of adjunctions, in which CCCat denotes the

category of cartesian closed categories and strict cartesian closed functors and CCClone

denotes the category of cartesian closed clones and strict homomorphisms. As in the

preceding chapter, we implicitly restrict to cartesian structure in which
ś

1p´q is the

identity functor.

CCClone

Λˆ,Ñ-sig CCCat

Λˆ,Ñ-sig
ˇ

ˇ

1

p´qforget

%

FClˆ,Ñp´q

rL

%P

forget

%

free

%

(5.9)

The right adjoint to the inclusion ι : Λˆ,Ñ-sig
ˇ

ˇ

1
ãÑ Λˆ,Ñ-sig is defined by rLpB,Gq “

pB,LGq for L : MGrph Ñ Grph the right adjoint to the inclusion Grph ãÑ MGrph



142 CHAPTER 5. A TYPE THEORY FOR CARTESIAN CLOSED BICATEGORIES

(c.f. Lemma 4.2.24). The free-forgetful adjunction between cartesian closed categories and

Λˆ,Ñ-signatures is the classical construction of the syntactic model of the simply-typed

lambda calculus over a signature [Lam80]. There are two adjunctions left to construct.

Lemma 5.2.7. The forgetful functor CCClone Ñ Λˆ,Ñ-sig has a left adjoint.

Proof. Define a clone FClˆ,ÑpSq over a signature pB,Gq as follows. The sorts are generated

by the grammar

A1, . . . , An, C,D ::“ B |
ś

npA1, . . . , Anq | C “BD pB P B, n P Nq

The operations are those of Construction 4.2.25 (page 94) together with two additional

rules:

evalB,C P FClˆ,ÑpSqpB“BC,B;Cq

t P FClˆ,ÑpSqpA1, . . . , An, B;Cq
pn P Nq

λt P FClˆ,ÑpSqpA1, . . . , An;B“BCq

Similarly, one extends the equational theory ” by requiring that

• evalB,C
”

pλtqrpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı

” t for any t : A1, . . . , An, B Ñ C,

• λ
´

evalB,C
”

urpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı¯

” u for any u : A1, . . . , An Ñ pB“BCq.

It is clear FClˆ,ÑpSq is cartesian closed. To see that it is also free, let h : S Ñ D be any

Λˆ,Ñ-signature homomorphism from S to the underlying Λˆ,Ñ-signature of a cartesian closed

clone pT,D,Πnp´q,“Bq. Define a cartesian closed clone homomorphism h# : FClˆ,ÑpSq Ñ D

by extending the definition of Lemma 4.2.27 (page 94) as follows:

h#pA“BBq :“ ph#A“Bh#Bq

h#pevalA,Bq :“ evalph#A,h#Bq

h#pλtq :“ λph#tq

For uniqueness, we already know from Lemma 4.2.27 and the definition of a cartesian closed

clone homomorphism that any cartesian clone homomorphism strictly preserves all the

structure, except for currying. So it suffices to show that any cartesian clone homomorphism

preserves the λp´q mapping. Since λt is the unique multimap g : A1, . . . , An Ñ pB“BCq

such that t “ evalB,C

”

grpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı

, for any cartesian clone homomorphism

f : FClˆ,ÑpSq Ñ D one has

fptq “ f
´

evalB,C
”

`

λt
˘

rpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı¯

“ evalfB,fC

”

fpλtq
”

pp1qfA‚,fB, . . . , p
pnq
fA‚,fB

ı

, ppn`1q
fA‚,fB

ı

it follows that fpλtq “ λfptq for every t : A1, . . . , An, B Ñ pB“BCq, as required.

It remains to construct the adjunction CCClone Ô CCCat.
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Lemma 5.2.8. The functor p´q : CCClone Ñ CCCat restricting a cartesian closed clone

to its nucleus has a left adjoint.

Proof. Consider the functor P : CartCat Ñ CartClone defined in Lemma 4.2.28. This

restricts to a functor CCCat Ñ CCClone. Explicitly, the evaluation map in PC is the

evaluation map evalA,B in C and for any f : X1, . . . , Xn Ñ pA“BBq the composite

evalA,B

”

f rpp1qX‚,A, . . . , p
pnq
X‚,A

s, ppn`1q
X‚,A

ı

in PC is the composite evalA,B˝xf ˝ xπ1, . . . , πny, πn`1y “

evalA,B ˝ pf ˆAq ˝ xxπ1, . . . , πny, πn`1y in C. The currying of g : X1, . . . , Xn, AÑ B is the

currying (in C) of the morphism

λ
`
śn
i“1Xi ˆA

–
ÝÑ X1 ˆ ¨ ¨ ¨ ˆXn ˆA

g
ÝÑ B

˘

Now suppose that F : C Ñ D is a strict cartesian closed functor. Define F# as the free

cartesian extension of F from Lemma 4.2.28:

F#pX1, . . . , Xn
t
ÝÑ Y q :“

`

FX1, . . . , FXn
ψFX‚ ppp1q, ... ,ppnqq
ÝÝÝÝÝÝÝÝÝÝÝÝÑ

śn
i“1FXi “ F p

śn
i“1Xiq

Ft
ÝÑ FY

˘

To see that F# preserves the evaluation map, note that—since F is a strict cartesian

closed functor—the equation F pevalA,Bq “ evalFA,FBrπ1, π2s must hold by Remark 5.2.3.

It follows that

F#pevalA,Bq “ evalFA,FBrπ1, π2s

”

ψFX‚ppp1q, . . . , ppnqq
ı

“ evalFA,FB

”

pp1qFA“BFB,FA, p
p2q
FA“BFB,FA

ı

by equation (4.13) on page 87

“ evalFA,FB

as required. The proof of uniqueness is exactly as in the cartesian case.

This completes the construction of the diagram of adjunctions (5.9). As for the diagram

of adjunctions (4.19) for cartesian strucure, it is easy to see that the outer edges of (5.9)

commute and that p´q ˝ P “ idCCCat. One thereby obtains the following chain of natural

isomorphisms (c.f. equation (4.20)), in which we write FCatˆ,ÑpSq for the free cartesian

closed category on a unary signature S:

CCCatpFCatˆ,ÑpSq,Cq “ CCCat
´

PpFCatˆ,ÑpSqq,C
¯

– CCCat
´

FClˆ,ÑpιSqq,C
¯

(5.10)

It follows that the free cartesian closed category on a Λˆ,Ñ-signature is described by

restricting the deductive system of Lemma 5.2.7 to unary contexts.

Remark 5.2.9. In the preceding lemma we rely on the equation

evalFA,FBrpp1qpA“BB,Aq, p
p2q
pA“BB,Aqs “ evalFA,FB

to show that F# is strictly cartesian closed. In the bicategorical setting, where this equality

is generally only an isomorphism, the argument fails. As we shall see, the free cc-bicategory

on a signature (in the strict sense of free we have been using throughout) is not obtained

by restricting the free cartesian biclone on the same signature. đ
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Cartesian closed clones and the simply-typed lambda calculus. Let us examine

how one extracts the simply-typed lambda calculus from the internal language of FClˆ,ÑpSq
(defined in Lemma 5.2.8). The evalB,C multimap becomes an application operation on

variables:

f : B“BC, x : B $ apppf, xq : C

The weakening operation t ÞÑ t
”

pp1qA‚,B, . . . , p
pnq
A‚,B

ı

is the following form of the usual substi-

tution lemma:

x1 : A1, . . . , xn : An $ t : C x1 : A1, . . . , xn : An, y : B $ t : C

x1 : A1, . . . , xn : An, y : B $ trx1{x1, . . . , xn{xns : C

This mirrors the construction in Λbicl
ps and its extensions, where weakening arises from

explicit substitutions corresponding to inclusions of contexts.

The λp´q mapping is the usual lambda abstraction operation, and the two equations

become the following rules for every x1 : A1, . . . , xn : An, x : A $ t : B and x1 : A1, . . . , xn :

An $ u : A“BB:

appppλx.tqrx1{x1, . . . , xn{xns, xq and λx.apppurx1{x1, . . . , xn{xns, xq “ u

As we saw in Section 4.2.2, these rules extend to rules on all terms in the presence of the

meta-operation of capture avoiding substitution. Thus, we recover the usual βη-laws of

the simply-typed lambda calculus. The diagram of adjunctions (5.9), together with the

isomorphism (5.10), then expresses the usual free property of the unary-context syntactic

model [Cro94, Chapter 4].

Our aim in what follows is to define cartesian closed biclones, construct the free instance

to obtain a diagram matching (5.9), and use this to extract a type theory in the same

way as we have just sketched for the simply-typed lambda calculus. As for products, our

insistence on strict universal properties makes the full diagram impossible to replicate (recall

Example 4.2.63 on page 119). Nonetheless, we shall see that a version of it exists up to

biequivalence.

5.2.2 Cartesian closed biclones

The definitions of the previous section bicategorify in the way one would expect.

Definition 5.2.10.

1. A (right) closed bi-multicategory is a bi-multicategoryM equipped with the following

data for every A,B PM:

a) A chosen object A“BB,

b) A chosen multimap evalA,B : pA“BBq, AÑ B,
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c) For every sequence of objects Γ in M, an adjoint equivalence

MpΓ;A“BBq MpΓ, A;Bq

evalA,B˝xp´q,IdAy

%

»

λ

specified by choosing a universal arrow with components εt : evalA,B ˝xλt, IdAy ñ

t.

2. A (right) closed biclone is a biclone pS, Cq equipped with a choice of right-closed

structure on the corresponding bi-multicategory MC.

3. A cartesian closed biclone is a biclone equipped with a choice of both cartesian

structure and right-closed structure. đ

Explicitly, a cartesian closed biclone is defined by the following universal property. For

every sequence of objects Γ :“ pA1, . . . , Anq and multimap t : Γ, A Ñ B there exists a

multimap λt : Γ Ñ pA“BBq and a 2-cell εt : evalA,B
“

pλtqrpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

‰

ñ t.

This 2-cell is universal in the sense that for every u : Γ Ñ pA“BBq and

α : evalA,B
“

urpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

‰

ñ t

there exists a 2-cell e:pαq : uñ λt, unique such that

evalA,B

”

urpp1qA‚,B , . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı

evalA,B

”

pλtqrpp1qA‚,B , . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı

t
α

evalA,B

”

e:pαqrpp1qA‚,B , ... ,p
pnq
A‚,B

s,ppn`1q
A‚,B

ı

εt

(5.11)

Moreover, since every cartesian biclone is representable (Theorem 4.2.51), one also

obtains a sequence of pseudonatural adjoint equivalences lifting (5.6) to biclones:

C
`
ś

n`1pA1, . . . , An, Bq;C
˘

» CpA1, . . . , An, B;Cq

» CpA1, . . . , An;B“BCq

» C
`
ś

npA1, . . . , Anq;B“BC
˘

(5.12)

It follows that, if pS, Cq is cartesian closed, then so is its nucleus C.

Remark 5.2.11. We saw in Remark 5.2.3 that the evaluation map witnessing cartesian

closed structure in the nucleus C of a cartesian closed clone pS,C,Πnp´q,“Bq is not the

evaluation multimap in C. Similarly, chasing through the equivalences (5.12) one sees that

the biuniversal arrow witnessing exponentials in the nucleus C of a cartesian closed biclone

pS, C,Πnp´q,“Bq is evalA,Brπ1, π2s : Aˆ pA“BBq Ñ B and the currying of f : X ˆAÑ B

is λ
´

f rtupppp1qX,A, p
p2q
X,Aqs

¯

. To see this defines an exponential, one can replace each of the

equalities in the proof of Remark 5.2.3 to construct natural isomorphisms

evalA,B

”

p´qrpp1qX,As, p
p2q
X,A

ı

rπ1, π2s – idCpXˆA,Bq



146 CHAPTER 5. A TYPE THEORY FOR CARTESIAN CLOSED BICATEGORIES

λ
`

evalA,Brπ1, π2srtuppp´qrπ1s, π2qsrtupppp1qX,A, p
p2q
X,Aqs

˘

– idCpX,A“BBq

witnessing an equivalence, which may be promoted to the required adjoint equivalence

without changing the functors (see e.g. [Mac98, § IV.4]). đ

Example 5.2.12 (c.f. Example 5.2.2). The cartesian biclone BiclpBq constructed from a

cc-bicategory pB,Πnp´q,“Bq (recall Example 4.2.45 on page 109) is cartesian closed. The

precise statement requires some juggling of products, for which we introduce the following

notation. For any A1, . . . , An, B P B pn P Nq there exists a canonical equivalence

eA‚,B :
ś

n`1pA1, . . . , An, Bq Ô
ś

2 p
ś

npA1, . . . , Anq, Bq : e‹A‚,B (5.13)

where eA‚,B :“ xxπ1, . . . , πny, πn`1y and e‹A‚,B :“ xπ1 ˝π1, . . . , πn ˝π1, π2y. The witnessing

2-cells
wA‚,B : e‹A‚,B ˝ eA‚,B ñ Idś

n`1pA1, ... ,An,Bq

vA‚,B : Idś

npA1, ... ,AnqˆB ñ eA‚,B ˝ e
‹
A‚,B

(5.14)

are defined by the two diagrams below:

xπ1 ˝ π1, . . . , πn ˝ π1, π2y ˝ xxπ1, . . . , πny, πn`1y Idś

n`1pA1, ... ,An,Bq

xpπ1 ˝ π1q ˝ eA‚,B, . . . , pπn ˝ π1q ˝ eA‚,B, π2 ˝ eA‚,By xπ1, . . . , πn, πn`1y

xπ1 ˝ pπ1 ˝ eA‚,Bq , . . . , πn ˝ pπ1 ˝ eA‚,Bq , π2 ˝ eA‚,By xπ1 ˝ xπ‚y, . . . , πn ˝ xπ‚y, πn`1y

Idś

npA1, ... ,AnqˆB xxπ1, . . . , πny, πn`1y ˝ e
‹
A‚,B

xπ1, π2y

A

xπ1, . . . , πny ˝ e
‹
A‚,B

, πn`1 ˝ e
‹
A‚,B

E

xIdś

npA1, ... ,Anq ˝ π1, π2y xxπ1 ˝ e
‹
A‚,B

, . . . , πn ˝ e
‹
A‚,B

y, πn`1 ˝ e
‹
A‚,B

y

xxπ1, . . . , πny ˝ π1, π2y xxπ‚ ˝ π1y, π2y

wA‚,B

post

–

xςId
´1

xπ1˝$p1q, ... πn˝$p1q,$p2qy

x$p1q, ... ,$pnq,πn`1y

vA‚,B

pςId

–

post´1

xpςId˝π1,π2y

xpost´1,πn`1˝e‹y

xpost,π2y

xx$p´1q, ... ,$p´nqy,$p´pn`1qqy

Here pςIdX abbreviates the following composite:

pςIdX :“ IdX
ςIdX
ùùñ xπ1 ˝ IdX , . . . , πn ˝ IdXy

–
ùñ xπ1, . . . , πny (5.15)

The exponential of A,B P B is A“BB, the evaluation multimap is the evaluation map

of B, and the currying of f :
ś

n`1pA1, . . . , An, Xq Ñ Y is the exponential transpose of

ś

2p
ś

npA1, . . . , Anq, Xq
e‹A‚,X
ÝÝÝÝÑ
»

ś

n`1pA1, . . . , An, Xq
f
ÝÑ Y
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The counit εf is the following composite:

evalX,Y ˝
A

λpf ˝ e‹A‚,Xq ˝ xπ1, . . . , πny, πn`1

E

f

evalX,Y ˝
A

λpf ˝ e‹A‚,Xq ˝ xπ1, . . . , πny, IdX ˝ πn`1

E

f ˝ Idś

pA‚qˆX

evalX,Y ˝
´

`

λpf ˝ e‹A‚,Xq ˆX
˘

˝ eA‚,X

¯

f ˝ pe‹A‚,X ˝ eA‚,Xq

´

evalX,Y ˝
`

λpf ˝ e‹A‚,Xq ˆX
˘

¯

˝ eA‚,X pf ˝ e‹A‚,Xq ˝ eA‚,X

εf

–

eval˝fuse´1

–

–

f˝wA‚,X

εpf˝e‹q˝eA‚,X

–

For any 1-cell g :
ś

npA1, . . . , Anq Ñ pX “BY q and 2-cell α : evalX,Y ˝ xg ˝ xπ1, . . . , πny, πn`1y ñ f

the corresponding mediating 2-cell g ñ λpf ˝ e‹A‚,Xq is e:pα˝q, for α˝ defined by the diagram

below.

evalX,Y ˝ pg ˆXq f ˝ e‹A‚,X

pevalX,Y ˝ pg ˆXqq ˝ Idś

2pp
ś

n A‚q,Bq

pevalX,Y ˝ pg ˆXqq ˝
´

eA‚,X ˝ e
‹
A‚,X

¯

pevalX,Y ˝ ppg ˆXqq ˝ eA‚,Xq ˝ e
‹
A‚,X

pevalX,Y ˝ xg ˝ xπ1, . . . , πny, IdX ˝ πn`1yq ˝ e
‹
A‚,X

pevalX,Y ˝ xg ˝ xπ‚y, πn`1yq ˝ e
‹
A‚,X

α˝

–

eval˝pgˆXq˝vś
2pp

ś

n A‚q,Bq

–

eval˝fuse˝e‹

–

α˝e‹

đ

The free cartesian closed biclone. In Chapters 3 and 4 we synthesised the required

type theory from two principles: first, an appropriate notion of biclone, and second, the

fact that the internal language of those biclones—when each rule is restricted to unary

contexts—gives rise to an internal language for the corresponding bicategories. For the

cartesian closed case, we cannot restrict every rule of the internal language to unary contexts

without also discarding all curried morphisms (lambda abstractions). Nonetheless we

can show that the nucleus of the free cartesian closed biclone is the free cartesian closed

bicategory up to biequivalence. Thus, one obtains the internal language of cartesian closed

bicategories (in a bicategorical sense) by synthesising the internal language of cartesian

closed biclones.

We shall begin by defining an appropriate notion of signature and (strict) pseudofunctors

of cartesian closed biclones. Then we shall construct the adjunctions of the following
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diagram, in which we write CCBiclone for the category of cartesian closed biclones and strict

pseudofunctors and cc-Bicat for the category of cc-bicategories and strict pseudofunctors.

CCBiclone

Λˆ,Ñps -sig cc-Bicat

Λˆ,Ñps -sig
ˇ

ˇ

1

forget

%

FClˆ,Ñp´q

rL forget

%

FBctˆ,Ñp´q

%

(5.16)

Thereafter we shall extract our type theory Λˆ,Ñps from the free cartesian closed biclone

over a signature, and use this to show that the nucleus of the free cartesian closed biclone is

biequivalent to the free cc-bicategory over the same (unary) signature.

Definition 5.2.13. A Λˆ,Ñps -signature S “ pB,Gq consists of

1. A set of base types B,

2. A 2-multigraph G, with nodes generated by the grammar

A1, . . . , An, C,D ::“ B |
ś

npA1, . . . , Anq | C “BD pB P B, n P Nq (5.17)

If G is a 2-graph we call the signature unary. A homomorphism of Λˆ,Ñps -signatures

h : S Ñ S 1 is a morphism h : G Ñ G1 of the underlying multigraphs such that

hp
ś

npA1, . . . , Anqq “
ś

nphA1, . . . , hAnq and hpC “BDq “ phC “BhDq

for all A1, . . . , An, C,D P G0 pn P Nq. We denote the category of Λˆ,Ñps -signatures and

their homomorphisms by Λˆ,Ñps -sig, and the full subcategory of unary Λˆ,Ñps -signatures by

Λˆ,Ñps -sig
ˇ

ˇ

1
. đ

Notation 5.2.14 (c.f. Notation 5.2.5). For a Λˆ,Ñps -signature S “ pB,Gq, we write rB for

the set generated from B by the grammar (5.17). In particular, when the signature is just

a set (i.e. the graph G has no edges) we denote the signature S “ pB,Gq simply by rB. đ

The embedding ι : Λˆ-sig
ˇ

ˇ

1
ãÑ Λˆ-sig has a right adjoint by an argument similar to that

for Lemma 4.2.24 (c.f. also Lemma 4.2.55).

The definition of cartesian closed pseudofunctor follows the template given by cartesian

pseudofunctors of biclones, while the construction of the free cartesian closed biclone

on a Λˆ,Ñps -signature echoes that for the free cartesian closed clone on a Λˆ,Ñ-signature

(Lemma 5.2.7).
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Definition 5.2.15. Let pS, C,Πnp´q,“Bq and pT,D,Πnp´q,“Bq be cartesian closed biclones.

A cartesian closed pseudofunctor pF, qˆ, q“Bq : pS, C,Πnp´q,“Bq Ñ pT,D,Πnp´q,“Bq is a

cartesian pseudofunctor pF, qˆq : pS, C,Πnp´qq Ñ pT, C,Πnp´qq equipped with a choice of

equivalence mA,B : F pA“BBq Ô FA“BFB : q“BA,B for every A,B P S, where mA,B :“

λ
`

F evalA,B
˘

. We call pF, qˆ, q“Bq strict if pF, qˆq is a strict cartesian pseudofunctor such

that

F pA“BBq “ pFA“BFBq

F pevalA,Bq “ evalFA,FB

F pλtq “ λpFtq

F pεtq “ εFt

q“BA,B “ IdFA“BFB

and the isomorphisms witnessing the adjoint equivalences are the canonical 2-cells

IdpFA“BFBq
ηId
ùñ λ

´

evalFA,FB

”

IdpFA“BFBqrp
p1q
pFA“BFBq,FAs, p

p2q
pFA“BFBq,FA

ı¯

–
ùñ λpevalFA,FBq

obtained from the unit and the canonical structural isomorphism. đ

For the construction of the free cc-biclone, it will be useful to introduce some notation.

For t : AÑ B we define tˆX :“ tupptrπ1s, IdXrπ2sq :
ś

2pA,Xq Ñ
ś

2pB,Xq, and similarly

on 2-cells.

Construction 5.2.16. For any Λˆ,Ñps -signature S, define a cartesian closed biclone FClˆ,ÑpSq
with sorts generated by the grammar

A1, . . . , An, C,D ::“ B |
ś

npA1, . . . , Anq | C “BD pB P B, n P Nq

by extending Construction 4.2.58 (page 118) with the following rules:

evalB,C P FClˆ,ÑpSqpB“BC,B;Cq

t P FClˆ,ÑpSqpA1, . . . , An, B;Cq

λt P FClˆ,ÑpSqpA1, . . . , An;B“BCq

t P FClˆ,ÑpSqpA1, . . . , An, B;Cq

εt P FClˆ,ÑpSqpA1, . . . , An, B;Cq
´

evalB,C
”

pλtqrpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı

, t
¯

u P FClˆ,ÑpSqpA1, . . . , An;B“BCq

α P FClˆ,ÑpSqpA1, . . . , An, B;Cq
´

evalB,C
”

urpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı

, t
¯

e:pαq P FClˆ,ÑpSqpA1, . . . , An;A“BBqpu, λtq

The equational theory ” is that of Construction 4.2.58, extended by requiring that

• For every α : evalB,C
”

urpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı

ñ t : A1, . . . , An, B Ñ C,

α ” εt ‚ evalB,C
”

e:pαqrpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı
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• For every γ : uñ λt : A1, . . . , An Ñ pA“BBq,

γ ” e:
´

εt ‚ evalB,C
”

γrpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı¯

• If α ” α1 : evalB,CruˆBs ñ t : X1, . . . , Xn, B Ñ C then e:pαq ” e:pα1q.

Finally we require that every εt and e:pidevalr
ś

2pu,Bqs
q is invertible. đ

It follows that for any 2-cell

α : evalB,C
”

urpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı

ñ t : A1, . . . , An, B Ñ C

e:pαq is the unique 2-cell γ of type uñ λt such that α ” εt ‚ evalB,C
”

γrpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı

.

Existence is the first equation and uniqueness follows by the latter two (c.f. Lemma 4.2.59).

The required universal property extends that for cartesian biclones.

Lemma 5.2.17. For any Λˆ,Ñps -signature S, cartesian closed biclone pT,D,Πnp´q,“Bq and

Λˆ,Ñps -signature homomorphism h : S Ñ D from S to the Λˆ,Ñps -signature underlying D,

there exists a unique strict cartesian closed pseudofunctor h# : FClˆ,ÑpSq Ñ D such that

h# ˝ ι “ h, for ι : S ãÑ FClˆ,ÑpSq the inclusion.

Proof. We extend the strict cartesian pseudofunctor h# defined in Lemma 4.2.60 (page 118)

with the following rules:

h#pB“BCq :“ ph#A“Bh#Bq

h#pevalB,Cq :“ evalh#B,h#C

h#pλtq :“ λ
`

h#t
˘

h#pεtq :“ εh#t

h#pe:pαqq :“ e:ph#αq

For uniqueness, it suffices to show that any strict cartesian closed pseudofunctor commutes

with the e:p´q operation. For this we use the universal property. Let F : FClˆ,ÑpSq Ñ D be

any cartesian closed pseudofunctor. Then, for any α : evalB,C
”

urpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı

ñ

t : A1, . . . , An, B Ñ C in FClˆ,ÑpSq,

εFt ‚ evalFB,FC

”

`

Fe:pαq
˘

”

pp1qFA‚,FB, . . . , p
pnq
FA‚,FB

ı

, ppn`1q
FA‚,FB

ı

“ F pεtq ‚F
´

evalB,C
”

e:pαq
”

pp1qA‚,B, . . . , p
pnq
A‚,B

ı

, ppn`1q
A‚,B

ı¯

by strict preservation

“ F
´

εt ‚ evalB,C
”

e:pαqrpp1qA‚,B, . . . , p
pnq
A‚,B

s, ppn`1q
A‚,B

ı¯

“ Fα

Hence e:pFαq must equal F
`

e:pαq
˘

.
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We saw in Example 4.2.63 (page 119) that the free fp-bicategory on a Λˆps-signature

cannot arise as the nucleus of the free cartesian biclone over the same signature. We can

now see that the addition of exponentials introduces a further obstacle (c.f. Remark 5.2.9).

Let S be a unary Λˆ,Ñps -signature and FClˆ,ÑpSq be its nucleus. Just as in the categorical

case, the maps πi in FClˆ,ÑpSq are the biuniversal arrows defining products in FClˆ,ÑpSq,
but the evaluation map in FClˆ,ÑpSq is evalB,Crπ1, π2s (recall Remark 5.2.11). It follows

that for any cc-bicategory pB,Πnp´q,“Bq and strict cc-pseudofunctor F : FClˆ,ÑpSq Ñ B
one must have

evalFB,FC “ F pevalB,Crπ1, π2sq

“ F pevalB,C ˝ xπ1, π2yq by def. of products in FClˆ,ÑpSq

“ F pevalB,Cq ˝ F xπ1, π2y

“ F pevalB,Cq ˝ xπ1, π2y by strict preservation

(5.18)

In particular, since h#pevalB,Cq “ evalh#B,h#C , the restriction h# of h# to unary mul-

timaps cannot be strictly cartesian closed whenever evalh#B,h#C ˝ xπ1, π2y ‰ evalh#B,h#C

in the target cc-bicategory. This occurs, for instance, in the cc-bicategories of generalised

species [FGHW07] and concurrent games [Paq20].

One way to diagnose the problem is the chain of equivalences (5.12). The product

structure in a cartesian closed biclone arises via the
ś

np´q operation, but exponentials are

defined with respect to context extension. This mismatch makes it impossible for h# to

strictly preserve both products and exponentials. To construct the free cc-bicategory over a

unary signature, one must define exponentials directly with respect to products, resulting

in a construction similar to that given in [Oua97].

The free cc-bicategory. As for Construction 5.2.16, we write t ˆ B for the (derived)

arrow tupptrπ1s, Idrπ2sq, and likewise on 2-cells.

Construction 5.2.18. For any unary Λˆ,Ñps -signature S “ pB,Gq, define a cc-bicategory

FBctˆ,ÑpSq as follows. The objects are generated by the grammar

A1, . . . , An, C,D ::“ B |
ś

npA1, . . . , Anq | C “BD pB P B, n P Nq

For 1-cells and 2-cells, one takes the deductive system defining the free fp-bicategory on S
(Lemma 4.2.62, page 119), extended as follows. For 1-cells:

evalB,C P FBctˆ,ÑpSqpB“BC ˆB;Cq

t P FBctˆ,ÑpSqpX ˆB;Cq

λt P FBctˆ,ÑpSqpX,B“BCq

For 2-cells:

t P FBctˆ,ÑpSqpX ˆB,Cq
εt P FBctˆ,ÑpSqpX ˆB,Cq

`

evalB,CrλtˆBs, t
˘

u P FBctˆ,ÑpSqpX,B“BCq
α P FBctˆ,ÑpSqpX ˆB,Cq

`

evalB,CruˆBs, t
˘

e:pαq P FBctˆ,ÑpSqpX,A“BBqpu, λtq
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Moreover, we extend the equational theory of Lemma 4.2.62 with the following three

rules:

• For every α : evalB,CruˆBs ñ t : X ˆB Ñ C,

α ” εt ‚ evalB,Cre:pαq ˆBs

• For every γ : uñ λt : X Ñ pA“BBq,

γ ” e:pεt ‚ evalB,Crγ ˆBsq

• If α ” α1 : evalB,CruˆBs ñ t : X ˆB Ñ C then e:pαq ” e:pα1q.

Finally we require that every εt and e:pidevalruˆBsq is invertible. đ

The bicategory FBctˆ,ÑpSq is cartesian closed by exactly the same argument as for the

biclone FClˆ,ÑpSq. The associated free property is similarly straightforward.

Lemma 5.2.19. For any unary Λˆ,Ñps -signature S, cc-bicategory pC,Πnp´q,“Bq and Λˆ,Ñps -signature

homomorphism h : S Ñ C from S to the Λˆ,Ñps -signature underlying C, there exists a unique

strict cartesian closed pseudofunctor h# : FBctˆ,ÑpSq Ñ C such that h# ˝ ι “ h, for

ι : S ãÑ FBctˆ,ÑpSq the inclusion.

Proof. We extend the strict cartesian pseudofunctor h# defined in Lemma 4.2.62 (page 119)

as follows:

h#pB“BCq :“ ph#A“Bh#Bq

h#pevalB,Cq :“ evalh#B,h#C

h#pλtq :“ λ
`

h#t
˘

h#pεtq :“ εh#t

h#
`

e:pαq
˘

:“ e:ph#αq

For uniqueness, it suffices to show that any strict cartesian closed pseudofunctor commutes

with the e:p´q operation. The proof is as in Lemma 5.2.17 (or, more abstractly, follows

from Lemma 2.2.17).

The preceding lemma entails that one may construct a type theory for cartesian closed

bicategories by synthesising the internal language of FBctˆ,ÑpSq. Within this ‘bicategorical’

(rather than biclone-theoretic) type theory the variables play almost no role. For instance,

the lambda abstraction rule takes on the following form:

p : AˆB $ t : C q fresh
lam

q : A $ λpq, p . tq : B“BC
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The variable p is bound, but q is free. It is possible to place such rules within the general

framework of binding signatures, and the syntactic model of the resulting type theory is

biequivalent to the syntactic model of the type theory extracted from the construction of

FClˆ,ÑpSq, restricted to unary contexts. However, the result is rather alien to the usual

conception of a type theory. We therefore call the internal language of FClˆ,ÑpSq the ‘type

theory for cartesian closed bicategories’. In Section 5.3.3 we shall show that this terminology

is warranted.

The freeness universal property of FBctˆ,ÑpSq also entails an up-to-equivalence unique-

ness property we shall employ later. We begin by stating a result for the case where the

signature is just a set; thereafter we employ slightly stronger hypotheses to handle constants.

We write t : A1, . . . , An Ñ B and τ : t ñ t1 : A1, . . . , An Ñ B for 1-cells and 2-cells in

FBctˆ,ÑpSq.

Lemma 5.2.20. Let S “ pB,Gq be a unary Λˆ,Ñps -signature for which G is a set, pB,Πnp´q,“Bq

be a cc-bicategory and h : S Ñ C be a Λˆ,Ñps -signature homomorphism. Then, for any

cc-pseudofunctor pF, qˆ, q“Bq such that the following diagram commutes,

FBctˆ,ÑpSq C

S

F

h
(5.19)

there exists an equivalence F » h# between F and the canonical cc-pseudofunctor extending

h.

Proof. We construct a pseudonatural transformation pk, kq : F ñ h# whose components

are all equivalences. We define the components kX and their pseudo-inverses k‹X by mutual

induction as follows:

kB :“ FB
“
ÝÑ hB

IdhB
ÝÝÝÑ hB

“
ÝÑ h#B for B P B

k‹B :“ h#B
“
ÝÑ hB

IdhB
ÝÝÝÑ hB

“
ÝÑ FB

kpśn A‚q
:“ F p

ś

nA‚q
xFπ1,...,Fπny
ÝÝÝÝÝÝÝÝÑ

śn
i“1F pAiq

śn
i“1 kAi

ÝÝÝÝÝÝÑ
śn
i“1h

#Ai

k‹pśn A‚q
:“

śn
i“1h

#Ai

śn
i“1 k‹Ai

ÝÝÝÝÝÝÑ
śn
i“1F pAiq

qˆA‚
ÝÝÑ F p

ś

nA‚q

kpX “BY q :“ F pX “BY q
mX,Y
ÝÝÝÑ pFX “BFY q

k‹X “BkY
ÝÝÝÝÝÑ

´

h#X “Bh#Y
¯

k‹pX “BY q :“
´

h#X “Bh#Y
¯ kX “Bk‹Y
ÝÝÝÝÝÑ pFX “BFY q

q“BX,Y
ÝÝÝÑ F pX “BY q

We denote the unit and counit of the equivalence

kX : FX Ô h#X : k‹X

by vX : IdFX ñ k‹X ˝ kX and wX : kX ˝ k‹X ñ Idh#X , respectively, and assume without loss

of generality that they satisfy the two triangle laws.
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We now construct the witnessing 2-cells kt : kB ˝ Ftñ h#ptq ˝ kA by induction.

For identities, the definition is forced upon us by the unit law of a pseudonatural

transformation. We define

kIdA :“ kA ˝ F pIdAq
kA˝pψFAq´1

ùùùùùùñ kA ˝ IdF pAq
–
ùñ Idh#pAq ˝ kA

For the product structure, we define kπk and ktuppt1, ... ,tnq by the commutativity of the

following diagrams:

kAk ˝ Fπk h#pπkq ˝ kpśn A‚q

kAk ˝ pπk ˝ xFπ‚yq pπk ˝
śn
i“1 kAiq ˝ xFπ‚y

pkAk ˝ πkq ˝ xFπ‚y

p
śm
i“1 kAi ˝ xFπ‚yq ˝ F ptuppt1, . . . , tmqq h#ptuppt1, . . . , tmqq ˝ kX

p
śm
i“1 kAiq ˝ pxFπ‚y ˝ F ptuppt1, . . . , tmqqq xh#pt‚qy ˝ kX

p
śm
i“1 kAiq ˝ xF pt‚qy xkA‚ ˝ F pt‚qy xh#pt‚q ˝ kXy

kπk

kAk˝$
p´kq

–

–

$p´kq˝xFπ‚y

ktuppt1, ... ,tmq

–

p
ś

i kAi q˝unpack

fuse xkt1 , ... ,ktmy

post´1

The eval and lam cases require more work, but are in a similar spirit.

eval case. We are required to give an invertible 2-cell filling the diagram

F
`

pA“BBq ˆA
˘

FB

F pA“BBq ˆ F pAq

h#pA“BBq ˆ h#A ph#A“Bh#Bq ˆ h#A h#B

pkpA“BBq ˆ kAq ˝ xFπ1, Fπ2y keval
ð

xFπ1,Fπ2y

FevalA,B

kB

kpA“BBqˆkA

eval

To this end, first define an invertible 2-cell δA,B applying the counit ε as far as possible:
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evalh#A,h#B ˝
`

kpA“BBq ˆ kA
˘

evalh#A,h#B ˝

´

pk‹A“B kBq ˝mF
A,B ˆ kA

¯

`

evalh#A,h#B ˝
`

pk‹A“B kBq ˆ h#A
˘˘

˝ pmF
A,B ˆ kAq

`

pkB ˝ evalFA,FBq ˝
`

IdpFA“BFBq ˆ k‹A
˘˘

˝ pmF
A,B ˆ kAq

´

kB ˝
´

evalFA,FB ˝
`

mF
A,B ˆ FA

˘

¯¯

˝
`

IdpFA“BFBq ˆ k‹AkA
˘

´

kB ˝
´

F pevalA,Bq ˝ qˆA“BB,A

¯¯

˝
`

IdpFA“BFBq ˆ k‹AkA
˘

´

kB ˝
´

F pevalA,Bq ˝ qˆA“BB,A

¯¯

˝
`

IdpFA“BFBq ˆ IdFA
˘

pkB ˝ F pevalA,Bqq ˝ qˆA“BB,A

δA,B

–

εpk˝eval˝pIdˆk‹qq˝pm
F
A,BˆkAq

–

k˝ε
pF pevalq˝q̂ q

˝pIdˆk‹kq

k˝F eval˝q̂ ˝pIdˆv´1
A q

–

Then define keval to be the composite

kB ˝ F pevalA,Bq evalh#A,h#B ˝
``

kpA“BBq ˆ kA
˘

˝ xFπ1, Fπ2y
˘

pkB ˝ F pevalA,Bqq ˝ IdF ppA“BBqˆAq

pkB ˝ F pevalA,Bqq ˝
´

qˆA“BB,A ˝ xFπ1, Fπ2y

¯

´

kB ˝
`

F pevalA,Bq ˝ qˆA“BB,A
˘

¯

˝ xFπ1, Fπ2y

`

evalh#A,h#B ˝
`

kpA“BBq ˆ kA
˘˘

˝ xFπ1, Fπ2y

–

keval

pkB˝F pevalA,Bqq˝pcˆA“BB,Aq
´1

–

δ´1
A,B˝xFπ1,Fπ2y

–

lam case. Suppose t : Z ˆAÑ B. By induction we are given kt filling

F pZ ˆAq FB

FZ ˆ FA

h#pZq ˆ h#pAq h#pZ ˆAq h#B

pkZ ˆ kAq ˝ xFπ1, Fπ2y

xFπ1,Fπ2y

kt
ð

Ft

kB

kZˆkA

h#t

and we are required to fill the diagram
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FZ F pA“BBq

`

FA“BFB
˘

h#Z ph#A“Bh#Bq

kZ kλt
ð

F pλtq

pk‹A“BkBq ˝mF
A,B

mF
A,B

pk‹A“BkBq

h#pλtq

Our strategy is the following. Writing cl for the clockwise composite around the preceding

diagram, we define a 2-cell

ζA,B : evalh#A,h#B ˝ pcl ˆ h#Aq ñ h#ptq ˝ pkZ ˆ h#Aq

so that e:pζA,Bq : cl ñ λ
`

h#ptq ˝ pkZ ˆ h#Aq
˘

. We then define kλt as the composite

cl
e:pζA,Bq
ùùùùùñ λ

´

h#ptq ˝ pkZ ˆ h#Aq
¯ push´1

ùùùùñ λ
´

h#t
¯

˝ kZ “ h#pλtq ˝ kZ

The 2-cell ζA,B is defined in stages. First we set υA,B to be the following composite, where

we write – for composites of Φ and structural isomorphisms:

evalh#A,h#B ˝ pcl ˆ h#Aq

`

evalh#A,h#B ˝
`

pk‹A“B kBq ˆ h#A
˘˘

˝

´´

mF
A,B ˝ F pλtq

¯

ˆ h#A
¯

`

pkB ˝ evalFA,FBq ˝ pIdpFA“BFBq ˆ k‹Aq
˘

˝

´´

mF
A,B ˝ F pλtq

¯

ˆ h#A
¯

´

kB ˝
´

evalFA,FB ˝
`

mF
A,B ˆ F pAq

˘

¯¯

˝
`

F pλtq ˆ k‹A
˘

´

kB ˝
´

F pevalA,Bq ˝ qˆA“BB,A

¯¯

˝ pF pλtq ˆ k‹Aq

–

εk˝eval˝pIdˆk‹q˝pm
F
A,BF pλtqˆh

#Aq

–

kB˝ε
pF pevalq˝q̂ q

˝pF pλtqˆk‹q

Next we define θA,B to be the composite

F pevalA,Bq ˝
´

qˆA“BB,A ˝ pFλtˆ FAq
¯

Ft ˝ qˆZ,A

F pevalA,Bq ˝
´

qˆA“BB,A ˝
`

λtˆ F IdA
˘

¯

F pevalA,B ˝ pλtˆAqq ˝ qˆZ,A

F pevalA,Bq ˝
´

F pλtˆAq ˝ qˆZ,A

¯

pF pevalA,Bq ˝ F pλtˆAqq ˝ qˆZ,A

θA,B

F pevalq˝q̂ ˝pF pλtqˆψFAq

F pevalq˝nat

F pεtq˝q̂

–

φF
peval,λtˆAq

˝q̂

We can now define ζA,B as follows:
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evalh#A,h#B ˝ pcl ˆ h#Aq h#ptq ˝
`

kZ ˆA
˘

´

kB ˝
´

F evalA,B ˝ qˆA“BB,A

¯¯

˝ pF pλtq ˆ k‹Aq

´

kB ˝
´

F evalA,B ˝
´

qˆA“BB,A ˝ pF pλtq ˆ FAq
¯¯¯

˝ pFZ ˆ k‹Aq

´

kB ˝
´

Ft ˝ qˆZ,A

¯¯

˝ pFZ ˆ k‹Aq

pkB ˝ Ftq ˝
´

qˆZ,A ˝ pFZ ˆ k‹Aq
¯

`

h#ptq ˝ ppkZ ˆ kAq ˝ xFπ1, Fπ2yq
˘

˝

´

qˆZ,A ˝ pFZ ˆ k‹Aq
¯

´

`

h#ptq ˝ pkZ ˆ kAq
˘

˝

´

xFπ1, Fπ2y ˝ qˆZ,A

¯¯

˝ pFZ ˆ k‹Aq

h#ptq ˝ pkZ ˆ kAq ˝ IdFZˆFA ˝
`

FZ ˆ k‹A
˘

h#ptq ˝ pkZ ˆ kAk‹Aq

υA,B

ζA,B

–

kB˝θA,B˝pFZˆk‹Aq

–

kt˝q̂ ˝pFZˆk‹Aq

–

h#ptq˝pkZˆkAq˝puˆZ,Aq
´1˝pFZˆk‹Aq

–

h#ptq˝pkZˆwAq

This completes the definition of kλt. The only remaining case is horizontal composition.

hcomp case. As was the case for identities, the definition for multimaps of the form

t ˝ u : Z Ñ B is forced by the axioms of a pseudonatural transformation. Using that h# is

a strict pseudofunctor, we define

kB ˝ F pt ˝ uq
`

h#ptq ˝ h#puq
˘

˝ kZ

kB ˝ pF ptq ˝ F puqq h#ptq ˝
`

h#puq ˝ kZ
˘

pkB ˝ Ftq ˝ Fu
`

h#ptq ˝ kA
˘

˝ Fu h#ptq ˝ pkA ˝ Fuq

kB˝pφFt,uq´1

kt˝u

–

–

kt˝F puq –

h#ptq˝ku

To show that pk, kq is indeed a pseudonatural transformation, we need to check the

naturality condition and two axioms. Naturality is a straightforward check for each case

outlined above. The two axioms—corresponding to the identity and hcomp cases—hold by

construction.
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Examining the construction of the pseudonatural transformation just given, one extracts

the following result.

Corollary 5.2.21. For any unary Λˆ,Ñps -signature S “ pB,Gq, cc-bicategory pB,Πnp´q,“Bq,

Λˆ,Ñps -signature homomorphism h : S Ñ C, and cc-pseudofunctor pF, qˆ, q“Bq such that

1. Diagram (5.19) commutes, i.e.:

FBctˆ,ÑpSq C

S

F

h

2. For every A1, . . . , An, A,B P FBctˆ,ÑpSq, the 1-cells xFπ1, . . . , Fπny and mA,B are

isomorphic to the identity,

there exists an equivalence F » h# between F and the canonical cc-pseudofunctor extending

h.

Proof. One only needs to extend the pseudonatural equivalence pk, kq constructed in the

proof of Lemma 5.2.20 to cover constants. For these, one employs the second hypothesis. For

any constant c P GpA,Bq, condition (1) requires that F pcq “ hpcq “ h#pcq. Condition (2),

on the other hand, entails that the components of pk, kq are, inductively, each isomorphic to

the identity. For the 2-cell filling

FA FB

h#pAq h#pBq

kc
ð

Fc

kA kB

h#pcq

one may therefore take the composite kB ˝ Fc
–
ùñ Fc “ h#pcq

–
ùñ h#pcq ˝ kA This definition

is natural in c, and the two axioms of a pseudonatural transformation continue to hold.

The claim follows.

5.3 The type theory Λˆ,Ñps

Fix a Λˆ,Ñps -signature S. The type theory Λˆ,Ñps pSq is constructed as the internal language of

FClˆ,ÑpSq, with rules matching those of Construction 5.2.16. These are collected together

in Figures 5.1–5.4. Recall that for a context renaming r we write ttru to denote the term

ttxi ÞÑ rpxiqu (Figure 3.2), and that we write incx for the inclusion of contexts Γ ãÑ Γ, x : A

extending Γ with a fresh variable x.

The lambda abstraction operation extends to a (functorial) mapping on rewrites, and

the unit is derived as the mediating map corresponding to the identity (c.f. the discussion

following Definition 5.1.1).
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Definition 5.3.1.

1. For any derivable rewrite pΓ, x : A $ τ : tñ t1 : Bq we define λx.τ : λx.t ñ λx.t1 to

be the rewrite e:px . τ ‚ εtq in context Γ.

2. For any derivable term pΓ $ u : A“BBq we define the unit ηu : uñ λx.evaltutincxu, xu

to be the rewrite e:px . idevaltutincxu,xuq in context Γ. đ

The usual application operation becomes a derived rule:

Γ $ t : A“BB Γ $ u : A
Γ $ evaltt, uu : B

The ε-introduction rule only relates lambda abstractions and variables, but the general

form of (explicit) β-reduction is derivable. In the definition we use the following notation.

For a context Γ :“ pxi : Aiqi“1,...,n and terms Γ, x : A $ t : B and Γ $ u : A, we write

ttidΓ, x ÞÑ uu to denote the term ttx1 ÞÑ x1, . . . , xn ÞÑ xn, x ÞÑ uu in context Γ.

Definition 5.3.2. For derivable terms Γ, x : A $ t : B and Γ $ u : A we define the β-

reduction rewrite βx.t,u : evaltλx.t, uu ñ ttidΓ, x ÞÑ uu to be εttidΓ, x ÞÑ uu ‚ τ in context

Γ, where τ is the following composite of structural isomorphisms:

evaltλx.t, uu – evaltpλx.tqtincxu, uu

– eval
 

pλx.tqtincxtidΓ, x ÞÑ uuu, u
(

– eval
 

pλx.tqtincxutidΓ, x ÞÑ uu, xtidΓ, x ÞÑ uu
(

– evaltpλx.tqtincxu, xutidΓ, x ÞÑ uu đ

In a similar vein, one may wish to introduce the counit via the following more explicit

rule:
Γ, x : A $ t : B

Γ, y : A $ εx . t : evaltpλx.tqtincyu, yu ñ ttidΓ, x ÞÑ yu : B

In the presence of the structural rewrites, this definition is equivalent to that given in

Figure 5.2.

We continue to work up to α-equivalence of terms and rewrites. Unlike the extension

from Λbicl
ps to Λˆps, the type theory Λˆ,Ñps has new binding operations: alongside the usual

binding rules for lambda abstraction, we require that the variable x is bound in the rewrite

e:px . αq. This is reflected in the definition of α-equivalence.
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Γ, x : A $ t : B
lam

Γ $ λx.t : A“BB
eval

f : A“BB, x : A $ evalpf, xq : B

Figure 5.1: Terms for cartesian closed structure

Γ, x : A $ t : B
ε-intro

Γ, x : A $ εt : evaltpλx.tqtincxu, xu ñ t : B

Γ, x : A $ t : B Γ $ u : A“BB

Γ, x : A $ α : evaltutincxu, xu ñ t : B
e:px . αq-intro

Γ $ e:px . αq : uñ λx.t : A“BB

Figure 5.2: Rewrites for cartesian closed structure

Γ, x : A $ α : evaltutincxu, xu ñ t : B
U1

Γ, x : A $ α ” εt ‚ eval
 

e:px . αqtincxu, x
(

: evaltutincxu, xu ñ t : B

Γ $ γ : uñ λx.t : A“BB
U2

Γ $ γ ” e:px . εt ‚ evaltγtincxu, xuq : uñ λx.t : A“BB

Γ, x : A $ α ” α1 : evaltutincxu, xu ñ t : B
cong

Γ $ e:px . αq ” e:px . α1q : uñ λx.t : A“BB

Figure 5.3: Universal property and congruence laws for e:pαq

Γ $ u : A“BB
η´1-intro

Γ $ η´1
u : λx.evaltutincxu, xu ñ u : A“BB

Γ, x : A $ t : B
ε´1-intro

Γ, x : A $ ε´1
t : tñ evaltpλx.tqtincxu, xu : B

Γ $ u : A“BB

Γ $ ηu ‚ η
´1
u ” idλx.evaltutincxu,xu : λx.evaltutincxu, xu ñ λx.evaltutincxu, xu : A“BB

Γ $ u : A“BB

Γ $ η´1
u ‚ ηu ” idu : uñ u : A“BB

Γ, x : A $ t : B

Γ, x : A $ εt ‚ ε
´1
t ” idt : tñ t : B

Γ, x : A $ t : B

Γ, x : A $ ε´1
t ‚ εt ” idevaltpλx.tqtincxu,xu : evaltpλx.tqtincxu, xu ñ evaltpλx.tqtincxu, xu : B

Figure 5.4: Inverses for the unit and counit

Rules for Λˆ,Ñps pSq.
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α-equivalence and free variables For λ-abstraction we follow the usual conventions of

the simply-typed lambda calculus (c.f. [Bar85]).

Definition 5.3.3. For any Λˆ,Ñps -signature S define the α-equivalence relation “α on terms

by extending Definition 4.3.2 with the rules

try{xs “α t
1ry{x1s y fresh

λx.t “α λx
1.t1

t “α t
1

εt “α εt1
σry{xs “α σry{x

1s y fresh

e:px . σq “α e:px1 . σq

Similarly, the meta-operation of capture-avoiding substitution is that of Definition 4.3.2,

extended by the rules

evalpf, xqrt{f, u{xs :“ evaltt, uu and pλx.tqrui{xis :“ λz.ptrz{x, ui{xisq for z fresh

and

εtrui{xis :“ εtrui{xis and e:py.αqrui{xis :“ e:pz.αrz{y, ui{xisq for z fresh

These rules extend to the inverses of rewrites in the obvious fashion. đ

Lemma 5.3.4. Let S be a Λˆ,Ñps -signature. Then in Λˆ,Ñps pSq:

1. If Γ $ t : B and t “α t
1 then Γ $ t1 : B,

2. If Γ $ τ : tñ t1 : B and τ “α τ
1 then Γ $ τ 1 : tñ t1 : B.

The “α relation is a congruence on the derived structure. In particular, one obtains the

expected equality for the induced lambda abstraction operation on rewrites.

Lemma 5.3.5. Let S be a Λˆ,Ñps -signature. Then in Λˆ,Ñps pSq:

1. If τ ry{xs “α τ
1ry{x1s (for y fresh) then λx.τ “α λx

1.τ 1,

2. If u “α u
1 then ηu “α ηu1 ,

3. If try{xs “α t
1ry{x1s and u “α u

1 then βx.t, u “α βx1.t1, u1 .

As for Λˆps, the type theory Λˆ,Ñps satisfies all the expected type-theoretic well-formedness

properties.

Definition 5.3.6. Fix a Λˆ,Ñps -signature S. We define the free variables in a term t in

Λˆ,Ñps pSq by extending Definition 4.3.3 as follows:

fvpλx.tq :“ fvptq ´ txu and fvpevaltpuq :“ tpu

Similarly, we define the free variables in a rewrite τ in Λˆ,Ñps pSq by extending Definition 4.3.3

as follows:

fvpεtq “ fvptq and fv
`

e:px . αq
˘

“ fvpαq ´ txu,

We define the free variables of a specified inverse σ´1 to be exactly the free variables of σ.

An occurrence of a variable in a term or rewrite is bound if it is not free. đ
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Lemma 5.3.7. Let S be a Λˆ,Ñps -signature. For any derivable judgements Γ $ u : B and

Γ $ τ : tñ t1 : B in Λˆ,Ñps pSq,

1. fvpuq Ď dompΓq,

2. fvpτq Ď dompΓq,

3. The judgements Γ $ t : B and Γ $ t1 : B are both derivable.

Moreover, whenever p∆ $ ui : Aiqi“1, ... ,n and Γ :“ pxi : Aiqi“1, ... ,n, then

1. If Γ $ t : B, then ∆ $ trui{xis : B,

2. If Γ $ τ : tñ t1 : B, then ∆ $ τ rui{xis : trui{xis ñ t1rui{xis : B.

5.3.1 The syntactic model of Λˆ,Ñps

We now turn to constructing the syntactic model for Λˆ,Ñps pSq and proving it is the

free cartesian closed biclone on S. The construction is a straightforward extension of

Construction 4.3.6 (page 123).

Construction 5.3.8. For any Λˆ,Ñps -signature S “ pB,Gq, define the syntactic model

Synˆ,ÑpSq of Λˆ,Ñps pSq as follows. The sorts are nodes A,B, . . . of G. The 1-cells are

α-equivalence classes of terms px1 : A1, . . . , xn : An $ t : Bq derivable in Λˆ,Ñps pSq. We

assume a fixed enumeration x1, x2, . . . of variables, and that the variable name in the

ith position is determined by this enumeration. The 2-cells are α”-equivalence classes of

rewrites px1 : A1, . . . , xn : An $ τ : tñ t1 : Bq. Composition is vertical composition and

and the identity on t is idt; the substitution operation is explicit substitution and the

structural rewrites are assoc, ι and %piq. đ

Synˆ,ÑpSq is a cartesian closed biclone. Products are as in SynˆpSq (Section 4.3.1) and

for exponentials the biuniversal arrow is evalpf, xq : pf : pA“BBq, x : Aq Ñ py : Bq. Indeed,

for any judgement pΓ, x : A $ α : evaltutincxu, xu ñ t : Bq in Λˆ,Ñps pSq, the rewrite e:px . αq
is the unique γ (modulo α”) such that

Γ, x : A $ α ” εt ‚ evaltγtincxu, xu : evaltutincxu, xu ñ t : B (5.20)

Existence is precisely rule U1. For uniqueness, for any γ satisfying (5.20) one has

γ
U2
” e:px . εt ‚ evaltγtincxu, xuq

cong
” e:px . αq

Moreover, Synˆ,ÑpSq is the free cartesian closed biclone on S, which validates our claim

that Λˆ,Ñps pSq is the internal language of FClˆ,ÑpSq.

Proposition 5.3.9. For any Λˆ,Ñps -signature S, cartesian closed biclone pT,D,Πnp´q,“Bq,

and Λˆ,Ñps -signature homomorphism h : S Ñ D, there exists a unique strict cartesian closed

pseudofunctor hJ´K : Synˆ,ÑpSq Ñ D such that hJ´K ˝ ι “ h, for ι : S ãÑ Synˆ,ÑpSq the

inclusion.
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Proof. We extend the pseudofunctor hJ´K of Proposition 4.3.9 (page 125) with the following

rules.

hJA“BBK :“ hJAK“BhJBK

hJf : A“BB, a : A $ evalpf, aq : BK :“ evalA,B

hJΓ $ λx.t : A“BBK :“ λphJΓ, x : A $ t : BKq

hJΓ, x : A $ εt : evaltpλx.tqtincxu, xu ñ t : BK :“ εhJΓ,x:A$t:BK

hJΓ $ e:px . αq : uñ λx.t : A“BBK :“ e:phJΓ, x : A $ α : evaltutincxu, xu ñ t : BKq

Uniqueness follows because any strict cc-pseudofunctor must strictly preserve the λp´q and

e:p´q operations (c.f. Lemma 5.2.17 and Lemma 2.2.17).

Remark 5.3.10. As we saw for products (Remark 4.3.8), the universal property of the

counit for exponentials gives rise to a nesting of (global) biuniversal arrows and (local)

universal arrows. These are related by the following bijective correspondence, in which we

write px : Aq to indicate the variable x of type A is free in the context (c.f. [ML84]):

px : Aq

evaltutincxu, xu ñ t : B

uñ λx.t : A“BB

We conjecture that a calculus for cartesian closed tricategories (cartesian closed8-categories)

would have three (a countably infinite tower) of such correspondences. đ

For a unary Λˆ,Ñps -signature S, the nucleus Synˆ,ÑpSq of Synˆ,ÑpSq is cartesian closed

with exponentials as described in Remark 5.2.11. We make this explicit in the next construc-

tion, which mirrors the syntactic model of the simply-typed lambda calculus (e.g. [Cro94,

Chapter 4]).

Construction 5.3.11. For any Λˆ,Ñps -signature S, define a bicategory Synˆ,ÑpSq as follows.

The objects are unary contexts with a single fixed variable name. The 1-cells px : Aq Ñ px :

Bq are α-equivalence classes of terms px : A $ t : Bq derivable in Λˆ,Ñps pSq. The 2-cells are

α”-equivalence classes of rewrites px : A $ τ : tñ t1 : Bq. Vertical composition is given by

the ‚ operation, and horizontal composition is given by explicit substitution. đ

As we have seen, we cannot hope for Synˆ,ÑpSq to satisfy a strict universal property (recall

the discussion following Lemma 5.2.17 on page 150, as well as Example 4.2.63 on page 119).

Nonetheless, we shall see in Section 5.3.3 that it is weakly initial : any morphism of

Λˆ,Ñps -signatures may be extended to a pseudofunctor out of Synˆ,ÑpSq, but this may not

be unique. Hence, Λˆ,Ñps may be soundly interpreted in any cc-bicategory. We shall also

see that Synˆ,ÑpSq is biequivalent to the free cc-bicategory FBctˆ,ÑpSq on S, yielding a

bicategorical universal property. Before proceeding to these results, we first establish a

series of lemmas that will simplify their proofs.
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5.3.2 Reasoning within Λˆ,Ñps

We begin by recovering the unit-counit presentation of exponentials (c.f. [See87, Hil96]) as

a series of admissible rules. These are collected together in Figure 5.5, below. The proofs

are similar to the case for products, so we omit them.

Lemma 5.3.12. For any Λˆ,Ñps -signature S, the rules of Figure 5.5 are admissible in

Λˆ,Ñps pSq.

A direct corollary is that the β-reduction rewrite of Definition 5.3.2 is natural.

Corollary 5.3.13. For any Λˆ,Ñps -signature S, if the judgements pΓ, x : A $ τ : tñ t1 : Bq

and pΓ $ σ : uñ u1 : Aq are derivable in Λˆ,Ñps pSq, then the following diagram of rewrites

commutes:

evaltλx.t, uu evaltλx.t1, u1u

ttidΓ, x ÞÑ uu t1tidΓ, x ÞÑ u1u

evaltλx.τ,σu

βx.t,u βx.t1,u1

τtidΓ,x ÞÑσu

Γ, x : A $ t : B

Γ $ λx.idt ” idλx.t : λx.tñ λx.t : A“BB

Γ, x : A $ τ 1 : t1 ñ t2 : B Γ, x : A $ τ : tñ t1 : B

Γ $ λx.pτ 1 ‚ τq ” pλx.τ 1q ‚pλx.τq : λx.tñ λx.t2 : A“BB

Γ $ σ : uñ u1 : A“BB
η-nat

Γ $ ηu1 ‚σ ” λx.evaltσtincxu, xu ‚ ηu : uñ λx.evaltu1tincxu, xu : A“BB

Γ, x : A $ τ : tñ t1 : B
ε-nat

Γ, x : A $ τ ‚ εt ” εt1 ‚ evaltpλx.τqtincxu, xu : evaltpλx.tqtincxu, xu ñ t1 : B

Γ, x : A $ t : B
triangle-law-1

Γ $ pλx.εtq ‚ ηt ” idλx.t : λx.tñ λx.t : A“BB

Γ $ u : A“BB
triangle-law-2

Γ, x : A $ εevaltutincxu,xu ‚ evaltηutincxu, xu ” idevaltutincxu,xu

: evaltutincxu, xu ñ evaltutincxu, xu : B

Figure 5.5: Admissible rules for Λˆ,Ñps pGq

Recall that for products we constructed a rewrite post of type

tuppt1, . . . , tmqtu1, . . . , unu ñ tuppt1tu1, . . . , unu, . . . , tmtu1, . . . , unuq

For exponentials we call the corresponding rewrite push (c.f. Construction 5.1.5). Just

as post witnesses that explicit substitutions and the tupling operation commute (up to
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isomorphism), so push witnesses that explicit substitutions and lambda abstractions can be

permuted (up to isomorphism). Precisely, push relates the following two derivations (where

Γ :“ pxi : Aiqi“1,...,n):

Γ, x : A $ t : B

Γ $ λx.t : A“BB p∆ $ ui : Aiqi“1,...,n

∆ $ pλx.tqtxi ÞÑ uiu : A“BB

and

Γ, x : A $ t : B

p∆ $ ui : Aiqi“1,...,n

p∆, x : A $ uitincxu : Aiqi“1,...,n ∆, x : A $ x : A

∆, x : A $ ttxi ÞÑ uitincxu, x ÞÑ xu : B

∆ $ λx.ttxi ÞÑ uitincxu, x ÞÑ xu : A“BB

From the perspective of the simply-typed lambda calculus, the rewrite

push : pλx.tqtxi ÞÑ uiu ñ λx.ttxi ÞÑ uitincxu, x ÞÑ xu

is an explicit version of the usual rule pλx.tqrui{xis “ λz.trui{xi, z{xs for the meta-operation

of capture-avoiding substitution (c.f. [RdP97, Definition 4], where a similar operation is

constructed for a version of the simply-typed lambda calculus with explicit substitution).

We construct push by emulating Construction 5.1.5 within Λˆ,Ñps .

Construction 5.3.14. For any Λˆ,Ñps -signature S we construct a rewrite pushpt;u‚q in

Λˆ,Ñps pSq making the following rule is admissible:

Γ, x : A $ t : B p∆ $ ui : Aiqi“1,...,n

∆ $ pushpt;u‚q : pλx.tqtxi ÞÑ uiu ñ λx.ttxi ÞÑ uitincxu, x ÞÑ xu : A“BB

Following Construction 5.1.5, we first need to construct the 2-cell Φ witnessing the pseudo-

functorality of the product-former. From the judgements Γ $ t : B and p∆ $ ui : Aiqi“1, ... ,n

one obtains the terms

ttincxutxi ÞÑ uitincxu, x ÞÑ xu and ttxi ÞÑ uiutincxu

of type B in context ∆, x : B by either performing explicit substitution or weakening first.

These terms are related by the following composite, which we call Φt,u‚ :

ttincxutxi ÞÑ uitincxu, x ÞÑ xu
assoc
– ttincxtxi ÞÑ uitincxu, x ÞÑ xuu

tt%p‚qu
– ttxi ÞÑ uitincxuu

assoc´1

– ttxi ÞÑ uiutincxu
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We therefore set pushpt;u‚q to be e:px . τq, for τ the composite

eval
 

pλx.tqtxi ÞÑ uiutincxu, x
(

– eval
 

pλx.tqtincxutxi ÞÑ uitincxu, x ÞÑ xu, xtxi ÞÑ uitincxu, x ÞÑ xu
(

– eval
 

pλx.tqtincxu, x
( 

xi ÞÑ uitincxu, x ÞÑ x
(

– ttxi ÞÑ uitincxu, x ÞÑ xu

where the first isomorphism is eval
!

pΦλx.t,x‚q
´1, %

p´p|∆|`1qq
u‚tincxu,x

)

, the second is assoc´1 and the

third is εttuitincxu, xu. đ

Thinking of rewrites in Λˆ,Ñps as witnesses for equalities in the simply-typed lambda

calculus, the following lemma is as expected (c.f. Lemma 5.1.6).

Lemma 5.3.15. For any Λˆ,Ñps -signature S, if the judgements Γ :“ pxi : Aiqi“1,...,n and

p∆ $ σi : ui ñ u1i : Aiq are derivable in Λˆ,Ñps pSq, then:

1. (Naturality). If Γ, x : A $ τ : tñ t1 : B, then

pλx.tqtu‚u λx.ttu‚tincxu, xu

pλx.t1qtu1‚u λx.t1tu1‚tincxu, xu

push

pλx.τqtσ‚u λx.τtσ‚tincxu,xu

push

2. (Compatibility with ι). If Γ, x : A $ t : B, then

λx.t pλx.tqtx‚u

λx.ttx‚u λx.ttx‚tincxu, xu

ι

λx.ι push

λx.ttx,%p‚qu

3. (Compatibility with assoc). If Γ, x : A $ t : C, ∆ :“ pyj : Bjqj“1,...,m and

pΣ $ vj : Bjqj“1,...,m, then

`

λx.ttu‚tincxu, xu
˘

tv‚u

pλx.tqtu‚utv‚u λx.ttu‚tincxu, xutv‚tincxu, xu

pλx.tqtu‚tv‚uu λx.t
 

u‚tincxutv‚tincxu, xu, xtv‚tincxu, xu
(

λx.t
 

u‚tv‚utincxu, x
(

λx.t
 

u‚ty‚tv‚tincxu, xuu, x
(

λx.t
 

u‚tv‚tincxuu, x
(

pushpushtv‚u

assoc λx.assoc

push λx.ttassoc,%pm`1qu

assoc λx.ttu‚t%
p‚q
u,xu
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4. (Compatibility with η). If Γ, x : A $ t : B then

ttu‚u
`

λx.evaltttincxu, xu
˘

tu‚u

λx.evaltttincxu, xutu‚tincxu, xu

λx.eval
 

ttu‚utincxu, x
(

λx.eval
 

ttincxutu‚tincxu, xu, xtu‚tincxu, xu
(

ηtu‚u

η

push

λx.assoc

λx.evaltΦt;u‚ ,%
pm`1q

u

Proof. Long but direct calculations using the universal property of e:px . αq.

The rewrite push is also compatible with the β-rewrite. In the simply-typed lambda

calculus, for any terms Γ, x : A $ t : B and Γ $ u : A and any family p∆ $ vi : Aiqi“1, ... ,n,

then

papppλx.t, uqqrvi{xis “βη tru{xsrvi{xis “ t
“

urvi{xis{x, vi{xi
‰

(5.21)

In Λˆ,Ñps this corresponds to the two derivations

Γ, x : A $ t : B

Γ $ λx.t : A“BB Γ $ u : A
Γ $ evaltλx.t, uu : B p∆ $ vi : Aiqi“1,...,n

∆ $ evaltλx.t, uutxi ÞÑ viu : B

and

Γ, x : A $ t : B

p∆ $ vi : Aiqi“1,...,n Γ $ u : A

∆ $ utxi ÞÑ viu : A p∆ $ vi : Aiqi“1,...,n

∆ $ ttxi ÞÑ vi, x ÞÑ utxi ÞÑ viuu : B

Continuing the equalities-as-rewrites perspective—which we make precise in Proposi-

tion 5.4.14—the equation (5.21) becomes the following lemma.

Lemma 5.3.16. Let S be any Λˆ,Ñps -signature and Γ :“ pxi : Aiqi“1,...,n and ∆ :“

pyj : Bjqj“1, ... ,m be contexts. If the judgements pΓ, x : A $ t : Bq and pΓ $ u : Aq

and p∆ $ vi : Aiqi“1,...,n are derivable in Λˆ,Ñps pSq, then

evaltλx.t, uutv‚u eval
 

pλx.tqtv‚u, utv‚u
(

ttidΓ, x ÞÑ uutv‚u evaltλx.ttv‚tincxu, xu, utv‚uu

ttv‚tincxu, utv‚uu ttv‚tincxu, xutid∆, x ÞÑ utv‚uu

assoc

βx.t,utv‚u evaltpush,utv‚uu

– βx.ttv‚tincxu,xu,utv‚u

–

where the unlabelled isomorphisms are defined by commutativity of the following two

diagrams:
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ttidΓ, uutv‚u ttv‚tincxu, utv‚uu

ttidΓtv‚u, utv‚uu ttv‚, utv‚uu

assoc

tt%p‚q,utv‚uu

ttι,utv‚uu

ttv‚tincxu, xutid∆, utv‚uu ttv‚tincxu, utv‚uu

t
 

v‚tincxutid∆, utv‚uu, xtid∆, utv‚uu
(

t
 

v‚ty‚tid∆, utv‚uuu, utv‚u
(

assoc

ttassoc,%p1qu

ttv‚t%p‚qu,utv‚uu

Proof. Unfold the definitions and apply coherence.

5.3.3 The free property of Synˆ,ÑpSq

In this section we shall make precise the relationship between Synˆ,ÑpSq and the free

cc-bicategory FBctˆ,ÑpSq on S (Construction 5.2.18). We establish two related results.

First, we shall show that for any cc-bicategory pB,Πnp´q,“Bq and Λˆ,Ñps -homomorphism

h : S Ñ B, there exists a semantic intepretation cc-pseudofunctor hJ´K : Synˆ,ÑpSq Ñ B.

Along the way, we shall observe that such an interpretation extends to the cc-bicategory

defined by extending T @,ˆ
ps pSq (Construction 4.3.15) with exponentials. This cc-bicategory,

in which every context appears as an object, will play an important role in the normalisation-

by-evaluation proof of Chapter 8. Second, we shall show that Synˆ,ÑpSq is biequivalent

FBctˆ,ÑpSq. Thus, one does not obtain a strict universal property in the style of The-

orem 3.2.17 (for Λbicat
ps ) or Theorem 4.3.10 (for Λˆps), but one does obtain such a universal

property up to biequivalence.

Semantic interpretation. The semantic interpretation of Λˆ,Ñps follows the tradition of

semantic interpretation of the simply-typed lambda calculus [Lam80, Lam86]. For a fixed

cartesian closed category pC,Πnp´q,“Bq and Λˆ,Ñ-signature homomorphism h : S Ñ C, the

interpretation of a judgement pΓ $ t : Bq in the simply-typed lambda calculus over S is

hJΓ $ t : BK, where hJ´K is the unique cartesian closed clone homomorphism extending h

(so hJ´K has domain the free cartesian closed clone on S—namely, the syntactic model of the

simply-typed lambda calculus—and codomain the cartesian closed clone ClpCq constructed

in Example 5.2.2 (page 139)).

Proposition 5.3.17. For any unary Λˆ,Ñps -signature S, cartesian closed bicategory pB,Πnp´q,“Bq,

and unary Λˆ,Ñps -signature homomorphism h : S Ñ B, there exists a semantic inter-

pretation hJ´K assigning to every term pΓ $ t : Bq a 1-cell in B and to every rewrite

pΓ $ τ : tñ t1 : Bq a 2-cell in B. Moreover, this interpretation is sound in the sense that if

pΓ $ τ ” τ 1 : tñ t1 : Bq then hJΓ $ τ : tñ t1 : BK “ hJΓ $ τ 1 : tñ t1 : BK.

Proof. The Λˆ,Ñps -signature homomorphism h also defines a Λˆ,Ñps -signature homomorphism

S Ñ BiclpBq from S to the cartesian closed biclone arising from the cartesian closed

structure of B (recall Example 5.2.12 on page 146). It follows from the universal property
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of Synˆ,ÑpSq (Proposition 5.3.9) that there exists a strict cartesian closed pseudofunctor

of biclones hJ´K : Synˆ,ÑpSq Ñ BiclpBq. We take this to be the semantic interpretation.

Soundness is then automatic.

To avoid obstructing the flow of our discussion we leave the full description of the

semantic interpretation to an appendix (Section C.2).

The following observation entails a weak universal property for Synˆ,ÑpSq.

Lemma 5.3.18. Let pB,Πnp´q,“Bq be a cc-bicategory and pobpBq,BiclpBq,Πnp´q,“Bq the

associated cartesian closed biclone. Then, for any cartesian closed biclone pS, C,Πnp´qq

and cartesian closed pseudofunctor of biclones pF, qˆ, q“Bq : C Ñ BiclpBq such that qˆX‚ –

Idśn
i“1 FXi

for all X1, . . . , Xn P S pn P Nq, the restriction to unary multimaps pF , qˆ, q“Bq :

C Ñ B is a cc-pseudofunctor of bicategories.

Proof. Define F pXq :“ FX and FX,Y :“ FX;Y : CpX,Y q “ CpX;Y q Ñ BpX,Y q. The

2-cells φF and ψF are defined by restricting the 2-cells φ and ψpiq of F to linear multimaps.

The three axioms to check then follow from the three laws of a biclone pseudofunctor,

restricted to linear multimaps.

For preservation of products, we are already given an equivalence

xFπ1, . . . , Fπny : F
`
ś

npX1, . . . , Xnq
˘

Ô
ś

npFX1, . . . , FXnq : qˆX‚

for every X1, . . . , Xn P S pn P Nq because tupling in BiclpBq is tupling in B. It follows that

pF , qˆq is an fp-pseudofunctor.

For preservation of exponentials, the cartesian closure of F provides an equivalence

λ
`

F pevalA,Bq ˝ xπ1, π2y
˘

: F pA“BBq Ô pFA“BFBq : q“BA,B

for every A,B P S (recall from Example 5.2.12 the definition of currying in BiclpBq). On

the other hand,

mF
A,B :“ λ

`

F pevalA,Bq ˝ qˆA,B
˘

– λ
`

F pevalA,Bq ˝ IdFAˆFB
˘

by assumption on qˆ

– λ
`

F pevalA,Bq ˝ xπ1, π2y
˘

Since pf, g‹q is an equivalence whenever pg, g‹q is an equivalence and f – g, it follows that

pmF
A,B, q

“B
A,Bq is an equivalence for every A,B P S. Hence, pF, qˆ, q“Bq is a cc-pseudofunctor.

Applying this lemma to the semantic interpretation hJ´K of Proposition 5.3.17 immedi-

ately yields the following weak universal property of Synˆ,ÑpSq.

Corollary 5.3.19. For any unary Λˆ,Ñps -signature S, cc-bicategory pB,Πnp´q,“Bq, and

Λˆ,Ñps -signature homomorphism h : S Ñ B, there exists a cc-pseudofunctor hJ´K : Synˆ,ÑpSq Ñ
B such that hJ´K ˝ ι “ h, for ι : S ãÑ Synˆ,ÑpSq the inclusion.
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For the normalisation-by-evaluation argument in Chapter 8 we shall work with sets of

terms indexed by types and contexts. We shall therefore require a syntactic model in which

all contexts appear. For this purpose we extend T @,ˆ
ps pSq (Construction 4.3.15 on page 130)

with exponentials. Recall from Section 4.3.3 that the resulting bicategory has two product

structures: one from context extension, and the other from the type theory. We emphasise

this fact in our notation.

Construction 5.3.20. For any Λˆ,Ñps -signature S, define a bicategory T @,ˆ,Ñ
ps pSq as follows.

The objects are contexts Γ,∆, . . . . The 1-cells Γ Ñ pyj : Bjqj“1, ... ,m are m-tuples of

α-equivalence classes of terms pΓ $ tj : Bjqj“1, ... ,m derivable in Λˆ,Ñps pSq, and the 2-cells

pΓ $ tj : Bjqj“1, ... ,m ñ pΓ $ t1j : Bjqj“1, ... ,m are m-tuples of α”-equivalence classes of

rewrites pΓ $ τ : tj ñ t1j : Bjqj“1, ... ,m. Vertical composition is given pointwise by the ‚

operation, and horizontal composition

pt1, . . . , tlq, pu1, . . . , umq ÞÑ pt1txi ÞÑ uiu, . . . , tmtxi ÞÑ uiuq

pτ1, . . . , τlq, pσ1, . . . , σmq ÞÑ pτ1txi ÞÑ σiu, . . . , τmtxi ÞÑ σiuq

by explicit substitution. The identity on ∆ “ pyj : Bjqj“1, ... ,m is p∆ $ yj : Bjqj“1, ... ,m. The

structural isomorphisms l, r and a are given pointwise by %, ι´1 and assoc, respectively. đ

We define exponentials in a similar way to the type-theoretic product structure on

T @,ˆ
ps pSq (Lemma 4.3.19): following Remark 5.1.4, the exponential Γ“B ∆ is defined to be

pp :
ś

npA1, . . . , Anqq“B pq :
ś

mpB1, . . . , Bmqq

for Γ :“ pxi : Aiqi“1, ... ,n and ∆ :“ pyj : Bjqj“1,...,m.

Remark 5.3.21. Since Lemma 4.3.16 extends verbatim to T @,ˆ,Ñ
ps pSq, one sees that

T @,ˆ,Ñ
ps pSq » Synˆ,ÑpSq for every unary Λˆ,Ñps -signature S (c.f. Remark 4.3.17). Indeed, it

is plain from the two definitions that the full sub-bicategory of T @,ˆ,Ñ
ps pSq consisting of just

the unary contexts is exactly Synˆ,ÑpSq. đ

T @,ˆ
ps pSq satisfies a weak universal property akin to Corollary 5.3.19. However, since this

bicategory does not arise from Synˆ,ÑpSq we must define the interpretation pseudofunctor

by hand.

Proposition 5.3.22. For any unary Λˆ,Ñps -signature S, cc-bicategory pB,Πnp´q,“Bq, and

Λˆ,Ñps -signature homomorphism h : S Ñ B, there exists a cc-pseudofunctor hJ´K : T @,ˆ,Ñ
ps pSq Ñ

B (for the type-theoretic product structure of Lemma 4.3.18), such that hJ´K ˝ ι “ h, for

ι : S ãÑ T @,ˆ,Ñ
ps pSq the inclusion.

Proof. As the notation suggests, we extend the interpretation hJ´K of Proposition 5.3.17 to

T @,ˆ,Ñ
ps pSq by setting

hJpΓ $ tj : Bjqj“1, ... ,mK :“ xhJΓ $ t1 : B1K, . . . , hJΓ $ tm : BmKy
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h
q
pΓ $ τj : tj ñ t1j : Bjqj“1, ... ,m

y
:“

@

hJΓ $ τ1 : t1 ñ t11 : B1K, . . . , hJΓ $ τm : tm ñ t1m : BmK
D

This is well-defined on α”-equivalence classes of rewrites by the soundness of the semantic

interpretation. For preservation of composition, we define φhJ´K as follows (where Γ :“

pxi : Aiqi“1, ... ,n):

hJpΓ $ tj : Bjqj“1, ... ,mK ˝ hJp∆ $ ui : Aiqi“1,.,nK hJp∆ $ tjtxi ÞÑ uiu : Bjqj“1, ... ,mK

@

hJtjKΓ
D

j
˝
@

hJuiK∆
D

i

@

hJtjKΓ ˝ xhJuiK∆yi
D

j

φhJ´K

post

For preservation of identities, we take

ψhJΓK :“ IdhJΓK

pςIdhJΓK
ùùùùñ xπ1, . . . , πny “ hJpΓ $ xi : Aiqi“1,...,nK

where pς is defined in (5.15) on page 146. We check the three axioms of a pseudofunctor.

For the left unit law, one derives the commutative diagram below, then applies the triangle

law relating the unit ς and counit $ for products:

IdhJΓK ˝ xhJuiKΓyi xhJuiKΓyi

@

π‚ ˝ IdhJΓK
D

˝ xhJuiKΓyi
@

π‚ ˝
`

IdhJΓK ˝ xhJuiKΓyi
˘D

xπ1, . . . , πny ˝
@

hJuiKΓ
D

i

@`

π‚ ˝ IdhJΓK
˘

˝ xhJuiKΓyi
D @

π‚ ˝ xhJuiKΓyi
D

xπ‚ ˝ xhJuiKΓyiy

xhJuiKΓyi

nat.
“

–

pςIdhJΓK

ςId˝xhJuiKΓyi

ςpId˝xhJuiKyiq

ςxhJuiKyi

– post –

nat.
“

post –

–

x$p‚qy

The unlabelled triangular shape is an easily-verified property of post
`

c.f. Lemma 4.1.7, dia-

gram (4.5)
˘

. The right unit law is similar, and the associativity law follows directly from the

naturality of post and the observation that the following commutes
`

c.f. Lemma 4.1.7(4.6)
˘

:

pxf‚y ˝ gq ˝ h xf‚ ˝ gy ˝ h

xf‚y ˝ pg ˝ hq xf‚ ˝ pg ˝ hqy xpf‚ ˝ gq ˝ hy

post˝h

– post

post x–, ... ,–y
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Now we want to show that hJ´K is a cc-pseudofunctor. We start with products. It is imme-

diate from the definition that, for any family of unary contexts px1 : A1q, . . . , pxn : Anq pn P

Nq, the pseudofunctor hJ´K strictly preserves the data making pp :
ś

npA1, . . . , Anqq “
śn
i“1pxi : Aiq an n-ary product. More generally, for contexts Γpiq :“ px

piq
j : A

piq
j qj“1,...,|Γpiq|pi “

1, . . . , nq, the n-ary product Γp1q ˆ ¨ ¨ ¨ ˆ Γpnq is interpreted as

h
r
p :

ś

n

`
ś

|Γp1q|A
p1q
‚ , . . . ,

ś

|Γpnq|A
pnq
‚

˘

z
“

śn
i“1

ś|Γpjq|
j“1 hJApiqj K “

śn
i“1hJΓ

piqK

and the ith projection
´

p :
ś

n

`
ś

|Γp1q|A
p1q
‚ , . . . ,

ś

|Γpnq|A
pnq
‚

˘

$ πjtπippqu : A
piq
j

¯

j“1,...,|Γpiq|

is interpreted as
śn
i“1hJΓ

piqK

A

π1˝πi,...,π|Γpiq|˝πi

E

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ
ś|Γpiq|
j“1 hJApiqj K “ hJΓpiqK. To witness that

hJ´K preserves products, then, one can take qˆ
Γp‚q

to be the identity, with witnessing 2-cell

xxπ‚ ˝ π1y , . . . , xπ‚ ˝ πnyy
xpost´1,...,post´1y
ùùùùùùùùùùùñ

A

xπ1, . . . , π|Γp1q|y ˝ π1, . . . , xπ1, . . . , π|Γpnq|y ˝ πn

E

xpς´1,...,pς´1y
ùùùùùùùñ xIdhJΓp1qK ˝ π1, . . . , IdhJΓpnqK ˝ πny

– xπ1, . . . , πny

pς´1

ùùñ IdhJ
ś

i ΓpiqK

Note we once again use the 2-cell pς defined in (5.15) on page 146.

For exponentials, one sees that (where ∆ :“ pyj : Bjqj“1,...,m):

hJΓ“B ∆K “ h
q`
p :

ś

npA1, . . . , Anq
˘

“B
`

q :
ś

mpB1, . . . , Bmq
˘y

“ hJf :
ś

npA1, . . . , Anq“B
ś

mpB1, . . . , BmqK

“
`
śn
i“1hJAiK

˘

“B
`
śn
j“1hJBjK

˘

and

hJpΓ“B ∆q ˆ ΓK “ h
q
p :

ś

2

`
ś

nA‚“B
ś

mB‚,
ś

nA‚
˘y

“
`
śn
i“1hJAiK“B

śn
j“1hJBjK

˘

ˆ
śn
i“1hJAiK

It follows that m
hJ´K
Γ,∆ is the currying of

h
q
p :

ś

2

`
ś

nA‚“B
ś

mB‚,
ś

nA‚
˘

$ evaltπ1ppq, π2ppqu :
ś

mB‚
y
˝ IdphJΓ“B∆KˆhJΓKq

“
`

evalhJΓK,hJ∆K ˝ xπ1, π2y
˘

˝ IdphJΓ“B∆KˆhJΓKq

Hence, m
hJ´K
Γ,∆ is naturally isomorphic to the identity via the composite

λ
` `

evalphJΓK,hJ∆Kq ˝ xπ1, π2y
˘

˝ IdphJΓ“B∆KˆhJΓKq
˘

– λ
`

evalphJΓK,hJ∆Kq ˝
@

π1 ˝ IdphJΓ“B∆KˆhJΓKq, Idπ2˝phJΓ“B∆KˆhJΓKq
D ˘

– λ
`

evalphJΓK,hJ∆Kq ˝ pIdhJΓ“B∆K ˆ
ś

mhJB‚Kq
˘

η
– IdhJΓ“B∆K

and hJ´K is a cc-pseudofunctor.
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Our aim now is to prove that Synˆ,ÑpSq is biequivalent to the free cc-bicategory on

the unary Λˆ,Ñps -signature S (defined in Construction 5.2.18), and hence that Λˆ,Ñps is the

internal language for cc-bicategories up to biequivalence.

Synˆ,ÑpSq is biequivalent to FBctˆ,ÑpSq. Fix a unary Λˆ,Ñps -signature S. We shall

show that the canonical cc-pseudofunctors ι# : FBctˆ,ÑpSq Ñ T @,ˆ,Ñ
ps pSq and ιJ´K :

T @,ˆ,Ñ
ps pSq Ñ FBctˆ,ÑpSq extending the respective inclusions S ãÑ FBctˆ,ÑpSq and S ãÑ

T @,ˆ,Ñ
ps pSq induce a biequivalence T @,ˆ,Ñ

ps pSq » FBctˆ,ÑpSq. (These cc-pseudofunctors

are defined in Lemma 5.2.19 and Proposition 5.3.22, respectively.) One then obtains the

required biequivalence by restricting T @,ˆ,Ñ
ps pSq to unary contexts (recall Remark 5.3.21).

Remark 5.3.23. Because the pseudofunctor ι# is defined inductively using the cartesian

closed structure of T @,ˆ,Ñ
ps pSq, we must be explicit about which cartesian closed structure

we choose. We take the type-theoretic product structure, so that the composite ι# ˝ ιJ´K
takes an arbitrary context Γ to an (equivalent) unary context. Because the restriction of

T @,ˆ,Ñ
ps pSq to unary contexts is exactly Synˆ,ÑpSq, this ensures that the biequivalence we

construct will restrict to Synˆ,ÑpSq with its canonical cartesian closed structure (namely,

that of Remark 5.2.11). Of course, up to biequivalence of the underlying bicategories,

the uniqueness of products and exponentials ensures that the choice of cc-bicategory is

immaterial (recall Remark 5.1.8 and Lemma 5.1.9). đ

Our two-step approach reflects two intended applications. In this chapter we wish to

prove a free property, so restrict to unary contexts, but in Chapter 8 we wish to interpret

the syntax of Λˆ,Ñps varying over a (2-)category of contexts, and so require all contexts.

Remark 5.3.24. Although we present the argument indirectly here, it is also possible to

prove directly that the canonical cc-pseudofunctors induce a biequivalence Synˆ,ÑpSq »
FBctˆ,ÑpSq. The calculations involved are similar to those we shall see below. đ

We begin by showing that ιJ´K ˝ ι# » idFBctˆ,ÑpSq. Recall from Proposition 5.3.22

that ιJ´K preserves products and exponentials up to equivalence in a particularly strong

way, in the sense that xιJπ1K, . . . , ιJπnKy – id and mιJ´K – id. One may therefore apply

Corollary 5.2.21.

Proposition 5.3.25. For any unary Λˆ,Ñps -signature S, the composite ιJ´K˝ι# : FBctˆ,ÑpSq Ñ
FBctˆ,ÑpSq induced by the following diagram is equivalent to idFBctˆ,ÑpSq:

FBctˆ,ÑpSq T @,ˆ,Ñ
ps pSq FBctˆ,ÑpSq

S S S

ι# ιJ´K

ι ι ι

Proof. The diagram commutes, and the composite ιJ´K ˝ ι# is certainly a cc-pseudofunctor.

Since ι# is strict and ιJ´K has qˆ and q“B both given by the identity, Corollary 5.2.21
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applies. Hence ιJ´K ˝ ι# is equivalent to the unique strict cc-pseudofunctor FBctˆ,ÑpSq Ñ
FBctˆ,ÑpSq extending the inclusion S ãÑ FBctˆ,ÑpSq. Since the identity is such a strict

cc-pseudofunctor, it follows that ιJ´K ˝ ι# » idFBctˆ,ÑpSq, as required.

We shall see in Chapter 8 that this result is crucial to the normalisation-by-evaluation

proof. Roughly speaking, it plays the same role as the 1-categorical observation that the

canonical map from the free cartesian closed category to itself is the identity.

We now turn to showing that ι# ˝ ιJ´K is equivalent to the identity. To this end, observe

that for any context Γ :“ pxi : Aiqi“1, ... ,n,

ι#pιJΓKq “ ι#p
ś

npA1, . . . , Anqq “ pp :
ś

npA1, . . . , Anqq

We define a pseudonatural transformation pj, jq : ι# ˝ ιJ´K ñ idT @,ˆ,Ñ
ps pSq with components

jΓ : ι#pιJΓKq Ñ Γ given by the equivalence

Γ
`

p :
ś

npA1, . . . , Anq
˘

pΓ$tuppx1, ... ,xnq:
ś

n A‚q

pp:
ś

npA1, ... ,Anq$πippq:Aiqi“1, ... ,n

constructed in Lemma 4.3.16 (page 130). We are therefore required to provide an invertible

2-cell filling the diagram below for every judgement pΓ $ t : Bq:

ι#pιJΓKq ι#pιJy : BKq

Γ py : Bq

jt
ð

jΓ

ι#pιJΓ$t:BKq

jB

pΓ$t:Bq

(5.22)

Construction 5.3.26. For any Λˆ,Ñps -signature S, we define a family of 2-cells jt filling (5.22)

in T @,ˆ,Ñ
ps pSq. Unfolding the anticlockwise composite, one sees that

pΓ $ t : Bq ˝ jΓ “ pΓ $ t : Bq ˝
`

p :
ś

nA‚ $ πippq : Ai
˘

i“1,...,n

“
`

p :
ś

npA1, . . . , Anq $ ttxi ÞÑ πippqu : B
˘

Thus, it suffices to define 2-cells kt of type pp :
ś

nA‚ $ tñ ttxi ÞÑ πippqu : Bq, where t is

the term in the judgement ι#pιJΓ $ t : BKq. Since jB is simply py : B $ y : Bq, one may

then define the required 2-cell jt to be

jt :“ y
 

t
(

%
p1q

t
ùùñ t

kt
ùñ ttxi ÞÑ πippqu

We define kt by induction on the derivation of t.

var case. For pΓ $ xk : Akq the corresponding term xk is
`

p :
ś

nA‚ $ πkppq : Ak
˘

, so we

define

kxi :“
`

p :
ś

nA‚ $ %
p´kq
π‚ppq

: πkppq ñ xktxi ÞÑ πippqu : Ak
˘

const case. For any constant c P GpA,Bq, the judgement ι#ιJx : A $ cpxq : BK is simply

px : A $ cpxq : Bq. Since the context is unary, jΓ is the identity and we may take kcpxq to

be canonical structural isomorphism.
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proj case. Observing that ι# ˝ ιJ´K is the identity on pp :
ś

npA1, . . . , Anq $ πippq : Aiq,

we take the canonical isomorphism

`

p :
ś

npA1, . . . , Anq
˘

pxi : Aiq

`

p :
ś

npA1, . . . , Anq
˘

pxi : Aiq

pp:
ś

n A‚$πippq:Aiqpp:
ś

n A‚$p:
ś

n A‚q

pp:
ś

n A‚$πippq:Aiq

–

pxi:Ai$xi:Aiq

–

pp:
ś

n A‚$πippq:Aiq

tup case. From the induction hypothesis one obtains
`

p :
ś

nA‚ $ kti : tj ñ tjtxi ÞÑ πippqu : Bj
˘

for j “ 1, . . . ,m. So for ktuppt1, ... ,tmq we take the composite rewrite

tuppt1, . . . , tmq
tuppkt1 , ... ,ktm q
ùùùùùùùùùñ tuppt1tπ‚ppqu, . . . , tmtπ‚ppquq

post´1

ùùùùñ tuppt1, . . . , tmqtπ‚ppqu

of type
ś

mpB1, . . . , Bmq in context
`

p :
ś

npA1, . . . , Anq
˘

.

eval case. The evaluation 1-cell pf : A“BBq ˆ px : Aq Ñ py : Bq in T @,ˆ,Ñ
ps pSq with

the type-theoretic product structure is
`

p : pA“BBq ˆA $ evaltπ1ppq, π2ppqu : B
˘

, so one

obtains

ι#pιJf : A“BB, x : A $ evalpf, xq : BKq “ ι#pevalιJAK,ιJBKq

“
`

p : pA“BBq ˆA $ evaltπ1ppq, π2ppqu : B
˘

We therefore define kevalpf,xq to be the identity.

lam case. The exponential transpose of a term pp : Z ˆB $ t : Cq in T @,ˆ,Ñ
ps pSq is

pz : Z $ λx.pttp ÞÑ tuppz, xquq : B“BCq

It follows that

ι#pιJΓ $ λx.t : B“BCKq “ λ
`

q :
ś

2p
ś

nA‚, Bq $ t
 

tuppπ‚tπ1pqqu, π2pqqq
(

: C
˘

“
`

p :
ś

nA‚ $ λx.t
 

tuppπ‚tπ1pqqu, π2pqqq
(

ttuppp, xqu : B“BC
˘

Now, the induction hypothesis provides the 2-cell

`

s :
ś

npA1, . . . , An, Bq $ kt : tñ ttxi ÞÑ πipsqu : C
˘

so for kλx.t we begin by defining a composite ϑt by
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t
 

tuppπ1tπ1pqqu, . . . , πntπ1pqqu, π2pqqq
(

ttuppp, xqu

t
 

tup
`

π1tπ1pqqu, . . . , πntπ1pqqu, π2pqq
˘

ttuppp, xqu
(

t
 

tup
`

π1tπ1pqquttuppp, xqu, . . . , πntπ1pqquttuppp, xqu, π2ttuppp, xqu
˘(

t
 

tuppπ1tpu, . . . , πntpu, xq
(

assoc

ϑt

ttpostu

tttuppγ1, ... ,γn,$
p2q
p,xqu

in context
`

p :
ś

npA1, . . . , Anq, x : B
˘

, where γk is defined, in the same context, to be

γk :“ πktπ1pqquttuppp, xqu assoc
ùùùñ πk

 

π1ttuppp, xqu
( πkt$

p1q
p,xu

ùùùùùñ πktpu

for k “ 1, . . . , n. We then define kλx.t to be the composite

λx.t
 

tuppπ‚tπ1pqqu, π2pqqq
(

ttuppp, xqu pλx.tqtπ1ppq, . . . , πnppqu

λx.t
 

tuppπ1tpu, . . . , πntpu, xq
(

λx.ttπ1psq, . . . , πnpsq, πn`1psquttuppπ1tpu, . . . , πntpu, xqu

λx.t
 

π‚ttuppπ1tpu, . . . , πntpu, xqu
(

λx.ttπ1tpu, . . . , πntpu, xu

kλx.t

λx.ϑt

λx.ktttuppπ1tpu, ... ,πntpu,xqu

λx.assoc

λx.tt$p‚qu

push´1

It remains to consider the cases of explicit substitutions and n-tuples of terms. We take

the latter first and then put it to work for explicit substitutions.

n-tuples case. For contexts Γ :“ pxi : Aiqi“1, ... ,n and ∆ :“ pzj : Zjqj“1, ... ,m and an

n-tuple p∆ $ ti : Aiqi“1, ... ,n : ∆ Ñ Γ, we directly define the rewrite jptjqj“1, ... ,m
filling

`

q :
ś

mpZ1, . . . , Zmq
˘ `

p :
ś

npA1, . . . , Anq
˘

∆ Γ

pq:
ś

m Z‚$tuppt1, ... ,tnq:
ś

n A‚q

jptiqi“1, ... ,n
ð

» »

p∆$ti:Aiqi“1, ... ,n

to be the n-tuple with components

jptiqi“1, ... ,n
:“ πk

 

tuppt1, . . . , tnq
( $pkq

ùùñ tk
ktk
ùñ tktπ1pqq, . . . , πmpqqu

for k “ 1, . . . , n.



5.3. THE TYPE THEORY Λˆ,Ñps 177

hcomp case. For explicit substitutions p∆ $ ttxi ÞÑ uiu : Bq “ pΓ $ t : Bq ˝ p∆ $ ui :

Aiqi“1,...,n we take the definition from the associativity law of a pseudonatural transformation.

Thus, we define jttxi ÞÑuiu to be the pasting diagram

`

q :
ś

mpB1, . . . , Bmq
˘

pz : Cq

`

p :
ś

npA1, . . . , Anq
˘

Γ

∆ pz : Cq

pq:
ś

mB‚$tttuppu1, ... ,unqu:Cq

»

pq:
ś

mB‚$tuppu1, ... ,unq:
ś

n A‚q

pz:C$z:Cqjpuiqi“1, ... ,n
ð

jt
ð

»

pp:
ś

npA1, ... ,Anq$t:Cq

pΓ$t:Cq

p∆$ttxi ÞÑuiu:Cq

p∆$ui:Aiqi“1, ... ,n

đ

The preceding construction does indeed define a pseudonatural transformation. It is

clear that each jt is natural, so it remains to check the unit and associativity laws. For

the unit law, we are required to show the following equality of pasting diagrams for every

context Γ :“ pxi : Aiqi“1,...,n:

pp :
ś

nA‚q pp :
ś

nA‚q

Γ Γ

jpxiqi“1, ... ,n
ð

ψι
#˝ιJ´K

–

»

pp:
ś

n A‚$tuppπ1tpu,...,πntpuqq:
ś

n A‚q

pp:
ś

n A‚$p:
ś

n A‚q

»

pΓ$xi:Aiqi“1, ... ,n

“

pp :
ś

nA‚q pp :
ś

nA‚q

Γ Γ

»»

pp:
ś

n A‚$p:
ś

n A‚q

»

–

–

pΓ$xi:Aiqi“1, ... ,n

Applying the definition of ψιJ´K given in Proposition 5.3.22, this entails checking the outer

edges of the following diagram commute for k “ 1, . . . , n:

πktpu πkppq

πkttuppπ1tpu, . . . , πntpuqu πktpu

πkttuppπ1ppq, . . . , πnppqqu πkppq xktxi ÞÑ πippqu

ι´1
πkppq

πktςpu triang. law
“

“ %
p´kq
πkppq

πk

!

tuppι´1
π1ppq

, ... ,ι´1
πnppq

q

)

$
pkq
π‚tpu

nat.
“

ι´1
πkppq

$
pkq
π‚ppq

%
p´kq
πkppq
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Hence, the unit law does indeed hold. The associativity law holds by construction for

composites of terms in unary contexts. For the general case, one instantiates the definition

of φιJ´K from Proposition 5.3.22 and applies the definition of post to get exactly the required

composite. This completes the proof of the next lemma.

Lemma 5.3.27. For any unary Λˆ,Ñps -signature S, the composite ι# ˝ ιJ´K : T @,ˆ,Ñ
ps pSq Ñ

T @,ˆ,Ñ
ps pSq induced by the following diagram is equivalent to idT @,ˆ,Ñ

ps pSq:

T @,ˆ,Ñ
ps pSq FBctˆ,ÑpSq T @,ˆ,Ñ

ps pSq

S S S

ιJ´K ι#

(5.23)

Putting this lemma together with Proposition 5.3.25, one obtains the biequivalence

between T @,ˆ,Ñ
ps pSq and FBctˆ,ÑpSq:

Proposition 5.3.28. For any unary Λˆ,Ñps -signature S, the cc-pseudofunctors ιJ´K and ι#

extending the inclusion as in the diagram

FBctˆ,ÑpSq T @,ˆ,Ñ
ps pSq FBctˆ,ÑpSq

S S S

ι# ιJ´K

ι ι ι

form a biequivalence FBctˆ,ÑpSq » T @,ˆ,Ñ
ps pSq.

It is not hard to see that the pseudonatural transformation pj, jq defined in Construc-

tion 5.3.26 restricts to a pseudonatural transformation ιJ´K ˝ ι# » id
Synˆ,ÑpSq for ιJ´K the

restriction of the interpretation pseudofunctor of Proposition 5.3.22 to Synˆ,ÑpSq. Since

the proof of Proposition 5.3.25 also restricts to the unary case, one obtains the following.

Corollary 5.3.29. For any unary Λˆ,Ñps -signature S, the cc-pseudofunctors ιJ´K and ι#

extending the inclusion as in the diagram

FBctˆ,ÑpSq Synˆ,ÑpSq FBctˆ,ÑpSq

S S S

ι# ιJ´K

ι ι ι

form a biequivalence FBctˆ,ÑpSq » Synˆ,ÑpSq.

Hence, up to canonical biequivalence, the syntactic model of Λˆ,Ñps pSq is the free

cc-bicategory on the Λˆ,Ñps -signature S. We are therefore justified in calling Λˆ,Ñps the

internal language of cartesian closed bicategories.

It further follows that the canonical pseudofunctor is unique up to equivalence.
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Corollary 5.3.30. For any cc-bicategory pB,Πnp´q,“Bq, unary Λˆ,Ñps -signature S and

Λˆ,Ñps -signature homomorphism h : S Ñ B, there exists a strict cc-pseudofunctor hJ´K :

Synˆ,ÑpSq Ñ B. Up to equivalence, this is the unique strict cc-pseudofunctor F :

Synˆ,ÑpSq Ñ B such that F ˝ ι “ h, for ι the inclusion.

Proof. Existence is Corollary 5.3.19 so it suffices to show uniqueness. To this end, consider

the diagram

FBctˆ,ÑpSq Synˆ,ÑpSq B

S

ι# F

ι
ι h

where F is any strict cc-pseudofunctor. By the free property of FBctˆ,ÑpSq (Lemma 5.2.19),

h# “ F ˝ ι#. Then, applying Corollary 5.3.29, one sees that

F » F ˝ pι# ˝ ιJ´Kq » pF ˝ ι#q ˝ ιJ´K “ h# ˝ ιJ´K

It follows that any strict cc-pseudofunctor extending h is equivalent to h# ˝ ιJ´K. Hence,

hJ´K is unique up to equivalence.

We finish this section with a corollary relating the semantic interpretation of Proposi-

tion 5.3.17 to the free property of the free cc-bicategory (Lemma 5.2.19).

Corollary 5.3.31. For any cc-bicategory pX ,Πnp´q,“Bq, set of base types B, and Λˆ,Ñps -signature

homomorphism h : S Ñ X , there exists an equivalence h# ˝ ιJ´K » hJ´K : T @,ˆ,Ñ
ps prBq Ñ X .

Proof. Observe that the composite rB ãÑ FBctˆ,ÑprBq
ι#
ÝÑ T @,ˆ,Ñ

ps prBq
hJ´K
ÝÝÝÑ X is equal to

simply h. Thus, applying Lemma 5.2.20, there exists an equivalence h# » hJ´K ˝ ι#. But

by Proposition 5.3.28 there also exists an equivalence ι# ˝ ιJ´K » idFBctˆ,ÑprBq. Hence,

h# ˝ ιJ´K » phJ´K ˝ ι#q ˝ ιJ´K » hJ´K

as claimed.

5.4 Normal forms in Λˆ,Ñps

In this final section we shall make precise the sense in which Λˆ,Ñps is the simply-typed

lambda calculus ‘up to isomorphism’, which will enable us to port the notion of (long-βη)

normal form from the simply-typed lambda calculus into Λˆ,Ñps . Our approach is to extend

the mappings defined in Section 3.3 for Λbicl
ps to include cartesian closed structure. One could

go further, and prove that the syntactic model of Λˆ,Ñps is biequivalent to the syntactic model

of the strict language Hcl extended with pseudo cartesian closed structure. Such a result

provides a constructive proof that the free cartesian closed bicategory on a Λˆ,Ñps -signature

S is biequivalent to the free 2-category with bicategorical products and exponentials on S.

Since this follows from the Mac Lane-Paré coherence theorem [MP85], together with fact
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that biequivalences preserve bilimits and biadjunctions, we restrict ourselves to mappings

on terms. However, we shall present certain results one requires in order to construct this

biequivalence, as they turn out to be of importance in the proof of our main theorem in

Chapter 8.

To fix notation, let Λˆ,ÑpSq denote the simply-typed lambda calculus with constants

and base types specified by a Λˆ,Ñ-signature S “ pB,Gq. This is defined in Figure 5.6

below. As for Λˆ,Ñps , we present products in an n-ary style which is equivalent to the usual

presentation in terms of binary products and a terminal object. The equational theory is

the usual αβη-equality for the simply-typed lambda calculus (e.g. [Bar85, Cro94]).

var p1 ď k ď nq
x1 : A1, . . . , xn : An $ xk : Ak

c P GpA1, . . . , An;Bq p∆ $ ui : Aiqi“1,...,n
const

∆ $ cpu1, . . . , unq : B

Γ $ t1 : A1 . . . Γ $ tn : An
n-tuple

Γ $ xt1, . . . , tny :
ś

npA1, . . . , Anq

Γ $ t :
ś

npA1, . . . , Anq
k-proj (1 ď k ď n)

Γ $ πkptq : Ak

Γ, x : A $ t : B
lam

Γ $ λx.t : A“BB

Γ $ t : A“BB Γ $ u : A app
Γ $ apppt, uq : B

Figure 5.6: Rules for Λˆ,ÑpSq.

We shall not distinguish notationally between the type theory Λˆ,Ñ (resp. Λˆ,Ñps ) and

its set of terms (or set of terms and rewrites) up to α-equivalence. We employ the following

notation:

Λˆ,ÑpSqpΓ;Bq :“ tt | Γ $STLC t : Bu { “α

Λˆ,Ñps pSqpΓ;Bq :“ tt | Γ $Λˆ,Ñps
t : Bu { “α

Similarly, we write Λˆ,ÑpSq to denote the set of all Λˆ,Ñ-terms modulo α-equivalence, and

Λˆ,Ñps pSq to denote the set of all Λˆ,Ñps -terms modulo α-equivalence. (Precisely, these are

sets indexed by (context, type) pairs.) We drop the decorations on the turnstile symbol

unless the type theory in question is ambiguous.

Relating Λˆ,Ñps and Λˆ,Ñ. We define a pair of maps L´ M : Λˆ,ÑpSq Ô Λˆ,Ñps pSq : p´q for

a fixed Λˆ,Ñ-signature S. These maps extend those constructed in Section 3.3 for biclones;

indeed, the terms of HclpSq are exactly the variables and constants in Λˆ,ÑpSq.

Construction 5.4.1. For any Λˆ,Ñ-signature S, define a mapping p´q : Λˆ,Ñps pSq Ñ
Λˆ,ÑpSq as follows:

xi :“ xi

πkppq :“ πkppq

evalpf, aq :“ apppf, aq

cpx1, . . . , xnq :“ cpx1, . . . , xnq

tuppt1, . . . , tnq :“ xt1, . . . , tny

λx.t :“ λx.t

đ
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It is elementary to check this definition respects α-equivalence and the equational

theory ”.

Lemma 5.4.2. For any Λˆ,Ñ-signature S,

1. For all derivable terms t, t1 in Λˆ,Ñps pSq, if t “α t
1 then t “α t1,

2. If Γ $ t : B in Λˆ,Ñps pSq then Γ $ t : B in Λˆ,ÑpSq, i.e. one obtains maps of indexed

sets.

As we did for biclones, we think of t as the strictification of a term in Λˆ,Ñps . The map

L´ M interprets Λˆ,Ñ-terms in Λˆ,Ñps .

Construction 5.4.3. For any Λˆ,Ñ-signature S, define a mapping L´ M : Λˆ,ÑpSq Ñ
Λˆ,Ñps pSq as follows:

Lxk M :“ xk

Lπkptq M :“ πktL t Mu

L xt1, . . . , tny M :“ tuppL t1 M, . . . , L tn Mq

L cpu1, . . . , unq M :“ ctLu1 M, . . . , Lun Mu

L apppt, uq M :“ evaltL t M, Lu Mu

Lλx.t M :“ λx.L t M

đ

This mapping also respects typing and α-equivalence.

Lemma 5.4.4. For any Λˆ,Ñ-signature S,

1. For all derivable terms t, t1 in Λˆ,ÑpSq, if t “α t
1 then L t M “α L t1 M,

2. If Γ $ t : B in Λˆ,ÑpSq then Γ $ L t M : B in Λˆ,Ñps pSq, i.e. one obtains maps of indexed

sets.

As in Section 3.3, strictifying a Λˆ,Ñ-term does nothing.

Lemma 5.4.5. The composite mapping p´q ˝ L´ M is exactly the identity on Λˆ,ÑpSq.

Proof. The claim holds by induction, using the usual laws of capture-avoiding substitution

for the simply-typed lambda calculus:

xk ÞÑ xk ÞÑ xk

cpu1, . . . , unq ÞÑ ctLu1 M, . . . , Lun Mu ÞÑ cpx1, . . . , xnqrLui M{xis

πkptq ÞÑ πktL t Mu ÞÑ πkppqrL t M{ps

xt1, . . . , tny ÞÑ tuppL t1 M, . . . , L tn Mq ÞÑ xL t1 M, . . . , L tn My

apppt, uq ÞÑ evaltL t M, Lu Mu ÞÑ papppf, aqqrL t M{f, Lu M{as

λx.t ÞÑ λx.L t M ÞÑ λx.L t M
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We shall require a rewrite reducing explicit substitutions to the meta-operation of

capture-avoiding substitution. As in the biclone case, this is the extra data required to make

L´ M into a pseudofunctor. Unlike the biclone case, however, we must now deal with variable

binding. This entails an extra step in our construction. To inductively prove a lemma about

substitution in the simply-typed lambda calculus, it is common to first prove a lemma about

weakening. This auxiliary result allows one to deal with the fresh variable appearing in the

lambda abstraction step. We shall do something similar. First, we shall define a rewrite

reducing context renamings (in particular, weakenings) to actual syntactic substitutions.

Then, we shall use this to construct our rewrite handling arbitrary substitutions.

We call the auxiliary rewrite cont for context renaming.

Construction 5.4.6. For any Λˆ,Ñ-signature S and context renaming r, we construct a

rewrite contpt; rq making the following rule admissible:

Γ $ L t M : B r : Γ Ñ ∆

∆ $ contpt; rq : L t Mtxi ÞÑ rpxiqu ñ L trrpxiq{xis M : B

The definition is by induction on the derivation of t:

contpxk; rq :“ xktxi ÞÑ rpxiqu
%prpxiqq

ùùùùñ L rpxiq M

contpcpu‚q; rq :“ ctLu1 M, . . . , Lun Mutru
assoc
ùùùñ ctLu‚ Mtruu

ctcont, ... ,contu
ùùùùùùùùùñ ctLu‚rrpxiq{xis Mu

contpπkptq; rq :“ πktL t Mutru
assoc
ùùùñ πktL t Mtruu

πktcontu
ùùùùùñ πktL trrpxiq{xis Mu

contpxt1, . . . , tny;u‚q :“ tuppL t1 M, . . . , L tn MqtLu‚ Mu
post
ùùñ tuppL t‚ MtLu‚ Muq

tuppcont, ... ,contq
ùùùùùùùùùùñ tuppL t‚rui{xis Mq

contpapppt, uq; rq :“ evaltL t M, Lu Mu
 

r
( assoc
ùùùñ eval

 

L t Mtru, Lu Mtru
(

evaltcont,contu
ùùùùùùùùñ eval

 

L trrpxiq{xis M, Lurrpxiq{xis M
(

contpλx.t; rq :“ pλx.L t Mqtru
push
ùùñ λx.L t Mtx ÞÑ x, xi ÞÑ rpxiqtincxuu

λx.L t Mtx,contprpxiq;incxqu
ùùùùùùùùùùùùùùùùñ λx.L t Mtx ÞÑ x, xi ÞÑ rpxiqu

λx.cont
ùùùùñ λx.L trx{x, rpxiq{xis M đ

We can now define sub. The construction extends its biclone counterpart, Construc-

tion 3.3.14.

Construction 5.4.7. For any Λˆ,Ñ-signature S, we construct a rewrite subpt;u‚q so that

the following rule is admissible:

x1 : A1, . . . , xn : An $ L t M : B p∆ $ Lui M : Aiqi“1,...,n

∆ $ subpt;u‚q : L t Mtxi ÞÑ Lui Mu ñ L trui{xis M : B

The definition is by induction on the derivation of t:

subpxk;u‚q :“ xktxi ÞÑ Lui Mu
%pkq

ùùñ Luk M

subpcpu‚q; v‚q :“ ctLu1 M, . . . , Lun MutL v‚ Mu
assoc
ùùùñ ctLu‚ MtL v‚ Muu

ctsub, ... ,subu
ùùùùùùùùñ ctLu‚rvj{yjs Mu



5.4. NORMAL FORMS IN Λˆ,Ñps 183

subpπkptq;u‚q :“ πktL t MutLu‚ Mu
assoc
ùùùñ πktL t MtLu‚ Muu

πktsubu
ùùùùñ πktL trui{xis Mu

subpxt1, . . . , tny;u‚q :“ tuppL t1 M, . . . , L tn MqtLu‚ Mu
post
ùùñ tuppL t‚ MtLu‚ Muq

tuppsub, ... ,subq
ùùùùùùùùùñ tuppL t‚rui{xis Mq

subpapppt, uq; v‚q :“ evaltL t M, Lu MutL v‚ Mu
assoc
ùùùñ eval

 

L t MtL v‚ Mu, Lu MtL v‚ Mu
(

evaltsub,subu
ùùùùùùùñ eval

 

L trvj{yjs MLurvj{yjs M
(

subpλx.t;u‚q :“ pλx.L t MqtL v‚ Mu
push
ùùñ λx.L t M

 

x, Lu Mtincxu
(

λx.L t Mtx,contpu;incxqu
ùùùùùùùùùùùùùùñ λx.L t Mtx, Lu Mu
λx.sub
ùùùùñ λx.L trx{x, ui{xis M

đ

Note the use of cont in the lambda abstraction step. As one would expect, sub and cont
coincide where the terms being substituted are all variables.

Lemma 5.4.8. For any Λˆ,Ñ-signature S, judgement pΓ $ L t M : Bq in Λˆ,Ñps pSq, and

context renaming r : Γ Ñ ∆, then

∆ $ subpt; rpx‚qq ” contpt; rq : L t Mtxi ÞÑ rpxiqu ñ L t M : B

Proof. By induction on the derivation of t: comparing the cases one-by-one, the equality is

immediate.

Let us note some of other the ways in which cont and sub behave as expected (c.f. Lemma 3.3.17).

We shall not need these results immediately, but they will play an important role in the

normalisation-by-evaluation proof of Chapter 8.

Lemma 5.4.9. For any Λˆ,Ñ-signature S and any contexts Γ :“ pxi : Aiqi“1, ... ,n and

∆ :“ pyj : Bjqj“1,...,m,

1. If Γ $ L t M : B then

L t M

L t Mtxi ÞÑ xiu L trxi{xis M

ιL t M

contpt;idΓq

(5.24)

2. If Γ $ L t M : B and p∆ $ Lui M : Aiqi“1, ... ,n then

L t Mtxi ÞÑ Lui Mutid∆u L t M
 

xi ÞÑ Lui Mtid∆u
(

L t Mtxi ÞÑ Lui Mu

L trui{xis Mtid∆u L trui{xis M

subpt;u‚qtid∆u

assoc
L t Mtsubpui;id∆qu

subpt;u‚q

subptrui{xis;id∆q

(5.25)
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3. If pΓ $ L t M : Bq, p∆ $ Lui M : Aiqi“1, ... ,n and pΣ $ L vj M : Bjqj“1, ... ,m, then

L t MtLu‚ MutL v‚ Mu L t M
 

Lu‚ MtL v‚ Mu
(

L t MtLu‚rvj{yjs Mu

L trui{xis MtL v‚ Mu L t ruirvj{yjs{xis M

subpt;u‚qtv‚u

assoc
L t Mtsubpui;v‚qu

subpt;u‚q

subptrui{xis;v‚q

(5.26)

Proof. Each of the claims is proven by induction. Most of the cases for (1) are almost

immediate, except for lambda abstraction. There one uses Lemma 5.3.15(2).

For (2) and (3), all the cases except for lambda abstraction are relatively simple. One

can prove (3) and derive (2) as a special case. For lambda abstraction, i.e. for judgements

of the form pΓ $ t : A“BBq, one must deal with fresh variables. For this we take the claims

in order.

To prove the lam case of (2) one first proves three further lemmas building towards the

target result. The first is that whenever p∆ $ Lui M : Aiq, then

Lui Mtid∆utid∆u Lui Mtyjtid∆uu Lui Mtid∆u

Lui Mtid∆u Lui M

subpt;id∆qtid∆u

assoc Lui Mt%p‚qy‚ u

subpui;y‚q

subpt;id∆q

(5.27)

To show this diagram commutes, one inducts on the derivation of L t M; all the cases but lam

follow as for (3). For the lam case one uses the inductive hypothesis, the coherence of Λbicl
ps ,

and Lemma 5.3.15(3).

Next we show that, whenever pΓ $ L t M : Bq and p∆ $ Lui M : Aiqi“1, ... ,n, then

L t MtLu‚ Mutid∆u L t M
 

xi ÞÑ Lui Mtid∆u
(

L t MtLu‚ Mu

L trui{xis Mtid∆u L trui{xis M

subpt;u‚qtid∆u

assoc
L t Mtsubpui;id∆qu

subpt;u‚q

subptrui{xis;id∆q

(5.28)

Once again all the cases but lam follow from the generality of (3). For the lambda

abstraction case the proof is similar to that for (5.27): one applies the inductive hypothesis,

Lemma 5.3.15(3) and (5.27).

The final lemma required is the following. For any judgements pΓ $ L t M : Bq,

p∆ $ Lui M : Aiqi“1, ... ,n and pΣ, x : A $ L vj M : Bjqj“1,...,m, one shows that

L t MtLui MutL id∆ Mu L t Mtxi ÞÑ Lui Mtid∆uu L t M
 

Lu‚ M
(

L trui{xis Mtid∆u L trui{xis M

subpt;u‚qtid∆u

assoc L t Mtsubpui;id∆qu

subpt;u‚q

subptrui{xis;id∆q

(5.29)

We are finally in a position to prove the lam case of (3). Unwinding the clockwise route

around the claim, one obtains the left-hand edge of Figure 5.7 below (page 188), in which
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we abbreviate the term

λx.L t MΓ,x:A
!

Lu‚ Mtincxu
∆,x:A L v‚ Mtincxu

Σ,x:A, xΣ,x:A
(

, x∆,x:A
 

L v‚ Mtincxu
Σ,x:A, xΣ,x:A

(

)

by λx.L t Mtp˚qu and write %
pxq
u‚,x for the rewrite %

pxq
u‚,x : xtxi ÞÑ ui, x ÞÑ vu ñ v taking the

projection at the variable x. One then unfolds the anticlockwise route and applies the

inductive hypothesis to obtain the outer edge of Figure 5.7, completing the proof.

STLC up to isomorphism. One approach in the field of game semantics is to quotient

a (putative) cc-bicategory to obtain a cartesian closed category (see e.g. [Paq20, Chapter 2]).

Doing so loses intensional information, but makes calculations simpler. This suggests that

one ought to be able to quotient Λˆ,Ñps (up to the existence of an invertible rewrite) to

obtain Λˆ,Ñ (up to βη-equality).

We begin by making precise the sense in which the L´ M mapping respects βη-equality

up to isomorphism.

Lemma 5.4.10. Let S be a Λˆ,Ñ-signature.

1. If Γ $ τ : tñ t1 : A in Λˆ,Ñps pSq, then t “βη t1.

2. If t “βη t
1 for t, t1 P Λˆ,ÑpSqpΓ;Aq, then there exists a rewrite Γ $ BEpt, t1q : L t M ñ

L t1 M : A in Λˆ,Ñps pSq.

Proof. For (1) we induct on the derivation of τ . For the structural rewrites and the identity

the result is trivial, while for τ 1 ‚ τ it follows immediately from the inductive hypothesis. For

$pkq one obtains πkttuppt1, . . . , tnqu “ πkpxt1, . . . , tnyq “βη tk, while for p:pα1, . . . , αnq

one has u “βη xπ1puq, . . . , πnpuqy
IH
“βη xt1, . . . , tny. The cases for exponential structure are

similar: for εt one sees that evaltpλx.tqtincxu, xu “ app
`

λx.t, x
˘

“βη t, while for e:px . τq
one finds that u “βη λx.apppu, xq IH

“βη λx.t.

For (2) we induct on the definition of βη-equality (e.g. [Cro94, Figure 4.2]).

β-rules For the πkpxt1, . . . , tnyq “βη tk rule one takes πkttuppL t1 M, . . . , L tn Mqu
$pkq

ùùñ L tk M.
For apppλx.t, uq “βη tru{xs one takes

evaltλx.L t M, Lu Mu
β
ùñ L t MtidΓ, x ÞÑ Lu Mu sub

ùùñ L tru{xs M

η-rules In a similar fashion, for t “βη xπ1ptq, . . . , πnptqy one takes

L t M
ς
ùñ tuppπ1tL t Mu, . . . , πntL t Muq

while for t “βη λx.apppt, xq one takes

L t M
η
ùñ λx.evaltL t Mtincxu, xu

λx.evaltsub,xu
ùùùùùùùùñ λx.evaltL t M, xu

The rules for an equivalence relation hold by the categorical rules on vertical composition.

The congruence rules hold by the functoriality of explicit substitution and the functoriality

of the tupp´, . . . ,“q and λx.p´q operations.
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The preceding lemma motivates the following definition.

Definition 5.4.11. Fix a Λˆ,Ñ-signature S. For every context Γ and type A, define an

equivalence relation –Γ
A on Λˆ,Ñps pSqpΓ;Aq by setting t –Γ

A t
1 if and only if there exists a

(necessarily invertible) rewrite τ such that Γ $ τ : tñ t1 : A. đ

We can therefore rephrase Lemma 5.4.10 as follows. For any pair of terms t, t1 P

Λˆ,ÑpΓ;Aq such that t “βη t
1, then L t M –Γ

A L t1 M; moreover, if t –Γ
A t

1 then t “βη t1. To show

that Λˆ,ÑpSqpΓ;Aq-terms modulo-βη are in bijection with Λˆ,Ñps pSqpΓ;Aq-terms modulo-–Γ
A,

it remains to show how to reduce a term of the form L t M to the original term t.

Construction 5.4.12. Define an invertible rewrite reduce with typing

Γ $ t : A

Γ $ reduceptq : tñ L t M : A

by extending Construction 3.3.20 with the following rules:

reducepπkppqq :“ πkppq
ι
ùñ πktpu

reduceptuppt1, . . . , tnqq :“ tuppt1, . . . , tnq
tuppreduce, ... ,reduceq
ùùùùùùùùùùùùùñ tuppL t1 M, . . . , L tn Mq

reducepevalpf, xqq :“ evalpf, xq ι
ùñ evaltf, xu

reducepλx.tq :“ λx.t
λx.reduceptq
ùùùùùùùñ λx.L t M

đ

Thought of as syntax trees, the term L t M is constructed by evaluating explicit substitu-

tions as far as possible and pushing them as far as possible to the left. The reduce rewrites

reach a fixpoint on terms of form L t M, thereby providing a notion of normalisation in the

sense of abstract rewriting systems (e.g. [BN98]).

Lemma 5.4.13. For any Λˆ,Ñ-signature S and any term pΓ $ t : Aq derivable in Λˆ,ÑpSq,
the judgement

`

Γ $ reducepL t Mq ” idL t M : L t M ñ L t M : A
˘

is derivable in Λˆ,Ñps pSq.

Proof. Induction on the structure of t.

We are now in a position to make precise the sense in which Λˆ,Ñps is Λˆ,Ñ up to

isomorphism.

Proposition 5.4.14. For any Λˆ,Ñ-signature S, the maps L´ M : Λˆ,ÑpSq Ô Λˆ,Ñps pSq : p´q

descend to a bijection

Λˆ,ÑpSqpΓ;Aq{βη – Λˆ,Ñps pSqpΓ;Aq{–Γ
A

between αβη-equivalence classes of Λˆ,ÑpSq-terms and α–Γ
A-equivalence classes of Λˆ,Ñps pSq-

terms.

Proof. The maps are well-defined on equivalence classes by Lemma 5.4.10 and respect typing

by Lemmas 5.4.2 and 5.4.4, so it suffices to check the isomorphism. By Lemma 5.4.5, the

composite p´q ˝ L´ M is the identity. For the other composite, one needs to construct an

invertible rewrite L t M – t for every derivable term t: we take reduce.
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In particular, every typeable term pΓ $ t : Aq in Λˆ,Ñps pSq has a natural choice of normal

form, namely the long-βη normal form (e.g. [Hue76]) of t as an Λˆ,Ñ-term.

Corollary 5.4.15. Let S be a Λˆ,Ñ-signature. For any derivable term Γ $ t : B in Λˆ,Ñps pSq,
there exists a unique long-βη normal form term N in Λˆ,ÑpSq such that t –Γ

B LN M and

reducepLN Mq ” idLN M.

Proof. We take N to be the long-βη normal form of t. Then N “βη t so, by Proposi-

tion 5.4.14,

LN M –Γ
B L t M –Γ

B t

For uniqueness, suppose that N and N 1 are long-βη normal terms such that LN M –Γ
B t –Γ

B

LN 1 M. Then LN M “βη LN 1 M, so that N “βη N
1, and hence N “ N 1 by the uniqueness of

long βη-normal forms.

We end this chapter by recording the bicategorical statement of the work in this section.

Theorem 5.4.16. Fix a unary Λˆ,Ñps -signature S. The mappings L´ M and p´q extend to

pseudofunctors between the free cartesian closed bicategory on S and the free 2-category

with bicategorical cartesian closed structure on S. Together with the pseudonatural

transformation pId, reduceq, they form a biequivalence.



pλx.L t MqΓ
 

Lu‚ M∆
( 

L v‚ MΣ
(

λx.L t MΓ,x:A
!

Lu‚ Mtincxu
∆,x:A

, x∆,x:A
)

 

L v‚ MΣ
(

λx.L t MΓ,x:A
!

Lu‚ Mtincxu
∆,x:A

, x∆,x:A
)!

L v‚ Mtincxu
Σ,x:A

, xΣ,x:A
)

λx.L t MΓ,x:Atp˚qu

pλx.L t MqΓ
!

Lu‚ MtL v‚ MuΣ
)

λx.L t MΓ,x:A
!

Lu‚ MtL v‚ Mtincxuu
Σ,x:A

, xΣ,x:A
)

pλx.L t MΓ,x:Aq
 

Luirvj{yjs MΣ
(

λx.L t MΓ,x:A
!

Lu‚ MtL v‚ Mutincxu
Σ,x:A

, xΣ,x:A
)

λx.L t MΓ,x:A
!

Luirvj{yjs Mtincxu
Σ,x:A

, xΣ,x:A
)

λx.L t MΓ,x:A
!

Lu‚ MtL v‚ MuΣ,x:A
, xΣ,x:A

)

λx.L t MΓ,x:A
 

Luirvj{yjs MΣ,x:A, xΣ,x:A
(

λx.L t M
!

Lu‚ Mty‚tL v‚ M, xuuΣ,x:A
, xΣ,x:A

)

λx.L t MΓ,x:A
!

Lu‚ MtincxutL v‚ M, xuΣ,x:A
, xΣ,x:A

)

λx.L t MΓ,x:A
!

Lu‚ MtL v‚ M, xuΣ,x:A
, xΣ,x:A

)

λx.L t ruirvj{yjs{xis MΣ,x:A

assoc

pushtv‚u

Lemma 5.3.15(3)
“

push

λx.assoc

λx.L t MtLu‚ Mt%p‚qu ‚ assoc,%pxqu

pλx.L t Mqtsubpui;v‚qu push

λx.L t MtLu‚ MtsubpL v‚ M;incxqu,idxu

push

nat.
“

λx.L t Mtsubpui;v‚qtincxu,idxu

λx.L t Mtassoc,idxu

(5.28)
“

λx.L t Mtsubpuirvj{yjs;incxq,idxu

λx.L t Mtsubpu‚;v‚q,idxu

λx.subpt;u‚rvj{yjs,xq

λx.L t MtLu‚ Mt%p‚qu,idxu
nat.
“

λx.L t Mtassoc,idxu

λx.L t MΓ,x:A
!

subpLu‚ M;incxqtL v‚ M,xu,idx
)

λx.L t M
 

Lu‚ MtincxutsubpL v‚ M; incxq, idxu, %pxq
(

(5.27)
“

λx.L t Mtsubpu‚;L v‚ M,xqu,idx

Figure 5.7: Diagram for the proof of Lemma 5.4.9(3)
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Chapter 6

Indexed categories as bicategorical

presheaves

Categories of (pre)sheaves are often useful as a kind of ‘completion’, allowing one to employ

extra structure that may not exist in the original category. The aim of this chapter is to show

that bicategorical versions of some of these properties extend to the bicategory HompB,Catq

of pseudofunctors from a bicategory B to the 2-category Cat. (Pseudofunctors Bop Ñ Cat

are also called indexed categories [MP85].) Recall that, since Cat is a 2-category, so is

HompB,Catq, and that we write Cat for the 2-category of small categories (Notation 2.1.10).

Specifically, we shall prove three results which will be used in later chapters:

1. HompB,Catq has all small bilimits, which are given pointwise,

2. HompB,Catq is cartesian closed, and the value of the exponential rP,Qs at X P B
can be taken to be HompB,CatqpYX ˆ P,Qq : B Ñ Cat, for YX :“ BpX,´q the

covariant Yoneda embedding,

3. For any X P B the exponential rYX,P s in HompB,Catq may be given by P p´ ˆXq.

The proofs are rather technical. The reader willing to take these three statements on

trust—for example, by analogy with the case of presheaves—may safely skip this chapter.

For reference, the cartesian closed structures we construct here are summarised in an

appendix (Tables B.1 and B.2).

Our first result is that HompB,Catq is bicomplete. For brevity, we provide an abstract

argument which relies on the notions of pseudolimit [Str80] and flexible limit [BKP89]. We

will not use these concepts anywhere else, so do not delve into the details here: an excellent

overview of the various forms of limit and their relationship is available in [Lac10].

Proposition 6.0.1. For any bicategory B, the 2-category HompB,Catq is bicomplete, with

bilimits given pointwise.

Proof. We may assume without loss of generality that B is a 2-category. To see this is the

case, observe that if V » V 1 are biequivalent bicategories then HompV,Catq » HompV 1,Catq

(see Lemma 6.1.1), and hence HompV,Catq has all small bilimits if and only if HompV 1,Catq

191
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does. By the coherence theorem for bicategories [MP85] every bicategory is biequivalent to

a 2-category, so the claim follows.

Now, by [Pow89b, Proposition 3.6] for any 2-category C the 2-category HompC,Catq ad-

mits all flexible limits, calculated pointwise. The so-called ‘PIE limits’ are flexible ([BKPS89,

Proposition 4.7]) and suffice to construct all pseudolimits ([Kel89, Proposition 5.2]), so

HompB,Catq has all pseudolimits. But, as explained in [Lac10, §6.12], a 2-category with

all pseudolimits has all bilimits, completing the proof.

This result may also be obtained directly, in a manner similar to the categorical argument,

as a corollary of the following proposition. We do not pursue the point any further here for

reasons of space.

Proposition 6.0.2. Let F : B ÑW and D : V ÑW (D for ‘diagram’) be pseudofunctors

equipped with a chosen biuniversal arrow pLB, uB : DpLBq Ñ FBq from D to FB for every

B P B. Then

1. The mapping L : obpBq Ñ obpVq extends canonically to a pseudofunctor B Ñ V, and

2. The biuniversal arrows uB are the components of a biuniversal arrow DLñ F from

D ˝ p´q : HompB,Vq Ñ HompB,Wq to F .

6.1 HompB,Catq is cartesian closed

It follows immediately from Proposition 6.0.1 that, for any bicategory B, the 2-category

HompB,Catq has all finite products. In this section we confront the construction of

exponentials. The usual Yoneda argument (see e.g. [Awo10, §8.7]), expressed bicategorically,

gives us a canonical choice of exponential to check. For any pseudofunctors P,Q : B Ñ Cat,

putative exponential rP,Qs and object X P B one must have

rP,QspXq » HompB,CatqpYX, rP,Qsq by the Yoneda lemma

» HompB,CatqpYX ˆ P,Qq by definition of an exponential

So it remains to show that the pseudofunctor HompB,Catq
`

Yp´q ˆ P,Q
˘

: B Ñ Cat is

indeed the exponential rP,Qs in HompB,Catq, where YX :“ BpX,´q denotes the covariant

Yoneda embedding.

To simplify the presentation we assume throughout this section that B is a 2-category.

The following lemma guarantees that this entails no loss of generality.
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Lemma 6.1.1. Suppose that B » B1 are biequivalent bicategories and V is any bicategory.

Then:

1. The hom-bicategories HompB,Vq and HompB1,Vq are biequivalent, and

2. If B is cartesian closed, so is B1.

Proof. For (1), suppose the biequivalence is given by pseudofunctors P : B Ô B1 : Q.

Define pseudofunctors Q˚ : HompB,Vq Ô HompB1,Vq : P˚ by setting Q˚pHq :“ H ˝Q and

P˚pF q :“ F ˝ P . From the biequivalence B » B1 one obtains equivalences PQ » idB1 and

QP » idB and hence equivalences P˚Q˚ » idHompB,Vq and Q˚P˚ » idHompB1,Vq, as required.

For (2), one applies Lemma 2.2.13 to carry the required biuniversal arrows from B to B1

(c.f. also Corollary 2.3.3).

We now turn to the construction of exponentials in HompB,Catq. This entails con-

structing an adjoint equivalence HompB,CatqpR, rP,Qsq » HompB,CatqpR ˆ P,Qq for

every triple of pseudofunctors P,Q,R : B Ñ Cat. Since the definition of rP,Qs is also in

terms of hom-categories, working with the 1- and 2-cells in HompB,CatqpR, rP,Qsq and

HompB,CatqpRˆ P,Qq quickly becomes complex, with several layers of data to consider.

We therefore take the time to unwind some of the definitions we shall be using; as well as

serving as a quick-reference on the details of the various definitions, this will fix notation

for what follows.

6.1.1 A quick-reference summary

The pseudofunctor HompB,Catq
`

Yp´qˆP,Q
˘

. Suppose f : X Ñ X 1 in B. The functor

HompB,CatqpYf ˆ P,Qq : HompB,CatqpYX ˆ P,Qq Ñ HompB,CatqpYX 1 ˆ P,Qq takes

a pseudonatural transformation pk, kq : YX ˆ P Ñ Q to the pseudonatural transformation

with components kp´ ˝ f,“q and witnessing 2-cell given by the following composite for

every g : B Ñ B1:

BpX 1, Bq ˆ PB BpX 1, B1q ˆ PB1

BpX,Bq ˆ PB BpX,B1q ˆ PB1

QB QB1

Bpf,BqˆPB

BpX 1,gqˆPg

“ Bpf,B1qˆPB1

BpX,gqˆPg

kB kg
ð

kB1

Qg

The top square commutes because products in Cat are strict and we have assumed that B
is a 2-category.

Remark 6.1.2. We shall write both kB and kpB,´,“q to denote the component of a

pseudonatural transformation pk, kq at an object B. These are just two notations for the

same concept: the choice in any particular context is only dependent on which is clearest

for exposition. Similar remarks apply to the 2-cells k and to modifications. đ
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Pseudonatural transformations Rñ rP,Qs. To give a pseudonatural transformation

pk, kq : Rñ HompB,Catq
`

Yp´q ˆ P,Q
˘

is to give

• For every X P B a functor kX : RX Ñ HompB,CatqpYX ˆ P,Qq,

• For every f : X Ñ X 1 in B an invertible 2-cell (that is, a natural isomorphism) kf as

in the following diagram:

RX RX 1

HompB,CatqpYX ˆ P,Qq HompB,CatqpYX 1 ˆ P,Qq

Rf

kX kf
ð

kX1

HompB,CatqpYfˆP,Qq

Thus, for every r P RX one obtains a pseudonatural transformation kpX, r,´q : YXˆP ñ Q

and an invertible 2-cell (modification) kpf, rq : kpX 1, pRfqprq,´q Ñ HompB,CatqpYf ˆ P,Qq
`

kpX, r,´q
˘

.

The components of this modification are natural isomorphisms kpf, r, Bq, with components

λph, xqBpX
1,BqˆPB . kpX 1, pRfqprq, Bqph, xq kpf,r,Bqph,xq

ÝÝÝÝÝÝÝÝÑ kpX, r,Bqph ˝ f, xq (6.1)

indexed by B P B. (Note that we use the λ-notation λph, xqBpX
1,BqˆPB . kpX, r,Bqph, xq

to anonymously refer to the action on objects ph, xq P BpX 1, Bq ˆ PB.) The modification

axiom on kpf, rq requires that the diagram below commutes for every ph, pq P BpX,BqˆPB,

g : B Ñ B1 and f : X Ñ X 1 in B:

kpX 1, pRfqprq, B1q
`

gh, pPfqppq
˘

pQgq
`

kpX 1, pRfqprq, Bqph, pq
˘

kpX, r,B1q
`

ghf, pPfqppq
˘

pQgq
`

kpX, r,Bqphf, pq
˘

kpX 1,pRfqprq,gqph,pPfqppqq

kpf,rqpgh,pPfqppqq pQgqpkpf,rqph,pqq

kpX,r,gqphf,pPfqppqq

(6.2)

We can unfold the pseudonatural transformation kpX, r,´q further. It has components

given by functors kpX, r,Bq : BpX,Bq ˆ PB Ñ QB (for B P B), and for every g : B Ñ B1

one obtains an invertible 2-cell (that is, a natural isomorphism) kpX, r, gq as in

BpX,Bq ˆ PB BpX,B1q ˆ PB1

QB QB1

BpX,gqˆPg

kpX,r,Bq kpX,r,gq
ð

kpX,r,B1q

Qg

(6.3)

Examining the components of this 2-cell, one sees that for each ph, pq P BpX,BqˆPB one ob-

tains an invertible 1-cell kpX, r, gqph, pq : kpX, r,B1q
`

g˝h, pPgqppq
˘

Ñ pQgq
`

kpX, r,Bqph, pq
˘

.

There are then two levels of naturality at play, related via (6.2). The naturality

condition making kpX, r,´q a pseudonatural transformation requires that for every 2-cell

τ : g ñ g1 : B Ñ B1 the following commutes:
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kpX, r,B1q
`

g ˝ h, pPgqppq
˘

kpX, r,B1q
`

g1 ˝ h, pPgqppq
˘

pQgq
`

kpX, r,Bqph, pq
˘

pQg1q
`

kpX, r,Bqph, pq
˘

kpX,r,gqph,pq

kpX,r,B1qpτ˝h,pPτqppqq

kpX,r,g1qph,pq

pQτqpkpX,r,Bqph,pqq

On the other hand, the naturality condition making kpX, r, gq a natural transformation

requires that for every ρ : hñ h1 in BpX,Bq and t : pÑ p1 in PB, the following commutes:

kpX, r,B1q
`

g ˝ h, pPgqppq
˘

kpX, r,B1q
`

g ˝ h1, pPgqpp1q
˘

pQgq
`

kpX, r,Bqph, pq
˘

pQgq
`

kpX, r,Bqph1, p1q
˘

kpX,r,gqph,pq

kpX,r,B1qpg˝ρ,pPgqptqq

kpX,r,gqph1,p1q

pQgqpkpX,r,Bqpρ,tqq

Modifications pj, jq Ñ pm,mq : R ñ rP,Qs. To give a modification Ψ : pj, jq Ñ pm,mq
between pseudonatural transformations R ñ rP,Qs is to give a natural transformation

ΨX : jX ñ mX between functors of type RX Ñ HompB,CatqpYX ˆ P,Qq for every X P B,

such that the whole X-indexed family of natural transformations satisfies the modification

axiom.

Unwinding the definition of natural transformation, ΨX is a family of 2-cells (that

is, modifications) ΨpX, r,´q : jpX, r,´q ñ mpX, r,´q, natural in r P B and such that

every ΨpX, r,´q satisfies the modification axiom. In particular, since every ΨpX, r,´q is

a modification between pseudonatural transformations YX ˆ P ñ Q, for every B P B we

have a natural transformation ΨpX, r,Bq : jpX, r,Bq ñ mpX, r,Bq : BpX,Bq ˆ PB Ñ QB.

6.1.2 The cartesian closed structure of HompB,Catq

To construct exponentials in HompB,Catq we are required to give:

• A biuniversal arrow evalP,Q : rP,Qs ˆ P Ñ Q for each P,Q : B Ñ Cat,

• A mapping Λ : ob
`

HompB,CatqpRˆ P,Qq
˘

Ñ ob
`

HompB,CatqpR, rP,Qsq
˘

,

• An invertible universal 2-cell evalP,Q ˝Λpj, jq ñ pj, jq defining the counit, such that the

unit is also invertible.

We take these components in turn. The main difficulty of the proof is maintaining a clear

view of what one is required to construct, and ensuring that all the relevant axioms have

been checked.

The biuniversal arrow. Our first step is the construction of the biuniversal arrow

evalP,Q : rP,Qs ˆ P Ñ Q. To be a 1-cell in HompB,Catq, this needs to be a pseudonatural

transformation for which each component is a functor eX : HompB,CatqpYXˆP,QqˆPX Ñ

QX.

Let X P B be fixed; we define eX . Consider a pair
`

pk, kq, p
˘

P HompB,CatqpYXˆP,Qq

consisting of a pseudonatural transformation pk, kq : YX ˆ P ñ Q and an element p P PX.
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Noting that, in particular, the component of pk, kq at X P B has type BpX,XqˆPX Ñ QX,

one obtains a functor kpX, IdX ,´q : PX Ñ QX. We therefore define eX
`

pk, kq, p
˘

:“

kpX, IdX , pq.
To extend this to morphisms, we need to define a morphism kpX, IdX , pq Ñ k1pX, IdX , p1q

for every pair pΞ, fq consisting of a modification Ξ : pk, kq Ñ pk1, k1q and morphism f : pÑ p1.

The modification Ξ is a family of natural transformations ΞX : kpX,´,“q ñ k1pX,´,“q
for X P B, where naturality amounts to the following commutative diagram for every

τ : hñ h1 : X Ñ B and f : pÑ p1 in PB:

kpX,h, pq kpX,h1, p1q

k1pX,h, pq k1pX,h1, p1q

kpX,τ,fq

ΞXph,pq ΞXph
1,p1q

kpX,τ,fq

We define eXpΞ, fq to be the composite

eXpΞ, fq :“ kpX, IdX , pq
ΞXpIdX ,pq
ùùùùùùñ k1pX, IdX , pq

k1pX,IdX ,fq
ùùùùùùùñ k1pX, IdX , p1q

This definition is functorial.

Next we need to provide invertible 2-cells witnessing that the mappings eX are pseud-

onatural. That is, for every f : X Ñ X 1 in B we need to provide a natural isomorphism as

in the following diagram:

HompB,CatqpYX ˆ P,Qq ˆ PX HompB,CatqpYX 1 ˆ P,Qq ˆ PX 1

QX QX 1

ef
ð

HompB,CatqpYfˆP,QqˆPf

eX eX1

Qf

Chasing an arbitrary element
`

pk, kq, p
˘

P HompB,CatqpYXˆP,QqˆPX through this dia-

gram, one sees that we need to provide an isomorphism k
`

X 1, f, pPfqppq
˘

– pQfqpkpX, IdX , pqq
in QX 1. We take

ef
`

pk, kq, p
˘

:“ kpX 1, f, pPfqppqq “ kpX 1, f˝IdX , pPfqppqq
kpX,r,fqpIdX ,pq
ùùùùùùùùùñ pQfq

`

kpX, r,BqpIdX , pq
˘

using the natural isomorphism provided by diagram (6.3).

Lemma 6.1.3. The pair pe, eq defined above is a pseudonatural transformation rP,QsˆP ñ

Q.

Proof. The naturality condition follows directly from that for k. Similarly, the unit and

associativity and unit laws hold immediately because they hold for pk, kq.

We now have a candidate for the biuniversal arrow evalP,Q defining exponentials. The

next step is to define a mapping Λ : ob
`

HompB,CatqpRˆP,Qq
˘

Ñ ob
`

HompB,CatqpR, rP,Qsq
˘

.
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The mapping Λ. Let pj, jq be a pseudonatural transformation R ˆ P ñ Q. We define

Λpj, jq : R ñ rP,Qs in stages. For the 1-cell components we need to define a functor

RX Ñ HompB,CatqpYX ˆ P,Qq for every X P B. We do this first.

Fix some X P B and r P RX. We define a pseudonatural transformation pΛjqpX, r,´q :

YX ˆ P ñ Q. For every B P B we take the functor

BpX,Bq ˆ PB Ñ QB

ph, pq ÞÑ j
`

X, pRhqprq, p
˘

This is well-defined because jX : RX ˆ PX Ñ QX, so pRhqprq P RB. We take the evident

functorial action on 2-cells: pΛjqpX, r,Bqpτ, fq :“ j
`

X, pRτqprq, f
˘

.

To extend these 1-cells to a pseudonatural transformation we need to provide a natural

isomorphism pΛjqpX, r, gq as in

BpX,Bq ˆ PB BpX,B1q ˆ PB1

QB QB1

BpX,gqˆPg

pΛjqpX,r,Bq pΛjqpX,r,gq
ð

pΛjqpX,rqB1

Qg

for every g : B Ñ B1 in B. So for every ph, pq P BpX,BqˆPB we need to give an isomorphism

j
`

X, pRghqprq, pPgqppq
˘

– pQgq
`

j
`

X, pRhqprq, p
˘˘

, for which we take the composite defined

by commutativity of

j
`

X, pRghqprq, pPgqppq
˘

pQgq
`

j
`

X, pRhqprq, p
˘˘

j
`

X, pRgqpRhqprq, pPgqppq
˘

pΛjqpX,r,gq

jpX,pφRg,hq
´1prq,pPgqppqq jpg,pRhqprq,pq

This definition is natural in g because φRg,h and jg both are. The unit and associativity laws

follow easily from those of pj, jq, yielding the following.

Lemma 6.1.4. For every X P B, r P RX and pseudonatural transformation pj, jq : RˆP ñ

Q, the pair
`

pΛjqpX, r,´q, pΛjqpX, r,´q
˘

is a pseudonatural transformation YXˆP ñ Q.

The preceding lemma defines a mapping obpRXq Ñ ob
`

HompB,CatqpYX ˆ P,Qq
˘

.

Our next task is to extend this to a functor. So suppose f : r Ñ r1 in RX. To give a

modification pΛjqpX, f,´q : pΛjqpX, r,´q Ñ pΛjqpX, r1,´q, one must provide a family of

natural transformations pΛjqpX, r,Bq ñ pΛjqpX, r1, Bq indexed by B P B. For a fixed choice

of B and ph, pq P BpX,Bq ˆ PB, we take the 1-cell

pΛjqpX, f,Bqph, pq :“ jpX, pRhqprq, pq
jpX,pRhqpfq,pq
ùùùùùùùùñ jpX, pRhqpr1q, pq

This is natural in h and p by functoriality. The modification law for pΛjqpX, f,´q is a

consequence of the naturality properties. For ph, pq as above and f : r Ñ r1, one has
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j
`

X 1, pRghqprq, pPgqppq
˘

j
`

X 1, pRghqpr1q, pPgqppq
˘

j
`

X 1, pRgqpRhqprq, pPgqppq
˘

j
`

X 1, pRgqpRhqpr1q, pPgqppq
˘

pQgq
`

jpX, pRhqprq, pq
˘

pQgq
`

jpX, pRhqpr1q, pq
˘

jpX 1,pφRg,hq
´1prq,pPgqppqq

jpX 1,pRghqpfq,pPgqppqq

jpX 1,pφRg,hq
´1pr1q,pPgqppqq

jpX 1,pRgqpRhqpfq,pPgqppqq

jpg,pRhqprq,pq jpg,pRhqpr1q,pq

pQgqpjpX,pRhqpfq,pqq

in which the top square commutes by naturality of φR and the bottom square by the fact

that jg is a natural transformation.

We have now defined a functor pΛjqpX,´,“q : RX Ñ HompB,Catq
`

YX ˆ P,Q
˘

for

each X P B. It remains to show these functors are the components of a pseudonatural

transformation. Thus, for every f : X Ñ X 1 we need to provide invertible 2-cells pΛjqpf,´,“
q as in

RX RX 1

HompB,CatqpYX ˆ P,Qq HompB,CatqpYX 1 ˆ P,Qq

Rf

pΛjqpX,´,“q pΛjqpf,´,“q
ð

pΛjqpX 1,´,“q

HompB,CatqpYfˆP,Qq

This diagram requires an isomorphism

λBB . λph, pqBpX
1,BqˆPB . jpX, pRhqpRfqprq, pq – jpX, pRhfqprq, pq (6.4)

for each r P RX, for which we take simply λBB . λph, pqBpX
1BqˆPB . jpX,φRh,f prq, pq. The unit

and associativity laws then follow from the unit and associativity laws of the pseudofunctor

R.

We record our progress in the following lemma.

Lemma 6.1.5. The pair
`

pΛjqpX,´,“q, pΛjqpf,´,“q
˘

is a pseudonatural transformation

Rñ HompB,CatqpYX ˆ P,Qq.

We define the required mapping as follows:

Λ : ob
`

HompB,CatqpRˆ P,Qq
˘

Ñ ob
`

HompB,CatqpR, rP,Qsq
˘

pj, jq ÞÑ
`

pΛjqpX,´,“q, pΛjqpf,´,“q
˘

Our next task is to define the universal arrow, which will act as the counit.
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The counit E. We begin by calculating evalP,Q ˝
`

pk, kq ˆ P
˘

: R ˆ P ñ Q for any

pk, kq : Rñ rP,Qs. The component at X P B is the functor acting on pr, pq P RX ˆ PX by

`

eX ˝ pkX ˆ PXq
˘

pX, r, pq “ eX
`

kpX, r,´q, p
˘

“ eX
`

λBB . λph, xqBpX,BqˆPB . kpX, r,Bqph, xq, p
˘

“ kpX, r,XqpIdX , pq

For any f : X Ñ X 1 and pr, pq P RX ˆPX, the witnessing 2-cell is defined by the following

commutative diagram:

kpX 1, pRfqprq, X 1q
`

IdX 1 , pPfqppq
˘

pQfq
`

kpX, r,XqpIdX , pq
˘

kpX, r,X 1q
`

IdX 1 ˝ f, pPfqppq
˘

kpX, r,X 1q
`

f ˝ IdX , pPfqppq
˘

pevalP,Q˝ppk,kqˆP qqf pr,pq

kpf,rqpIdX1 ,pPfqppqq kpX,r,fqpIdX ,pq

(6.5)

Note that both levels of naturality appear in this definition: the first arrow arises from the

components of the modification kpf, rq given in (6.1), while the second arises from the 2-cell

witnessing the naturality of kX in diagram (6.3).

Now suppose that pj, jq : R ˆ P ñ Q and consider evalP,Q ˝
`

Λpj, jq ˆ P
˘

: R ˆ P ñ Q.

The 1-cell components of this pseudonatural transformation act by

RX ˆ PX Ñ QX

pr, pq ÞÑ j
`

X, pRIdXqprq, p
˘

(6.6)

and for f : X Ñ X 1 and pr, pq P RX ˆ PX the witnessing 2-cell is the composite

j
`

X 1, pRIdX 1qpRfqprq, pPfqppq
˘

pQfq
`

jpX,RpIdXqprq, pq
˘

j
`

X 1, RpIdX 1 ˝ fqprq, pPfqppq
˘

j
`

X 1, Rpf ˝ IdXqprq, pPfqppq
˘

j
`

X 1, RpfqRpIdXqprq, pPfqppq
˘

pevalP,Q˝pΛpj,jqˆP qqf

jpX 1,φRId,f prq,pPfqppqq

jpX 1,pφRf,Idq
´1prq,pPfqppqq

jpf,pRIdXqprq,pq

By the identification (6.6), to define the counit modification E : evalP,Q ˝
`

Λpj, jq ˆ
P
˘

Ñ pj, jq we need to provide a natural transformation EX : j
`

X, pRIdXqp´q,“
˘

ñ

jpX,´,“q : RX ˆ PX Ñ QX for every X P B. We take the obvious choice, namely

λpr, pqRXˆPX . j
`

X, pψRXq
´1prq, p

˘

. Since ψRX : IdRX ñ RIdX is a 2-cell in Cat, i.e. a

natural transformation, it only remains to check the modification axiom.
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Lemma 6.1.6. The family of 2-cells EX :“ j
`

X, pψRXq
´1p´q,“

˘

(for X P B) form a modi-

fication evalP,Q ˝ Λpj, jq Ñ pj, jq.

Proof. We need to verify that the following diagram commutes for every f : X Ñ X 1 in B:

j
`

X 1, pRfqprq, pPfqppq
˘

pQfq
`

jpX, r, pq
˘

j
`

X 1, pRIdX 1qpRfqprq, pPfqppq
˘

j
`

X 1, RpIdX 1 ˝ fqprq, pPfqppq
˘

j
`

X 1, Rpf ˝ IdXqprq, pPfqppq
˘

j
`

X 1, RpfqRpIdXqprq, pPfqppq
˘

pQfq
`

jpX,RpIdXqprq, pq
˘

pQfq
`

jpX,RpIdXqprq, pq
˘

EX1 ppRfqprq,pPfqppqq

jpf,r,pq

pQfqpEXpr,pqqq

jpX 1,φRId,f prq,pPfqppqq

pevalP,Q˝pΛpj,jqˆP qqpf,r,pq

jpX 1,pφRf,Idq
´1prq,pPfqppqq

jpf,RpIdXqprq,pqq

(6.7)

To this end, one uses the two unit laws of a pseudofunctor to see that the following commutes:

jX 1 ˝ pRf ˆ Pfq

jX 1 ˝
`

pRIdX 1 ˝Rfq ˆ Pf
˘

jX 1 ˝
`

RpIdX 1 ˝ fq ˆ Pf
˘

jX 1 ˝
`

Rf ˆ Pf
˘

jX 1 ˝
`

Rpf ˝ IdXq ˆ Pf
˘

jX 1 ˝
`

pRf ˝RIdXq ˆ Pf
˘

jX1˝pψRX1ˆPfq

jX1˝ppRf˝ψRXqˆPfq

jX1˝pφRId,fˆPfq

jpX 1,pφRf,Idq
´1,Pfq

Diagram (6.7) therefore reduces to
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j
`

X 1, pRfqprq, pPfqppq
˘

pQfq
`

jpX, r, pq
˘

j
`

X 1, RpfqRpIdXqprq, pPfqppq
˘

pQfq
`

jpX,RpIdXqprq, pq
˘

pQfq
`

jpX,RpIdXqprq, pq
˘

jpX 1,pRfqpψRXqprq,pPfqppqq

jpf,r,pq

pQfqpjpX,ψRXprq,pqq

jpf,RpIdXqprq,pqq

which commutes by the naturality of jpf,´,“q in r.

We have constructed our candidate counit E; now we need to show it is universal. For

the existence part of this claim, we need to construct a modification Ξ: : pk, kq Ñ Λpj, jq for

every pair of pseudonatural transformations pj, jq : Rˆ P ñ Q and pk, kq : Rñ rP,Qs and

every modification Ξ : evalP,Q ˝
`

pk, kq ˆ P
˘

Ñ pj, jq.

The modification Ξ:. We begin by unwinding the definition of a modification

evalP,Q ˝
`

pk, kq ˆ P
˘

Ñ pj, jq

For every X P B and pr, pq P RXˆPX, we are given a 1-cell ΞpX, r, pq : kpX, r,XqpIdX , pq Ñ
jpX, r, pq in QX. These are natural in the sense that, for any g : r Ñ r1 and h : pÑ p1 in

RX ˆ PX, the following commutes:

kpX, r,XqpIdX , pq kpX, r1, XqpIdX , p1q

jpX, r, pq jpX, r1, p1q

kpX,g,XqpIdX ,hq

ΞpX,r,pq ΞpX,r1,p1q

jpX,g,hq

The X-indexed family of natural transformations ΞpX,´,“q is subject to the modification

axiom, which requires that the following commutes for every f : X Ñ X 1 in B (recall the

definition of pevalP,Q ˝ ppk, kq ˆ P qf from (6.5)):

k
`

X 1, pRfqprq, X 1
˘`

IdX 1 , pPfqppq
˘

j
`

X 1, pRfqprq, pPfqppq
˘

kpX, r,X 1q
`

IdX 1 ˝ f, pPfqppq
˘

kpX, r,X 1q
`

f ˝ IdX , pPfqppq
˘

pQfq
`

kpX, r,XqpIdX , pq
˘

pQfq
`

jpX, r, pq
˘

kpf,r,BqpIdX1 ,pPfqppqq

ΞpX 1,pRfqprq,pPfqprqq

jpf,r,pq

kpX,r,fqpIdX ,pq

pQfqpΞpX,r,pqq

(6.8)

Now, to define Ξ: we are required to provide a 2-cell Ξ:X : kX Ñ pΛjqX for every

X P B, subject to the modification axiom. Since kX and pΛjqX are functors RX Ñ rP,QsX,
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such a natural transformation consists of a family of 1-cells (modifications) Ξ:pX, r,´q :

kpX, r,´q Ñ pΛjqpX, r,´q that is natural in r. We build this data in stages.

Fix X P B and r P RX. We begin by defining the modifications Ξ:pX, r,´q. For the

components, we define a natural transformation Ξ:pX, r,Bq : kpX, r,Bq ñ pΛjqpX, r,Bq
for each B P B as follows. For ph, pq P BpX,Bq ˆ PB, we take the 1-cell defined by

commutativity of the diagram below, where the bottom arrow arises from the fact that each

kf is a modification with type given in (6.1):

kpX, r,Bqph, pq j
`

B, pRhqprq, p
˘

kpX, r,BqpIdB ˝ h, pq k
`

B, pRhqprq, B
˘

pIdB, pq

Ξ:pX,r,Bqph,pq

kph,r,BqpIdB ,pq´1

ΞpB,pRhqprq,pq (6.9)

The family of 1-cells thus defined is natural in ph, pq because each component is. We

claim that the family of natural transformations Ξ:pX, r,´q is a modification. This entails

checking that the following commutes for every f : B Ñ B1 in B:

kpX, r,Bq ˝
`

BpX, fq ˆ Pf
˘

pΛjqpX, r,Bq ˝
`

BpX, fq ˆ Pf
˘

pQfq
`

kpX, r,Bq
˘

pΛjqpX, r,Bq

Ξ:pX,r,Bq˝pBpX,fqˆPfq

kpX,r,fq pΛjqpX,r,fq

pQfqpΞ:pX,r,Bqq

To prove this, fix some ph, pq P BpX,Bq ˆ PB. Applying the naturality of Ξ with respect

to the map φRf,hprq : pRfqpRhqprq Ñ Rpf ˝ hqprq, and the modification axiom (6.8), one

reduces the claim to showing that

kpX, r,B1qpIdB1 ˝ f ˝ h, pPfqppqq

kpB1, Rpfhqprq, B1qpIdB1 , pPfqppqq kpX, r,B1qpf ˝ h, pPfqppqq

kpB1, pRfqpRhqprq, B1qpIdB1 , pPfqppqq

kpB, pRhqprq, B1qpIdB1 ˝ f, pPfqppqq pQfq
`

kpX, r,Bqph, pq
˘

kpB, pRhqprq, B1qpf ˝ IdB, pPfqppqq pQfq
`

kpX, r,BqpIdB ˝ h, pq
˘

pQfq
`

kpB1, pRhqprq, B1qpIdB, pq
˘

kpf˝h,rqpIdB1 ,pPfqppqq

kpX,r,fqph,pq

kpB1,φRf,hprq,B
1qpIdB1 ,pPfqppqq

kpB,Rphqprq,fqpIdB1 ,pPfqppqq

kpB,pRhqprq,fqpIdB ,pq pQfqpkph,rqpIdB ,pqq

This commutes by an application of the associativity law for R and the modification

axiom (6.2) for kpf, rq.
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Thus, Ξ:pX, rq is a modification
`

kpX, r,´q, kpX, r,´q
˘

Ñ
`

pΛjqpX, r,´q, pΛjqpX, r,´q
˘

for every X P B and r P RX. Moreover, since each of the components in the definition

of Ξ:pX, rq is natural in r, this r-indexed family of 1-cells forms a natural transformation

Ξ:X : kX ñ pΛjqX .

To show that Ξ: is a modification pk, kq Ñ pΛj,Λjq, it remains to check the following

modification law for every f : X Ñ X 1 and ph, pq P BpX 1, Bq ˆ PB:

k
`

X 1, pRfqprq, B
˘

ph, pq k
`

X, r,B
˘

ph ˝ f, pq

pΛjq
`

X 1, pRfqprq, B
˘

ph, pq pΛjq
`

X, r,B
˘

ph ˝ f, pq

kpf,rq

Ξ:pX,pRfqprq,Bqph,pq Ξ:pX,r,Bqphf,pq

pΛjqpfq

(6.10)

This follows from the associativity law for evalP,Q ˝
`

pk, kq ˆ P
˘

, namely

k
`

B, pRhqpRfqprq, B
˘

pIdB, pq k
`

B,Rphfqprq, B
˘

pIdB, pq

k
`

X 1, pRfqprq, B
˘

pIdB ˝ h, pq

k
`

X 1, pRfqprq, B
˘

ph, pq k
`

X, r,B
˘

ph ˝ f, pq k
`

X, r,B
˘

pIdB ˝ h ˝ f, pq

kph,pRfqprqqpIdB ,pq

kpB,φRh,f prq,BqpIdB ,pq

kph˝f,rqpIdB ,pq

kpf,rqph,pq

together with the naturality of ΞX with respect to the morphism φRh,f prq : pRhqpRfqprq Ñ

Rphfqprq. We summarise the result:

Lemma 6.1.7. The family of natural transformations Ξ:pX,´,“q defined in (6.9) forms a

modification pk, kq Ñ pΛj,Λjq.

The final part of the proof is showing that Ξ: is the unique modification Ψ such that

evalP,Q ˝
`

pk, kq ˆ P
˘

evalP,Q ˝
`

Λpj, jq ˆ P
˘

pj, jq
Ξ

evalP,Q˝pΨˆP q

E

(6.11)

We turn to this next.
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The universal property of E. The existence part of the claim follows from the unit law

of a pseudonatural transformation and the fact that ΞpX, r, pq is a natural transformation:

kpX, r,XqpIdX , pq

kpX, r,XqpIdX ˝ IdX , pq

j
`

X,RpIdXqprq, p
˘

k
`

X,RpIdXqprq, X
˘

pIdX , pq

kpX, r,XqpIdX , pq

jpX, r, pq

def
“

Ξ:pX,r,XqpIdX ,pq

kpIdX ,rqpIdX ,pq´1

jpX,pψRXq´1prq,pq
nat
“

ΞpX,RpIdXqprq,pq
kpX,pψRXq´1prq,XqpIdX ,pq

unit law
“

ΞpX,r,pq

For uniqueness, suppose that Ψ is a modification filling (6.11). Then, applying the definition

of pΛjqpf,´,“q from (6.4), one obtains the diagram below, in which one uses the modification

axiom
`

c.f. (6.10)
˘

, the assumption on Ψ and the unit law of a pseudofunctor:

kpX, r,Bqph, pq

kpX, r,BqpIdB ˝ h, pq j
`

B,RpIdB ˝ hqprq, p
˘

k
`

B, pRhqprq, B
˘

pIdB, pq j
`

B, pRIdBqpRhqprq, p
˘

j
`

B, pRhqprq, p
˘

“

ΨpX,r,Bqph,pq

modif. law
“

ΨpX,r,BqpIdB˝h,pq

kph,rqpIdB ,pq´1 jpB,pφRId,hq
´1prq,pq

(6.11)
“

ΨpB,pRhqprq,BqpIdB ,pq

ΞpB,pRhqprq,BqpIdB ,pq

jpB,pψRBq´1pRhqprq,pq

unit law
“

Since the left-hand leg of this diagram is the definition of Ξ: (6.9), one obtains the required

universal property:

Lemma 6.1.8. For any modification Ξ : evalP,Q ˝
`

pk, kq ˆ P
˘

Ñ pj, jq the modification Ξ:

of Lemma 6.1.7 is the unique such filling (6.11).

Putting together everything we have seen in this section, for every P,Q : B Ñ Cat the

pseudofunctor rP,Qs :“ HompB,Catq
`

Yp´q ˆ P,Q
˘

satisfies an adjoint equivalence

Λ :
`

HompB,CatqpRˆ P,Qq
˘

Ô
`

HompB,CatqpR, rP,Qsq
˘

: evalP,Q ˝ p´ ˆ P q

with evaluation map defined as in Lemma 6.1.3 and counit E defined as in Lemma 6.1.6.

The universality of the counit is witnessed by the mapping p´q: of Lemma 6.1.7. Moreover,
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it is clear that Ξ: is invertible if Ξ is, so in particular the unit is invertible. Thus, rP,Qs is

an exponential in HompB,Catq.

Proposition 6.1.9. For any 2-category B and pseudofunctors P,Q : B Ñ Cat, the expo-

nential rP,Qs exists and may be given by HompB,Catq
`

Yp´q ˆ P,Q
˘

.

Hence, HompB,Catq is cartesian closed for any 2-category B. Applying Lemma 6.1.1

yields our final result.

Theorem 6.1.10. For any bicategory B, the 2-category HompB,Catq is cartesian closed.

6.2 Exponentiating by a representable

For any 2-category B with pseudo-products, object X P B and pseudofunctor P : Bop Ñ Cat,

the exponential rYX,P s may be given as P p´ˆXq. This follows immediately from the the

uniqueness of exponentials up to equivalence (Remark 5.1.4), together with the following

chain of equivalences:

rYX,P s » HompB,Catq
`

Yp´q ˆYX,P
˘

by Proposition 6.1.9

» HompB,Catq
`

Yp´ ˆXq, P
˘

» P p´ ˆXq by the Yoneda Lemma

(6.12)

For the second line we use the fact that birepresentables preserve bilimits (Lemma 2.3.4).

In the normalisation-by-evaluation argument (Chapter 8) we shall require an explicit

description of the evaluation map witnessing P p´ˆXq as the exponential rYX,P s. In this

section, therefore, we outline the exponential structure of P p´ ˆXq and briefly show that

it satisfies the required universal property. Since this structure may be extracted from the

work of the preceding section by chasing through the equivalences (6.12), our presentation

will be less detailed than before.

Note that, for the rest of this chapter, we work contravariantly. Since we are assuming

B is a 2-category, the Yoneda pseudofunctor is now both strict (in fact, a 2-functor) and

contravariant: YX “ BoppX,´q “ Bp´, Xq.

The evaluation map. We begin with the pseudonatural transformation P p´ ˆXq ˆ

YX ñ P that will act as the evaluation map. For the component at B P B we take the

functor

eB : P pB ˆXq ˆ BpB,Xq Ñ PB

pp, hq ÞÑ P pxIdB, hyqppq

with the evident action on 2-cells. To turn this into a pseudonatural transformation we

need to provide an invertible 2-cell ef as in the diagram below for every f : B1 Ñ B in B:
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P pB ˆXq ˆ BpB,Xq P pB1 ˆXq ˆ BpB1, Xq

PB PB1

ef
ð

eB

P pfˆXqˆBpf,Xq

eB1

Pf

At h : B Ñ X we define ef ph,´q to be the composite

P pxIdB, h ˝ fyq ˝ P pf ˆXq P pfq ˝ P xIdB, hy

P
`

pf ˆXqxIdB, hfy
˘

P pxIdB1 , hy ˝ fq

φP
xId,hfy,fˆX

ef ph,´q

P swaph,f

pφP
xId,hy,f

q´1

where the isomorphism swaph,f is pf ˆXq ˝ xIdB, hfy
fuse
ùùñ xf, hfy

post´1

ùùùùñ xIdB1 , hy ˝ f . The

whole composite is a natural isomorphism because each component is, so it remains to check

the two axioms of a pseudonatural transformation. The unit law is a short diagram chase

using the unit law for P and the fact that

IdBˆX ˝ xIdB, hy
ςId˝xId,hy
ùùùùùùñ xIdB, hy ˝ IdB

swap
ùùñ IdBˆX ˝ xIdB, hy

is the identity.

To prove the associativity law, on the other hand, one uses the naturality of the φP

2-cells and the associativity law of a pseudofunctor to reduce the problem to a diagram

in the image of P , whereupon one can apply standard properties of the product structure

(recall Lemma 4.1.7).

Lemma 6.2.1. For any X P B and pseudofunctor P : Bop Ñ Cat, the pair pe, eq defined

above forms a pseudonatural transformation P p´ ˆXq ˆYX ñ P .

The mapping Λ. Next we define the mapping Λ : ob
`

HompBop,CatqpR ˆ YX,P q
˘

Ñ

ob
`

HompBop,CatqpR,P p´ ˆXqq
˘

. Let pk, kq : RˆYX ñ P be a pseudonatural transform-

ation. We define Λpk, kq :“ pΛk,Λkq : R ñ P p´ ˆXq as follows. For B P B we take the

functor

pΛkqB : RB Ñ P pB ˆXq

r ÞÑ kBˆX
`

Rpπ1qprq, π2

˘

Thus, pΛkqB is the composite RB
Rπ1
ÝÝÑ RpB ˆXq

kBˆXp´,π2q
ÝÝÝÝÝÝÝÝÑ P pB ˆXq. To define pΛkqf ,

where f : B1 Ñ B, we need to give an invertible 2-cell as in

RB RB1

P pB ˆXq P pB1 ˆXq

Rf

pΛkqf
ð

pΛkqB pΛkqB1

P pfˆXq

This must be a natural isomorphism kB1ˆX
`

Rpπ1qRpfqp´q, π2

˘ –
ùñ P pfˆXq

`

kBˆXpRpπ1qp´q, π2q
˘

,

for which we take the following composite:
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kB1ˆXpRpπ1q ˝Rpfq, π2q P pf ˆXq
`

kBˆXpRπ1, π2q
˘

kB1ˆX
`

Rpf ˝ π1q, π2

˘

kB1ˆX
`

R pπ1pf ˆXqq , π2pf ˆXq
˘

kB1ˆX
`

Rpf ˆXq ˝Rpπ1q, π2pf ˆXq
˘

pΛkqf

kB1ˆXpφRf,π1
,π2q

kB1ˆXpR$p´1q,$p´2qq

kB1ˆXppφRπ1,fˆX
q´1,π2pfˆXqq

kfˆXpRπ1,π2q

To see that this is a pseudonatural transformation, observe that we have actually defined

Λpk, kq as a composite

RB RB1

RpB ˆXq ˆ BpB ˆX,Xq RpB1 ˆXq ˆ BpB1 ˆX,Xq

P pB ˆXq P pB1 ˆXq

nB

Rf

nf
ð

nB1

RpfˆXqˆBpfˆX,Xq
kBˆX kfˆX

ð

kB1ˆX

P pfˆXq

(6.13)

where nBprq :“
`

Rpπ1qprq, π2

˘

and nf has first component

Rπ1 ˝Rf
φRf,π1
ùùùñ Rpf ˝ π1q

R$p´1q

ùùùùñ R
`

π1 ˝ pf ˆXq
˘

pφRπ1,fˆX
q´1

ùùùùùùùùñ Rpf ˆXq ˝Rπ1 (6.14)

and second component π2
$p´2q

ùùùñ π2 ˝ pf ˆXq. So it suffices to show that pn, nq defines a

pseudonatural transformation Rñ Rp´ˆXqˆBp´ˆX,Xq. Naturality follows immediately

from the fact each component in the definition is natural. For the unit law, the first

component is the triangle law for products, and the second component is a short diagram

chase.

For the associativity law, it is once again the second component that is more difficult. As

for pe, eq (Lemma 6.2.1), the proof consists of using the associativity axiom of a pseudofunctor

and the naturality of φR. Once the calculation has been pushed ‘inside’ R, what remains is

a relatively easy diagram chase. This completes the proof that pn, nq is a pseudonatural

transformation, and hence the definition of the mapping Λ.

Lemma 6.2.2. The pair pn, nq defined in (6.14) forms a pseudonatural transformation

Rñ Rp´ ˆXq ˆ Bp´ ˆX,Xq.

Corollary 6.2.3. The pair pΛk,Λkq defined in (6.13) forms a pseudonatural transformation

Rñ P p´ ˆXq for every pk, kq : RˆYX ñ P .
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The counit E. For every pk, kq : RˆYX ñ P we need to provide an invertible modifica-

tion Epk,kq : pe, eq ˝
`

Λpk, kq ˆYX
˘

Ñ pk, kq.
Unwrapping the definition of pe, eq˝

`

Λpk, kqˆYX
˘

at B P B and pr, hq P RBˆBpB,Xq,
one sees that

´

eB ˝
`

pΛkqB ˆYX
˘

¯

pr, hq “ eB
`

kBˆXpRpπ1qprq, π2q, h
˘

“ P pxIdB, hyq
`

kBˆXpRpπ1qprq, π2q
˘

Furthermore, for f : B1 Ñ B the corresponding 2-cell
`

eB ˝
`

pΛkqB ˆYX
˘˘

f
is defined by

P pxIdB, hfyq
`

kB1ˆXpRpπ1qRpfqprq, π2q
˘

P pfqP pxIdB, hyq
`

kBˆXpRpπ1qprq, π2q
˘

P pxIdB, hfyq
`

kBˆXpRpf ˆXqRpπ1qprq, π2pf ˆXq
˘

P pxIdB, hfyqP pf ˆXq
`

kBˆXpRpπ1qprq, π2q
˘

peB˝ppΛkqBˆYXqqf pr,hq

P pxIdB ,hfyqpjf prqq

P pxIdB ,hfyqpkfˆXpRpπ1qprq,π2qq

ef ph,kBˆXpRpπ1qprq,π2qq

We therefore take the component at B P B of E
pk,kq
B to be the natural isomorphism defined

by

P pxIdB, hyq
`

kB1ˆXpRpπ1qprq, π2q
˘

kBpr, hq

kB
`

RpxIdB, hyqRpπ1qprq, π2xIdB, hy
˘

kB
`

Rpπ1xIdB, hyqprq, h
˘

kB
`

RpIdBqprq, h
˘

k´1
xId,hypRpπ1qprq,π2q

E
pk,kq
B pr,hq

kBpφRπ1,xId,hy
prq,$p2qq kBpR$p1q,hq

kBppψRBq´1,hq

(6.15)

We need to check the B-indexed family of 2-cells Epk,kq satisfies the modification axiom,

namely that

P pxIdB, hfyq
`

kBˆXpRpπ1qRpfqprq, π2q
˘

kB
`

Rpfqprq, hf
˘

P pfqP pxIdB, hyq
`

kBˆXpRpπ1qprq, π2q
˘

P pfq
`

kBpr, hq
˘

E
pk,kq
B pRpπ1qRpfqprq,π2q

´

eB˝
´

pΛkqBˆYX
¯¯

f
pr,hq kf pr,hq

P pfqpE
pk,kq
B pr,hqq

Unfolding all the data results in a long exercise in diagram chasing. The second component

is relatively straightforward. For the first component, one applies the naturality properties

and associativity law of a pseudofunctor to reduce the claim to the following:
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RpxIdB1 , hfyq ˝Rpπ1q ˝Rpfq Rpπ1xIdB1 , hfyq ˝Rpfq RpIdB1q ˝Rpfq

RpxIdB1 , hfyq ˝Rpf ˝ π1q Rpfq

RpxIdB1 , hfyq ˝R
`

π1 ˝ pf ˆXq
˘

RpIdB ˝ fq

RpxIdB1 , hfyq ˝Rpf ˆXq ˝Rpπ1q Rpπ1 ˝ xIdB, hy ˝ fq

R
`

pf ˆXq ˝ xIdB1 , hfy
˘

˝Rpπ1q Rpxf, hfyq ˝Rpπ1q RpxIdB, hy ˝ fq ˝Rpπ1q

φR
π1,xId,hfy

˝Rpfq

RpxIdB1 ,hfyq˝φ
R
f,π1

Rp$p1qq˝Rpfq

RpxIdB1 ,hfyq˝Rp$
p´1qq

ψR
B1
˝Rpfq

RpxIdB1 ,hfyq˝pφ
R
π1,fˆX

q´1

φR
fˆX,xId,hfy

˝Rpπ1q

Rp$p1q˝fq

Rpfuseq˝Rpπ1q Rppost´1q˝Rpπ1q

φR
π1,xIdB,hy˝f

The strategy is now familiar: one applies naturality and the associativity law to bring

together all the morphisms in the image of R, and then unwraps the definition of post and

fuse to reduce the long anticlockwise claim to the top row.

We have therefore constructed a modification to act as the counit.

Lemma 6.2.4. The 2-cells E
pk,kq
B pB P Bq defined in (6.15) form an invertible modification

pe, eq ˝
`

Λpk, kq ˆYX
˘

Ñ pk, kq.

All that remains is to show the modification Epk,kq is a universal arrow.

The modification Ξ:. We aim to construct a modification Ξ: for every pseudonatural

transformation pj, jq : R ñ P p´ ˆXq and modification Ξ : pe, eq ˝
`

pj, jq ˆ YX
˘

Ñ pk, kq,
such that Ξ: is the unique modification filing

pe, eq ˝
`

pj, jq ˆYX
˘

pe, eq ˝
`

Λpk, kq ˆYX
˘

pk, kq
Ξ

pe,eq˝pΞ:ˆYXq

Epk,kq

(6.16)

Because the definitions of pe, eq, Λpk, kq and Epk,kq are all composites, the proof requires

working with a large accumulation of data. Nonetheless the diagram chases—although

long—are not especially difficult.

Suppose that Ξ : pe, eq ˝
`

pj, jq ˆYX
˘

Ñ pk, kq. Since

`

eB ˝ pjB ˆYXq
˘

pr, hq “ eBpjBprq, hq “ P pxIdB, hyqpjBprqq
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for every B P B we are provided with a natural transformation with components ΞBpr, hq :

pP xIdB, hyqpjBprqq Ñ kBpr, hq for pr, hq P RBˆBpB,Xq. We define Ξ:B to be the composite

jB kBˆXpRπ1, π2q

P pIdBˆXq ˝ jB P pxIdBˆX , π2yq ˝ jBˆX ˝Rπ1

P pxπ1, π2yq ˝ jB P
`

pπ1 ˆXq ˝ xIdBˆX , π2yq ˝ jB P pxIdBˆX , π2yq ˝ P pπ1 ˆXq ˝ jB

ψPBˆX˝jB

Ξ:B

P pςIdq˝jB

ΞBpRπ1,π2q

P pfuse´1q˝jB pφP
π1ˆX,xId,π2y

q´1˝jB

P pxIdBˆX ,π2yq˝j
´1
π1

(6.17)

and claim this does indeed define a modification. We therefore need to verify the following

diagram of functors commutes for every f : B1 Ñ B in B:

jB1
`

Rpfq
˘

kB1ˆX
`

Rpπ1qRpfq, π2

˘

P pf ˆXq
`

jB
˘

P pf ˆXq
`

kBˆXpRpπ1q, π2q
˘

Ξ:
B1
pRpfqq

jf pΛkqf

P pfˆXqpΞ:Bq

Unfolding all the various composites results in a very large diagram. We give the strategy

for proving it commutes. One begins by using naturality until one can apply the modi-

fication axiom for Ξ to relate the final term in the composite defining pΛkqf with P pf ˆ

Xq
`

ΞBˆXpRpπ1qprq, π2q
˘

. Next one applies the associativity law for pj, jq in order to push

the 2-cells φP as early as possible. One then observes that the following diagram commutes,

and hence that its image under P commutes:

f ˆX xπ1, π2y ˝ pf ˆXq

pf ˆXq ˝ xπ1, π2y

pf ˆXq ˝ xπ1, π2pf ˆXqy pπ1 ˆXq ˝ xIdBˆX , π2y ˝ pf ˆXq

pf ˆXq ˝ pπ1 ˆXq ˝ xIdB1ˆX , π2pf ˆXqy pπ1 ˆXq ˝
`

pf ˆXq ˆX
˘

˝ xIdB1ˆX , π2pf ˆXqy

`

pf ˝ π1q ˆX
˘

˝ xIdB1ˆX , π2pf ˆXqy
`

pπ1pf ˆXqq ˆX
˘

˝ xIdB1ˆX , π2pf ˆXqy

pfˆXq˝ςId

ςId˝pfˆXq

pfˆXq˝xπ1,$p´2qy

pfˆXq˝fuse´1

fuse˝pfˆXq

Φf,π1;IdX
˝xId,π2pfˆXqy

pπ1ˆXq˝swap

p$p´1qˆXq˝xId,π2pfˆXqy

Φ´1
π1,fˆX;IdX

˝xId,π2pfˆXqy

From this point the rest of the proof is a manageable diagram chase. Hence, Ξ: is a

modification.

Lemma 6.2.5. For every modification Ξ : pe, eq ˝
`

pj, jq ˆYX
˘

Ñ pk, kq between pseudonat-

ural transformations RˆYX ñ P , the 2-cells Ξ:B form a modification pj, jq Ñ Λpk, kq.
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The last part of the proof is checking that Ξ: is the unique modification filling the

diagram (6.16).

The universal property of E. The existence and uniqueness parts of (6.16) also entail

long but not especially difficult diagram chases. In each case one unfolds the various

composites and applies the modification axiom for Ξ. The rest of the proof is an exercise in

applying the various naturality properties and the two laws of a pseudofunctor.

Putting together all the work of this section, one obtains the following.

Proposition 6.2.6. For any 2-category B with pseudo-products, pseudofunctor P : Bop Ñ

Cat and object X P B, the modification E of Lemma 6.2.4 is the counit of an adjoint

equivalence

Λ : HompBop,CatqpRˆYX,P q Ô HompBop,Catq
`

R,P p´ ˆXq
˘

: pe, eq ˝ p´ ˆYXq

in which the pseudonatural transformation pe, eq and mapping Λ are as in Lemma 6.2.1 and

Corollary 6.2.3, respectively.

Theorem 6.2.7. For any 2-category B with pseudo-products, pseudofunctor P : Bop Ñ Cat

and object X P B, the pseudofunctor P p´ ˆ Xq is (up to equivalence) the exponential

rYX,P s in HompBop,Catq.

Setting C :“ Bop recovers the covariant statement.





Chapter 7

Bicategorical glueing

Glueing is a powerful technique which may be used to leverage semantic arguments in

order to prove syntactic results. Intuitively, one ‘glues together’ syntactic and semantic

information, allowing one to extract proofs of syntactic properties from semantic arguments.

The breadth and utility of this approach has led to its being discovered in various forms, with

correspondingly various names: the notions of logical relation [Plo73, Sta85], sconing [FS90],

Freyd covers and glueing (e.g. [LS86]) are all closely related (see e.g. [MS93] for an overview of

the connections). Taylor identifies the basic apparatus as going back to Groethendieck [Tay99,

Section 7.7], while versions of logical relations appear as early as Gandy’s thesis (who,

in turn, attributes some of the theory to Turing) [Gan53]. Originally presented in the

set-theoretic setting, the technique was quickly given categorical expression [MR92, MS93],

for which Hermida provided an account in terms of fibrations in his thesis [Her93]. Such

techniques are now a standard component of the armoury for studying type theories.

In this chapter we define a notion of glueing for bicategories and prove a bicategorical

version of the fundamental result establishing mild conditions for the glueing category to

be cartesian closed. (For reference, the construction is summarised in the appendix on

page 290.) This will form the core of our normalisation-by-evaluation proof in the next

chapter.

We begin by recalling the categorical glueing construction and giving a precise statement

of the cartesian closure result we wish to prove. These will provide a template for our

bicategorical work.

7.1 Categorical glueing

The most succinct description of categorical glueing is as a special kind of comma category.

Definition 7.1.1.

1. Let F : A Ñ C and G : B Ñ C be functors. The comma category pF Ó Gq has objects

triples pA, f,Bq, where A P A and B P B are objects and f : FAÑ GB is a morphism

in C. Morphisms pA, f,Bq Ñ pA1, f 1, B1q are pairs of morphisms pp, qq such that the

213
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following square commutes:

FA FA1

GB GB1

Fp

f f 1

Gq

(7.1)

2. The glueing glpJq of B to C along a functor J : B Ñ C is the comma category pidC Ó Jq.

We denote the objects and morphisms following the vertical order of their appearance

in diagram (7.1), as pC P C, c : C Ñ JB,B P Bq and pq : C Ñ C 1, p : B Ñ B1q. đ

There are evident projection functors B
πdom
ÐÝÝÝ glpJq

πcod
ÝÝÝÑ C. We wish to bicategorify the

following folklore result (c.f. [MR92, Proposition 2]):

Proposition 7.1.2. Let J : B Ñ C be a functor between cartesian closed categories, such

that J preserves products and C has all pullbacks. Then the glueing category glpJq is

cartesian closed, and the projection πdom strictly preserves the cartesian closed structure.

Proof. For n P N the n-ary product of objects pCi, ci, Biq pi “ 1, . . . , nq is the composite

śn
i“1Ci

ś

i ci
ÝÝÝÑ

śn
i“1pJBiq

–
ÝÑ J

`
śn
i“1Bi

˘

Projections are given pointwise, as pπC
i , π

B
i q, and the n-ary tupling of a family of 1-cells

pfi, giq : pX,x, Y q Ñ pCi, ci, Biq pi “ 1, . . . , nq is the pair pxf1, . . . , fny, xg1, . . . , gnyq.

Hence both πdom and πcod strictly preserve products.

The exponential pC, c,Bq“BpC 1, c1, B1q is defined to be the left-hand vertical map in the

pullback diagram

C Ą C 1 pC “BC 1q

JpB“BB1q pJB“B JB1q pC “B JB1q

x

pc,c1

qc,c1

C“Bc1

mB,B1 pc“BJB1q

(7.2)

where mB,B1 is the exponential transpose of
`

JpB“BB1qˆJB
–
ÝÑ JppB“BB1qˆBq

JevalB,B1
ÝÝÝÝÝÝÑ

JB1
˘

. The evaluation map has first component pC Ą C 1qˆC
qc,c1ˆC
ÝÝÝÝÝÑ pC “BC 1qˆC

evalC,C1
ÝÝÝÝÝÑ

C 1 and second component simply evalB,B1 . The currying operation is given by the universal

property of pullbacks.

The rest of the chapter is dedicated to proving a bicategorical version of this proposition.

7.2 Bicategorical glueing

We bicategorify Definition 7.1.1 in the usual way: by replacing commuting squares with

invertible 2-cells, subject to coherence conditions.
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Definition 7.2.1. Let F : AÑ C and G : B Ñ C be pseudofunctors of bicategories. The

comma bicategory pF Ó Gq has objects triples pA P A, f : FA Ñ GB,B P Bq. The 1-cells

pA, f,Bq Ñ pA1, f 1, B1q are triples pp, α, qq, where p : A Ñ A1 and q : B Ñ B1 are 1-cells

and α is an invertible 2-cell α : f 1 ˝ Fpñ Gq ˝ f witnessing the commutativity of (7.1):

FA FA1

GB GB1

α
ð

Fp

f f 1

Gq

(7.3)

The 2-cells pp, α, qq ñ pp1, α1, q1q are pairs of 2-cells pσ : p ñ p1, τ : q ñ q1q such that the

following diagram commutes:

f 1 ˝ F ppq f 1 ˝ F pp1q

Gpqq ˝ f Gpq1q ˝ f

α

f 1˝F pσq

α1

Gpτq˝f

(7.4)

The horizontal composite of pA, f,Bq
pp,α,qq
ÝÝÝÝÑ pA1, f 1, B1q

pr,β,sq
ÝÝÝÝÑ pA2, f2, B2q is pr˝p,–, s˝qq,

where the isomorphism is the composite on the left below:

f2 ˝ F pr ˝ pq Gps ˝ qq ˝ f

f2 ˝ pFr ˝ Fpq pGs ˝Gqq ˝ f

pf2 ˝ Frq ˝ Fp Gs ˝ pGq ˝ fq

pGs ˝ f 1q ˝ Fp Gs ˝ pf 1 ˝ Fpq

f2˝pφFr,pq
´1

–

φGs,q˝f

β˝Fp

–

–

Gs˝α

f ˝ F IdA GIdB ˝ f

f ˝ IdFA IdGB ˝ f

f˝pψFAq
´1

–

ψGB˝f

In a similar fashion, the identity 1-cell on pA, f,Bq is pIdA,–, IdBq with isomorphism – as

on the right above.

Vertical composition and the identity 2-cell are given component-wise, as are the

structural isomorphisms a, l and r. đ

The identities and composition may be expressed as the following pasting diagrams:

FA FA

GB GB

f

F IdA

f
–

f
–

GIdB

FA FA1 FA2

GB GB1 GB2

F pr˝pq

α
ð

Fp

f

φF

–

β
ð

Fr

f 1 f2

Gps˝qq

Gq
φG

–

Gs



216 CHAPTER 7. BICATEGORICAL GLUEING

We call axiom (7.4) the cylinder condition due to its shape when viewed as a (3-dimensional)

pasting diagram (c.f. the cylinders of [Bén67, § 8]). From this perspective, the axiom requires

that if one passes across the top of the cylinder and then down the front, the result is the

same as passing first down the back of the cylinder and then the bottom (c.f. the definition

of transformation between T -algebra morphisms in 2-dimensional universal algebra [Lac10,

§ 4.1]):

FA FA1

GA GB1

ó

α
ð

“

FA FA1

GA GB1

α1
ð

ó

The following lemma, which mirrors the categorical statement, helps assure us the

preceding definition is correct. For the proof one simply unwinds the two universal properties.

Lemma 7.2.2. For any pseudofunctor F : B Ñ C and C P C, the following are equivalent:

1. pR, uq is a biuniversal arrow from F to C,

2. pFR
u
ÝÑ Cq is the terminal object in pF Ó constCq, where constC denotes the constant

pseudofunctor at C.

The glueing construction is an instance of the comma construction.

Definition 7.2.3. The glueing bicategory glpJq of bicategories B and C along a pseudofunctor

J : B Ñ C is the comma bicategory pidC Ó Jq. đ

As in Definition 7.1.1, we order the tuples in a comma bicategory as they are read down

the page. In the particular case of a glueing bicategory, therefore, the objects, 1-cells and

2-cells have the following form:

objects : pC P C, c : C Ñ JB,B P Bq

1-cells : pq : C Ñ C 1, α : c1 ˝ q ñ Jppq ˝ c, p : B Ñ B1q

2-cells : pτ : q ñ q1, σ : pñ p1q

One now obtains projection pseudofunctors B πdom
ÐÝÝÝ glpJq

πcod
ÝÝÝÑ C. Note also that there is a

‘weakest link’ property at play: the bicategory glpJq is a 2-category only if B, C and J are

all strict.

Remark 7.2.4. The preceding definitions are pseudo. One obtains a lax comma bicategory

(and hence lax glueing bicategory) by dropping the requirement that the 2-cells filling (7.3)

are invertible. đ

7.3 Cartesian closed structure on glpJq

We now turn to a bicategorical version of Proposition 7.1.2. The construction for products

is relatively easy.
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7.3.1 Finite products in glpJq

Recall from Definition 4.1.1 that a bicategory with finite products—an fp-bicategory—is

a bicategory B equipped with a chosen object
ś

npA1, . . . , Anq and a biuniversal arrow

pπ1, . . . , πnq : ∆
`
ś

npA1, . . . , Anq
˘

Ñ pA1, . . . , Anq for every A1, . . . , An P B pn P Nq. An

fp-pseudofunctor is then a pseudofunctor of the underlying bicategories that preserves these

biuniversal arrows (Definition 4.1.9).

We claim the following:

Proposition 7.3.1. Let pB,Πnp´qq and pC,Πnp´qq be fp-bicategories and pJ, qˆq : B Ñ C
an fp-pseudofunctor. Then glpJq is an fp-bicategory with both projection pseudofunctors

πdom and πcod strictly preserving products.

We construct the data in stages and then verify the required equivalence on hom-

categories. Recall that we denote the 2-cells witnessing the fact that J preserves products

by

uˆB‚ : Idp
ś

i JBiq
ñ xJπ1, . . . , Jπny ˝ qˆB‚

cˆB‚ : qˆB‚ ˝ xJπ1, . . . , Jπny ñ IdJp
ś

iBiq

We begin with the product mapping. For a family of objects pCi, ci, Biqi“1, ... ,n we define

the n-ary product
śn
i“1pCi, ci, Biq to be the tuple

`
śn
i“1Ci, q

ˆ
B‚
˝
śn
i“1 ci,

śn
i“1Bi

˘

. We

set the k-th projection πk to be pπk, µk, πkq, where µk is defined by commutativity of the

following diagram:

ck ˝ πk Jpπkq ˝
´

qˆB‚ ˝
ś

i ci

¯

πk ˝
ś

i ci pJπk ˝ qˆB‚q ˝
ś

i ci

pπk ˝ Idp
ś

i JBiq
q ˝

ś

i ci

´

pπk ˝ xJπ1, . . . , Jπnyq ˝ qˆB‚

¯

˝
ś

i ci

´

πk ˝ pxJπ1, . . . , Jπny ˝ qˆB‚q
¯

˝
ś

i ci

$p´kq

µk

–

–

πk˝uˆB‚˝
ś

i ci

$pkq˝qˆB‚˝
ś

i ci

–

(7.5)

Next we define the n-ary tupling map. For an n-ary family of 1-cells pgi, αi, fiq :

pY, y,Xq Ñ pCi, ci, Biq pi “ 1, . . . , nq, we set the n-ary tupling to be

pxg1, . . . , gny, tα1, . . . , αnu, xf1, . . . , fnyq



218 CHAPTER 7. BICATEGORICAL GLUEING

where tα1, . . . , αnu is the composite

´

qˆB‚ ˝
ś

i ci

¯

˝ xg1, . . . , gny Jxf1, . . . , fny ˝ y

qˆB‚ ˝ p
ś

i ci ˝ xg1, . . . , gnyq IdJp
ś

Biq ˝ pJxf1, . . . , fny ˝ yq

qˆB‚ ˝ xc1 ˝ g1, . . . , cn ˝ gny
´

qˆB‚ ˝ xJπ1, . . . , Jπny
¯

˝ pJxf1, . . . , fny ˝ yq

qˆB‚ ˝ xJf1 ˝ y, . . . , Jfn ˝ yy qˆB‚ ˝ ppxJπ1, . . . , Jπny ˝ Jxf1, . . . , fnyq ˝ yq

qˆB‚ ˝ pxJf1, . . . , Jfny ˝ yq

–

tα1, ... ,αnu

qˆB‚˝fuse

–

qˆB‚˝xα1, ... ,αny

cˆB‚˝Jxf1, ... ,fnyq˝y

qˆB‚˝post´1

–

qˆB‚˝unpack´1
f‚
˝y

(7.6)

Finally, we are required to provide a universal arrow to act as the counit. For every

family of 1-cells pgi, αi, fiq : pY, y,Xq Ñ pCi, ci, Biq pi “ 1, . . . , nq we require a glued 2-cell

πk ˝ pxg1, . . . , gny, tα1, . . . , αnu, xf1, . . . , fnyq ñ pgk, αk, fkq

for which we take simply p$
pkq
g‚ , $

pkq
f‚
q. The next lemma establishes that this is a 2-cell in

glpJq.

Lemma 7.3.2. For every family of 1-cells pgi, αi, fiq : pY, y,Xq Ñ pCi, ci, Biq pi “ 1, . . . , nq,

the cylinder condition holds for p$
pkq
g‚ , $

pkq
f‚
q. That is, the following diagram commutes:

ck ˝ pπk ˝ xg1, . . . , gnyq ck ˝ gk Jpfkq ˝ y

pck ˝ πkq ˝ xg1, . . . , gny J pπk ˝ xf1, . . . , fnyq ˝ y

´

Jpπkq ˝
´

qˆB‚ ˝
ś

i ci

¯¯

˝ xg1, . . . , gny pJπk ˝ Jxf1, . . . , fnyq ˝ y

Jπk ˝
´´

qˆB‚ ˝
ś

i ci

¯

˝ xg1, . . . , gny
¯

Jπk ˝ pJxf1, . . . , fny ˝ yq

–

ck˝$
pkq αk

µk˝xg1, ... ,gny

Jp$pkqq˝y

–

φJ
πk;xf‚y

˝y

Jpπkq˝tα1, ... ,αnu

–

Proof. Unfolding the definition of fuse and applying the functoriality of composition as far

as possible, the claim reduces to commutative diagram below, in which the unlabelled cells

are all instances of functoriality of composition or naturality. To improve readability we

neglect the bracketing and corresponding associativity constraints; the coherence theorem

for bicategories guarantees that one can translate to the ‘fully bicategorical’ version as

required.
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πk ˝ xc‚ ˝ g‚y ck ˝ gk

πk ˝ Idp
ś

i JBiq
˝ xc‚ ˝ g‚y πk ˝ xJpf‚q ˝ yy

πk ˝ xJπ‚y ˝ qˆB‚ ˝ xc‚ ˝ g‚y

πk ˝ xJπ‚y ˝ qˆB‚ ˝ xJpf‚q ˝ yy πk ˝ Idp
ś

i JBiq
˝ xJpf‚q ˝ yy

πk ˝ xJπ‚y ˝ qˆB‚ ˝ xJf‚y ˝ y πk ˝ Idp
ś

i JBiq
˝ xJf‚y ˝ y

πk ˝ xJπ‚y ˝ qˆB‚ ˝ xJπ‚y ˝ Jxf‚y ˝ y

πk ˝ xJπ‚y ˝ IdpJ
ś

iBiq
˝ Jxf‚y ˝ y πk ˝ xJf‚y ˝ y

πk ˝ xJπ‚y ˝ Jxf‚y ˝ y

Jpπkq ˝ Jxf‚y ˝ y Jpπk ˝ xf‚yq ˝ y Jpfkq ˝ y

–

$pkq

πk˝xα1, ... ,αny

αk

πk˝uˆB‚˝xc‚˝g‚y
πk˝Id˝xα1, ... ,αny

triang. law
“

–

πk˝post´1

post def.
“

πk˝xJπ‚y˝q
ˆ
B‚
˝xα1, ... ,αny

πk˝post´1

πk˝cˆB‚˝xJpf‚q˝yy

πk˝Id˝post´1

πk˝xJπ‚y˝q
ˆ
B‚
˝unpack´1

f‚
˝y

πk˝cˆB‚˝xJf‚y˝y

πk˝xJπ‚y˝unpack´1
f‚
˝y
–

πk˝xJπ‚y˝cˆB‚˝Jxf‚y˝y

–

$pkq˝y

πk˝unpack´1
f‚
˝y

unpack def.
“

$pkq˝Jxf‚y˝y

φJ
pπk,xf‚yq

˝y Jp$pkqq˝y

It remains to check the universal property. Taking arbitrary 1-cells

pv, γ, uq : pY, y,Xq Ñ
śn
i“1pCi, ci, Biq

pti, τi, siq : pY, y,Xq Ñ pCi, ci, Biq pi “ 1, . . . , nq

related by 2-cells

pβi, αiq : πi ˝ pv, γ, uq ñ pti, τi, siq pi “ 1, . . . , nq

we observe that βi : πi ˝ v ñ ti and αi : πi ˝ u ñ si for each i. We therefore claim

that
`

p:pβ1, . . . , βnq, p:pα1, . . . , αnq
˘

is the unique 2-cell in glpJq such that the following

commutes for i “ 1, . . . , n:

πi ˝ pv, γ, uq πi ˝ pxt‚y, tτ‚u, xs‚yq

pti, τi, siq

πi˝pp:pβ‚q,p:pα‚qq

pβi,αiq p$
piq
t‚
,$
piq
s‚ q
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Of course, it suffices to show that
`

p:pβ‚q, p:pα‚q
˘

is a 2-cell in glpJq: the rest of the claim

follows from the (bi)universality of products in B and C.

Lemma 7.3.3. For any 1-cells pv, γ, uq and pti, τi, siq and any 2-cells pβi, αiq : πi˝pv, γ, uq ñ

pti, τi, siq pi “ 1, . . . , nq as above, the pair
`

p:pβ1, . . . , βnq, p:pα1, . . . , αnq
˘

is a 2-cell in

glpJq.

Proof. We need to check the cylinder condition, which in this case is the following:

´

qˆB‚ ˝
ś

i ci

¯

˝ v
´

qˆB‚ ˝
ś

i ci

¯

˝ xt1, . . . , tny

Jpuq ˝ y Jpxs1, . . . , snyq ˝ y

γ

qˆB‚˝p
ś

i ciq˝p:pβ1,...,βnq

tτ1, ... ,τnu

Jpp:pα1, ... ,αnqq˝y

For this, one begins by observing that the following commutes for every k “ 1, . . . , n:

πk ˝ p
ś

i ci ˝ vq pπk ˝
ś

i ciq ˝ v pck ˝ πkq ˝ v

πk ˝ p
ś

i ci ˝ xt‚yq pπk ˝
ś

i ciq ˝ xt‚y ck ˝ pπk ˝ vq

pck ˝ πkq ˝ xt‚y ck ˝ pπk ˝ xt‚yq

πk ˝ xc‚ ˝ t‚y ck ˝ tk

πk ˝ xJps‚q ˝ yy Jpskq ˝ y

πk ˝ pxJs‚y ˝ yq pπk ˝ xJs‚yq ˝ y Jpskq ˝ y

–

πk˝p
ś

i ciq˝p:pβ1, ... ,βnq

$pkq˝v

πk˝
ś

i ci˝p:pβ1, ... ,βnq –

πk˝fuse

–

$pkq˝xt‚y ck˝πk˝p:pβ1, ... ,βnq

ck˝βk
–

def. of fuse
“ ck˝$

pkq

$pkq

πk˝xτ‚y τk

def. of post
“

πk˝post´1

$pkq

– $pkq˝y

and that the following commutes:
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ck ˝ pπk ˝ vq pck ˝ πkq ˝ v

´

Jpπkq ˝ pq
ˆ
B‚
˝
ś

i ciq
¯

˝ v

πk ˝ tk Jpπkq ˝
´´

qˆB‚ ˝
ś

i ci

¯

˝ v
¯

Jpπk ˝ uq ˝ y Jpπkq ˝ pJpuq ˝ yq

Jpskq ˝ y pJπk ˝ Juq ˝ y

Jpπk ˝ xs‚yq ˝ y pJpπkq ˝ Jxs‚yq ˝ y

ck˝βk

–

µk˝v

–

τk

Jpπkq˝γ

cylinder condition
“

def.
“

nat.
“

Jpπk˝p:pα‚qq˝y

Jpαkq˝y –

Jp$p´kqq˝y

φJπk,u
˝y

Jpπkq˝Jpp:pα‚qq˝y

pφJ
πk,xs‚y

q´1˝y

Putting these two together and applying the definition of unpack, one obtains the following

commuting diagram:

πk ˝ p
ś

i ci ˝ vq pπk ˝ Idp
ś

i JBiq
q ˝ p

ś

i ci ˝ vq

πk ˝ p
ś

i ci ˝ xt‚yq
´

πk ˝
´

xJπ‚y ˝ qˆB‚

¯¯

˝ p
ś

i ci ˝ vq

πk ˝ xc‚ ˝ t‚y pπk ˝ xJπ‚yq ˝
´´

qˆB‚ ˝
ś

i ci

¯

˝ v
¯

πk ˝ xJps‚q ˝ yy Jpπkq ˝
´´

qˆB‚ ˝
ś

i ci

¯

˝ v
¯

πk ˝ pxJs‚y ˝ yq Jpπkq ˝ pJpuq ˝ yq

πk ˝ ppxJπ‚y ˝ Jxs‚yq ˝ yq pπk ˝ xJπ‚yq ˝ pJxs‚y ˝ yq Jpπkq ˝ pJxs‚y ˝ yq

πk˝
ś

i ci˝p:pβ‚q

–

πk˝uˆB‚˝
ś

i ci˝v

πk˝fuse –

πk˝xτ‚y $pkq˝qˆB‚˝
ś

i ci˝v

πk˝post´1
Jpπkq˝γ

πk˝unpack´1
s‚
˝y Jpπkq˝Jpp:pα‚qq˝y

– $pkq˝Jxs‚y˝y

With this lemma in hand, the rest of the proof is a diagram chase applying naturality and

the definition of post.

Lemma 7.3.3 completes the proof that glpJq does indeed have finite products, and

hence the proof of Proposition 7.3.1. For the construction of exponentials we will require

morphisms of the form f ˆA. We briefly check that such morphisms appear in glpJq in the

way one would expect, namely as pasting diagrams of the form
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C ˆ Y C 1 ˆ Y

JB ˆ JX JB1 ˆ JX

JpB ˆXq JpB1 ˆXq

αˆy
–

c1gˆy

Jpfqcˆy

gˆY

cˆy

qˆB,X˝pcˆyq

Φ
–

c1ˆy

qˆ
B1,X

˝pc1ˆyq
Φ
–

nat
–

JfˆJX
qˆB,X qˆ

B1,X

JpfˆXq

In particular, when the bicategories B and C are 2-categories with strict products and

J : B Ñ C is a strict fp-pseudofunctor, this 2-cell is simply αˆ y.

Lemma 7.3.4. For every 1-cell g :“ pg, α, fq : pC, c,Bq Ñ pC 1, c1, B1q and object Y :“

pY, y,Xq in glpJq, the 1-cell g ˆ Y : pC, c,Bq ˆ pY, y,Xq Ñ pC 1, c1, B1q ˆ pY, y,Xq is equal

to pg ˆ Y, αY , f ˆ Y q, where αY is the composite

´

qˆB1,X ˝ pc
1 ˆ yq

¯

˝ pg ˆ Y q Jpf ˆXq ˝
´

qˆB,X ˝ pcˆ yq
¯

qˆB1,X ˝ ppc
1 ˆ yq ˝ pg ˆ Y qq

´

Jpf ˆXq ˝ qˆB,X

¯

˝ pcˆ yq

qˆB1,X ˝ ppc
1 ˝ gq ˆ py ˝ IdY qq

´

qˆB1,X ˝ pJf ˆ JIdXq
¯

˝ pcˆ yq

qˆB1,X ˝ ppc
1 ˝ gq ˆ pIdJX ˝ yqq qˆB1,X ˝ ppJf ˆ JIdXq ˝ pcˆ yqq

qˆB1,X ˝ ppJf ˝ cq ˆ pIdJX ˝ yqq qˆB1,X ˝ ppJf ˝ cq ˆ pJIdX ˝ yqq

αY

–

qˆ
B1,X

˝Φc1,g;y,Id

–

–

natf,IdX ˝pcˆyq

qˆ
B1,X

˝pαˆpIdJX˝yqq

–

qˆ
B1,X

˝ppJf˝cqˆpψJ
X˝yqq

qˆ
B1,X

˝Φ´1
Jf,c;JId,y

(7.7)

Proof. The proof amounts to unfolding the definition and checking that it does indeed equal

the composite given in the claim. Let τ1 and τ2 respectively denote the 2-cells defined by

the pasting diagrams on the left and right below:
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C ˆ Y C C 1

JB ˆ JX

JpB ˆXq JB JB1

cˆy

µ1
ð

π1

g˝π1

qˆB,X˝pcˆyq α
ð

g

c c1

qˆB,X

Jpf˝π1q

Jπ1

φJf,π1
–

Jf

C ˆ Y Y Y

JB ˆ JX

JpB ˆXq JX JX

cˆy

µ2
ð

π2

IdY ˝π2

qˆB,X˝pcˆyq
y

IdY

y

–

y

qˆB,X

JpIdX˝π2q

Jπ2

φJId,π2
–

–

ψJ
X
–

IdJX

JIdX

By definition, the 1-cell g ˆ Y has a witnessing 2-cell given by the following composite, in

which we write p˚q for qˆB1,X˝
A´

Jpf ˝ π1q ˝ qˆB1,X

¯

˝ pcˆ yq,
´

JpIdX ˝ π2q ˝ qˆB1,X

¯

˝ pcˆ yq
E

:

´

qˆB1,X ˝ pc
1 ˆ yq

¯

˝ xg ˝ π1, IdY ˝ π2y Jpf ˆBq ˝
´

qˆB,X ˝ pcˆ yq
¯

qˆB1,X ˝ ppc
1 ˆ yq ˝ xg ˝ π1, IdY ˝ π2yq

qˆB1,X ˝ xc
1 ˝ pg ˝ π1q, y ˝ pIdY ˝ π2qy

p˚q IdJpB1ˆXq ˝ Jpf ˆXq ˝ pcˆ yq

qˆB1,X ˝
´

xJpf ˝ π1q, JpIdX ˝ π2qy ˝

´

qˆB1,X ˝ pcˆ yq
¯¯

qˆB1,X ˝
´

pxJπ1, Jπ2y ˝ Jpf ˆXqq ˝
´

qˆB1ˆX ˝ pcˆ yq
¯¯

´

qˆB1,X ˝ xJπ1, Jπ2y

¯

˝

´

Jpf ˆXq ˝
´

qˆB1ˆX ˝ pcˆ yq
¯¯

–

tτ1,τ2u

qˆ
B1,X

˝fuse

qˆ
B1,X

˝xτ1,τ2y

qˆ
B1,X

˝post´1

–

qˆ
B1,X

˝unpack´1
f˝π1,Id˝π2

˝pcˆyq

–

cˆ
B1,X

˝JpfˆXq˝pcˆyq

Applying naturality and the lemma relating unpack with uˆ (Lemma 4.1.13), a long diagram

chase transforms this to the composite in the claim.

7.3.2 Exponentials in glpJq

As in the 1-categorical case, the definition of currying in glpJq employs pullbacks. We

therefore take a brief diversion to spell out their universal property.

Pullbacks in a bicategory. The notion of pullback we employ is sometimes referred to

as a bipullback (e.g. [Lac10]) to distinguish it from pullbacks defined as a pseudolimit. Since

the only limits we work with in this thesis are bilimits, we omit the prefix.
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Definition 7.3.5. Let C (for ‘cospan’) denote the category p1
h1
ÝÑ 0

h2
ÐÝ 2q and B be any

bicategory. A pullback of the cospan pX1
f1
ÝÑ X0

f2
ÐÝ X2q in B is a bilimit for the strict

pseudofunctor C Ñ B determined by this cospan. đ

This characterisation of pullbacks, while precise, must be unfolded to obtain a universal

property one can use for calculations. The next lemma establishes such a property. The

proof is not especially hard, and the result appears to be known—although not explicitly

proven—in the literature, so we leave it for an appendix (Appendix D).

Lemma 7.3.6. For any bicategory B and cospan pX1
f1
ÝÑ X0

f2
ÐÝ X2q in B, the pullback of

pX1
f1
ÝÑ X0

f2
ÐÝ X2q is determined, up to equivalence, by the following universal property:

there exists a chosen object P P B, span pX1
γ1
ÐÝ P

γ2
ÝÑ X2q and invertible 2-cell γ filling

the diagram on the left below

P

X1 X2

X0

γ
–

γ1 γ2

f1 f2

Q

X1 X2

X0

µ
–

µ1 µ2

f1 f2

(7.8)

such that for any other such square as on the right above there exists an invertible fill-in

pu,Ξ1,Ξ2q (c.f. [Vit10]), namely a 1-cell u : Q Ñ P and invertible 2-cells Ξi : γi ˝ u ñ

µi pi “ 1, 2q such that

pf2 ˝ γ2q ˝ u f2 ˝ pγ2 ˝ uq f2 ˝ µ2

pf1 ˝ γ1q ˝ u f1 ˝ pγ1 ˝ uq f1 ˝ µ1

–

γ˝u

f2˝Ξ2

µ

– f1˝Ξ1

(7.9)

This fill-in is universal in the following sense. For any other fill-in

pv : QÑ P,Ψ1 : γ1 ˝ v ñ µ1,Ψ2 : γ2 ˝ v ñ µ2q

there exists a 2-cell Ψ: : v ñ u, unique such that

γi ˝ v γi ˝ u

µi
Ψi

γi˝Ψ
:

Ξi
(7.10)

for i “ 1, 2. Finally, it is required that for any w : QÑ P the 2-cell id: obtained by applying

the universal property to pw, idγ1˝w, idγ2˝wq is invertible.

Remark 7.3.7. The universal property of pullbacks can be stated in a slightly different

way, which is more useful for some calculations. The pullback of a cospan pX1
f1
ÝÑ X0

f2
ÐÝ X2q

is determined by a biuniversal arrow pγ, γq : ∆P ñ F , for F the pseudofunctor determined

by the cospan, P the pullback, and pγ, γq an iso-commuting square as in (7.8). It follows that
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the functor pγ, γq ˝∆p´q : BpZ,P q Ñ HompC,Bqp∆Z,F q is fully-faithful and essentially

surjective for every Z P B. Being essentially surjective is exactly the existence of a fill-in

for every iso-commuting square, as in the preceding lemma. Being full and faithful entails

that, for every pair of 1-cells t, u : Z Ñ P equipped with 2-cells Γi : γi ˝ tñ γi ˝ u pi “ 1, 2q

satisfying the fill-in law (7.9), there exists a unique 2-cell Γ: : tñ u such that γi ˝ Γ: “ Γi

for i “ 1, 2. đ

The following is an example of where it is convenient to use the universal property of

Remark 7.3.7. The lemma guarantees that one may define objects in a glueing bicategory

(up to equivalence) by pullback.

Lemma 7.3.8. For any pseudofunctor J : B Ñ C and any pullbacks

P B

JA C

x

π
–

p

q

b

a

X B

JA C

x

χ
–

x

y

b

a

in C, the objects pP
p
ÝÑ JAq and pX

x
ÝÑ JAq are equivalent in glpJq.

Proof. It is immediate from the uniqueness of bilimits that there exists a canonical equi-

valence P » X. The only question is whether this equivalence lifts to a 1-cell in glpJq. If

one constructs the equivalence using the universal property of Remark 7.3.7, this follows

immediately.

Preliminaries complete, we can now give the data for defining exponentials in the glueing

bicategory. Precisely, we extend Proposition 7.3.1 to the following. Recall that a cartesian

closed bicategory—a cc-bicategory—is an fp-bicategory equipped with a right biadjoint to

p´q ˆA for every object A (Definition 5.1.1).

Theorem 7.3.9. Let pB,Πnp´q,“Bq and pC,Πnp´q,“Bq be cc-bicategories and suppose that

C has all pullbacks. Then for any fp-pseudofunctor pJ, qˆq : pB,Πnp´qq Ñ pC,Πnp´qq the

glueing bicategory glpJq is cartesian closed with forgetful pseudofunctor πdom : glpJq Ñ B
strictly preserving products and exponentials.

Much of the complication in the definitions that follow arises from the invertible 2-cells

moving 1-cells in and out of products; where the product structure is strict, the exponentials

in glpJq are given similarly to the 1-categorical case. The reader happy to employ Power’s

coherence result for fp-bicategories (Proposition 4.1.8) may therefore greatly simplify the

definitions just given and the calculations to come. Because we wish to prove an independent

coherence result, we do not take this approach.

We begin by defining the mapping p´q“Bp“q and the evaluation 1-cell eval.
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Defining p´q“Bp“q and eval. For C :“ pC, c,Bq and C 1 :“ pC 1, c1, B1q in glpJq we set

the exponential C “BC 1 to be the left-hand vertical leg of the following pullback diagram,

in which mB,B1 is the exponential transpose of JpevalB,B1q ˝ qˆ
`

c.f. the definition in the

1-categorical case (7.2)
˘

:

C Ą C 1 pC “BC 1q

JpB“BB1q pJB“B JB1q pC “B JB1q

ωc,c1
ð

x

pc,c1

qc,c1

λpc1˝evalC,C1 q

λpevalJB,JB1 ˝ ppJB“BJB1q ˆ cqq ˝mB,B1

mB,B1

λpevalJB,JB1˝ppJB“BJB1qˆcqq

(7.11)

We use λpc1 ˝ evalC,C1q and λpevalJB,JB1 ˝ ppJB“B JB1q ˆ cqq instead of pJB“B cq and

pC “B c1q as a simplifying measure: doing so avoids the need to apply the isomorphisms

pJB“B cq – λpc1 ˝ evalC,C1q and pC “B c1q – λpevalJB,JB1 ˝ ppJB“B JB1q ˆ cqq removing the

redundant identities in the left-hand side (recall the comment after Notation 5.1.3).

Notation 7.3.10. For reasons of space—particularly for fitting pasting diagrams onto a

single page—we will sometimes write rc :“ evalJB,JB1 ˝ ppJB“B JB1q ˆ cq where c : C Ñ JB

in C (see, for example, (7.12)). đ

For the evaluation 1-cell eval we take the 1-cell with components

pC Ą C 1q ˆ C
qc,c1ˆC
ÝÝÝÝÝÑ pC “BC 1q ˆ C

evalC,C1
ÝÝÝÝÝÑ C 1

pB“BB1q ˆB
evalB,B1
ÝÝÝÝÝÑ B1

The witnessing 2-cell EC,C1 is given by the following pasting diagram.

pC Ą C 1q ˆ C pC “BC 1q ˆ C C 1

JpB“BB1q ˆ C pJB“B JB1q ˆ C pC “B JB1q ˆ C

JpB“BB1q ˆ JB pJB“B JB1q ˆ JB

J ppB“BB1q ˆBq JB1

qc,c1ˆC

pc,c1ˆC

pc,c1ˆc

evalC,C1˝pqc,c1ˆCq

qˆ
pB“BB1,Bq

˝ppc,c1ˆcq

ωc,c1ˆC

–
λpc1˝evalC,C1 qˆC

c1

Φ
–

mB,B1ˆC

JpB“BB1qˆc –

λrcˆC

pJB“BJB1qˆc

ε
– evalC,JB1

ε
–

mB,B1ˆJB

qˆ
pB“BB1,Bq

ε
–

evalJB,JB1

JevalB,B1

(7.12)

Here we omit the canonical 2-cells for the product structure: thus, the shape labelled

ωc,c1 ˆ C is actually the composite
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`

λpc1 ˝ evalC,C1q ˆ C
˘

˝
`

qc,c1 ˆ C
˘

pλrcˆ Cq ˝
`

pmB,B1 ˆ Cq ˝ ppc,c1 ˆ Cq
˘

`

λpc1 ˝ evalC,C1q ˝ qc,c1
˘

ˆ pIdC ˝ IdCq

`

λpc1 ˝ evalC,C1q ˝ qc,c1
˘

ˆ C pλrc ˝mB,B1 ˝ pc,c1q ˆ C

Φλpc1˝evalq,q;Id

–

ωc,c1ˆC

–

in which the unlabelled isomorphism employs two applications of Φ´1, together with the

evident structural isomorphisms.

Notation 7.3.11. For the rest of this chapter we will adopt the convention just employed,

and write simply – for instances of either Φ or its inverse, composed with structural

isomorphisms. Power’s coherence result guarantees that this is valid as an explanatory

shorthand: of course, the masochistic reader could work explicitly with all the instances of

Φ and prove exactly the same set of diagrams commute. Thus, while Power’s result is useful

for reasons of exposition and presentation, the proofs we present do not rely on it. đ

With this convention, EC,C1 is the following composite:

c1 ˝
`

evalC,C1 ˝ pqc,c1 ˆ Cq
˘

JpevalB,B1q ˝
`

qˆ
pB“BB1,Bq ˝ ppc,c1 ˆ cq

˘

`

c1 ˝ evalC,C1
˘

˝ pqc,c1 ˆ Cq

`

evalC,C1 ˝
`

λpc1 ˝ evalC,C1q ˆ C
˘˘

˝ pqc,c1 ˆ Cq
`

JpevalB,B1q ˝ qˆ
pB“BB1,Bq

˘

˝ ppc,c1 ˆ cq

evalC,C1 ˝
`

λpc1 ˝ evalC,C1q ˝ qc,c1
˘

ˆ C
`

evalJB,JB1 ˝ pmB,B1 ˆ JBq
˘

˝ ppc,c1 ˆ cq

evalC,C1 ˝
``

λrc ˝mB,B1
˘

˝ pc,c1
˘

ˆ C

`

evalC,C1 ˝ pλrcˆ Cq
˘

˝
`

mB,B1pc,c1 ˆ C
˘

rc ˝
`

mB,B1pc,c1 ˆ C
˘

–

EC,C1

ε´1
pc1˝evalq

˝pqc,c1ˆCq

–

–

eval˝pωc,c1ˆCq

ε
pJeval˝q̂ q

˝ppc,c1ˆcq

–

ε
rc˝pmB,B1pc,c1ˆCq

–

(7.13)
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The mapping λ. Next we need to provide a mapping λ assigning a 1-cell of type

R Ñ pC “BC 1q to every 1-cell R ˆ C Ñ C 1. Let R :“ pR, r,Qq, C :“ pC, c,Bq and

C 1 :“ pC 1, c1, B1q. As our starting point, suppose given a 1-cell pt, α, sq : Rˆ C Ñ C 1, as on

the left below:

Rˆ C C 1

JQˆ JB

JpQˆBq JB1

α
ð

qˆQ,B˝prˆcq

rˆc

t

c1

qˆQ,B

Js

R C “BC 1

JQ

JpB“BB1q JB“B JB1 C “B JB1

Jpλsq˝r Lα
ð

r

λt

λpc1˝evalC,C1 q

Jλs

λrc˝mB,B1

mB,B1 λrc

We construct a 2-cell Lα as on the right above and apply the universal property of the

pullback (7.11). To this end, let us define two invertible composites, which we denote by

Tα and Uα. For Tα we take

evalC,JB1 ˝
`

λpc1 ˝ evalC,C1q ˝ λt
˘

ˆ C c1 ˝ t

`

evalC,JB1 ˝
`

λpc1 ˝ evalC,C1q ˆ C
˘˘

˝ pλtˆ Cq c1 ˝
`

evalC,C1 ˝ pλtˆ Cq
˘

`

c1 ˝ evalC,C1
˘

˝ pλtˆ Cq

Tα

–

εpc1˝evalq˝pλtˆCq

c1˝εt

–

and for Uα we take

evalC,JB ˝ ppλrc ˝mB,B1q ˝ pJpλsq ˝ rqq ˆ C Js ˝
´

qˆQ,B ˝ pr ˆ cq
¯

evalC,JB ˝ pλrcˆ Cq ˝ pmB,B1 ˝ pJpλsq ˝ rqq ˆ C

rc ˝ pmB,B1 ˝ pJpλsq ˝ rqq ˆ C JpevalB,B1 ˝ pλsˆBqq ˝
´

qˆQ,B ˝ pr ˆ cq
¯

pevalJB,JB1 ˝ pmB,B1 ˆ JBqq ˝ ppJpλsq ˆ JBq ˝ pr ˆ cqq pJpevalB,B1q ˝ JpλsˆBqq ˝
´

qˆQ,B ˝ pr ˆ cq
¯

´

JpevalB,B1q ˝ qˆ
pB“BB1,Bq

¯

˝ ppJpλsq ˆ JIdBq ˝ pr ˆ cqq JpevalB,B1q ˝
´´

JpλsˆBq ˝ qˆQ,B

¯

˝ pr ˆ cq
¯

JpevalB,B1q ˝
``

qˆ
pB“BB1,Bq ˝ pJpλsq ˆ JIdBq

˘

˝ pr ˆ cq
˘

–

Uα

ε
rc˝pmB,B1˝Jpλsq˝rqˆC

–

Jεs˝q
ˆ
˝prˆcq

ε
pJeval˝q̂ q

˝pJpλsqˆJBq˝prˆcq

φJ
eval,λsˆB˝q

ˆ
˝prˆcq

–

–

JpevalB,B1 q˝nat˝prˆcq

We may therefore define a 2-cell Kα as the composite
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evalC,JB1 ˝
`

λpc1 ˝ evalC,C1q ˝ λt
˘

ˆ C evalC,JB ˝
``

λrc ˝mB,B1
˘

˝ pJpλsq ˝ rq
˘

ˆ C

c1 ˝ t Js ˝
´

qˆQ,B ˝ pr ˆ cq
¯

Tα

Kα

α

U´1
α

and, finally, Lα as

λpc1 ˝ evalC,C1q ˝ λt
`

λrc ˝mB,B1
˘

˝ pJpλsq ˝ rq

λ
`

evalC,JB ˝
``

λrc ˝mB,B1
˘

˝ pJpλsq ˝ rq
˘

ˆ C
˘

Lα

e:pKαq η´1

Since we work in the pseudo setting, Uα, Tα, Kα—and hence Lα—are all invertible.

Now, Lα fills the following diagram:

R pC “BC 1q

JpB“BB1q pC “B JB1q

Jpλsq˝r Lα
–

λt

λpc1˝evalC,C1 q

λrc˝mB,B1

(7.14)

Hence, by the universal property of the pullback (7.11), one obtains a 1-cell lamptq and a

pair of invertible 2-cells Γc,c1 and ∆c,c1 filling the diagram

R

C Ą C 1 pC “BC 1q

JpB“BB1q pC “B JB1q

Jpλsq˝r

λt

∆c,c1

ñ

Γc,c1
ð

lamptq

ωc,c1
ð

x

pc,c1

qc,c1

λpc1˝evalC,C1 q

λrc˝mB,B1

(7.15)

such that the pasting diagrams (7.14) and (7.15) are equal, i.e. the following commutes:

λpc1 ˝ evalC,C1q ˝
`

qc,c1 ˝ lamptq
˘

`

λpc1 ˝ evalC,C1q ˝ qc,c1
˘

˝ lamptq λpc1 ˝ evalC,C1q ˝ λt

``

λrc ˝mB,B1
˘

˝ pc,c1
˘

˝ lamptq
`

λrc ˝mB,B1
˘

˝ pJpλsq ˝ rq

`

λrc ˝mB,B1
˘

˝
`

pc,c1 ˝ lamptq
˘

λpc1˝evalC,C1 q˝∆c,c1–

ωc,c1˝lamptq Lα

– λrc˝mB,B1˝Γc,c1

(7.16)

Moreover, Γc,c1 and ∆c,c1 are universal in the sense of Lemma 7.3.6. We define λpt, α, sq :“
`

lamptq,Γc,c1 , λs
˘

.
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The counit ε. Finally we come to the counit. Let us first calculate eval ˝
`

λpt, α, sq ˆ

pC, c,Bq
˘

for a 1-cell t :“ pt, α, sq : pR, r,Qq ˆ pC, c,Bq Ñ pC 1, c1, B1q. Using Lemma 7.3.4,

one unwinds this 1-cell to the following pasting diagram, in which we omit the canonical

isomorphisms for the product structure as well as the structural isomorphisms:

Rˆ C pC Ą C 1q ˆ C C 1

JQˆ JB JpB“BB1q ˆ JB

JpQˆBq J
`

pB“BB1q ˆB
˘

JB1

`

evalC,C1 ˝ pqc,c1 ˆ Cq
˘

˝ plamptq ˆ Cq

qˆQ,B˝prˆcq

Γc,c1ˆc
ð

rˆc

lamptqˆC

EC,C1
–

qc,c1ˆc

evalC,C1˝pqc,c1ˆCq

c1

nat
–

JpλsqˆψJ
B

–

JpλsqˆJIdB

JpλsqˆJB

qˆQ,B qˆ
pB“BB1,Bq

JpevalB,B1 ˝ pλsˆBqq

φJ

–

JpλsˆBq JevalB,B1

For the counit εt we therefore take the 2-cell with first component et defined by

`

evalC,C1 ˝ pqc,c1 ˆ Cq
˘

˝ plamptq ˆ Cq t

evalC,C1 ˝ pqc,c1 ˝ lamptqq ˆ C evalC,C1 ˝ pλtˆ Cq

et

–

evalC,C1˝p∆c,c1ˆCq

εt (7.17)

and second component simply

evalB,B1 ˝ pλsˆBq
εs
ùñ s

We need to check that this to be a legitimate 2-cell in glpJq, i.e. that the cylinder condition

holds.
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Lemma 7.3.12. For any objects R :“ pR, r,Qq, C :“ pC, c,Bq and C 1 :“ pC 1, c1, B1q and

1-cell t :“ pt, α, sq : Rˆ C Ñ C 1 in glpJq, the pasting diagram

Rˆ C pC Ą C 1q ˆ C C 1

JQˆ JB JpB“BB1q ˆ JB

JpQˆBq J
`

pB“BB1q ˆB
˘

JB1

`

evalC,C1 ˝ pqc,c1 ˆ Cq
˘

˝ plamptq ˆ Cq

qˆQ,B˝prˆcq

Γc,c1ˆc
ð

rˆc

lamptqˆC

EC,C1
–

qc,c1ˆc

evalC,C1˝pqc,c1ˆCq

c1

nat
–

JpλsqˆψJ
B

–

JpλsqˆJIdB

JpλsqˆJB

qˆQ,B qˆ
pB“BB1,Bq

JpevalB,B1 ˝ pλsˆBqq

Js

φJ

–

Jεs
–

φJ

–

JpλsˆBq JevalB,B1

is equal to

pC Ą C 1q ˆ C pC “BC 1q ˆ C

Rˆ C C 1

JQˆ JB

JpQˆBq JB1

pqc,c1 ˆ Cq ˝ plamptq ˆ Cq

–

ó∆c,c1 ˆ C

qc,c1ˆC

–

εt
–

evalC,C1

`

evalC,C1 ˝ pqc,c1 ˆ Cq
˘

˝ plamptq ˆ Cq

qˆQ,B˝prˆcq
α
ð

rˆc

λtˆC
t

lamptqˆC

c1

qˆQ,B

Js

Hence εt :“ pet, εsq is a 2-cell in glpJq.

Proof. Unfolding the first diagram, one sees that it is equal to the composite
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c1 ˝
``

evalC,C1 ˝ pqc,c1 ˆ Cq
˘

˝ plamptq ˆ Cq
˘

Js ˝
´

qˆQ,B ˝ pr ˆ cq
¯

evalJB,JB1 ˝
`

mB,B1 ˝
`

pc,c1 ˝ lamptq
˘˘

ˆ c evalC,JB ˝
``

λrc ˝mB,B1
˘

˝ pJpλsq ˝ rq
˘

ˆ C

evalJB,JB1 ˝
`

mB,B1 ˝ pJpλsq ˝ rq
˘

ˆ c pevalC,JB ˝ pλrcˆ Cqq ˝
`

mB,B1 ˝ pJpλsq ˝ rq
˘

ˆ C

`

evalB,B1 ˝ rc
˘

˝
`

mB,B1 ˝ pJpλsq ˝ rq
˘

ˆ C

p˚q

evalJB,JB1˝pmB,B1˝Γc,c1 qˆC

Uα

–

–

ε´1
rc
˝pmB,B1˝Jpλsq˝rqˆC

where the arrow labelled p˚q arises by composing the following with structural isomorphisms

and Φ:

c1 ˝
`

evalC,C1 ˝ pqc,c1 ˆ Cq
˘

evalJB,JB1 ˝
`

pmB,B1 ˝ pc,c1q ˆ c
˘

c1 ˝
`

evalC,C1 ˝ pqc,c1 ˆ Cq
˘ `

evalJB,JB1 ˝ pmB,B1 ˆ JBq
˘

˝ ppc,c1 ˆ cq

JpevalB,B1q ˝
`

qˆ
pB“BB1,Bq ˝ ppc,c1 ˆ cq

˘ `

JpevalB,B1q ˝ qˆ
pB“BB1,Bq

˘

˝ ppc,c1 ˆ cq

–

EC,C1

–

–

ε´1
eval˝pmˆJBq

˝ppc,c1ˆcq

Applying the coherence condition (7.16), the first diagram in the claim reduces further to

c1 ˝ ppevalC,C1 ˝ pqc,c1 ˆ Cqq ˝ plamptq ˆ Cqq Js ˝
´

qˆQ,B ˝ pr ˆ cq
¯

c1 ˝
`

evalC,C1 ˝
`

pqc,c1 ˝ lamptq
˘

ˆ C
˘

c1 ˝ pevalC,C1 ˝ pλtˆ Cqq evalJB,C1 ˝ ppλrc ˝mB,B1q ˝ pJpλsq ˝ rqq ˆ C

pc1 ˝ evalC,C1q ˝ pλtˆ Cq

pevalJB,C1 ˝ pλpc
1 ˝ evalC,C1q ˆ Cqq ˝ pλtˆ Cq evalJB,C1 ˝

`

λpc1 ˝ evalC,C1q ˝ λt
˘

ˆ C

–

c1˝evalC,C1˝p∆C,C1ˆCq

–

Uα

ε´1

pc1˝evalq
˝pλtˆCq

–

evalJB,C1˝pLαˆCq

(7.18)

Next, by the definition of Lα and the triangle law relating η and ε, one sees that

evalJB,C ˝ pλhˆ Cq h

evalJB,C ˝
`

λpc1 ˝ evalC,C1q ˝ λt
˘

ˆ C h

evalJB,C˝λpη
´1
h ˆCq

εh

Kα

evalJB,C˝pe:pKαqˆCq

evalJB,C1˝pLαˆCq
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for h :“ evalC,JB ˝
``

λrc ˝mB,B1
˘

˝ pJpλsq ˝ rq
˘

ˆC. Hence, the composite (7.18) is equal to

the anti-clockwise route around the diagram below, in which p:q abbreviates

`

c1 ˝ evalC,C1
˘

˝ pλtˆ Cq
–
ùñ c1 ˝

`

evalC,C1 ˝ pλtˆ Cq
˘ c1˝εt
ùùñ c1 ˝ t

and the bottom two shapes commute by definition:

c1 ˝
``

evalC,C1 ˝ pqc,c1 ˆ Cq
˘

˝ plamptq ˆ Cq
˘

`

c1 ˝ evalC,C1
˘

˝
`

qc,c1 ˝ lamptq
˘

ˆ C

`

c1 ˝ evalC,C1
˘

˝ pλtˆ Cq

`

evalJB,C1 ˝ pλpc
1 ˝ evalC,C1q ˆ Cq

˘

˝ pλtˆ Cq
`

c1 ˝ evalC,C1
˘

˝ pλtˆ Cq c1 ˝ t

evalJB,C1 ˝
`

λpc1 ˝ evalC,C1q ˝ λt
˘

ˆ C

evalJB,C1 ˝
``

λrc ˝mB,B1
˘

˝ pJpλsq ˝ rq
˘

ˆ C Js ˝
´

qˆQ,B ˝ pr ˆ cq
¯

–

c1˝evalC,C1˝p∆c,c1ˆCq

ε´1
pc1˝evalq

˝pλtˆCq

εpc1˝evalq˝pλtˆCq
–

p:q

α

Tα

Kα

Uα

The clockwise route around this diagram is equal to the 2-cell given by the second diagram

in the claim, so the proof is complete.

We have now constructed all the data we shall require. It remains to show that, together,

it defines an adjoint equivalence

λ : glpJq
`

Rˆ C,C 1
˘

Ô glpJq
`

R,C “BC 1
˘

: evalC,C1 ˝ p´ ˆ Cq

Thus, we need to check that for every pair of 1-cells g : RÑ pC “BC 1q and t : Rˆ C Ñ C 1

related by a 2-cell τ :“ pτ, σq : evalC,C1 ˝ pg ˆ Cq ñ t, there exists a 2-cell e:pτq : g ñ λt,

unique such that

evalC,C1 ˝ pg ˆ Cq evalC,C1 ˝ pλtˆ Cq

t
τ

evalC,C1˝pe:pτqˆCq

εt

(7.19)

We turn to this next.
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Universality of ε “ pe, εq. We begin with the existence part of the claim. Let g :“

pg, γ, fq : pR, r,Qq Ñ pC Ą C 1, pc,c1 , B“BB
1q and t :“ pt, α, sq : pR ˆ C, qˆQ,B ˝ pr ˆ cq, Qˆ

Bq Ñ pC 1, c1, B1q be 1-cells and suppose that τ :“ pτ, σq : evalC,C1 ˝ pg ˆ Cq ñ t. Thus, τ

and σ have type

τ :
`

evalC,C1 ˝ pqc,c1 ˆ Cq
˘

˝ pg ˆ Cq ñ t

σ : evalB,B1 ˝ pf ˆBq ñ s

and we are required to provide 2-cells τ 7 and σ7 of type

τ 7 : g ñ lamptq

σ7 : f ñ λs

satisfying the cylinder condition. For the second component we can simply take e:pσq. For

the first component we use the universal property of pullbacks. We aim to construct a pair

of 2-cells

pc,c1 ˝ g ñ Jpλsq ˝ r

qc,c1 ˝ g ñ λt

such that the coherence condition (7.16) holds. We claim that the following 2-cells suffice

Σ1 :“ pc,c1 ˝ g
γ
ùñ Jpfq ˝ r

Jpe:pσqq˝r
ùùùùùùñ Jpλsq ˝ r

Σ2 :“ qc,c1 ˝ g
e:pχq
ùùùñ λt

(7.20)

where χ :“ evalC,C1 ˝
`

pqc,c1 ˝ gq ˆ C
˘ –
ùñ

`

evalC,C1 ˝ pqc,c1 ˆ Cq
˘

˝ pgˆ cq
τ
ùñ λt. The required

coherence condition is the subject of the following lemma.

Lemma 7.3.13. Consider a pair of 1-cells

g :“ pg, γ, fq : pR, r,Qq Ñ pC Ą C 1, pc,c1 , B“BB
1q

t :“ pt, α, sq : pRˆ C, qˆQ,B ˝ pr ˆ cq, QˆBq Ñ pC 1, c1, B1q

in glpJq related by a 2-cell τ :“ pτ, σq : evalC,C1 ˝ pg ˆ Cq ñ t. Then, where Σ1 and Σ2 are

defined in (7.20), the following diagram commutes:

`

λpc1 ˝ evalC,C1q ˝ qc,c1
˘

˝ g λpc1 ˝ evalC,C1q ˝
`

qc,c1 ˝ g
˘

λpc1 ˝ evalC,C1q ˝ λt

``

λrc ˝mB,B1
˘

˝ pc,c1
˘

˝ g
`

λrc ˝mB,B1
˘

˝
`

pc,c1 ˝ g
˘ `

λrc ˝mB,B1
˘

˝ pJpλsq ˝ rq

–

ωc,c1˝g

λpc1˝evalC,C1 q˝Σ2

Lα

–
λrc˝mB,B1˝Σ1
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Proof. Straightforward manipulations and an application of the cylinder condition on τ

unfolds the clockwise route to the following composite:

pλpc1 ˝ evalC,C1q ˝ qc,c1q ˝ g pλrc ˝mB,B1q ˝ pJpλsq ˝ rq

λpevalC,JB ˝ ppλrc ˝mB,B1q ˝ pJpλsq ˝ rqq ˆ Cq

λ pevalC,JB1 ˝ ppλpc
1 ˝ evalC,C1q ˝ qc,c1q ˝ gq ˆ Cq λ

´

Js ˝
´

qˆQ,B ˝ pr ˆ cq
¯¯

η

η´1

λζ

λU´1
α

(7.21)

Here ζ : evalC,JB1 ˝
``

λpc1 ˝ evalC,C1q ˝ qc,c1
˘

˝ g
˘

ˆC Ñ Js˝
´

qˆQ,B ˝ pr ˆ cq
¯

is the composite

defined by commutativity of the following diagram:

evalC,JB1 ˝
``

λpc1 ˝ evalC,C1q ˝ qc,c1
˘

˝ g
˘

ˆ C Js ˝
´

qˆQ,B ˝ pr ˆ cq
¯

`

evalC,JB1 ˝
`

λpc1 ˝ evalC,C1q ˆ C
˘˘

˝
`

pqc,c1 ˝ gq ˆ C
˘

J
`

evalB,B1 ˝ pf ˆBq
˘

˝

´

qˆQ,B ˝ pr ˆ cq
¯

pc1 ˝ evalC,C1q ˝
`

pqc,c1 ˝ gq ˆ C
˘ `

JpevalB,B1q ˝ Jpf ˆBq
˘

˝

´

qˆQ,B ˝ pr ˆ cq
¯

`

c1 ˝
`

evalC,C1 ˝ pqc,c1 ˆ Cq
˘˘

˝ pg ˆ Cq
´

JpevalB,B1q ˝
´

Jpf ˆBq ˝ qˆQ,B

¯¯

˝ pr ˆ cq

`

JpevalB,B1q ˝
`

qˆ
pB“BB1,Bq ˝ ppc,c1 ˆ cq

˘˘

˝ pg ˆ Cq

`

JpevalB,B1q ˝ qˆ
pB“BB1,Bq

˘

˝
`

ppc,c1 ˝ gq ˆ c
˘ `

JpevalB,B1q ˝
`

qˆ
pB“BB1,Bq ˝ pJf ˆ JIdBq

˘˘

˝ pr ˆ cq

`

JpevalB,B1q ˝ qˆ
pB“BB1,Bq

˘

˝
`

pJf ˝ rq ˆ c
˘ `

JpevalB,B1q ˝
`

qˆ
pB“BB1,Bq ˝ pJf ˆ JBq

˘˘

˝ pr ˆ cq

ζ

–

εpc1˝evalq˝pqgˆCq

Jpσq˝q̂ ˝prˆcq

–

φJeval,fˆB˝q̂ ˝prˆcq

EC,C1˝pgˆCq

–

–

Jpevalq˝q̂ ˝pγˆcq

Jpevalq˝natf,Id˝prˆcq

–

Jpevalq˝q̂ ˝pJfˆψJ
Bq˝prˆcq

A short calculation shows that the following also commutes:

evalC,JB1 ˝
``

λpc1 ˝ evalC,C1q ˝ qc,c1
˘

˝ g
˘

ˆ C Js ˝
´

qˆQ,B ˝ pr ˆ cq
¯

evalC,JB1 ˝
```

λrc ˝mB,B1
˘

˝ pc,c1
˘

˝ g
˘

ˆ C

evalC,JB1 ˝
``

λrc ˝mB,B1
˘

˝
`

pc,c1 ˝ g
˘˘

ˆ C evalC,JB1 ˝
``

λrc ˝mB,B1
˘

˝ pJpλsq ˝ rq
˘

ˆ C

eval˝pωc,c1˝gqˆC

ζ

–

eval˝pλrc˝m˝Σ1qˆC

Uα

Substituting this back into (7.21) and applying the naturality of η, one obtains the anti-

clockwise route around the claim, as required.
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It follows that pg,Σ1,Σ2q is a fill-in. By the universality of the fill-in plamptq,Γ,∆q,
therefore, one obtains a 2-cell Σ: : g ñ lamptq, unique such that the following two diagrams

commute
`

c.f. (7.10)
˘

:

pc,c1 ˝ g Jpfq ˝ r

pc,c1 ˝ lamptq Jpλsq ˝ r

γ

pc,c1˝Σ
: Jpe:pσqq˝r

Γc,c1

qc,c1 ˝ g

qc,c1 ˝ lamptq λt

qc,c1˝Σ
: e:pχq

∆c,c1

(7.22)

We therefore define the components of e:pτq as follows:

τ 7 :“ Σ: : g ñ lamptq

σ7 :“ e:pσq : f ñ λs
(7.23)

Note that the left-hand diagram of (7.22) establishes this pair is a 2-cell in glpJq. We

need to show that this 2-cell makes (7.19) commute. For the second component, this holds

by assumption. For the first component, we observe that et is the right-hand leg of the

following diagram:

`

evalC,C1 ˝ pqc,c1 ˆ Cq
˘

˝ pg ˆ Cq
`

evalC,C1 ˝ pqc,c1 ˆ Cq
˘

˝ plamptq ˆ Cq

evalC,C1 ˝
`

pqc,c1 ˝ g
˘

ˆ Cq evalC,C1 ˝
`

pqc,c1 ˝ lamptq
˘

ˆ Cq

evalC,C1 ˝ pλtˆ Cq

t

nat.
“

τ

–

evalC,C1˝pqc,c1ˆCq˝pΣ
:ˆCq

–

χ

def.
“

UMP
“

evalC,C1˝pΣ
:ˆCq

evalC,C1˝p∆c,c1ˆCq

εt

The unlabelled inner arrow is evalC,C1 ˝ pe:pχq ˆ Cq (where χ is defined just after (7.20)),

so the triangular shape commutes by (7.22). This completes the existence part of the

universality claim; we record our progress so far in the following lemma.

Lemma 7.3.14. For any triple of 1- and 2-cells as in Lemma 7.3.13, the pair e:pτq :“

pΣ:, e:pσqq defined in (7.23) is a 2-cell g ñ λ t in glpJq satisfying (7.19).

It remains to show uniqueness. Suppose given a 2-cell θ : g ñ λ t in glpJq with

components

θ : g ñ lamptq

ϑ : f ñ λs

such that θ fills (7.19). Examining the second component, it is immediate from the universal

property of e:pσq that e:pσq “ ϑ. For the first component, we show that θ “ Σ: by showing

that θ satisfies the two diagrams of (7.22). For the left-hand diagram, the cylinder condition

on θ requires that
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pc,c1 ˝ g Jpfq ˝ r

pc,c1 ˝ lamptq Jpλsq ˝ r

γ

pc,c1˝θ Jpϑq˝r

Γc,c1

But we already know that ϑ “ e:pσq, so the required diagram commutes. For the right-hand

diagram, it follows from (7.19) and the definition of et that the following commutes:

evalC,C1 ˝
`

pqc,c1 ˝ gq ˆ C
˘ `

evalC,C1 ˝ pqc,c1 ˆ Cq
˘

˝ pg ˆ Cq

evalC,C1 ˝
``

qc,c1 ˝ lamptq
˘

ˆ C
˘

evalC,C1 ˝ pλtˆ Cq t

evalC,C1˝pqc,c1˝θqˆC

–

τ

evalC,C1˝p∆c,c1ˆCq
εt

The claim then holds by the universal property of e:pϑq. Thus:

Lemma 7.3.15. For any triple of 1- and 2-cells as in Lemma 7.3.13, the pair e:pτq :“

pΣ:, e:pσqq defined in (7.23) is the unique 2-cell g ñ λ t in glpJq satisfying (7.19).

This completes the proof that for any R,C and C 1 in glpJq the diagram

λ : glpJq
`

Rˆ C,C 1
˘

Ô glpJq
`

R,C “BC 1
˘

: evalC,C1 ˝ p´ ˆ Cq

is an adjoint equivalence, and hence the proof of Theorem 7.3.9.





Chapter 8

Normalisation-by-evaluation for

Λ
ˆ,Ñ
ps

We now turn to the main result of this thesis, namely the coherence result for cartesian

closed bicategories. Our strategy is to employ a bicategorical treatment of the normalisation-

by-evaluation proof technique. It is well-known that the näıve strategy for proving strong

normalisation of the simply-typed lambda calculus—by a straightforward structural induc-

tion on terms—fails because an application apppt, uq may contain redexes that do not occur

in either t or u. One classical solution, originally due to Tait [Tai67], is to strengthen the in-

ductive hypothesis using reducibility predicates. This approach was refined by Girard [Gir72],

who introduced the notion of neutral terms. These can be viewed as the obstructions to

the normalisation proof: they are the terms whose introduction rules may introduce new

β-redexes.

Normalisation-by-evaluation provides an alternative strategy: as a slogan, one ‘inverts

the evaluation functional’ to construct a mapping from neutral to normal terms. Loosely

speaking, one constructs a model with enough intensional information to pass back and

forth between semantics and syntax. One quotes a morphism f to a (normal) term in the

syntax, and unquotes a term t to a morphism in the semantics (these operations are also

known as reify and reflect).

The intuition is—very roughly—as follows. Consider a semantics J´K for the simply-typed

lambda calculus, determined by a choice of cartesian closed category and an interpretation

of the base types, and suppose that one has constructed mappings quote and unquote
between the syntax and semantics, as indicated above. For a term px : A $ t : Bq one has an

interpretation JtK : JAK Ñ JBK. Now, where x is a generic fresh variable, unquotepxq : JAK.
So one may evaluate JtK at unquotepxq to obtain a normal term quote pJtK punquotepxqqq of

type B. The normal form of λx.t is then λx. quote
`

JtK punquotepxqq
˘

.

First introduced by Berger & Schwichtenberg [BS91] for the simply-typed lambda

calculus, normalisation-by-evaluation has become a standard tool for tackling normalisation

problems. It has been extended to a number of richer calculi, including the simply-typed

lambda calculus with sum types [ADHS01], versions of Martin-Löf type theory (e.g. [ACD07,

239
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AK16, AK17]), and even to type theories with algebraic effects [Sta13]. Moreover, the

normalisation algorithm one extracts from normalisation-by-evaluation is generally highly

efficient, which has led to significant study for applications in interactive proof systems

(see e.g. [BES98]).

Here we follow in the vein of categorical reconstructions of the normalisation-by-

evaluation argument (e.g. [AHS95, CD97, CD98, Fio02]). In particular, the argument

we present closely follows [Fio02]; the reliance on categorical properties there lends itself

especially to bicategorical translation.

The chapter is arranged as follows. We begin in Section 8.1 by briefly recapitulating the

argument of [Fio02]. In Sections 8.2–8.3 we show how the crucial elements of this argument

can be lifted to the bicategorical setting. Section 8.4 presents the main result of this thesis:

Λˆ,Ñps is locally coherent.

8.1 Fiore’s categorical normalisation-by-evaluation proof

We extract the bare bones of Fiore’s argument [Fio02]. The intention is not to provide the

reader with the full proof, but to waypoint the key steps in the bicategorical argument we

present thereafter.

Syntax as presheaves. For any set of base types B, let Con
rB

denote the free strict

cocartesian category on the set rB generated by the grammar

X1, . . . , Xn, Y, Z ::“ B |
ś

npX1, . . . , Xnq | Y “BZ pB P B, n P Nq

Explicitly, this is the comma category pF Ó rBq, where F is a skeleton of the category of

finite sets and all set-theoretic functions. For our purposes, however, we identify it with

the category of contexts, in which the objects are contexts (defined by Figure 8.1, below)

and the morphisms are context renamings. Note that we index from 0 to avoid awkward

off-by-one manipulations.

˛ ctx
Γ ctx |Γ| “ n

`

A P rB
˘

Γ, xn : A ctx

Figure 8.1: Rules for contexts

To ensure that that Con
rB

is strict cocartesian, we stipulate that variables are named

in order according to a fixed enumeration. However, following our standing abuse (Nota-

tion 3.2.12), we shall freely employ more indicative variable names, such as using f to

denote a variable of exponential type.

An object γ : rns Ñ rB (for rns “ t0, . . . , n ´ 1u P F) in pF Ó rBq corresponds to the

context pxi : γpiqqi“1, ... ,n. A morphism h : γ Ñ δ, namely a set map rns Ñ rms such that
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the diagram below commutes, corresponds to the context renaming xi ÞÑ xhi.

rns rms

rB

γ

h

δ

The coproduct Γ`∆ is the concatenated context Γ @ ∆.

We denote the universal embedding of rB into Con
rB

by r´s; thus, rAs coerces the type

A into the unary context px1 : Aq, and the coproduct Γ` rAs is the weakening of Γ by a

variable of type A. The notation is chosen to suggest a list of length one.

In the tradition of algebraic type theory (e.g. [FPT99, Fio11]), the category PpCon
rB

opq

of covariant presheaves Con
rB
Ñ Set provides a semantic universe for the study of abstract

syntax. For example, for the simply-typed lambda calculus Λˆ,ÑpBq over B, the set of

terms-in-context of a given type B (modulo α-equivalence) define a presheaf Lp´;Bq by

LpΓ;Bq :“ tt | Γ $ t : Bu {“α. The functorial action is given by context renamings: for

contexts Γ :“ pxi : Aiqi“1, ... ,n and ∆ :“ pyj : Bjqj“1, ... ,m and a context renaming r : Γ Ñ ∆,

one obtains a mapping

LpΓ;Bq Ñ Lp∆;Bq

t ÞÑ trrpxiq{xis

by the admissibility of the rule

Γ $ t : B r : ∆ Ñ Γ
∆ $ trrpxiq{xis : B

The Yoneda embedding y yields a presheaf of variables: for any type A P rB and context Γ,

yprAsqpΓq “ ypx : AqpΓq “ Con
rB
ppx : Aq,Γq corresponds to the set of inclusions of contexts

px : Aq ãÑ Γ. This determines a presheaf V p´;Aq defined by V pΓ;Aq “ tx | Γ $ x : Au. The

well-known fact that ryX,P s – P p´ˆXq in any presheaf category over a cartesian category

corresponds to the observation that the exponential presheaf ryA,Lp´;Bqs consists of terms

of type B in the extended context Γ` rAs (note that, since Con
rB

is strict cocartesian, its

opposite category is strict cartesian).

Intensional Kripke relations We extend the Kripke logical relations of varying arity

of [JT93, Ali95] to a category of intensional Kripke relations. Encoding this extra intensional

information allows one to extract a normalisation algorithm from the proof. Abstractly,

the key to this construction is the relative hom-functor (also known as the nerve functor).

For any functor J : B Ñ X the left Kan extension xJy :“ lanJpyq exists as in the following

diagram, in which PpBq denotes the presheaf category:

B PpBq

X
J

y

ó lan

xJy

(8.1)



242 CHAPTER 8. NORMALISATION-BY-EVALUATION FOR Λˆ,Ñps

Explicitly, xJypXq :“ X
`

Jp´q, X
˘

: Bop Ñ Set and lanB : Bp´, Bq ñ X
`

Jp´q, JB
˘

is just

the functorial action of J. This construction is particularly well-known in the context of

profunctors (distributors), since B
`

Jp´q, X
˘

and B
`

X, Jp´q
˘

provide canonical (indeed,

adjoint) profunctors X Û B for every functor J : B Ñ X (e.g. [Bor94, Example 7.8.3]).

Definition 8.1.1.

1. For J : B Ñ X a functor, the relative hom-functor is the functor xJy : X Ñ PpBq
defined above.

2. For a category B and a functor J : B Ñ X, the category of B-intensional Kripke relations

of arity J is the glueing category glpxJyq associated to the relative hom-functor. đ

The relative hom-functor preserves limits so, when X is cartesian closed, the glueing

category glpxJyq is cartesian closed and the forgetful functor to X strictly preserves products

and exponentials. Moreover, the Yoneda embedding extends to an embedding y : B Ñ glpxJyq

by ypBq :“

ˆ

ypBq, ypBq
lanB
ùùñ xJypJBq, JB

˙

.

Consider now the following situation. Fix a set of base types B and an interpretation

h : BÑ X in a cartesian closed category X. By the cartesian closed structure, this extends

to a map rB Ñ X we also denote by h. Applying the universal property, h extends in

turn to a cartesian functor h : Con
rB

op Ñ X interpreting all contexts within X. Moreover,

writing FprBq for the free cartesian closed category on rB, namely the syntactic model of

the simply-typed lambda calculus Λˆ,ÑpBq, the coercion r´s : rB ãÑ Con
rB

extends to a

cartesian functor Con
rB
Ñ FprBq. By the various uniqueness properties, this factors the

semantic interpretation hJ´K : FprBq Ñ X extending h. The situation is summarised in the

following diagram.

FprBq

Con
rB

op X

rB

B

hJ´K

h

r´s

h

(8.2)

Note in particular that hΓ “ hJΓK for every context Γ P Con
rB

, and that for any type A P rB

the interpretation hJAK is equal to hrAs. (Here we use the assumption that
ś

1pXq “ X to

identify hJx : AK with hJAK.)
An object in the category glpxhyq of Con

rB
-intensional Kripke relations of arity h then

consists of a presheaf P : Con
rB
Ñ Set (which one might think of as syntactic intensional

information), an object X P X, and a natural transformation π : P ñ Xphp´q, Xq (which

one might think of as semantic information). One may think of this category as internalising

the relationship between syntax and semantics required for the normalisation-by-evaluation

argument.
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Neutral and normal terms as glued objects. The definitions of neutral and (long-βη)

normal terms for the simply-typed lambda calculus, given in Figure 8.2 below, are standard

(e.g. [GTL89, Chapter 4]). We define a family of judgements Γ $M t : B and Γ $N t : B

characterising neutral and normal terms, respectively, by mutual induction.

var
x1 : A1, . . . , xn : An $M xi : Ai

Γ $M t :
ś

npA1, . . . , Anq
proj pk “ 1, . . . , nq

Γ $M πkptq : Ak

Γ $M t : A“BB Γ $N u : A
app

Γ $M apppt, uq : B

Γ $N ti : Ai pi “ 1, . . . , nq
tuple

Γ $N xt1, . . . , tny :
ś

npA1, . . . , Anq

Γ, x : A $N t : B
lam

Γ $N λx.t : A“BB

Γ $M t : B
inc (B a base type)

Γ $N t : B

Figure 8.2: Neutral terms and normal terms in the simply-typed lambda calculus

Crucially, the sets of neutral and normal terms are invariant under renaming, so for

every type A P rB one now obtains four presheaves Con
rB
Ñ Set, defined at Γ P Con

rB
as

follows:
V pΓ;Aq :“ yrAs “ tx | Γ $ x : Au { “α

MpΓ;Aq :“ tt | Γ $M t : Au { “α

NpΓ;Aq :“ tt | Γ $N t : Au { “α

LpΓ;Aq :“ tt | Γ $ t : Au { “α

(8.3)

Each rule of Figure 8.2 defines a morphism on these indexed families of presheaves. For

the lambda abstraction case we employ the coproduct structure on Con
rB

.

Lemma 8.1.2. The rules of Figure 8.2 give rise to natural transformations, as follows:

varp´;Aiq : V p´;Aiq ñMp´;Aiq

inc
`

´;B
˘

: Mp´;Bq ñ Np´;Bq (B a base type)

projkp´;A‚q : Mp´;
ś

npA1, . . . , Anqq ñMp´;Akq pk “ 1, . . . , nq

appp´;A,Bq : Mp´;A“BBq ˆNp´;Aq ñMp´;Bq

tuplep´;A‚q :
śn
i“1Np´;Aiq ñ Np´;

ś

npA1, . . . , Anqq

lamp´;A“BBq : N
`

´`rAs;B
˘

ñ Np´;A“BBq

Proof. The mappings are just the operations on terms. In each case naturality follows

from the definition of the meta-operation of capture-avoiding substitution, in particular
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the fact that substitution passes through the various constructors, and that it respects

α-equivalence.

Returning to the development described by the diagram (8.2), and noting that xhyphrAsq “

Xphp´q, hrAsq “ XphJ´K, hJAKq for every type A, one obtains the following glued objects in

glpxhyq for every A P rB:

V A :“ pV p´;Aq, V p´;Aq ñ xhyphJAKq, hJAKq “ yprAsq

MA :“ pMp´;Aq,Mp´;Aq ñ xhyphJAKq, hJAKq

NA :“ pNp´;Aq, Np´;Aq ñ xhyphJAKq, hJAKq

LA :“ pLp´;Aq, Lp´;Aq ñ xhyphJAKq, hJAKq

(8.4)

In each case, the natural transformation is the canonical interpretation of Λˆ,ÑpBq-terms

in X. Moreover, extending the natural transformations induced from the rules of Figure 8.2

in a similar fashion, one obtains a morphism in glpxhyq for each rule.

Normalisation-by-evaluation. We paste together the various elements seen thus far.

Since glpxhyq is cartesian closed, one may consider the interpretation B ÞÑ MB of base

types in glpxhyq. This extends to an interpretation hJ´K : FprBq Ñ glpxhyq. Write hJAK :“

pGA, γA, hJAKq and hJΓ $ t : AK :“ ph1JΓ $ t : AK, hJΓ $ t : AKq. Since the forgetful functor

πdom : glpxhyq Ñ X is strictly cartesian closed, the final component in each case is exactly

the interpretation in X extending h.

One then employs the cartesian closed structure of glpxhyq, and the 1-cells in glpxhyq

induced from the rules of Figure 8.2, to inductively define quote and unquote as rB-indexed

maps of the following type:

unquoteA : MA Ñ hJAK

quoteA : hJAK Ñ NA

For every Λˆ,ÑpBq-term Γ $ t : A (where Γ :“ pxi : Aiqi“1, ... ,n), one thereby obtains

the following commutative diagram in PpCon
rB

opq, in which the unlabelled arrows are the

canonical interpretations of terms inside X:

śn
i“1Mp´;Aiq

ś

i“1GAi GA Np´;Aq

śn
i“1 X phJ´K, hJAiKq

X phJ´K, hJΓKq X phJ´K, hJAKq

śn
i“1 unquoteAi

śn
i“1 γAi

h1JΓ$t:AK quoteA

γA

–

hJΓ$t:AK˝p´q

(8.5)

Chasing the n-ary variable-projection tuple pΓ $ xi : Aiqi“1, ... ,n through this diagram, one

obtains a normal term nfptq for which the semantic interpretation hJnfptqK is equal to hJtK.
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Moreover, for every type A the projections πdompquoteAq and πdompunquoteAq are both

the identity. It follows that, for X “ FprBq the syntactic model of Λˆ,ÑpBq, one obtains a

normal form nfptq for t such that t “βη nfptq. Hence, every Λˆ,ÑpBq-term has a long-βη

normal form, which can be explicitly calculated. This yields a normalisation algorithm.

Our aim in what follows is to leverage as much of this proof as possible as we lift it

to the bicategorical setting. We follow the strategy just outlined stage-by-stage, with the

aim of building up a version of (8.5) in which each of the commuting shapes is filled by a

witnessing 2-cell. Throughout we shall assume that B is a fixed set of base types.

8.2 Syntax as pseudofunctors

The locally discrete 2-category of contexts. The notion of context in Λˆ,Ñps is the

same as that in the simply-typed lambda calculus. We therefore require the same categorical

structure on the category of contexts Con
rB

, which we now wish to treat as a degenerate

2-category. Keeping track of such degeneracies will help identify instances where we can

apply the 1-categorical theory.

Notation 8.2.1.

1. For S a set, write BS for the discrete category with objects the elements of S. Similarly,

write Bf for the discrete functor BS Ñ BS1 induced by the set map f : S Ñ S1.

2. a) For C a category, write dC for the locally discrete 2-category with objects those

of C and hom-categories pdCqpX,Y q :“ BpCpX,Y qq.

b) Write dF for the locally discrete 2-functor dC Ñ dD induced from the functor

F : C Ñ D by setting pdF qX :“ FX and pdF qX,Y :“ BpFX,Y q.

c) Write dµ for the locally discrete 2-natural transformation dF ñ dG induced

from the natural transformation µ : F ñ G : C Ñ D by setting pdµqC :“ µC for

every C P C. đ

The Bp´q and dp´q constructions will be our main technical tool for constructing

(degenerate) bicategorical structure from 1-categorical data. The next lemma collects

together some of their important properties. The proofs are not especially difficult, but

stating all the details precisely requires some care. Since we employ the notation ´“B “ for

exponentials in HompB,Catq we denote the usual categorical functor category by FunpC,Dq.
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Lemma 8.2.2. Let C and D be 1-categories. Then:

1. pdCqop
“ dpCopq.

2. There exists an isomorphism of 2-categories d
`

FunpC,Dq
˘

– HompdC, dDq.

3. There exists an injective-on-objects, locally isomorphic 2-functor ι : dFunpC,Setq ãÑ

HompdC,Catq, which induces a commutative diagram

d
`

FunpC,Setq
˘

HompdC,Catq

dC

ι

dy
Y

(8.6)

In particular, YpCq “ pdyqC for all C P C.

4. If C is cartesian (resp. cartesian closed) as a 1-category, then dC has finite products

(resp. is cartesian closed) as a 2-category.

5. Let P,Q : C Ñ Set. The exponential rιP, ιQs in HompdC,Catq is given up to

equivalence by ι
`

FunpC,Setq
`

yp´q ˆ P,Q
˘˘

, for y : C Ñ FunpC, Setq the 1-categorical

Yoneda embedding.

Proof. (1) is immediate from the definitions.

For (2), consider the mapping dp´q : d
`

FunpC,Dq
˘

Ñ HompdC,dDq taking F : C Ñ D

to the locally discrete 2-functor dF and µ : F Ñ G to the locally discrete pseudonatural

transformation dµ. Since d
`

FunpC,Dq
˘

is locally discrete, this extends canonically to a

2-functor.

Now suppose that F : dC Ñ dD is a pseudofunctor. By definition, this is a set

map F : obpdCq Ñ obpdDq with functors FX,Y : pdCqpX,Y q Ñ pdDqpFX,FY q for every

X,Y P dC. Since every pdCqpX,Y q is a discrete category, every FX,Y is discrete, and so

F “ dH for a unique functor H : C Ñ D. So dp´q is bijective on objects.

Next fix functors F,G : C Ñ D and consider the hom-category HompdC,dDqpdF,dGq.

A pseudonatural transformation pk, kq : dF ñ dG consists of a family of 1-cells kX : FX Ñ

GX pX P dCq, together with a 2-cell kf : kY ˝ Ff ñ Gf ˝ kX in dD for every f : X Ñ Y in

dC. Since dD is locally discrete, the only choice of such a 2-cell is the identity. So pk, kq
is a 2-natural transformation, and is of the form dµ for a unique natural transformation

µ : F ñ G. Similarly, every modification Ξ : pk, kq Ñ pj, jq : dF ñ dG consists of a family of

2-cells, and must therefore be the identity. It follows that dp´qF,G : d
`

FunpC,Dq
˘

pF,Gq Ñ

HompdC,dDqpdF,dGq is an isomorphism for every F and G, as required.

For (3), we define ι by setting ιP to be the composite C P
ÝÑ Set

Bp´q
ÝÝÝÑ Cat, so that

ιP :“ λCC . BpPCq and pιµqC :“ BpµCq for every µ : P ñ Q and C P C. It is clear that ι is

injective on objects. To see that ιP,Q : d
`

FunpC, Setq
˘

pP,Qq Ñ HompdC,CatqpιP, ιQq is an

isomorphism for every P and Q, one reasons as above: since pιP qC is a discrete category

for every C P C, every pseudonatural transformation ιP ñ ιQ must be of the form ιpµq for

a unique natural transformation µ : P ñ Q, and there can be no non-identity modifications

between such transformations.
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To relate the 1-categorical and bicategorical Yoneda embeddings, one notes that

pι ˝ dyqpCq “ ι
`

CpC,´q
˘

“ λXC . BpCpC,Xqq

“ λXC .pdCqpC,Xq

“ YC

as claimed.

For (4), one simply observes that the natural isomorphisms CpX,
śn
i“1Aiq –

śn
i“1 CpX,Aiq

immediately provide 2-natural isomorphisms of hom-categories

pdCq
`

X,
śn
i“1Ai

˘

–
śn
i“1pdCqpX,Aiq

and similarly for exponentials.

For (5), recall from Theorem 6.1.10 that for pseudofunctors G,H : dC Ñ Cat, the

exponential rG,Hs may be given by the pseudofunctor HompdC,CatqpYp´q ˆG,Hq : dC Ñ

Cat. Next observe that the embedding ι of (3) preserves products:

`

ιpP ˆQq
˘

C “ B
`

pP ˆQqpCq
˘

“ BpPC ˆQCq

“ BpPCq ˆ BpQCq

“ pBP ˆ BQqC

“
`

ιpP q ˆ ιpQq
˘

C

Hence:

HompdC,CatqpYX ˆ ιP, ιQq

“ HompdC,Catqppι ˝ dyqX ˆ dP,dQq by diagram p8.6q

“ HompdC,CatqpιpyXq ˆ ιpP q, ιpQqq

“ HompdC,CatqpιpyX ˆ P q, ιpQqq

– pdFunpC, Setqq pyX ˆ P,Qq by p3q

“ BpFunpC,SetqpyX ˆ P,Qqq by definition of dp´q

completing the proof.

The preceding lemma provides a framework for treating the category of contexts Con
rB

as a 2-category. Next we show how to extend from an interpretation of (base) types to

an interpretation of all contexts, that is, to an fp-pseudofunctor out of dCon
rB

op. In the

categorical setting, one merely uses the fact that Con
rB

op is the free strict cartesian category

on rB. The pseudo nature of bicategorical products and exponentials entails a little more

work, but the construction is essentially the same.

Note that any interpretation s : BÑ X of base types in a cc-bicategory pX ,Πnp´q,“Bq

extends canonically to an interpretation rBÑ X by the cartesian closed structure, which

we also denote by s.
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Lemma 8.2.3. For any set of base types B, cc-bicategory pX ,Πnp´q,“Bq, and set map

s : B Ñ X , there exists an fp-pseudofunctor s : dCon
rB

op Ñ X making the following

diagram commute:

dCon
rB

op

rB X

B

sr´s

s

Proof. We define s on types by sA :“ sA and extend to contexts in the usual manner:

s
`

pxi : Aiqi“1, ... ,n

˘

:“
śn
i“1 sAi and sp˛q :“

ś

0pq. In particular, for a unary context px : Aq

we define spx : Aq “ sA, so that srAs “ sA.

The action on 1-cells is the following. For contexts Γ :“ pxi : Aiqi“1, ... ,n and ∆ :“

pyj : Bjqj“1, ... ,m and a context renaming r : Γ Ñ ∆, we define sr :
śm
j“1sBj Ñ

śn
i“1sAi to

be
@

πrp1q, . . . , πrpnq
D

, where we write rpiq to indicate the index of rpxiq within py1, . . . , ymq.

The action on 2-cells is trivial since dCon
rB

op is locally discrete.

For the 2-cell ψ
s
Γ : IdsΓ ñ spIdΓq we take

pςIdsΓ :“ IdsΓ
ςIdsΓ
ùùùñ

@

π1 ˝ IdsΓ, . . . , πn ˝ IdsΓ
D –
ùñ xπ1, . . . , πny

For a composable pair of context renamings Σ
r
ÝÑ Γ

r1
ÝÑ ∆, we define φ

s
r1,r to be the composite

@

πrp1q, . . . , πrpnq
D

˝
@

πr1p1q, . . . , πr1pmq
D

@

πrp1q ˝ xπr1p‚qy, . . . , πrpnq ˝ xπr1p‚qy
D @

πr1rp1q, . . . , πr1rpnq
D

post

φ
s

r1,r

x$prp1qq, ... ,$prpnqqy

The three axioms to check are diagram chases using the product structure, along with

the properties of Lemma 4.1.7. For the associativity law one uses naturality and the

commutativity of the following diagram, in which we abbreviate xπrp1q, . . . , πrpnqy by xπry:

xπry ˝ xπr1y ˝ xπr2y

xπr ˝ xπr1yy ˝ xπr2y xπr ˝ xπr1y ˝ xπr2yy

post
post˝xπr2y

post

For the left and right unit laws, one respectively uses the diagrams on the left and right

below:

IdsΣ ˝ xπry

@

π‚ ˝ IdsΣ
D

˝ xπry
@

π‚ ˝ IdsΣ ˝ xπry
D

ςId˝xπry

ςId˝xπry

post

xπry ˝ IdsΓ

@

πrp1q ˝ IdsΓ, . . . , πrpnq ˝ IdsΓ
D

xπry

post
–

–
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It remains to show that s preserves products. For n contexts Γ1, . . . ,Γn pn P Nq of the

form Γi :“ px
piq
j : A

piq
j qj“1, ... ,|Γi|

, note that

sp
śn
i“1Γiq “ spΓ1 @ ¨ ¨ ¨@ Γnq “

ś

ji“1,...,|Γi|
i“1, ... ,n

spAiq

śn
i“1spΓiq “

śn
i“1

ś|Γi|
j“1spA

piq
j q

and that spπkq “ spΓk ãÑ Γ1 @ ¨ ¨ ¨@ Γnq is the 1-cell xπ1`
řk´1
i“1 |Γi|

, . . . , πřk
i“1 |Γi|

y. One

therefore obtains the required equivalence
śn
i“1

ś|Γi|
j“1 spA

pjq
i q »

ś

j“1,...,|Γi|
i“1, ... ,n

spA
pjq
i q by taking

qˆΓ‚ to be the 1-cell
śn
i“1

ś|Γi|
j“1 spA

piq
j q Ñ

ś

j“1,...,|Γi|
i“1, ... ,n

spA
piq
j q given by

@

π1 ˝ π1, . . . , π|Γ1| ˝ π1, . . . , π1 ˝ πk, . . . , π|Γk| ˝ πk, . . . , π1 ˝ πn, . . . , π|Γn| ˝ πn
D

(8.7)

This defines an equivalence with witnessing 2-cells defined by the commutativity of the

following two diagrams:

xπ1 ˝ π1, . . . , π|Γn| ˝ πny ˝ xsπ‚y Idsp
ś

i Γiq

@

. . . , π1 ˝ πk ˝ xsπ‚y, . . . , π|Γk| ˝ πk ˝ xsπ‚y, . . .
D

xπ1, . . . , πřn
i“1

ř|Γi|
j“1 j

y

A

. . . , πj ˝ xπ1`
řk´1
i“1 |Γi|

, . . . , πřk
i“1 |Γi|

y, . . .
E A

. . . , πj`
řk´1
i“1 |Γi|

, . . .
E

xspπ‚qy ˝ xπ1 ˝ π1, . . . , π|Γn| ˝ πny Idp
ś

i sΓiq

@

. . . , spπkq ˝ xπ1 ˝ π1, . . . , π|Γn| ˝ πny, . . .
D

xπ1, . . . , πny

@

. . . , xπ1, . . . , π|Γk|y ˝ πk, . . .
D @

IdpsΓ1q ˝ π1, . . . , IdpsΓnq ˝ πn
D

post

x...,π1˝$pkq, ... ,π|Γk|˝$
pkq,...y

pς´1
Idsp

ś

i Γiq

x...,$pjq,...y

post

–

pς´1
Idp

ś

i sΓiq

xpς´1
IdpsΓnq

˝π‚y

–

The downwards arrow labelled – is the n-ary tupling of

xπ1`
řk´1
i“1 |Γi|

, . . . , πřk
i“1 |Γi|

y ˝ xπ1 ˝ π1, . . . , π|Γn| ˝ πny xπ1, . . . , π|Γk|y ˝ πk

x. . . , πj`
řk´1
i“1 |Γi|

˝ xπ1 ˝ π1, . . . , π|Γn| ˝ πny, . . .yj“1,...,|Γk| x. . . , πj ˝ πk, . . .yj“1, ... ,|Γk|

post

x...,$pj`
řk´1
i“1

q,...y

post´1

for k “ 1, . . . , n. Hence s is an fp-pseudofunctor, as claimed.
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Remark 8.2.4. We shall need the following special case of the fact that the pseudofunctor s

preserves products. For a context Γ “ pxi : Aiqi“1, ... ,n and type A, the 1-cell (8.7) becomes

simply xπ1 ˝ π1, . . . , πn ˝ π1, π2y : sΓˆ srAs Ñ spΓ @ rAsq. đ

One also obtains the following version of Proposition 5.3.22 by taking the context

extension product structure of the syntactic model instead of the type-theoretic product

structure (recall Section 4.3.3).

Proposition 8.2.5. For any Λˆ,Ñps -signature S, cc-bicategory pX ,Πnp´q,“Bq, and Λˆ,Ñps -

signature homomorphism s : S Ñ X , there exists a cc-pseudofunctor sJ´K : T @,ˆ,Ñ
ps pSq Ñ X

with respect to the context extension product structure, such that sJ´K ˝ ι “ s, for

ι : S ãÑ T @,ˆ,Ñ
ps pSq the inclusion.

Proof. Define sJ´K as in Proposition 5.3.22, except that for preservation of products one

takes qˆ as in the preceding lemma. Preservation of exponentials then takes the following

form. For Γ :“ pxi : Aiqi“1, ... ,n and ∆ :“ pyj : Bjqj“1, ... ,m, the evaluation map is the

m-tuple with components

f :
ś

nA‚“B
ś

mB‚, x1 : A1, . . . , xn : An $ πjtevaltf, tuppx1, . . . , xnquu : Bj

for j “ 1, . . . ,m. One then obtains the following chain of natural isomorphisms:

sJevalΓ,∆K ˝ qˆΓ“B∆,Γ

“

A

π‚ ˝ evalsJ
ś

n A‚K,sJ
ś

mB‚K ˝ xπ1, xπ2, . . . , πn`1yy

E

˝ xπ1, π1 ˝ π2, . . . , πn ˝ π2y

–

A

π‚ ˝ evalsJ
ś

n A‚K,sJ
ś

mB‚K ˝ xπ1, xπ1 ˝ π2, . . . , πn ˝ π2yy

E

–

A

π‚ ˝ evalsJ
ś

n A‚K,sJ
ś

mB‚K ˝ xπ1, xπ1, . . . , πny ˝ π2y

E

–

A

π‚ ˝ evalsJ
ś

n A‚K,sJ
ś

mB‚K ˝ xπ1, π2y

E

–

A

π‚ ˝ evalsJ
ś

n A‚K,sJ
ś

mB‚K

E

– xπ1, . . . , πmy ˝ evalsJ
ś

n A‚K,sJ
ś

mB‚K

– evalsJ
ś

n A‚K,sJ
ś

mB‚K

It follows that mΓ,∆ “ λpsJevalΓ,∆Kq – λ
´

evalsJ
ś

n A‚K,sJ
ś

mB‚K

¯

– idsJΓ“B∆K, so sJ´K
preserves exponentials.

While the interpretation of Proposition 5.3.22 is useful for proving uniqueness properties,

the interpretation of the preceding proposition is the natural choice when working with

the (2-)category of contexts. Of course, the two pseudofunctors are canonically equivalent.

Throughout this chapter, we shall work with the version just defined.
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For any interpretation of base types s : BÑ X in a cc-bicategory pX ,Πnp´q,“Bq, one

therefore obtains the following diagram lifting (8.2) to the bicategorical setting:

T @,ˆ,Ñ
ps prBq

dCon
rB

op X

rB

B

sJ´Kι

s

r´s

s

Note in particular that, just as in the 1-categorical case, the equality sJΓK “ sΓ holds for

every context Γ.

Syntactic presheaves for Λˆ,Ñps . Lemma 8.2.3 provides a way to interpret contexts

whenever one has an interpretation of base types, while Lemma 8.2.2 guarantees that, in

order to interpret the syntax of Λˆ,Ñps as a pseudofunctor dCon
rB
Ñ Cat, it suffices to a

define a presheaf Con
rB
Ñ Set on the underlying category. There remains the question of

what it means to be a neutral or normal term in Λˆ,Ñps . The answer is provided by the

embedding of Λˆ,Ñ into Λˆ,Ñps constructed in Section 5.4. Thus, for every A P rB we define

four presheaves Vp´;Aq,Mp´;Aq,N p´;Aq,Lp´;Aq : Con
rB
Ñ Set by setting

VpΓ;Aq :“ tL t M | t P V pΓ;Aqu

MpΓ;Aq :“ tL t M | t PMpΓ;Aqu

N pΓ;Aq :“ tL t M | t P NpΓ;Aqu

LpΓ;Aq :“ tL t M | t P LpΓ;Aqu

(8.8)

where L´ M is defined in Construction 5.4.3 on page 181 and the presheaves V p;Aq,Mp´;Aq,

Np´;Aq and Lp´;Aq are defined in (8.3) on page 243. Since L´ M respects α-equivalence

(Lemma 5.4.4), these definitions are well-defined on α-equivalence classes. To see that these

definitions are invariant under variable renamings, recall from Construction 5.4.6 that the

following rule is admissible in Λˆ,Ñps :

Γ $ L t M : B r : Γ Ñ ∆

∆ $ contpt; rq : L t Mtxi ÞÑ rpxiqu ñ L trrpxiq{xis M : B

Since a rewrite τ : tñ t1 is typeable in context Γ only if both t and t1 are also typeable in

Γ, it follows that the following rule is admissible:

Γ $ L t M : B r : Γ Ñ ∆

∆ $ L trrpxiq{xis M : B

Since the presheaves (8.3) are invariant under renamings, it follows that those of (8.8) are

too, as required.



252 CHAPTER 8. NORMALISATION-BY-EVALUATION FOR Λˆ,Ñps

The functorial action is the unique choice such that the following diagram commutes,

where Kp´;Aq P tV p´;Aq,Mp´;Aq, Np´;Aqu and Kp´;Aq denotes the image of Kp´;Aq

under L´ M:

KpΓ;Aq Kp∆;Aq

KpΓ;Aq Kp∆;Aq

L´ MΓ
A

Kpr;Aq

L´ M∆
A

Kpr;Aq

(8.9)

Explicitly, for a context renaming r : Γ Ñ ∆ we define Kp´;AqprqpL t MΓ
Aq :“ L trrpxiq{xis M∆

A .

This formulation is particularly convenient as it allows one to make use of standard facts

about the simply-typed lambda calculus. Moreover, we can employ many of the details of

Fiore’s proof via the following observation.

Lemma 8.2.6. For any type A P rB, let Kp´;Aq P tV p´;Aq,Mp´;Aq, Np´;Aq, Lp´;Aqu

and let Kp´;Aq P tVp´;Aq,Mp´;Aq,N p´;Aq,Lp´;Aqu denote the image of KA under

L´ M. Then the mappings L´ Mp“qA : KA ñ KA form a natural isomorphism.

Proof. Since L´ Mp“qA respects the typings, it is clear from the definition that it is an injection,

hence a bijection onto its image. Naturality is exactly (8.9).

For example, one may immediately extend the natural transformations of Lemma 8.1.2

to Λˆ,Ñps . One therefore obtains the following natural transformations:

varp´;Aiq : Vp´;Aiq ñMp´;Aiq

incp´;Bq :Mp´;Bq ñ N p´;Bq (B a base type)

projkp´;A‚q :Mp´;
ś

npA1, . . . , Anqq ñMp´;Akq pk “ 1, . . . , nq

appp´;A,Bq :Mp´;A“BBq ˆN p´;Aq ñMp´;Bq

tuplep´;A‚q :
śn
i“1N p´;Aiq ñ N p´;

ś

npA1, . . . , Anqq

lamp´;A,Bq : N
`

´`rAs;B
˘

ñ N p´;A“BBq
(8.10)

Explicitly, the action on terms is the following:

xk ÞÑ xk

L t M ÞÑ L t M

L t M ÞÑ Lπkptq M “ πktL t Mu pk “ 1, . . . , nq

pL t M, Lu Mq ÞÑ L apppt, uq M “ evaltL t M, Lu Mu

pL t1 M, . . . , L tn Mq ÞÑ L xt1, . . . , tny M “ tuppL t1 M, . . . , L tn Mq

L t M ÞÑ Lλx.t M “ λx.L t M

The presheaves (8.8) and natural transformations (8.10)—viewed as locally discrete

pseudofunctors and locally discrete pseudonatural transformations—describe the syntax of

Λˆ,Ñps within HompdCon
rB

op,Catq. As we saw in Chapter 6, this bicategory shares many of

the important features of the presheaf category PpCon
rB

opq. Our next task, therefore, is to

construct the bicategorical correlate to the category of intensional Kripke relations.
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8.2.1 Bicategorical intensional Kripke relations

The relative hom-pseudofunctor. We start by constructing the pseudo correlate of the

relative hom-functor and establishing its key properties. Precisely, we show that diagram (8.1)

on page 241 lifts to the bicategorical setting, and that the relative hom-pseudofunctor

preserves bilimits.

The construction is the natural bicategorification of Definition 8.1.1.

Construction 8.2.7. For any pseudofunctor J : B Ñ X one obtains a relative hom-

pseudofunctor xJy : X Ñ HompBop,Catq as follows.

On objects, we set xJyX :“ X pJp´q, Xq. On morphisms, we define a pseudonatural

transformation xJyf : xJyX ñ xJyX 1 for every f : X Ñ X 1 in X . The 1-cell components

are

pxJyfqB :“ X pJB,Xq f˝p´q
ÝÝÝÑ X pJB,X 1q

and for g : B1 Ñ B in B the witnessing 2-cell pxJyfqg filling

X pJB,Xq X pJB1, Xq

X pJB,X 1q X pJB1, X 1q

pxJyfqg
ð

pxJyXqpgq

f˝p´q f˝p´q

pxJyX 1qpgq

is the structural isomorphism λhX pJB,Xq . a´1
f,h,Jg. Finally, for a 2-cell τ : f ñ f 1 in X , we

define a modification xJyf Ñ xJyf 1 by setting xJyτ :“ τ ˝ p´q. The modification axiom

holds by the naturality of the associator a.

It remains to give the extra data witnessing preservation of units and composition. For

ψ
xJy
X : IdxJyX ñ xJypIdXq we take the modification with components given by the structural

isomorphisms idX pJB,Xq
–
ùñ IdX ˝ p´q. Similarly, for a composable pair X

g
ÝÑ X 1

f
ÝÑ X2

in X, the modification φ
xJy
f,g : xJypfq ˝ xJypgq ñ xJypf ˝ gq has components f ˝ pg ˝ p´qq

–
ùñ

pf ˝ gq ˝ p´q. đ

The preceding construction leads us to the following definition (c.f. Definition 8.1.1).

Definition 8.2.8. For a category B and pseudofunctor J : B Ñ X , the bicategory of

B-intensional Kripke relations of arity J is the glueing bicategory glpxJyq associated to the

relative hom-pseudofunctor. đ

To bicategorify (8.1) we employ the canonical equivalences HompC ˆ B,Vq » HompB ˆ
C,Vq » Hom

`

B,HompC,Vq
˘

of [Str80, §1.34].
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Lemma 8.2.9. For any pseudofunctor J : B Ñ X there exists a pseudonatural transforma-

tion pl, lq as in the diagram

Bop ˆ B Cat

X op ˆ X
JopˆJ

Homp´,“q

ópl, lq
Homp´,“q

(8.11)

where

Jop :“ J : obpBopq Ñ obpX opq

pJB,Cq
op :“ BoppB,Cq “ BpC,Bq

JC,B
ÝÝÝÑ X pC,Bq “ X oppC,Bq

Proof. For the functors lpB,Cq : BpB,Cq Ñ X pJB, JCq we take JB,C . For f : B1 Ñ B and

g : C Ñ C 1, the witnessing isomorphism lpf,gq in the diagram below

BpB,Cq BpB1, C 1q

X pJB, JCq X pJB1, JC 1q

Bpf,gq

JB,C
lpf,gq
ð

JB1,C1

X pJopf,Jgq

is defined to be the composite natural isomorphism

J
`

g ˝ ph ˝ fq
˘

pφJg,h˝f q
´1

ùùùùùùñ Jpgq ˝ Jph ˝ fq
Jpgq˝pφJh,f q

´1

ùùùùùùùùñ Jpgq ˝
`

Jh ˝ Jf
˘

(8.12)

This composite is natural in g and f ; the unit and associativity laws follow from the

corresponding laws of a pseudofunctor.

Corollary 8.2.10. For any pseudofunctor J : B Ñ X there exists a pseudonatural trans-

formation pl, lq : Y ñ xJy ˝ J : B Ñ HompBop,Catq, which is given by the functorial action

of J on hom-categories.

Proof. Passing (8.11) through the equivalences HompBopˆB,Catq » HompBˆBop,Catq »

Hom
`

B,HompBop,Catq
˘

at an arbitrary P : Bop ˆ B Ñ Cat yields the following:

λpB,CqB
opˆB . P pB,Cq ÞÑ λpC,BqBˆB

op
. P pB,Cq ÞÑ λCB . λBBop

. P pB,Cq

so that Homp´,“q ÞÑ λCB .YC and HompJp´q, Jp“qq ÞÑ λCB . xJypCq. By the preceding

lemma, these are related by the pseudonatural transformation with components lC :“

Jp´q,C : Bp´, Cq Ñ X
`

Jp´q, JC
˘

and witnessing 2-cells given as in (8.12).

We may now extend the Yoneda pseudofunctor Y to its glued counterpart Y.

Construction 8.2.11. For any pseudofunctor J : B Ñ X , define the extended Yoneda

pseudofunctor Y : B Ñ glpxJyq as follows.

On objects, we set

YB :“
`

YB, pl, lqp´,Bq, JB
˘

(8.13)
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where pl, lqp´,Bq is pseudonatural since pl, lq is pseudonatural in both arguments.

For a 1-cell f : B Ñ B1 in B, we define Yf to be the 1-cell pYf, pφJ
´,f q

´1, Jfq as in the

diagram

Bp´, Bq Bp´, B1q

X
`

Jp´q, JB
˘

X
`

Jp´q, JB1
˘

J´,B

f˝p´q

pφJ
´,f q

´1

ð
J´,B1

Jpfq˝p´q

On 2-cells, we set Ypτ : f ñ f 1 : B Ñ B1q to be the pair pYτ, Jτq, which satisfies the

cylinder condition by the naturality of φJ.

Finally we need to define ψY and φY. Since YIdX “ pYIdX , JIdXq, we may take simply

ψY :“ pψY, ψJq. This forms a 2-cell in glpxJyq by the unit law on pl, lq. Similarly, for φY we

take pφY, φJq, which satisfies the cylinder condition by the associativity law on pl, lq. The

three axioms to check then hold pointwise. đ

In the next section we shall provide an explicit presentation of exponentials YB“BX in

the glueing bicategory, which will provide a bicategorical, glued correlate of the identification

ryB,P s – P p´ˆXq for presheaves. First, however, we finish our examination of the relative

hom-pseudofunctor by showing that it preserves bilimits.

Lemma 8.2.12. For any pseudofunctor J : B Ñ X the relative hom-pseudofunctor xJy :

X Ñ HompBop,Catq preserves all bilimits that exist in X .

Proof. Let H : J Ñ X be a pseudofunctor and suppose the bilimit pbilimjPJ Hj, λjq exists

in X . By Proposition 6.0.1, the bilimit bilimpxJy ˝Hq exists in HompBop,Catq and is given

pointwise.

Now, since representable pseudofunctors preserve bilimits (Lemma 2.3.4), the canonical

map eB : bilimjPJ X pJB,Hjq Ñ X pJB, bilimjPJ Hjq is an equivalence for every B P

B. These extend canonically to a pseudonatural transformation, yielding the required

equivalence bilimpxJy ˝Hq
»
ùñ xJy pbilimHq.

It will be useful to have an explicit description of how xJy preserves products. For this

we rely on the post 2-cells.

Lemma 8.2.13. For any fp-bicategory pB,Πnp´qq, the n-ary tupling operation and 2-cells

post together form a pseudonatural transformation
śn
i“1 Bp´, Biq ñ Bp´,

śn
i“1Biq, and

hence an equivalence of pseudofunctors
śn
i“1 Bp´, Biq » Bp´,

śn
i“1Biq in HompBop,Catq.

Proof. For every X P B the n-ary tupling operation defines a functor x´, . . . ,“y :
śn
i“1 BpX,Biq Ñ B pX,

śn
i“1Biq which, by the definition of an fp-bicategory (Defini-

tion 4.1.1), is an equivalence in Cat. For these functors to be the components of a

pseudonatural transformation, we need to provide an invertible 2-cell filling the diagram

below for every f : Y Ñ X:
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śn
i“1 BpX,Biq

śn
i“1 BpY,Biq

BpX,
śn
i“1Biq BpY,

śn
i“1Biq

ðx´, ... ,“y

śn
i“1 Bpf,Biq

x´, ... ,“y

Bpf,
śn
i“1 Biq

Thus, we require a natural isomorphism xh1 ˝ f, . . . , hn ˝ fy ñ xh1, . . . , hny ˝ f , for which

we take postph‚, fq´1. The two axioms are exercises in using Lemma 4.1.7.

Corollary 8.2.14. For any pseudofunctor J : B Ñ X , the relative hom-pseudofunctor xJy

extends to an fp-pseudofunctor pxJy, qˆq with qˆX‚ given by the pseudonatural transformation

px´, . . . ,“y, postq defined in the preceding lemma.

Remark 8.2.15. From the perspective of biuniversal arrows, Lemma 8.2.13 is an instance

of Lemma 2.4.4. đ

8.2.2 Exponentiating by glued representables

In order to emulate Fiore’s construction of the 1-cells quote and unquote in the glueing

bicategory, we require a correlate of the following categorical fact:

Lemma 8.2.16 ([Fio02]). For any cartesian category B, cartesian closed category X and

cartesian functor J : B Ñ X, the exponential
“

yB, pP, p,Xq
‰

in glpxJyq may be described

explicitly as

ryB,P s
ryB,ps
ÝÝÝÝÑ ryB, xJypXqs

–
ÝÑ xJy pJB“BXq

Here the unlabelled isomorphism is the composite

ryB, xJypXqs
–
ÝÑ X pJp´ ˆBq, Xq –ÝÑ X pJp´q ˆ JB,Xq

–
ÝÑ X pJp´q, JB“BXq

arising from the canonical isomorphism ryB,P s – P p´ ˆXq, the product-preservation of

J, and the cartesian closed structure on X.

For the bicategorical version of this lemma we note that, since products in Cat are

strict, one obtains idP ˆ idQ “ idPˆQ for every P,Q : Bop Ñ Cat, so that
“

idP , pk, kq
‰

:

rP,Qs ñ rP,Q1s is equal to Λ
`

pk, kq ˝ pe, eq
˘

(recall from Section 6.1 that pe, eq denotes the

evaluation 1-cell in HompBop,Catq). With our (locally discrete) use-case in mind, we shall

simplify what follows by assuming the bicategory B to be a 2-category.

Proposition 8.2.17. For any 2-category B with pseudo-products, cc-bicategory pX ,Πnp´q,“Bq

and fp-pseudofunctor pJ, qˆq : pB,Πnp´qq Ñ pX ,Πnp´qq, the exponential YB“B
`

K, pk, kq, X
˘

in glpxJyq may be given explicitly by the following composite in HompBop,Catq:

rYB,Ks
rYB,pk,kqs
ÝÝÝÝÝÝÑ rYB, xJyXs

uB,X
ÝÝÝÑ xJypJB“BXq (8.14)

where uB,X is the composite of equivalences

rYB, xJyXs
p1q
»
ÝÑ X

`

Jp´ ˆBq, X
˘

p2q
»
ÝÑ X

`

Jp´q ˆ JB,X
˘

p3q
»
ÝÑ X

`

Jp´q, JB“BX
˘

(8.15)

arising from the following, respectively:
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1. The canonical equivalence arising from the identification of pxJyXqp´ˆBq as rYB, xJyXs

(Theorem 6.2.7),

2. The fact that J preserves products,

3. The definition of exponentials in X .

Our strategy is to show that the composite (8.14) is the left-hand leg of a pullback

diagram in HompBop,Catq; by Lemma 7.3.8, this is sufficient to prove an equivalence in the

glueing bicategory. We prove this using the following fact, which generalises the 1-categorical

situation.

Lemma 8.2.18. Let B be a bicategory and e : B Ô C : f be any adjoint equivalence in

B, with witnessing invertible 2-cells v : IdC
–
ùñ e ˝ f and w : f ˝ e

–
ùñ IdB. Then for any

r : AÑ C the pullback of the cospan pB
e
ÝÑ C

r
ÐÝ Aq exists and is given by

A A

C

B C

f˝r

–
r

IdA

r

v
–

IdC

f

e

(8.16)

where the top isomorphism is a composite of structural isomorphisms.

Proof. Suppose given any other iso-commuting square

X A

B C

ρ
–

p

q r

e

We take the mediating map X Ñ A to be p. For the 2-cells we take Γ :“ IdA ˝ p
–
ùñ p and

∆ to be defined by the following diagram:

pf ˝ rq ˝ p q

f ˝ pr ˝ pq IdB ˝ q

f ˝ pe ˝ qq pf ˝ eq ˝ q

–

∆

f˝ρ

–

–

w˝q

A short diagram chase using the triangle law relating v and w shows this is a fill-in.

Next we claim that pp,Γ,∆q is universal. To this end, let pv,Σ1,Σ2q be any other fill-in,

so that the following diagram commutes:

pr ˝ IdAq ˝ v r ˝ pIdA ˝ vq r ˝ p

pe ˝ pf ˝ rqq ˝ v e ˝ ppf ˝ rq ˝ vq e ˝ q

– r˝Σ1

ρ

– e˝Σ2

(8.17)
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The unlabelled arrow is the composite (8.16) given in the claim.

We define Σ: :“ v
–
ùñ IdA ˝ v

Σ1
ùñ p, and claim that both the following equations hold:

IdA ˝ v IdA ˝ p

p

IdA˝Σ
:

Σ1 Γ

pf ˝ rq ˝ v pf ˝ rq ˝ p

q

pf˝rq˝Σ:

Σ2 ∆

(8.18)

The right-hand diagram is an relatively easy check. The left-hand diagram follows by

naturality, the triangle law relating v and w, and the assumption (8.17).

It remains to check the uniqueness condition for Σ:. For any other Θ : v ñ p satisfying

the two diagrams of (8.18), one sees that

v p

IdA ˝ v IdA ˝ p

p

nat.
“

Θ

– –

Σ1

IdA˝Θ

–

where the bottom triangle commutes by the right-hand diagram of (8.18), and the left-hand

leg is exactly the definition of Σ:. Hence Θ “ Σ: as required. Finally we observe that id: is

certainly invertible.

The requirement for an adjoint equivalence in the preceding lemma is, by the usual

argument, no stronger than requiring just an equivalence (e.g. [Lei04, Proposition 1.5.7]).

Importantly, the adjoint equivalence one constructs from an equivalence has the same 1-cells.

In the light of the lemma, if we can show that the equivalence uB,X defined in (8.15)

has a pseudo-inverse given by the composite
“

pl, lqp´,Bq, xJyX
‰

˝mJB,X , then the following

is a pullback diagram:

rYB,Ks rYB,Ks

rYB, xJyXs

xJypJB“BXq rxJypJBq, xJyXs rYB, xJyXs

rYB,pk,kqs –

IdrYB,Ks

Λppk,kq˝pe,eqq

–

IdYB“BxJyX

uB,X

mJB,X

Λppe,eq˝prxJypJBq,xJyXsˆpl,lqqq

It will then follow that for any K :“
`

K, pk, kq, X
˘

the composite (8.14)—the left-hand

leg of the above diagram—is an explicit description of the exponential pYX “BKq. The

difficulty, therefore, is not in showing that uB,X is an equivalence, but in checking whether

it has a pseudo-inverse of the form we require. We turn to this next. (The cartesian closed

structures we employ are summarised in Appendix B).
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The equivalence rYB, xJyXs » xJypJB“BXq: calculating the 1-cells

In this section we shall calculate the action of the maps uB,X and
“

pl, lqp´,Bq, xJyX
‰

˝mJB,X ;

in the next section we shall show these form an equivalence. To shorten notation, let us

introduce the following abbreviation:

rwsB,X :“
“

pl, lqp´,Bq, xJyX
‰

˝mJB,X

Our first task is to unfold each of the equivalences in the definition of uB,X to determine

the action of the whole composite.

Calculating the composite uB,X . If rX,Y s and X “BY are both the exponential of X

and Y in a bicategory B, with associated currying operation and evaluation maps λ, evalX,Y

and pλ,yevalX,Y , respectively, then pλ

ˆ

prX,Y sq ˆX
evalX,Y
ÝÝÝÝÝÑ Y

˙

: rX,Y s Ñ pX “BY q is

canonically an equivalence.

Now let pB,Πnp´qq be a 2-category with pseudo-products, B P B, and P : Bop Ñ Cat

be any pseudofunctor. We calculate the equivalence

rYB,P s “ HompBop,Catq pYp´q ˆYB,P q
»
ÝÑ P p´ ˆBq

arising from Theorem 6.2.7. The evaluation 1-cell evalYB,P : rYB,P s ˆ YB Ñ P is the

pseudonatural transformation pe, eq with components

HompBop,CatqpYC ˆYB,P q ˆ BpC,Bq eC
ÝÑ PC

`

pk, kq, h
˘

ÞÑ kCpIdC , hq

On the other hand, the currying operation

pΛ : HompBop,CatqpRˆYB,P q Ñ HompBop,Catq
`

R,P p´ ˆBq
˘

witnessing P p´ ˆXq as an exponential takes a pseudonatural transformation pj, jq to the

pseudonatural transformation with components RC
Rπ1
ÝÝÑ RpC ˆBq

jCˆBp´,π2q
ÝÝÝÝÝÝÝÑ P pC ˆBq.

Using the assumption that B is a 2-category, the component of the canonical equivalence

rYB,P s
»
ÝÑ P p´ ˆBq at C P B is therefore

HompBop,Catq
`

YC ˆYB,P
˘

Ñ P pC ˆBq

pk, kq ÞÑ kCˆBpπ1, π2q
(8.19)

It follows that uB,XpCq is the following composite:

rYB, xJyXspCq
»
ÝÑ X

`

JpC ˆBq, X
˘ »
ÝÑ X

`

JC ˆ JB,X
˘ »
ÝÑ X

`

JC, JB“BX
˘

pk, kq ÞÑ kCˆBpπ1, π2q ÞÑ kCˆBpπ1, π2q ˝ qˆC,B ÞÑ λ
`

kCˆBpπ1, π2q ˝ qˆC,B
˘

(8.20)

Next we turn to calculating rwsB,X :“
“

pl, lqp´,Bq, xJyX
‰

˝mJB,X .



260 CHAPTER 8. NORMALISATION-BY-EVALUATION FOR Λˆ,Ñps

Calculating
“

pl, lqp´,Bq, xJyX
‰

. We begin by calculating the composite

rxJypJBq, xJypXqs ˆYB rxJypJBq, xJypXqs ˆ xJyJB xJypXq

rxJypJBq,xJypXqsˆpl,lqp´,Bq
pe,eq

(8.21)

Applying the definition of pe, seq again, the component of the composite (8.21) at C P B is

HompBop,Catq
`

Bp´, Cq ˆ X pJp´q, JBq,X pJp´q, Xq
˘

ˆ BpC,Bq Ñ X pJC,Xq
`

pk, kq, h
˘

ÞÑ kpC, IdC , Jhq

Naturality in C is witnessed by the following 2-cell, where r : C 1 Ñ C is any 1-cell in B:

k
`

C 1, IdC1 ˝ r, Jph ˝ rq
˘

kpC, IdC , Jhq ˝ Jr

kpC 1, IdC1 ˝ r, Jh ˝ Jrq kpC 1, r ˝ IdC , Jh ˝ Jrq

kpC1,IdC1˝r,pφ
J
h,rq

´1q kpr,IdC ,Jhq

Instantiating this with the cartesian closed structure constructed in Section 6.1, one may

identify
“

pl, lqp´,Bq, xJyX
‰

: rxJypJBq, xJypXqs Ñ rYB, xJypXqs as in the following lemma.

Lemma 8.2.19. For any 2-category with pseudo-products pB,Πnp´qq, cc-bicategory pX ,Πnp´q,“Bq,

and fp-pseudofunctor pJ, qˆq : pB,Πnp´qq Ñ pX ,Πnp´qq, the pseudonatural transforma-

tion
“

pl, lqp´,Bq, xJyX
‰

: rxJypJBq, xJypXqs ñ rYB, xJypXqs (where B P B and X P X ) has

functorial components

rxJypJBq, xJypXqspCq
rpl,lqp´,Bq,xJyXspCq
ÝÝÝÝÝÝÝÝÝÝÝÝÑ rYB, xJypXqspCq

pk, kq ÞÑ λAB . λhAÑC . λpAÑB . kpA, h, Jpq

For s : A1 Ñ A, the witnessing 2-cell of
“

pl, lqp´,Bq, xJyX
‰

pCq
`

pk, kq
˘

as in the diagram

BpA,Cq ˆ BpA,Bq BpA1, Cq ˆ BpA1, Bq

X pJA,Xq X pJA1, Xq

–
ð

Bps,CqˆBps,Bq

kpA,´,Jp“qq kpA1,´,Jp“qq

X pJs,Xq

is given by

k
`

A1, p´q˝s, Jp“˝sq
˘

kpA1,p´q˝s,pφJ
p“q,s

q´1q

ùùùùùùùùùùùùùñ k
`

A1, p´q˝s, Jp“q˝Js
˘ kps,´,Jp“qq
ùùùùùùùñ kpA,´, Jp“qq˝Js
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Calculating mJB,X . By Lemma 8.2.13, the pseudonatural transformation xJypevalJB,Xq ˝

qˆJB,X has components defined by λCB . λhJCÑpJB“BXq . λgJCÑJB . evalJB,X ˝ xh, gy and

witnessing 2-cells of the form

X
`

JC, JB“BX
˘

ˆ X
`

JC, JB
˘

X
`

JC 1, JB“BX
˘

ˆ X
`

JC 1, JB
˘

X
`

JC,X
˘

X
`

JC 1, X
˘

X pJf,JB“BXqˆX pJf,JBq

evalJB,X˝x´,“y –
ð

evalJB,X˝x´,“y

X pJf,Xq

given by

evalJB,X ˝ xh ˝ Jf, g ˝ Jfy
evalJB,X˝post´1

ùùùùùùùùùùñ evalJB,X ˝ pxh, gy ˝ Jfq
–
ùñ pevalJB,X ˝ xh, gyq ˝ Jf

for every f : C 1 Ñ C in B. Applying the currying operation defined in Section 6.1, one

obtains the following characterisation of mJB,X .

Lemma 8.2.20. For any 2-category with pseudo-products pB,Πnp´qq, cc-bicategory pX ,Πnp´q,“Bq,

and fp-pseudofunctor pJ, qˆq : pB,Πnp´qq Ñ pX ,Πnp´qq, the pseudonatural transformation

mJB,X has components mJB,XpCq given by the functors

X pJC, JB“BXq Ñ HompBop,Catq
`

YC ˆ xJypJBq, xJyX
˘

f ÞÑ λAB . λphAÑC , gJAÑJBq .
`

JA
xf˝Jh,gy
ÝÝÝÝÝÑ pJB“BXq ˆ JB

evalJB,X
ÝÝÝÝÝÑ X

˘

Moreover, for every r : A1 Ñ A the pseudonatural transformation mJB,XpCqpfq has

witnessing 2-cell

BpA,Cq ˆ X pJA, JBq BpA1, Cq ˆ X pJA1, JBq

X pJA,Xq X pJA1, Xq

mJB,XpCqpfqr
ð

Bpr,CqˆX pJr,JBq

evalJB,X˝xf˝Jp´q,“y evalJB,X˝xf˝Jp´q,“y

BpJr,Xq

defined by

evalJB,X ˝ xf ˝ Jph ˝ rq, g ˝ Jry pevalJB,X ˝ xf ˝ Jh, gyq ˝ Jr

evalJB,X ˝ xf ˝ pJh ˝ Jrq, g ˝ Jry evalJB,X ˝ pxf ˝ Jh, gy ˝ Jrq

evalJB,X ˝ xpf ˝ Jhq ˝ Jr, g ˝ Jry

mJB,XpCqpfqr

evalJB,X˝xf˝pφ
J
h,rq

´1,g˝Jry

–

–

evalJB,X˝post´1
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Calculating rwsB,X . Combining Lemma 8.2.19 with Lemma 8.2.20, one obtains the

following identification of rwsB,X .

Lemma 8.2.21. For any 2-category with pseudo-products pB,Πnp´qq, cc-bicategory pX ,Πnp´q,“Bq,

and fp-pseudofunctor pJ, qˆq : pB,Πnp´qq Ñ pX ,Πnp´qq, the composite pseudonatural

transformation rwsB,X : xJypJB“BXq Ñ rYB, xJyXs has components

X pJC, JB“BXq
rwsB,XpCq
ÝÝÝÝÝÝÑ HompBop,Catq

`

YC ˆYB,X pJp´q, Xq
˘

f ÞÑ λAB . λhAÑC . λpAÑB .
`

JA
xf˝Jh,Jpy
ÝÝÝÝÝÝÑ pJB“BXq ˆ JB

evalJB,X
ÝÝÝÝÝÑ X

˘

The witnessing 2-cells for the pseudonatural transformation rwsB,XpCqpfq are defined by

the following commutative diagram, where r : A1 Ñ A is any 1-cell:

evalJB,X ˝ xf ˝ Jph ˝ rq, Jpp ˝ rqy evalJB,X ˝ xf ˝ Jh, Jpy ˝ Jr

evalJB,X ˝ xf ˝ pJh ˝ Jrq , Jp ˝ Jry evalJB,X ˝ pxf ˝ Jh, Jpy ˝ Jrq

evalJB,X ˝ xpf ˝ Jhq ˝ Jr, Jp ˝ Jry

rwsB,XpCqpfqr

evalJB,X˝xf˝pφ
J
h,rq

´1,pφJp,rq
´1y

–

–

evalJB,X˝post´1

(8.22)

The equivalence rYB, xJyXs » xJypJB“BXq

We are finally in a position to prove that uX : rYB, xJyXs Ô xJypJB“BXq : rwsB,X defines

an equivalence of pseudofunctors in HompBop,Catq. By Lemma 2.1.16 it suffices to construct

an equivalence of categories uB,XpCq : rYB, xJyXspCq Ô xJypJB“BXqpCq : rwsB,XpCq for

each C P B. We deal with this in the following lemma.

Lemma 8.2.22. For any 2-category with pseudo-products pB,Πnp´qq, cc-bicategory pX ,Πnp´q,“Bq,

and fp-pseudofunctor pJ, qˆq : pB,Πnp´qq Ñ pX ,Πnp´qq, the following composites are nat-

urally isomorphic to the identity functor for every B,C P B and X P X :

1.

X pJC, JB“BXq
rwsB,XpCq
ÝÝÝÝÝÝÑ HompBop,CatqpYCˆYB, xJyXq

uB,XpCq
ÝÝÝÝÝÑ X pC, JB“BXq

2.

HompBop,CatqpYC ˆYB, xJyXq HompBop,CatqpYC ˆYB, xJyXq

X pJC, JB“BXq
uB,XpCq rwsB,XpCq

Hence, rwsB,X is pseudo-inverse to uB,X : rYB, xJyXs Ñ xJypJB“BXq in HompBop,Catq.
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Proof. For (1), we begin by calculating

`

uB,XpCq ˝ rwsB,XpCq
˘

pfq “ uB,XpCq
`

λAB . λhAÑC . λpAÑB . evalJB,X ˝ xf ˝ Jh, Jpy
˘

“ λ
`

JC ˆ JB
qˆC,B
ÝÝÝÑ JpC ˆBq

evalJB,X˝xf˝Jπ1,Jπ2y
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ X

˘

for f : JC Ñ pJB“BXq. For each such f , one obtains an invertible 2-cell
`

uB,X ˝ rwsB,XpCq
˘

pfq
–
ùñ

f as the composite

λ
`

pevalJB,X ˝ xf ˝ Jπ1, Jπ2yq ˝ qˆC,B
˘

f

λ
`

pevalJB,X ˝ ppf ˆ JBq ˝ xJπ1, Jπ2yqq ˝ qˆC,B
˘

λ
`

evalJB,X ˝ pf ˆ JBq
˘

λ
`

pevalJB,X ˝ pf ˆ JBqq ˝ pxJπ1, Jπ2yq ˝ qˆC,B
˘

λ
`

pevalJB,X ˝ pf ˆ JBqq ˝ IdJBˆJC

˘

λpevalJB,X˝fuse´1˝qˆC,Bq

–

η´1
f

λpevalJB,X˝pfˆJBq˝puˆC,Bq
´1q

–

where the bottom isomorphism arises from the equivalence

xJπ1, Jπ2y : JpB ˆ Cq Ô JB ˆ JC : qˆC,B

witnessing pJ, qˆq as an fp-pseudofunctor. This composite is clearly natural in f , so one

obtains the required natural isomorphism.

For (2) one must work a little harder. We are required to construct an invertible modifica-

tion Ξpk,kq :
`

rwsB,XpCq ˝uB,XpCq
˘`

pk, kq
˘ –
ÝÑ pk, kq for every pseudonatural transformation

pk, kq : YC ˆYB ñ X
`

Jp´q, X
˘

, and this family which must be natural in the sense that,

for any modification Ψ : pk, kq Ñ pj, jq, the following diagram commutes:

`

rwsB,XpCq ˝ uB,XpCq
˘`

pk, kq
˘ `

rwsB,XpCq ˝ uB,XpCq
˘`

pj, jq
˘

pk, kq pj, jq

–

prwsB,XpCq˝uB,XpCqqpΨq

–

Ψ

(8.23)

To this end, let us first unwind the data we are given. Applying the work of the preceding

section, one sees that for pk, kq : YC ˆYB Ñ X
`

Jp´q, X
˘

one has

`

rwsB,XpCq ˝ uB,XpCq
˘`

pk, kq
˘

“ rwsB,XpCq
´

λ
`

kCˆBpπ1, π2q ˝ qˆC,B
˘

¯

“ λAB . λhAÑC . λpAÑB . evalJB,X ˝
A

λ
`

kCˆBpπ1, π2q ˝ qˆC,B
˘

˝ Jh, Jp
E

Moreover, writing L :“ kCˆBpπ1, π2q ˝ qˆC,B, the 2-cell required for the diagram below (in

which r : A1 Ñ A) is the composite defined in (8.22) with f :“ λL:
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BpA,Cq ˆ BpA,Bq BpA1, Cq ˆ BpA1, Bq

X pJA,Xq X pJA1, Xq

evalJB,X˝xλL˝Jp´q,Jp“qy prwsB,XpCq˝uB,XpCqqppk,kqqr
ð

Bpr,CqˆBpr,Bq

evalJB,X˝xλL˝Jp´q,Jp“qy

X pJr,Xq

We now turn to defining the modification Ξpk,kq. For A P B and ph, pq P BpA,CqˆBpA,Bq
there exists an evident choice of isomorphism

Ξpk,kqpA, h, pq :
`

rwsB,XpCq ˝ uB,XpCq
˘`

pk, kq
˘

pA, h, pq ñ kpA, h, pq

namely

evalJB,X ˝ xλL ˝ Jh, Jpy kAph, pq

evalJB,X ˝ xλL ˝ Jh, IdJB ˝ Jpy kApπ1xp, qy, π2xp, qyq

evalJB,X ˝ ppλLˆ JIdBq ˝ xJh, Jpyq kCˆBpπ1, π2q ˝ Jxh, py

evalJB,X ˝ ppλLˆ JBq ˝ xJh, Jpyq pkCˆBpπ1, π2q ˝ IdJCˆJBq ˝ Jxh, py

pevalJB,X ˝ pλLˆ JBqq ˝ xJh, Jpy
´

kCˆBpπ1, π2q ˝

´

qˆC,B ˝ xJπ1, Jπ2y

¯¯

˝ Jxh, py

´

kCˆBpπ1, π2q ˝ qˆC,B

¯

˝ xJh, Jpy
´

kCˆBpπ1, π2q ˝ qˆC,B

¯

˝ pxJπ1, Jπ2y ˝ Jxh, pyq

Ξ
pk,kq
A ph,pq

–

evalJB,X˝fuse´1

kAp$p1qp,q ,$p2qp,qq

evalJB,X˝pλLˆpψ
J
Bq
´1q˝xJh,Jpy

k´1
xp,hypπ1,π2q

–

–

εL˝xJh,Jpy

kCˆBpπ1,π2q˝cˆC,B˝Jxh,py

kCˆBpπ1,π2q˝q
ˆ
C,B˝unpack´1

–

It is clear from the definition that Ξ
pk,kq
A :“ Ξpk,kqpA,´,“q is natural in its two arguments

and so a 2-cell
`

rwsB,XpCq ˝ uB,XpCq
˘`

pk, kq
˘

pA,´,“q ñ kpA,´,“q in Cat. Moreover,

the naturality condition (8.23) holds by naturality of each of the components defining Ξpk,kq

and the modification axiom on Ψ : pk, kq Ñ pj, jq, which requires that the following diagram

commutes for every r : A1 Ñ A in B and pp, hq P BpA,Cq ˆ BpA,Bq:

kA1ppr, hrq kApp, hq ˝ Jr

jA1ppr, hrq jApp, hq ˝ Jr

Ψ1Appr,hrq

krpp,hq

ΨApp,hq˝Jr

jrpp,hq

It therefore remains to show that the family of 2-cells pΞ
pk,kq
A qAPB satisfies the following

instance of the modification axiom for every r : A1 Ñ A in B:
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`

rwsB,XpCq ˝ uB,XpCq
˘`

pk, kq
˘

pA, pr, hrq kpA, pr, hrq

`

rwsB,XpCq ˝ uB,XpCq
˘`

pk, kq
˘

pA, p, hq ˝ Jr kpA, p, hq ˝ Jr

Ξpk,kqpA,pr,hrq

prwsB,XpCq˝uB,XpCqqppk,kqqr krpp,hq

Ξpk,kqpA,p,hq˝Jr

Unfolding the definitions around the anticlockwise composite and applying the lemma

relating fuse and post (Lemma 4.1.7), the problem reduces to the following two lemmas:

kA pπ1xp, hy, π2xp, hyq ˝ Jr

pkBˆCpπ1, π2q ˝ Jxp, hyq ˝ Jr kApp, hq ˝ Jr

kBˆCpπ1, π2q ˝ pJxp, hy ˝ Jrq

kBˆCpπ1, π2q ˝ Jpxp, hy ˝ rq kA1ppr, hrq

kBˆCpπ1, π2q ˝ Jxpr, hry kA1 pπ1xpr, hry, π2xpr, hryq

kAp$p1qp,h,$
p1q
p,hq˝Jrk´1

xp,hypπ1,π2q˝Jr

–

kBˆCpπ1,π2q˝φ
J
xp,hy,r

kBˆCpπ1,π2q˝Jpost

krpp,hq

k´1
xpr,hrypπ1,π2q

kA1 p$
p1q
pr,hr,$

p2q
pr,hrq

(8.24)

and

qˆC,B ˝ ppxJπ1, Jπ2y ˝ Jxp, hyq ˝ Jrq

qˆC,B ˝ xJp, Jhy ˝ Jr Jxp, hy ˝ Jr

qˆC,B ˝ xJp ˝ Jr, Jh ˝ Jry Jpxp, hy ˝ rq

qˆC,B ˝ xJpprq, Jphrqy Jxpr, hry

qˆC,B ˝ pxJπ1, Jπ2y ˝ Jxpr, hryq
´

qˆC,B ˝ xJπ1, Jπ2y

¯

˝ Jxpr, hry

qˆC,B˝unpack˝Jr
–

qˆC,B˝post φJ
xp,hy,r

qˆC,B˝xφ
J
p,r,φ

J
h,ry Jpost

qˆC,B˝unpack´1

–

cˆC,B˝h

(8.25)

Here the top unlabelled isomorphism is the composite

qˆC,B ˝ ppxJπ1, Jπ2y ˝ Jxp, hyq ˝ Jrq Jxp, hy ˝ Jr

´

qˆC,B ˝ xJπ1, Jπ2y

¯

˝ pJxp, hy ˝ Jrq IdJpBˆCq ˝ pJxp, hy ˝ Jrq

–

cˆC,B˝Jxp,hy˝Jr

–
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applying the isomorphism cˆC,B witnessing that qˆC,B : JC ˆ JB Ô JpC ˆ Bq : xJπ1, Jπ2y

forms an equivalence.

For (8.24), one applies the associativity law for pk, kq along with the definition of post
as part of a short diagram chase. For (8.25), one unwinds the definition of unpack in each

of the two given composites and repeatedly applies naturality.

This lemma, together with Lemma 8.2.18, completes the proof of Proposition 8.2.17.

8.3 Glueing syntax and semantics

Our aim now is to show how the structure of Λˆ,Ñps , together with the identification of

neutral and normal terms in Section 8.2, determines data in the bicategory of intensional

Kripke relations (c.f. (8.4) on page 244). Fix a cc-bicategory pX ,Πnp´q,“Bq and consider

an interpretation BÑ X of base types in X with canonical extension s : rBÑ X . We show

that the terms of Λˆ,Ñps determine objects in the glueing bicategory, and that the typing

rules determine 1-cells.

From terms to glued objects. On neutral and normal terms, the key observation is

that the interpretation of Λˆ,Ñps -terms in X is pseudonatural.

Construction 8.3.1. Let B be a set of base types, pX ,Πnp´q,“Bq be a cc-bicategory,

and s : rB Ñ X the canonical extension of a set map B Ñ X . By Proposition 5.3.22

there exists a cc-pseudofunctor sJ´K : T @,ˆ,Ñ
ps prBq Ñ X interpreting Λˆ,Ñps prBq in X (see

Construction C.2.2 for the full definition). We define a pseudonatural transformation

psJ´K, sJ´Kq : dLp´;Aq ñ X
`

sJ´K, sJAK
˘

: dCon
rB
Ñ Cat for every A P rB.

For the component at Γ P Con
rB

we take the functor

dLpΓ;Aq
sJ´KΓ,A
ÝÝÝÝÝÑ X psJΓK, sJAKq

L t M ÞÑ sJΓ $ L t M : AK

Next, for every context renaming r : Γ Ñ ∆ we need to provide a 2-cell—i.e. natural

isomorphism—as in

dLpΓ;Aq dLp∆;Aq

X psJΓK, sJAKq X psJ∆K, sJAKq

dLpr;Aq

psJ´Kqr
ð

sJ´K sJ´K

X psJrK,sJAKq

Thus, for every L t M P LpΓ;Aq we need to provide an isomorphism in X of type sJ∆ $ L trrpxiq{xis M : AK Ñ
sJΓ $ L t M : AK ˝ sJrK. Calculating, one sees that

sJL Γ $ L t M : A MK ˝ sJrK “ sJL Γ $ L t M : A MK ˝
@

πrp1q, . . . , πrpnq
D

“ sJL Γ $ L t M : A MK ˝
@

sJp∆ $ xrpiq : ArpiqKq
D

i

“ sJL Γ $ L t M : A MK ˝ s
q
p∆ $ xrpiq : Arpiqqi“1, ... ,n

y

“ sJ∆ $ L t Mtru : AK
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Now recall from Construction 5.4.6 that we have already constructed a rewrite typed by

the rule

Γ $ L t M : A r : Γ Ñ ∆

∆ $ contpt; rq : L t Mtxi ÞÑ rpxiqu ñ L trrpxiq{xis M : A

We therefore define psJ´Kqr to be the interpretation of cont:

psJ´Kqrptq :“ sJ∆ $ contpt; rq : L t Mtxi ÞÑ rpxiqu ñ L trrpxiq{xis M : AK

To see that this is a pseudonatural transformation, observe first that it is certainly natural:

there are no non-trivial 2-cells in dLpΓ;Aq. For the unit law, we need to show that

sJΓ $ L t M : AK ˝ IdsJΓK sJ∆ $ L trxi{xis M : AK

sJΓ $ L t M : AK ˝ xπ1, . . . , πny sJ∆ $ L t M : AK

sJΓ$L t M:AK˝pςIdsJΓK

–

sJΓ$contpt;idΓq:ttxi ÞÑxiuñL trxi{xis M:AK

(8.26)

where pςIdsJΓK
:“ IdsJΓK

ςIdsJΓK
ùùùùñ

@

π1 ˝ IdsJΓK, . . . , πn ˝ IdsJΓK
D –
ùñ xπ1, . . . , πny. To see this

commutes, note that sJΓ $ ιL t M : L t M ñ L t Mtxi ÞÑ xiu : AK is, by definition, the composite

sJΓ $ L t M : AK –
ùñ sJΓ $ L t M : AK ˝ IdsJΓK

sJΓ$L t M:AK˝pςIdsJΓK
ùùùùùùùùùùùùñ sJΓ $ L t M : AK ˝ xπ1, . . . , πny

Hence (8.26) commutes by Lemma 5.4.8 and Lemma 5.4.9(1).

For the associativity law we need to show that, for any contexts Γ :“ pxi : Aiqi“1, ... ,n

and ∆ :“ pyj : Ajqj“1, ... ,m, and any context renamings Γ
r
ÝÑ ∆

r1
ÝÑ Σ, the following diagram

commutes:

sJΓ $ L t M : AK ˝ pxπry ˝ xπr1yq sJΓ $ L t M : AK ˝ xπr ˝ xπr1yy

psJΓ $ L t M : AK ˝ xπryq ˝ xπr1y sJΓ $ L t M : AK ˝ xπr1ry

sJ∆ $ L trrpxiq{xis M : AK ˝ xπr1y sJΣ $ L trr1rpxiq{xis M : AK

sJΣ $ L trrpxiq{xisrr1pyjq{yjs M : AK

sJΓ$L t M:AK˝post

sJΓ$L t M:AK˝x$prqy–

sJcontpL t M;rqK˝xπr1y sJcontpL t M;r1rqK

sJcontpL trrpxiq{xis M;r1qK

We suppress the full typing judgement in the vertical arrows for reasons of space. By

Lemma 5.4.8, this diagram is exactly the image of Lemma 5.4.9(3) under sJ´K, and so it

commutes. đ
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The preceding construction restricts to neutral and normal terms, giving pseudonatural

transformations

dMp´;Aq
psJ´K,sJ´Kq

ˇ

ˇ

M
ùùùùùùùùùñ X

`

sJ´K, sJAK
˘

dN p´;Aq
psJ´K,sJ´Kq

ˇ

ˇ

N
ùùùùùùùùñ X

`

sJ´K, sJAK
˘

One thereby obtains the following glued objects for every type A P rB:

µA :“
`

dMp´;Aq, psJ´K, sJ´Kq
ˇ

ˇ

M
, sJAK

˘

ηA :“
`

dN p´;Aq, psJ´K, sJ´Kq
ˇ

ˇ

N
, sJAK

˘

(8.27)

Finally, for variables, we take

νA :“ YprAsq “
`

dCon
rB
p´;Aq, pl, lqp´,Aq, sJAK

˘

where pl, lqp´,Aq is the pseudonatural transformation of Corollary 8.2.10.

From typing rules to glued 1-cells. We also lift the natural transformations of (8.10)—

viewed as locally discrete pseudonatural transformations—to morphisms in glpxsyq.

For the lambda abstraction case we will use the following observation. For types A,B P
rB the exponential rdVp´;Aq,dN p´;Bqs “ rdpyrAsq, dN p´;Bqs “ rYrAs,dN p´;Bqs in

HompdCon
rB
,Catq is, by Theorem 6.2.7, equivalent to dN p´@ rAs;Bq. One thereby obtains

a composite

rdVp´;Aq,dN p´;Bqs
»
ÝÑ dN p´@ rAs;Bq

dlamp´;A,Bq
ÝÝÝÝÝÝÝÝÑ dN p´;A“BBq (8.28)

We put this to work in the next result, which is the bicategorical version of Fiore’s [Fio02,

Proposition 7 and Proposition 8].

Remark 8.3.2. Examining the equivalence rdVp´;Aq,dN p´;Bqs » dN p´@ rAs;Bq, one

sees that it is in fact an isomorphism. Since N pΓ @ rAs;Bq is a set for every context Γ, the

composite N pΓ @ rAs;Bq Ñ rdVp´;Aq, dN p´;BqspΓq Ñ N pΓ @ rAs;Bq must be equal to

the identity. On the other hand, by Lemma 8.2.2(5), the exponential rdVp´;Aq, dN p´;Bqs

may be given by dpFunpC, Setq pyp´q ˆ Vp“;Aq,N p“;Bqqq. But CatpdC, Setq pyΓˆ Vp“;Aq,N p“;Bqq

is also a set for every context Γ. Hence, the composite rdVp´;Aq, dN p´;Bqs Ñ rdVp´;Aq, dN p´;Bqs

must also be the identity. đ

Proposition 8.3.3. For every set of base types B, cc-bicategory pX ,Πnp´q,“Bq, and set

map s : rBÑ X canonically induced from an interpretation of base types BÑ X ,

1. For every type Ai P rB, the triple var :“
`

dvarp´;Aiq,–, IdsJAiK
˘

is a 1-cell νAi Ñ µAi
in glpxsyq, where the 2-cell – filling

dVp´;Aiq dMp´;Aiq

X
`

sJ´K, sJAiK
˘

X
`

sJ´K, sJAiK
˘

dvarp´;Aiq

sJ´K –
ð sJ´K

X
´

sJ´K,IdsJAiK
¯
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is the structural isomorphism sJΓ $ xi : AiK
–
ùñ IdsJAiK ˝ sJΓ $ xi : AiK.

2. For any base type B P B, the triple inc :“
`

incp´;Bq,–, IdsJBK
˘

, in which – is a

structural isomorphism, is an isomorphism µB
–
ÝÑ ηB in glpxsyq.

3. For every sequence of typesA1, . . . , An P rB pn P Nq, the triple proj
k

:“
`

dprojkp´;A‚q, id, πk
˘

is a 1-cell µś
npA1, ... ,Anq Ñ µAk in glpxsyq for k “ 1, . . . , n.

4. For every pair of types A,B P rB, the triple app :“
`

dappp´;A,Bq, id, evalsJAK,sJBK
˘

is a 1-cell µA“BB ˆ ηA Ñ µB in glpxsyq.

5. For every sequence of types A1, . . . , An P rB pn P Nq, the triple

tuple :“
`

dtuplep´;A‚q,–, IdsJ
ś

n A‚K
˘

is a 1-cell
śn
i“1 ηAi Ñ ηś

npA1, ... ,Anq in glpxsyq,

where the isomorphism filling

śn
i“1 dN p´;Aiq dN

`

´;
ś

npA1, . . . , Anq
˘

śn
i“1X

`

sJ´K, sJAiK
˘

X psJ´K,
śn
i“1sJAiKq X psJ´K, sJ

ś

npA1, . . . , AnqKq

dtuplep´;A‚q

–
ð

śn
i“1 sJ´K

sJ´K

x´, ... ,“y

XpsJ´K,IdsJśn A‚Kq

is the structural isomorphism

sJΓ $ tuppL t1 M, . . . , L tn Mq :
ś

nA‚K “ xsJΓ $ L t‚ M : A‚Ky
–
ùñ Idp

ś

i sAiq
˝xsJΓ $ L t‚ M : A‚Ky

6. For any pair of types A,B P rB, write LA,B for the composite

rdVp´;Aq, dN p´;Bqs
»
ÝÑ dN

`

´`rAs, B
˘ dlamp´;A,Bq
ÝÝÝÝÝÝÝÝÑ dN

`

´, A“BB
˘

of (8.28). Then, where – denotes a structural isomorphism, lam :“ pLA,B,–
, IdsJAK“BsJBKq is a 1-cell pνA“B ηBq

–
ÝÑ ηA“BB in glpxsyq.

Proof. (1) is immediate. For (2), observe first that the only way to construct normal

terms of base type is via the inc rule. Hence the natural transformation inc is a natural

isomorphism. Next consider the diagram

dMp´;Bq dN p´;Bq

X
`

sJ´K, sJBK
˘

X
`

sJ´K, sJBK
˘

–
ðsJ´K

incp´;Bq

sJ´K

X psJ´K,IdsJBKq

For a context Γ and term t P MpΓ;Bq, the clockwise route returns sJΓ $ t : BK while

the anticlockwise route returns IdsJBK ˝ sJΓ $ t : BK. Hence the diagram is filled by a

structural isomorphism, and
`

incp´;Bq,–, IdsJBK
˘

is a 1-cell in glpxsyq. To see that it is an

isomorphism in glpxsyq, observe that the diagram
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dN p´;Bq dMp´;Bq

X
`

sJ´K, sJBK
˘

X
`

sJ´K, sJBK
˘

–
ðsJ´K

incp´;Bq´1

sJ´K

X psJ´K,IdsJBKq

is also filled by a structural isomorphism, giving a 1-cell
`

incp´;Bq´1,–, IdsJBK
˘

. Then, by

the coherence theorem for bicategories, the composite

dMp´;Bq dN p´;Bq dMp´;Bq

X
`

sJ´K, sJBK
˘

X
`

sJ´K, sJBK
˘

X
`

sJ´K, sJBK
˘

IddMp´;Bq

“

–
ðsJ´K

incp´;Bq

sJ´K –
ð

incp´;Bq´1

sJ´K

ó–

X psJ´K,IdsJBKq

X psJ´K,IdsJBKq X psJ´K,IdsJBKq

is equal to the identity 1-cell IdµB in glpxsyq, and similarly for the other composite.

For (3) one needs to check that the following diagram commutes on the nose:

dM p´;
ś

npA1, . . . , Anqq dMp´;Akq

X
`

sJ´K, sJ
ś

npA1, . . . , AnqK
˘

X
`

sJ´K, sJAkK
˘

sJ´K

dprojkp´;A‚q

sJ´K

X psJ´K,πkq

For a fixed context Γ and term L t M PMpΓ;Bq,

sJprojkpΓ;A‚qptqK “ sJLπkptq MK “ sJπktL t MuK “ πk ˝ sJΓ $ L t M :
ś

npA1, . . . , AnqK

as required.

For (4) one observes that the product µA“BB ˆ ηA in glpxsyq is the pseudonatural

transformation κA,B defined by the diagram below.

X
`

sJ´K, sJA“BBK
˘

ˆ X
`

sJ´K, sJAK
˘

dMp´;A“BBq ˆ dN p´;Aq X
`

sJ´K, sJA“BBKˆ sJAK
˘

x´,“ysJ´KˆsJ´K

κA,B

Hence, the composite X
`

sJ´K, evalsA,sB
˘

˝ κA,B instantiated at a context Γ and a pair of

terms pL t M, Lu Mq returns

evalsA,sB ˝ xsJΓ $ L t M : A“BBK, sJΓ $ Lu M : AKy “ sJevaltL t M, Lu MuK

“ sJdapppΓ;A,BqpL t M, Lu MqK

as required. The calculation for (5) is similar.
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For (6) some calculations are required. Since νA “ YrAs, the exponential νA“B ηB may,

by Proposition 8.2.17, be given by the composite

rYrAs,dN p´;Bqs
rYrAs,psJ´K,sJ´Kqs
ÝÝÝÝÝÝÝÝÝÝÝÑ rYrAs,X psJ´K, sJBKqs

urAs,sJBK
ÝÝÝÝÝÑ X

`

sJ´K, sJAK“B sJBK
˘

We therefore calculate the two routes around the diagram

rYrAs,dN p´;Bqs dN p´ ` rAs;Bq dN p´;A“BBq

“

YrAs,X
`

sJ´K, sJBK
˘‰

X
`

sJ´K, sJAK“B sJBK
˘

X
`

sJ´K, sJAK“B sJBK
˘

»

rYrAs,psJ´K,sJ´Kqs

dlamp´;A,Bq

sJ´K

urAs,sJBK

X psJ´K,IdsJAK“BsJBKq

We begin with the anticlockwise route, instantiated at a context Γ. For pj, jq : YΓˆYrAs ñ

dN p´;Bq the pseudonatural transformation rYrAs, psJ´K, sJ´Kqspj, jq is simply the composite

YΓˆYrAs
pj,jq
ùùñ dN p´;Bq

psJ´K,sJ´Kq
ùùùùùùùñ X

`

sJ´K, sJBK
˘

(8.29)

Moreover, from (8.20) on page 259 we know that, at Γ, the equivalence usJAK,sJBK takes a

pseudonatural transformation pk, kq : YΓˆYrAs ñ X psJ´K, sJBKq to the 1-cell

λ
`

sJΓKˆ sJAK
qˆ

Γ,rAs
ÝÝÝÑ sJΓ @ rAsK

kΓ @ rAspι1,ι2q
ÝÝÝÝÝÝÝÝÑ sJBK

˘

in X , where ι1 and ι2 denote the two inclusions Γ ãÑ Γ`rAs and rAs ãÑ Γ`rAs. Instantiating

in the case where pk, kq is given by (8.29), one obtains

`

urAs,sJBK ˝ rYrAs, sJ´Ks
˘

pj, jq “ λ
`

sJjΓ @ rAspι1, ι2qK
˘

˝ qˆΓ,rAs

It follows that the value of the whole anticlockwise route is IdsA“BsB ˝ λpsJjΓ`rAspι1, ι2qK ˝
qˆΓ,rAsq.

Next we calculate the clockwise route. For a context Γ and pseudonatural transformation

pj, jq as above, the unlabelled equivalence returns the 1-cell jΓ @ rAspι1, ι2q (recall (8.19) on

page 259). This is a normal term of type B in context Γ @ rAs “ pΓ, x|Γ|`1 : Aq; let us write

j for this term. The clockwise composite therefore returns

sJΓ $ λx.j : A“BBK “ λ
`

sJΓ, x|Γ|`1 : A $ j : BK ˝ xπ1 ˝ π1, . . . , πn ˝ π1, π2y
˘

“ λ
`

sJjΓ`rAspι1, ι2qK ˝ xπ1 ˝ π1, . . . , πn ˝ π1, π2y
˘

Since the tupling of projections on the right is exactly qˆΓ,rAs (Remark 8.2.4), the required

2-cell is a structural isomorphism:

IdsA“BsB ˝ λpsJjΓ @ rAspι1, ι2qK ˝ qˆΓ,rAsq – λpsJjΓ @ rAspι1, ι2qK ˝ qˆΓ,rAsq

“ λ
`

sJjΓ @ rAspι1, ι2qK ˝ xπ1 ˝ π1, . . . , πn ˝ π1, π2y
˘
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8.4 Λˆ,Ñps is locally coherent

We are finally in a position to prove the main result. To this end, let B be a set of base

types, pX ,Πnp´q,“Bq be a cc-bicategory, and s : rBÑ X be the canonical extension of a

set map BÑ X . This extends in turn to an interpretation sJ´K : T @,ˆ,Ñ
ps prBq Ñ X . From

this interpretation one obtains the glued objects of (8.27) (page 268) and hence a set map

B Ñ glpxsyq sending B ÞÑ µB. This extends via the cartesian closed structure of glpxsyq

to an interpretation sJ´K : T @,ˆ,Ñ
ps prBq Ñ glpxsyq. Since the forgetful functor glpxsyq Ñ X

strictly preserves the cc-bicategorical structure, we may write sJAK :“ pGA, γB, sJAKq
for every type A P rB. Moreover, for every context Γ :“ pxi : Aiqi“1, ... ,n and term

Γ $ t : B in Λˆ,Ñps prBq, one obtains a 1-cell sJΓ $ t : BK “
śn
i“1 sJAiK Ñ sJBK. Write

ps1JΓ $ t : BK, σJΓ $ t : BK, sJΓ $ t : BKq for this 1-cell, which is described pictorially

by the following pseudo-commutative diagram in HompdCon
rB
,Catq (note that, since s is

contravariant on Con
rB

, the composite X psp´q, Xq “ X psJ´K, Xq is covariant):

śn
i“1GAi GB

śn
i“1X

`

sJ´K, sJAiK
˘

X
`

sJ´K,
śn
i“1 sJAiKq

˘

X
`

sJ´K, sJBK
˘

σJΓ$t:BK
ð
–

śn
i“1 γAi

s1JΓ$t:BK

γB

x´, ... ,“y

sJΓ$t:BK˝p´q

(8.30)

Finally, for every rewrite Γ $ τ : tñ t1 : B one obtains a pair of 2-cells

s1JΓ $ τ : tñ t1 : BK : s1JΓ $ t : BK ñ s1JΓ $ t1 : BK

sJΓ $ τ : tñ t1 : BK : sJΓ $ t : BK ñ sJΓ $ t1 : BK

which, by the cylinder condition, satisfy the diagram below. Since HompdCon
rB
,Catq is a

2-category, there is no need to distinguish between bracketings.

γB ˝ s
1JΓ $ t : BK γB ˝ s

1JΓ $ t1 : BK

sJΓ $ t : BK ˝ x´, . . . ,“y ˝
śn
i“1 γAi sJΓ $ t1 : BK ˝ x´, . . . ,“y ˝

śn
i“1 γAi

σJΓ$t:BK

γB˝s
1JΓ$τ :tñt1:BK

σJΓ$t1:BK

sJΓ$τ :tñt1:BK˝x´, ... ,“y˝
śn
i“1 γAi

(8.31)

We now use Proposition 8.3.3 to define 1-cells unquoteA : µA Ñ sJAK and quoteA : sJAK Ñ
ηA by induction on types. On base types B, we take

unquoteB :“ IdµB : µB Ñ µB “ sJBK

quoteB :“ pincp´;Bq´1,–, IdsBq : sJBK Ñ ηB

where pdincp´;Bq´1,–, IdsBq is defined in Proposition 8.3.3(2).
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On product types
ś

npA1, . . . , Anq, the 1-cell unquotepśn A‚q
: µp

ś

n A‚q
Ñ

śn
i“1 sJAiK

is the n-ary tupling of the composite

µp
ś

n A‚q
pdprojk,id,πkq
ÝÝÝÝÝÝÝÝÑ µAk

unquoteAk
ÝÝÝÝÝÝÑ sJAkK

for k “ 1, . . . , n, where the first 1-cell is defined in Proposition 8.3.3(3). For quotepśn A‚q
,

we define

quotepśn A‚q
:“

śn
i“1sJAiK

śn
i“1 quoteAi

ÝÝÝÝÝÝÝÝÑ
śn
i“1ηAi

pdtuple,–,IdsJśn A‚Kq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ ηp

ś

n A‚q

where the second 1-cell is defined in Proposition 8.3.3(5).

Finally, for exponential types we define unquoteA“BB to be the currying of
`

unquoteB ˝ app
˘

˝

pµA“BB ˆ quoteAq, thus:

λ

ˆ

µA“BB ˆ sJAK
µA“BBˆquoteA
ÝÝÝÝÝÝÝÝÝÝÑ pµA“BBq ˆ ηA

pdappp´;A,Bq,id,evalsJAK,sJBKq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ µB

unquoteB
ÝÝÝÝÝÝÑ sJBK

˙

where we use Proposition 8.3.3(4) for the second arrow. For quoteA“BB we define

quoteA“BB :“ psJAK“B sJBKq Ñ pνA“B ηBq
pLA,B ,–,IdsJAK“BsJBKq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ ηA“BB

where the second arrow is defined in Proposition 8.3.3(6) and the first arrow is the currying

of
`

quoteB ˝ evalsJAK,sJBK
˘

˝
`

ppsJAK“B sJBKq ˆ unquoteAq ˝ ppsJAK“B sJBKq ˆ varq
˘

; that

is, the currying of the following composite:

psJAK“B sJBKq ˆ νA

psJAK“B sJBKq ˆ µA

psJAK“B sJBKq ˆ sJAK sJBK ηB

psJAK“BsJBKqˆvar

psJAK“BsJBKqˆunquoteA

evalsJAK,sJBK

quoteB ˝ evalsJAK,sJBK

quoteB

The morphism var :“
`

dvarp´;Aiq,–, IdsJAiK
˘

is defined in Proposition 8.3.3(1). Let us

denote unquoteB :“ ppuB, uB, uBq and quoteB :“ ppqB, qB, qBq, so that πdompunquoteBq “
uB and πdompquoteBq “ qB.
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Lemma 8.4.1. For every type B P rB, there exist natural isomorphisms πdompunquoteBq –
IdsJBK and πdompquoteBq – IdsJBK.

Proof. We proceed inductively. On base types the claim holds trivially. For product types,

we observe that, where A1, . . . , An P rB pn P Nq:

πdompunquotepśn A‚q
q “ xuA1 ˝ π1, . . . , uAn ˝ πny

– p
śn
i“1uAiq ˝ xπ1, . . . , πny

IH
– p

śn
i“1IdAiq ˝ xπ1, . . . , πny

– IdsJ
ś

n A‚K

πdompquotepśn A‚q
q “ IdsJ

ś

n A‚K ˝
śn
i“1qAi

–
śn
i“1qAi

IH
–

śn
i“1IdsJAiK

– IdsJ
ś

n A‚K

Finally, for exponentials, one sees that

πdompunquoteA“BBq “ λ
``

uB ˝ evalsJAK,sJBK
˘

˝ pIdsJA“BBK ˆ qAq
˘

IH
– λ

``

IdsJBK ˝ evalsJAK,sJBK
˘

˝ pIdsJA“BBK ˆ IdsJAKq
˘

– λ
`

evalsJAK,sJBK ˝ pIdsJA“BBK ˆ IdsJAKq
˘

η
– IdsJA“BBK

πdompquoteA“BBq – λ
`

pqB ˝ evalsJAK,JBKq ˝
`

pIdsJA“BBK ˆ uAq ˝ pIdsJA“BBK ˆ IdsJAKq
˘˘

IH
– λ

`

pIdsJBK ˝ evalsJAK,JBKq ˝
`

pIdsJA“BBK ˆ uAq ˝ pIdsJA“BBK ˆ IdsJAKq
˘˘

– λ
``

IdsJBK ˝ evalsJAK,JBK
˘

˝
`

pIdsJA“BBK ˆ IdsJAKq
˘˘

– λ
`

evalsJAK,JBK ˝
`

IdsJA“BBK ˆ IdsJAK
˘˘

η
– IdsJA“BBK

In each case the isomorphisms are composites of structural isomorphisms or canonical

isomorphisms for the cartesian closed structure, hence natural.

The definitions of unquote and quote, together with the preceding lemma and the 2-cells

ψ
sJ´K
X , give rise to diagrams of the following form for every type B P rB:

dMp´;Bq GB

X
`

sJ´K, sJBK
˘

X
`

sJ´K, sJBK
˘

uB
ð

sJ´K

puB

γB

–

IdX psJ´K,sJBKq

X psJ´K,uBq

GB dN p´;Bq

X
`

sJ´K, sJBKq X
`

sJ´K, sJBKq

γB
qB
ð

pqB

sJ´K

X psJ´K,qBq

–

IdX psJ´K,sJBKq
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Thus, for any sequence of types A1, . . . , An P rB pn P Nq, one obtains a diagram of shape

śn
i“1 dMp´;Aiq

śn
i“1GAi

śn
i“1X

`

sJ´K, sJAiK
˘

śn
i“1X

`

sJ´K, sJAiK
˘

–
ð

śn
i“1 sJ´K

śn
i“1 puAi

śn
i“1 γAi

śn
i“1 X psJ´K,uAi q

–

Idś

i X psJ´K,sJAiKq

by composing with the fuse 2-cells. Pasting these diagrams together with (8.30), one

obtains the following diagram in HompdCon
rB
,Catq for every rewrite pΓ $ τ : tñ t1 : Bq in

Λˆ,Ñps prBq. We write s1JτK for s1JΓ $ τ : tñ t1 : BK and sJτK for sJΓ $ τ : tñ t1 : BK. Since

there are no constants in Λˆ,Ñps prBq, these rewrites are necessarily invertible.

śn
i“1 dMp´;Aiq

śn
i“1GAi GB dN p´;Bq

śn
i“1X psJ´K, sJAiKq

śn
i“1X

`

sJ´K, sJAiK
˘

X psJ´K,
śn
i“1sJAiKq X psJ´K, sJBKq X psJ´K, sJBKq

–
ðśn

i“1 sJ´K

śn
i“1 puAi

σJΓ$t:BK
ð
–

śn
i“1 γAi

s1JΓ$t1:BK

s1JΓ$t:BK

s1JτK
ò–

γB

pqB

qB
ð
–

sJ´K

śn
i“1 X psJ´K,uAi q

–

Idś

i X psJ´K,sJAiKq

x´, ... ,“y

sJΓ$t:BK˝p´q

sJΓ$t1:BK˝p´q

sJτK˝p´q
ó–

X psJ´K,qBq

–

IdX psJ´K,sJBKq

(8.32)

The proof now hinges on two facts. Firstly, since N p´;Bq is a set, the composite 2-cell

obtained by whiskering across the top row of the diagram above must be the identity.
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Secondly, the middle part of the diagram satisfies the cylinder condition. Precisely,

writing tup for x´, . . . ,“y, let κt be the invertible 2-cell obtained from the front face:

sJ´K ˝ pqB ˝ s1JΓ $ t : BK ˝
śn
i“1puAi sJΓ $ t : BK ˝ tup ˝

śn
i“1 sJ´K

X psJ´K, qBq ˝ γB ˝ s1JΓ $ t : BK ˝
śn
i“1puAi sJΓ $ t : BK ˝ tup ˝ IdX psJ´K,uAi q

˝
śn
i“1 sJ´K

IdX psJ´K,sJBKq ˝ γB ˝ s
1JΓ $ t : BK ˝

śn
i“1puAi sJΓ $ t : BK ˝ tup ˝

śn
i“1X psJ´K, uAiq ˝

śn
i“1 sJ´K

γB ˝ s
1JΓ $ t : BK ˝

śn
i“1puAi sJΓ $ t : BK ˝ tup ˝

śn
i“1 pX psJ´K, uAiq ˝ sJ´Kq

sJΓ $ t : BK ˝ tup ˝
śn
i“1 γAi ˝

śn
i“1puAi sJΓ $ t : BK ˝ tup ˝

śn
i“1pγAi ˝ puAiq

κt

qB˝s
1JΓ$t:BK˝

śn
i“1 puAi –

–

–

–

–

σJΓ$t:BK˝
śn
i“1 puAi –

sJΓ$t:BK˝tup˝fuse´1–

sJΓ$t:BK˝tup˝fuse

sJΓ$t:BK˝tup˝
śn
i“1 uAi–

(8.33)

The cylinder condition (8.31) and the functorality of horizontal composition imply that κt

satisfies the following property in HompdCon
rB
,Catq:

sJ´K ˝ pqB ˝ s1JΓ $ t : BK ˝
śn
i“1puAi sJ´K ˝ pqB ˝ s1JΓ $ t1 : BK ˝

śn
i“1puAi

sJΓ $ t : BK ˝ tup ˝
śn
i“1 sJ´K sJΓ $ t1 : BK ˝ tup ˝

śn
i“1 sJ´K

sJ´K˝pqB˝s1JΓ$τ :tñt1:BK˝
śn
i“1puAi

κt – κt1

sJΓ$τ :tñt1:BK˝tup˝
śn
i“1 sJ´K

–

Applying the first fact, this diagram degenerates to the following:

sJ´K ˝ pqB ˝ s1JΓ $ t : BK ˝
śn
i“1puAi sJ´K ˝ pqB ˝ s1JΓ $ t1 : BK ˝

śn
i“1puAi

sJΓ $ t : BK ˝ tup ˝
śn
i“1 sJ´K sJΓ $ t1 : BK ˝ tup ˝

śn
i“1 sJ´K

–κt κt1

sJΓ$τ :tñt1:BK˝tup˝
śn
i“1 sJ´K

– (8.34)

Instantiating the bottom row of this diagram at the context Γ :“ pxi : Aiqi“1, ... ,n and the

n-tuple of terms pΓ $ xi : Aiqi“1, ... ,n, one sees that

psJΓ $ t : BK ˝ tup ˝
śn
i“1sJ´Kq pΓ $ xi : Aiqi“1, ... ,n “ sJΓ $ t : BK ˝ xsJΓ $ xi : AiKyi

“ sJΓ $ t : BK ˝ xπ1, . . . , πny

We may now extend (8.34) downwards. Writing Tt :“ sJ´K ˝ pqB ˝ s1JΓ $ t : BK ˝
śn
i“1puAi
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and instantiating at pΓ $ xi : Aiqi“1, ... ,n, one obtains the following diagram.

TtpΓ $ xi : Aiqi“1, ... ,n Tt1pΓ $ xi : Aiqi“1, ... ,n

sJΓ $ t : BK ˝ xπ1, . . . , πny sJΓ $ t1 : BK ˝ xπ1, . . . , πny

sJΓ $ t : BK ˝ IdsJΓK sJΓ $ t1 : BK ˝ IdsJΓK

sJΓ $ t : BK sJΓ $ t1 : BK

κt – κt1–

sJΓ$τ :tñt1:BK˝xπ1, ... ,πny

pς´1
IdsJΓK – pς´1

IdsJΓK–

sJΓ$τ :tñt1:BK˝IdsJΓK

– –

sJΓ$τ :tñt1:BK

(8.35)

The bottom two squares commute by naturality. Hence, since each component is invertible,

it must be the case that sJΓ $ τ : tñ t1 : BK is equal to the clockwise composite around

this diagram. We record this result as the following proposition.

Proposition 8.4.2. For any set of base types B, cc-bicategory pX ,Πnp´q,“Bq and inter-

pretation s : B Ñ X , the induced interpretation sJΓ $ τ : t ñ t1 : BK of any rewrite

pΓ $ τ : tñ t1 : Bq in X is equal to the 2-cell obtained by composing clockwise around (8.35).

Moreover, this 2-cell depends only on the context Γ, the type B, and the terms t and t1.

Hence, any pair of parallel rewrites pΓ $ τ : t ñ t1 : Bq and pΓ $ τ 1 : t ñ t1 : Bq

must be interpreted by the same 2-cell, namely the 2-cell obtained by composing clockwise

around (8.35).

Theorem 8.4.3. For any parallel pair of rewrites Γ $ τ : tñ t1 : B and Γ $ τ 1 : tñ t1 : B

in Λˆ,Ñps prBq, the interpretations sJΓ $ τ : t ñ t1 : BK and sJΓ $ τ 1 : t ñ t1 : BK are

equal.

We wish to instantiate this theorem in the syntactic bicategory to see that any par-

allel pair of rewrites must be equal in the equational theory of Λˆ,Ñps . However, the

cc-pseudofunctor ιJ´K : T @,ˆ,Ñ
ps prBq Ñ T @,ˆ,Ñ

ps prBq extending the inclusion ι : B ãÑ

T @,ˆ,Ñ
ps prBq is not the identity: the definition for lambda abstractions requires an ex-

tra equivalence. Nonetheless, one can leverage the universal property to show that ιJ´K is

equivalent to the identity (c.f. Corollary 5.3.30).

Lemma 8.4.4. For any set of base types B, the cc-pseudofunctor ιJ´K : T @,ˆ,Ñ
ps prBq Ñ

T @,ˆ,Ñ
ps prBq extending the inclusion ι : rB ãÑ T @,ˆ,Ñ

ps prBq is equivalent to the identity. Hence,

ιJ´K is a biequivalence.

Proof. By Proposition 5.3.28, the canonical cc-pseudofunctor ι#p´q : FBctˆ,ÑprBq Ñ

T @,ˆ,Ñ
ps prBq (defined in Lemma 5.2.19) is part of a biequivalence; write Vι for its pseudo-

inverse. Moreover, considering the diagram
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T @,ˆ,Ñ
ps prBq T @,ˆ,Ñ

ps prBq

FBctˆ,ÑprBq

ιJ´K

ι#p´q
ι#p´q

and applying Lemma 5.2.20, one sees that there exists an equivalence ιJ´K ˝ ι#p´q » ι#p´q.

One therefore obtains a chain of equivalences

idT @,ˆ,Ñ
ps prBq

» ι#p´q ˝ Vι

» pιJ´K ˝ ι#p´qq ˝ Vι

» ιJ´K ˝ idT @,ˆ,Ñ
ps prBq

» ιJ´K

as required.

We can finally prove our theorem.

Theorem 8.4.5. For any set of base types B and any rewrites pΓ $ τ : t ñ t1 : Bq and

pΓ $ τ 1 : t ñ t1 : Bq in Λˆ,Ñps prBq, the judgement pΓ $ τ ” τ 1 : t ñ t1 : Bq is derivable in

Λˆ,Ñps prBq. Hence, Λˆ,Ñps prBq is locally coherent.

Proof. Consider the interpretation in the syntactic model ιJ´K : T @,ˆ,Ñ
ps prBq Ñ T @,ˆ,Ñ

ps prBq

extending the inclusion of base types. Instantiating Proposition 8.4.2, one sees that

ιJΓ $ τ : tñ t1 : BK “ ιJΓ $ τ 1 : tñ t1 : BK for every parallel pair of rewrites τ and τ 1. But

biequivalences are locally fully faithful, so by the preceding lemma ιJΓ $ τ : tñ t1 : BK “
ιJΓ $ τ 1 : tñ t1 : BK holds if and only if τ and τ 1 are equal 2-cells in T @,ˆ,Ñ

ps prBq; that is,

pΓ $ τ ” τ 1 : tñ t1 : Bq.

Theorem 8.4.6. Let B be any set and τ, σ : tñ t1 be a parallel pair of 2-cells in the free

cc-bicategory on B. Then τ ” σ.

Proof. By Proposition 5.3.25, the syntactic bicategory T @,ˆ,Ñ
ps prBq is biequivalent to FBctˆ,ÑprBq,

the free cc-bicategory on B. By the preceding theorem, the images of the 2-cells τ and σ

in T @,ˆ,Ñ
ps prBq must be equal. Since biequivalences are locally fully faithful, it follows that

τ ” σ.

We can express this informally as follows. For any cc-bicategory pB,Πnp´q,“Bq and

pair of parallel 2-cells σ, τ : f ñ g in B, if σ and τ are constructed from the cartesian closed

structure using solely structural isomorphisms and the operations of vertical composition

and horizontal composition, then σ “ τ . As a slogan: all pasting diagrams in the free

cc-bicategory commute.



8.4. Λˆ,Ñps IS LOCALLY COHERENT 279

8.4.1 Evaluating the proof

It is worth examining where the proof of Theorem 8.4.5 would fail if Λˆ,Ñps were not locally

coherent. Our reasoning here is only informal, but it should provide a measure of confidence

that the many pages of proof do not contain a fatal error, as well as throwing light on what

makes the argument work.

The normalisation-by-evaluation proof hinges crucially on two facts: (1) that any

interpretation of Λˆ,Ñps induces an interpretation in the glueing bicategory, and (2) that

the canonical interpretation of Λˆ,Ñps in the syntactic model is biequivalent to the identity.

The first fact entails that, whenever τ and σ are parallel rewrites of type t ñ t1, their

interpretations sJτK and sJσK must coincide in every model. Then, writing J for the inverse

to ppιJ´KqΓ,Aqt,t1 : T @,ˆ,Ñ
ps prBqpΓ;Aqpt, t1q Ñ T @,ˆ,Ñ

ps prBqpΓ;AqpιJtK, ιJt1Kq, the second fact

allows one to construct the chain of equalities

σ ” JpιJσKq ” JpιJτKq ” τ

witnessing local coherence. We give a small example showing how (1) fails if one adds extra

structure that is not locally coherent.

Consider the Λˆ,Ñps -signature S consisting of a set of base types and a single constant

rewrite x : B $ κ : xñ x : B at a base type B. Since we add no extra equations, Λˆ,Ñps pSq
is clearly not locally coherent. Now let pX ,Πnp´q,“Bq be any cc-bicategory and s : BÑ X
an interpretation of base types. Since variables are normal terms, the interpretation of our

additional rewrite in the glueing bicategory as in (8.30) on page 272 yields the diagram

below, for which we use the fact that the interpretation of the judgement px : B $ x : Bq is

the identity:

dMp´;Bq dMp´;Bq

X
`

sJ´K, sJBKq
˘

X
`

sJ´K, sJBK
˘

–
ðsJ´K

iddMp´;Bq

ós1JκK

iddMp´;Bq

sJ´K

ósJκK ˝ p´q

sJx:B$x:BK˝p´q

sJx:B$x:BK˝p´q

Since dMp´;Bq is locally discrete, the 2-cell s1Jx : B $ κ : x ñ x : BK can only be

the identity. Now consider a context Γ and evaluate at a neutral term L t M P MpΓ;Bq.

The isomorphism filling the central shape is the structural isomorphism sJΓ $ t : BK
lsJtK
–

IdsJBK ˝ sJΓ $ t : BK, so the cylinder condition requires that

sJx : B $ κ : xñ x : BK “ lsJtK ‚ ididdMp´;Bq
‚ l´1
sJtK “ idsJxK “ sJx : B $ idx : xñ x : BK

Now, following the argument employed to prove Theorem 8.4.5, one sees that this equation

is satisfied for the interpretation extending ι : B ãÑ T @,ˆ,Ñ
ps prBq if and only if the judgement

px : B $ κ ” idx : xñ x : Bq is derivable. Since we assumed this not to be the case, the
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cylinder condition cannot hold. Thus, the constant rewrite κ may not be soundly interpreted

in every glueing bicategory glpxsyq, so one cannot rerun the normalisation-by-evaluation

proof.

8.5 Another Yoneda-style proof of coherence

Proposition 5.1.10 proved a form of coherence for cc-bicategories. It turns out that this

can be extended to an alternative proof of the main result just presented. The strategy is

similar to that presented in Section 8.4, but only relies on the universal property of the free

cc-bicategory FBctˆ,ÑprBq (defined in Construction 5.2.18). Nonetheless, the development

highlights the core of the normalisation-by-evaluation argument as just described.

Fix a set of base types B and an interpretation h : B Ñ X in a cc-bicategory

pX ,Πnp´q,“Bq. This extends to an interpretation rB Ñ X we also denote by h. Now

let pC,Πnp´q,“Bq be a 2-category with strict products and exponentials and pF, qˆ, q“Bq :

pX ,Πnp´q,“Bq Ñ pC,Πnp´q,“Bq be any cc-pseudofunctor. Writing F0 for the underlying

set map obpX q Ñ obpCq, one obtains an interpretation F0 ˝ h : BÑ C. One thereby obtains

a weak interpretation in X and a strict interpretation in C. The situation is described by

the following commutative diagram:

C

X

B rB T @,ˆ,Ñ
ps prBq FBctˆ,ÑprBq

F
F0˝h

h

ιJ´K

h#

pF˝hq#

»

Now, the composite F ˝ h# is a cc-pseudofunctor, so by Lemma 5.2.20 there exists an

equivalence pF0 ˝ hq
#
» F ˝ h# : FBctˆ,ÑprBq Ñ C. Denote this by pk, kq : F ˝ h# ñ

pF0 ˝ hq
#. For any 1-cell t : Γ Ñ A in FBctˆ,ÑprBq, one therefore obtains an iso-commuting

square

pF ˝ h#qΓ pF ˝ h#qA

pF0 ˝ hq
#Γ pF0 ˝ hq

#A

kt
–

kΓ

pF˝h#qt

kA

pF0˝hq
#t

Moreover, the naturality condition on kt requires that, for any 2-cell τ : tñ t1 : Γ Ñ A in

FBctˆ,ÑprBq, the following commutes:

kA ˝ pF ˝ h#qptq kA ˝ pF ˝ h#qpt1q

pF0 ˝ hq
#
ptq ˝ kΓ pF0 ˝ hq

#
pt1q ˝ kΓ

kt

kA˝pF˝h#qpτq

kt1

pF0˝hq
#
pτq˝kΓ

(8.36)
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But the cartesian closed structure of C is strict and the definition of the pseudofunctor

pF0 ˝ hq
# only employs the canonical 2-cells of the cc-bicategory structure, so pF0 ˝ hq

#
pτq

is the identity for every 2-cell τ . To see this, one argues by induction on the definition of

the cc-pseudofunctor k# extending a map k interpreting base types (Lemma 5.2.19). It

follows that (8.36) degenerates to the following:

kA ˝ pF ˝ h#qptq kA ˝ pF ˝ h#qpt1q

pF0 ˝ hq
#
ptq ˝ kΓ pF0 ˝ hq

#
pt1q ˝ kΓ

kt

kA˝pF˝h#qpτq

kt1 (8.37)

Now, since pk, kq is an equivalence, every component kX has a pseudoinverse. Let us denote

this by k‹X . From (8.37), one sees that the following commutes:

pF ˝ h#qptq pF ˝ h#qpt1q

pk‹A ˝ kAq ˝ pF ˝ h#qptq pk‹A ˝ kAq ˝ pF ˝ h#qptq

k‹A ˝
`

kA ˝ pF ˝ h#qptq
˘

k‹A ˝
`

kA ˝ pF ˝ h#qpt1q
˘

k‹A ˝
´

pF0 ˝ hq
#
ptq ˝ kΓ

¯

k‹A ˝
´

pF0 ˝ hq
#
pt1q ˝ kΓ

¯

–

pF˝h#qpτq

–

–

pk‹A˝kAq˝pF˝h#qpτq

–

k‹A˝kt
k‹A˝pkA˝pF˝h#qpτqq

k‹A˝kt1

One thereby sees that pF ˝ h#qτ is completely determined by a composite of 2-cells, none

of which depend on τ .

Proposition 8.5.1. Let pX ,Πnp´q,“Bq be a cc-bicategory , pC,Πnp´q,“Bq be a 2-category

with strict products and exponentials, and pF, qˆ, q“Bq : pX ,Πnp´q,“Bq Ñ pC,Πnp´q,“Bq

be any cc-pseudofunctor. Then if h : rBÑ X is the canonical extension of an interpretation

BÑ X and τ : tñ t1 is any 2-cell in FBctˆ,ÑprBq, the 2-cell pF ˝h#qpτq in C is completely

determined by t and t1. Hence, for any parallel pair of 2-cells τ, σ : tñ t1 in FBctˆ,ÑprBq,

one has the equality pF ˝ h#qpτq “ pF ˝ h#qpσq.

Together with Proposition 5.1.10, one obtains the local coherence of FBctˆ,ÑprBq, which

completes our alternative proof of Theorem 8.4.6.

Theorem 8.5.2. For any set of base types B and any pair of parallel 2-cells τ, σ : tñ t1 in

FBctˆ,ÑprBq, the equality τ ” σ holds.

Proof. Instantiate the preceding proposition with h :“ ι : rB ãÑ FBctˆ,ÑprBq the inclusion

and F the biequivalence between a cc-bicategory and a 2-category with strict products and

exponentials arising from Proposition 5.1.10. Note that ι# » idFBctˆ,ÑprBq by Lemma 5.2.20,

so that F ˝ ι# is a biequivalence. Then F ˝ ι# is locally fully faithful, so pF ˝ ι#qpτq “

pF ˝ ι#qpσq if and only if τ ” σ. The result then follows from the preceding proposition.
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Since FBctˆ,ÑprBq » T @,ˆ,Ñ
ps prBq, this entails the local coherence of T @,ˆ,Ñ

ps pSq. One

therefore recovers Theorem 8.4.5.

We end with some comments on the argument just presented. First, as it stands it is not

constructive. We make use of the coherence theorem for fp-bicategories (Proposition 4.1.8),

for which one chooses a pseudoinverse to the inclusion of a bicategory into its image under

the Yoneda embedding. This choice is only determined up to equivalence, so one does not

obtain an explicit witness for the product structure. Second, the argument relies crucially on

the interplay between weak and strict structure. We use the strictness of HompB,Catq to

obtain a strict cc-bicategory biequivalent to our original one, and then we use the strictness

of this bicategory to degenerate (8.36) into (8.37). It is, therefore, a strategy that is only

available in the higher-categorical setting.
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Conclusions

We leave a full investigation of the applications of the development in this thesis for future

work. We do note, however, that the problem we posed in the introduction now disappears.

Consider a structure definable in any cartesian closed category. Examples include

the canonical comonoid structure on any object, or the monoid structure on any endo-

exponential. This definition is witnessed by a Λˆ,Ñ-term up to βη-equality, and hence—by

Proposition 5.4.14—by a Λˆ,Ñps -term over the same signature, with βη-equalities replaced

by rewrites. (Since we explicitly construct the correspondence between Λˆ,Ñ-terms and

Λˆ,Ñps -terms, this construction can be done via a terminating decision procedure.) These

rewrites will provide the data required to define a bicategorical version of the structure

under consideration. Theorem 8.4.5 then entails that the required coherence axioms must

hold. One thereby obtains the following principle.

Principle 9.1. To show that a pseudo structure may be constructed in any cartesian closed

bicategory, it suffices to show that its strict version—that is, the image of the corresponding

Λˆ,Ñps -term in Λˆ,Ñ—may be constructed in any cartesian closed category. đ

Applying this principle immediately entails the following results.

Definition 9.2. For any cc-bicategory,

1. Every object has a canonical commutative pseudo-comonoid structure, and

2. Every endo-exponential has a canonical pseudomonoid structure.

Further work

There are many interesting avenues for further work; we mention a few here.

Extensions to Λˆ,Ñps . It is natural to consider incorporating further type-theoretic con-

structions into Λˆ,Ñps . One example would be sum types, corresponding to bicategorical

coproducts. Extending the local coherence proof to this type theory would likely require

a bicategorical development of Groethendieck logical relations [FS99], with possible con-

nections to the theory of stacks. A more ambitious development would be the inclusion
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of Martin-Löf style dependent types [ML84]. This would be particularly intriguing as

the interpretation of these constructions in locally cartesian closed categories is, properly

speaking, bicategorical [CD14].

From a different perspective, Pitts has suggested considering the theory of fixpoints. In

an unpublished manuscript [Pit87], Pitts considered a calculus for initial fixpoint categories

(IFP-categories): 2-categories equipped with finite products and a notion of ‘initial algebra’

on every endomorphism of the form A
xidA,ay
ÝÝÝÝÑ AˆB

f
ÝÑ B, representing a formal fixpoint

construction. Other important examples in a similar vein include algebraically complete

categories [Fre91], or iteration (2-)theories [É99, BÉLM01]. The fact that bicategories

represent a natural setting for ‘formal category theory’ suggests considering constructions

of type-theoretic interest (such as fixpoints) as well as constructions of category-theoretic

interest (such as monads) as particular constructions within Λbicl
ps .

An orthogonal line of development would be towards higher levels of categorical structure.

One might, for example, extend to tricategories; restricting to unary contexts would recover

a type theory for monoidal bicategories. (An alternative approach to the same result would

be to introduce a linear version of Λbicl
ps ). It may even be possible to inductively generate

higher levels of structure to recover some form of 8-category. For these developments to be

principled, the first consideration ought to be the appropriate correlate of biclones.

Applications to higher category theory. Each extension to the type theory raises the

question of its coherence. As outlined in the introduction to Chapter 8, there is a wealth

of literature studying various forms of normalisation-by-evaluation for extensions to the

simply-typed lambda calculus. It is plausible that their bicategorical correlates would lift

to extensions of Λˆ,Ñps . More speculatively, one might hope that by constructing higher-

dimensional type theories and examining their relationship to well-understood classical type

theories (in the style of Section 5.4, for instance), one may gain a better understanding of

where coherence can be expected and—in the cases it cannot—why it fails.

This thesis also lays the groundwork for bicategorifying further category theoretic

results. For instance, the conservative extension result of [FDCB02, §3] shares many tools

with the normalisation-by-evaluation argument of [Fio02], such as glueing and the relative

hom-functor. It should be possible, therefore, to extend the bicategorical theory presented

here to show that cc-bicategories are a conservative extension of fp-bicategories.

Higher-dimensional universal algebra. Moving away from type-theoretic concerns,

there remains the question of the universal algebra associated to (mono-sorted) biclones.

In the classical setting, it is well-known that the three components of the monad–Lawvere

theory–clone triad are all equivalent. Biclones appear to represent one corner of the

bicategorical version of this triad: whether pseudomonads and some bicategorical notion of

Lawvere theory complete the picture remains to be seen.
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Appendices
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Appendix A

An index of free structures and

syntactic models

In Table A.1 summarise the various bicategorical free constructions and syntactic models

employed throughout this thesis. As a rule of thumb, we use Syn to denote biclones (and

their nuclei, i.e. restrictions to unary contexts) and Tps to denote bicategories.
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Chapter 3

FClpGq free biclone on a 2-multigraph Construction 3.1.16 p. 42

FBctpGq free bicategory on a 2-graph Lemma 3.1.18 p. 44

SynpGq syntactic biclone of Λbicl
ps on a 2-multigraph Construction 3.2.11 p. 57

SynpGq
ˇ

ˇ

1
syntactic bicategory of Λbicat

ps on a 2-graph Construction 3.2.15 p. 58

HpGq syntactic biclone of Hcl on a 2-multigraph Construction 3.3.7 p. 65

Chapter 4

FClˆpSq free cartesian biclone on a Λˆps-signature Construction 4.2.58 p. 118

FBctˆpSq free fp-bicategory on a unary Λˆps-signature Lemma 4.2.62 p. 119

SynˆpSq syntactic biclone of Λˆps on a Λˆps-signature Construction 4.3.6 p. 123

SynˆpSq
ˇ

ˇ

1

syntactic model of type theory obtained by

restricting Λˆps to unary contexts
Theorem 4.3.10 p. 125

T @,ˆ
ps pSq extension of SynˆpSq

ˇ

ˇ

1
with

context extension product structure
Construction 4.3.15 p. 130

Chapter 5

FClˆ,ÑpSq free cartesian closed biclone on a Λˆ,Ñps -signature Construction 5.2.16 p. 149

FBctˆ,ÑpSq free cc-bicategory on a Λˆ,Ñps -signature Construction 5.2.18 p. 151

Synˆ,ÑpSq syntactic biclone of Λˆ,Ñps on a Λˆ,Ñps -signature Construction 5.3.8 p. 162

Synˆ,ÑpSq nucleus of Synˆ,ÑpSq Construction 5.3.11 p. 163

T @,ˆ,Ñ
ps pSq extension of Synˆ,ÑpSq with

context extension product structure
Construction 5.3.20 p. 170

Table A.1: An index of free constructions and syntactic models



Appendix B

Cartesian closed structures

We summarise the cartesian closed structures of HompB,Catq and glpF q.

Cartesian closed structure on HompB,Catq. Let B be any 2-category. Then the

2-category HompB,Catq has finite products given pointwise and exponentials given as in

the following table:

Exponential rP,Qs λXB .HompB,CatqpYX ˆ P,Qq

Evaluation 1-cell evalP,Q λXB . λpk, kqYXˆPñQ . λpPX . kpX, IdX , pq

Λpj, jqRˆPñQ λXB . λrRX . λAB . λph, pqYpX,AqˆPA . j
`

X, pRhqprq, p
˘

with naturality witnessed by by Lemmas 6.1.4 and 6.1.5

Counit EP,Qpj, jq λXB . λpr, pqRXˆPX . j
`

X, pψRq´1prq, p
˘

e:pΞq defined by diagram (6.9)

Table B.1: Exponential structure in HompB,Catq, from Section 6.1

Moreover, for a pseudofunctor P : Bop Ñ Cat and object X P B the exponential rYX,P s

in HompBop,Catq is given by P p´ ˆXq, with structure summarised in Table B.2:
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Evaluation 1-cell evalP,Q
λBB . λpp, hqP pBˆXqˆBpB,Xq . P

`

xIdB, hy
˘

ppq

with naturality witnessed by Lemma 6.2.1

Λpk, kqRˆYXñP λBB . λrRB . kBˆX
`

Rpπ1qprq, π2

˘

with naturality witnessed by Corollary 6.2.3

Counit Epk, kq defined by diagram (6.15)

e:pΞq defined by diagram (6.17)

Table B.2: Exponential structure in HompB,Catq, from Section 6.2

Cartesian closed structure on glpJq. Let pJ, qˆq : pB,Πnp´qq Ñ pC,Πnp´qq be an

fp-pseudofunctor between cc-bicategories and suppose that C has all pullbacks. Then glpJq

is cartesian closed, with structure given as in the following two tables.

Product
ś

ipCi, ci, Biqi
`
ś

iCi, q
ˆ ˝

ś

i ci,
ś

iBi
˘

Projection 1-cells πk pπk, µk, πkq for µk defined in (7.5)

n-ary tupling xt1, . . . , tny for ti :“ pti, αi, siq pxt‚y, tα‚u, xs‚yq for tα‚u defined in (7.6)

Counit $ kth component is p$
pkq
f‚
, $

pkq
g‚ q

p:pτ1, . . . , τnq for τ i :“ pτi, σiq : πk ˝ uñ ti
pi “ 1, . . . , nq

`

p:pτ1, . . . , τnq, p:pσ1, . . . , σnq
˘

Table B.3: Product structure in glpJq, from Section 7.3.1

Exponential pC, c,Bq“BpC 1, c1, B1q pC Ą C 1, pc,c1 , B“BB
1q defined by the pullback (7.11)

Evaluation 1-cell evalC,C1
pevalC,C1 ˝ pqc,c1 ˆ Cq, EC,C1 , evalB,B1q

for EC,C1 defined in (7.12) and (7.13)

λpt, α, sq plamptq,Γc,c1 , λsq for lamptq and Γc,c1 defined by

UMP of pullback applied to Lα (7.15)

Counit ε pe, εq for e defined in (7.17)

e:pτq for τ :“ pτ, σq

`

τ 7, e:pσq
˘

for τ 7 defined by UMP of pullback

applied to fill-in defined in (7.20)

Table B.4: Exponential structure in glpJq, from Section 7.3.2



Appendix C

The type theory and its semantic

interpretation

C.1 The type theory Λˆ,Ñps

Fix a Λˆ,Ñps -signature S “ pB,Gq (Definition 5.2.13 on page 148). We give the rules for

the full type theory Λˆ,Ñps . The type theories Λbicl
ps and Λˆps are fragments of Λˆ,Ñps , and the

type theories Λbicat
ps and Λˆps

ˇ

ˇ

1
are respectively obtained by restricting Λbicl

ps and Λˆps to unary

contexts.

˛ ctx
Γ ctx x R dompΓq

`

A P rB
˘

Γ, x : A ctx

Figure C.1: Rules for contexts

291



292 APPENDIX C. THE TYPE THEORY AND ITS SEMANTIC INTERPRETATION

var p1 ď k ď nq
x1 : A1, . . . , xn : An $ xk : Ak

c P GpA1, . . . , An;Bq
const

x1 : A1, . . . , xn : An $ cpx1, . . . , xnq : B

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1,...,n
horiz-comp

∆ $ ttx1 ÞÑ u1, . . . , xn ÞÑ unu : B

k-proj (1 ď k ď n)
p :

ś

npA1, . . . , Anq $ πkppq : Ak

Γ $ t1 : A1 . . . Γ $ tn : An
n-tuple

Γ $ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq

Γ, x : A $ t : B
lam

Γ $ λx.t : A“BB
eval

f : A“BB, x : A $ evalpf, xq : B

Figure C.2: Introduction rules for terms

x1 : A1, . . . , xn : An $ t : B
ι-intro

x1 : A1, . . . , xn : An $ ιt : tñ ttxi ÞÑ xiu : B

x1 : A1, . . . , xn : An $ ι´1
t : ttxi ÞÑ xiu ñ t : B

x1 : A1, . . . , xn : An $ xk : Ak p∆ $ ui : Aiqi“1,...,n
%pkq-intro p1 ď k ď nq

∆ $ %
pkq
u1,...,un : xktxi ÞÑ uiu ñ uk : Ak

∆ $ %
p´kq
u1,...,un : uk ñ xktxi ÞÑ uiu : Ak

p∆ $ uj : Ajqj“1,...m

px1 : A1, . . . , xm : Am $ vi : Biqi“1,...,n

y1 : B1, . . . , yn : Bn $ t : C
assoc-intro

∆ $ assoct,v‚,u‚ : ttyi ÞÑ viutxj ÞÑ uju ñ ttyi ÞÑ vitxj ÞÑ ujuu : C

∆ $ assoc´1
t,v‚,u‚ : ttyi ÞÑ vitxj ÞÑ ujuu ñ ttyi ÞÑ viutxj ÞÑ uju : C

Figure C.3: Introduction rules for structural rewrites
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Γ $ t : A
id-intro

Γ $ idt : tñ t : A

κ P GpA1, . . . , An;Bqpc, c1q
2-const

x1 : A1, . . . , xn : An $ κpx1, . . . , xnq : cpx1, . . . , xnq ñ c1px1, . . . , xnq : B

Γ $ t1 : A1 . . . Γ $ tn : An
$pkq-intro (1 ď k ď n)

Γ $ $
pkq
t1,...,tn

: πkttuppt1, . . . , tnqu ñ tk : Ak

Γ $ u :
ś

npA1, . . . , Anq pΓ $ αi : πituu ñ ti : Aiqi“1,...,n
p:pα1, . . . , αnq-intro

Γ $ p:pα1, . . . , αnq : uñ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq

Γ, x : A $ t : B
ε-intro

Γ, x : A $ εt : evaltpλx.tqtincxu, xu ñ t : B

Γ, x : A $ t : B Γ $ u : A“BB

Γ, x : A $ α : evaltutincxu, xu ñ t : B
e:px . αq-intro

Γ $ e:px . αq : uñ λx.t : A“BB

Figure C.4: Introduction rules for basic rewrites

Γ $ τ : tñ t1 : A Γ $ τ 1 : t1 ñ t2 : A
vert-comp

Γ $ τ 1 ‚ τ : tñ t2 : A

x1 : A1, . . . , xn : An $ τ : tñ t1 : B p∆ $ σi : ui ñ u1i : Aiqi“1,...,n
horiz-comp

∆ $ τtxi ÞÑ σiu : ttxi ÞÑ uiu ñ t1txi ÞÑ u1iu : B

Figure C.5: Composition operations for rewrites

Γ $ t1 : A1 . . . Γ $ tn : An
$p´kq-intro p1 ď k ď nq

Γ $ $
p´kq
t1,...,tn

: tk ñ πkttuppt1, . . . , tnqu : Ak

Γ $ t :
ś

npA1, . . . , Anq
ς´1-intro

Γ $ ς´1
t : tuppπ1ttu, . . . , πnttuq ñ t :

ś

npA1, . . . , Anq

Γ $ u : A“BB
η´1-intro

Γ $ η´1
u : λx.evaltutincxu, xu ñ u : A“BB

Γ, x : A $ t : B
ε´1-intro

Γ, x : A $ ε´1
t : tñ evaltpλx.tqtincxu, xu : B

Figure C.6: Introduction rules for pseudo cartesian closed structure
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Γ $ τ : tñ t1 : A
‚-right-unit

Γ $ τ ‚ idt ” τ : tñ t1 : A

Γ $ τ : tñ t1 : A
‚-left-unit

Γ $ τ ” idt1 ‚ τ : tñ t1 : A

Γ $ τ2 : t2 ñ t3 : A Γ $ τ 1 : t1 ñ t2 : A Γ $ τ : tñ t1 : A
‚-assoc

Γ $ pτ2 ‚ τ 1q ‚ τ ” τ2 ‚pτ 1 ‚ τq : tñ t3 : A

Figure C.7: Categorical structure of vertical composition

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1,...,n
id-preservation

∆ $ idttxi ÞÑ uiu ” idttxi ÞÑuiu : ttxi ÞÑ uiu ñ ttxi ÞÑ uiu : B

x1 : A1, . . . , xn : An $ τ : tñ t1 : B

x1 : A1, . . . , xn : An $ τ 1 : t1 ñ t2 : B

p∆ $ σi : ui ñ u1i : Aiqi“1,...,n

p∆ $ σ1i : u1i ñ u2i : Aiqi“1,...,n
interchange

∆ $ τ 1
 

xi ÞÑ σ1i
(

‚ τtxi ÞÑ σiu ” pτ
1
‚ τq

 

xi ÞÑ σ1i ‚σi
(

: ttxi ÞÑ uiu ñ t2
 

xi ÞÑ u2i
(

: B

Figure C.8: Preservation rules

p∆ $ σi : ui ñ u1i : Aiqi“1,...,n
p1 ď k ď nq

∆ $ %
pkq
u11,...,u

1
n
‚xktxi ÞÑ σiu ” σk ‚ %

pkq
u1,...,un : xktxi ÞÑ uiu ñ u1k : Ak

x1 : A1, . . . , xn : An $ τ : tñ t1 : B

x1 : A1, . . . , xn : An $ ιt1 ‚ τ ” τtxi ÞÑ xiu ‚ ιt : tñ t1txi ÞÑ xiu : B

p∆ $ µj : uj ñ u1j : Ajqj“1,...m

px1 : A1, . . . , xm : Am $ σi : vi ñ v1i : Biqi“1,...,n

y1 : B1, . . . , yn : Bn $ τ : tñ t1 : C

∆ $ assoct1,v‚,u‚ ‚ τtyi ÞÑ σiutxj ÞÑ µju ” τtyi ÞÑ σitxj ÞÑ µjuu ‚ assoct,v‚,u‚
: ttyi ÞÑ viutxj ÞÑ uju ñ t1tyi ÞÑ v1itxj ÞÑ u1juu : C

Figure C.9: Naturality rules for structural rewrites

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1,...,n

∆ $ ttxi ÞÑ %
piq
u‚u ‚ assoct,x‚,u‚ ‚ ιttxi ÞÑ uiu ” idttxi ÞÑuiu : ttxi ÞÑ uiu ñ ttxi ÞÑ uiu : B

p∆ $ uj : Ajqj“1,...m

px1 : A1, . . . , xm : Am $ vi : Biqi“1,...,n

py1 : B1, . . . , yn : Bn $ wj : Ckqk“1,...,l

z1 : C1, . . . , zl : Cl $ t : D

∆ $ ttzk ÞÑ assocwk,v‚,u‚u ‚ assoct,w‚tyj ÞÑvju,u‚ ‚ assoct,w‚,v‚txj ÞÑ uju

” assoct,w‚,v‚txj ÞÑuiu ‚ assocttzk ÞÑwku,v‚,u‚
: ttzk ÞÑ wkutyi ÞÑ viutxj ÞÑ uju ñ ttzk ÞÑ wktyi ÞÑ vitxj ÞÑ ujuuu : D

Figure C.10: Biclone laws
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Γ $ α1 : π1tuu ñ t1 : A1 . . . Γ $ αn : πntuu ñ tn : An
U1 (1 ď k ď n)

Γ $ αk ” $
pkq
t1,...,tn

‚πk
 

p:pα1, . . . , αnq
(

: πktuu ñ tk : Ak

Γ $ γ : uñ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq
U2

Γ $ γ ” p:p$p1qt‚ ‚π1tγu, . . . , $
pnq
t‚ ‚πntγuq : uñ tuppt1, . . . , tnq :

ś

npA1, . . . , Anq

`

Γ $ αi ” α1i : πituu ñ ti : Ai
˘

i“1,...,n
cong

Γ $ p:pα1, . . . , αnq ” p:pα11, . . . , α1nq : uñ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq

Figure C.11: Universal property of p:pαq

Γ, x : A $ α : evaltutincxu, xu ñ t : B
U1

Γ, x : A $ α ” εt ‚ eval
 

e:px . αqtincxu, x
(

: evaltutincxu, xu ñ t : B

Γ $ γ : uñ λx.t : A“BB
U2

Γ $ γ ” e:px . εt ‚ evaltγtincxu, xuq : uñ λx.t : A“BB

Γ, x : A $ α ” α1 : evaltutincxu, xu ñ t : B
cong

Γ $ e:px . αq ” e:px . α1q : uñ λx.t : A“BB

Figure C.12: Universal property of e:pαq

Γ $ t1 : A1 . . . Γ $ tn : An

Γ $ $
p´kq
t1,...,tn ‚$

pkq
t1,...,tn ” idπkttuppt1,...,tnqu : πkttuppt1, . . . , tnqu ñ πkttuppt1, . . . , tnqu : Ak

Γ $ t1 : A1 . . . Γ $ tn : An

Γ $ $
pkq
t1,...,tn

‚$
p´kq
t1,...,tn

” idtk : tk ñ tk : Ak

Γ $ t :
ś

npA1, . . . , Anq

Γ $ ς´1
t ‚ ςt ” idt : tñ t :

ś

npA1, . . . , Anq

Γ $ t :
ś

npA1, . . . , Anq

Γ $ ςt ‚ ς
´1
t ” idtuppπ1ttu,...,πnttuq : tuppπ‚ttuq ñ tuppπ‚ttuq :

ś

npA1, . . . , Anq

Γ $ u : A“BB

Γ $ ηu ‚ η
´1
u ” idλx.evaltutincxu,xu : λx.evaltutincxu, xu ñ λx.evaltutincxu, xu : A“BB

Γ $ u : A“BB

Γ $ η´1
u ‚ ηu ” idu : uñ u : A“BB

Γ, x : A $ t : B

Γ, x : A $ εt ‚ ε
´1
t ” idt : tñ t : B

Γ, x : A $ t : B

Γ, x : A $ ε´1
t ‚ εt ” idevaltpλx.tqtincxu,xu : evaltpλx.tqtincxu, xu ñ evaltpλx.tqtincxu, xu : B

Figure C.13: Invertibility rules for pseudo cartesian closed structure
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Γ $ t : B

Γ $ ι´1
t ‚ ιt ” idt : tñ t : B

x1 : A1, . . . , xn : An $ t : B

x1 : A1, . . . , xn : An $ ιt ‚ ι
´1
t ” idt : ttxi ÞÑ xiu ñ ttxi ÞÑ xiu : B

x1 : A1, . . . , xn : An $ u1 : A1 . . . x1 : A1, . . . , xn : An $ un : An
p1 ď k ď n)

x1 : A1, . . . , xn : An $ %
p´kq
u‚ ‚ %

pkq
u‚ ” idxktxi ÞÑuiu : xktxi ÞÑ uiu ñ xktxi ÞÑ uiu : Ak

x1 : A1, . . . , xn : An $ u : B
p1 ď k ď n)

x1 : A1, . . . , xn : An $ %
pkq
u‚ ‚ %

p´kq
u‚ ” idu : uñ u : A

p∆ $ uj : Ajqj“1,...m

px1 : A1, . . . , xm : Am $ vi : Biqi“1,...,n y1 : B1, . . . , yn : Bn $ t : C

∆ $ assoc´1
t,v‚,u‚ ‚ assoct,v‚,u‚ ” idttviutuju : ttyi ÞÑ viutxj ÞÑ uju ñ ttyi ÞÑ viutxj ÞÑ uju : C

p∆ $ uj : Ajqj“1,...m

px1 : A1, . . . , xm : Am $ vi : Biqi“1,...,n y1 : B1, . . . , yn : Bn $ t : C

∆ $ assoct,v‚,u‚ ‚ assoc´1
t,v‚,u‚ ” idttvitujuu : ttyi ÞÑ vitxj ÞÑ ujuu ñ ttyi ÞÑ vitxj ÞÑ ujuu : C

Figure C.14: Invertibility of structural rewrites

Γ $ τ : tñ t1 : A
refl

Γ $ τ ” τ : tñ t1 : A

Γ $ τ ” τ 1 : tñ t1 : A
symm

Γ $ τ 1 ” τ : tñ t1 : A

Γ $ τ 1 ” τ2 : tñ t1 : A Γ $ τ ” τ 1 : tñ t1 : A
trans

Γ $ τ ” τ2 : tñ t1 : A

Γ $ τ 1 ” σ1 : t1 ñ t2 : A Γ $ τ ” σ : tñ t1 : A

Γ $ pτ 1 ‚ τq ” pσ1 ‚σq : tñ t2 : A

x1 : A1, . . . , xn : An $ τ ” τ 1 : tñ t1 : B p∆ $ σi ” σ1i : ui ñ u1i : Aiqi“1,...,n

∆ $ τtxi ÞÑ σiu ” τ 1txi ÞÑ σ1iu : ttxi ÞÑ uiu ñ t1txi ÞÑ u1iu : B

Figure C.15: Congruence rules
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C.2 The semantic interpretation of Λˆ,Ñps

We employ the same notation as Example 5.2.12 (page 146).

Notation C.2.1. For any A1, . . . , An, B P B pn P Nq in an fp-bicategory pB,Πnp´qq there

exists a canonical equivalence

eA‚,B :
ś

n`1pA1, . . . , An, Bq Ô
ś

2 p
ś

npA1, . . . , Anq, Bq : e‹A‚,B

where eA‚,B :“ xxπ1, . . . , πny, πn`1y and e‹A‚,B :“ xπ1 ˝ π1, . . . , πn ˝ π1, π2y. We denote the

witnessing 2-cells by

vA‚,B : Idś

npA1, ... ,AnqˆB ñ eA‚,B ˝ e
‹
A‚,B

wA‚,B : e‹A‚,B ˝ eA‚,B ñ Idś

n`1pA1, ... ,An,Bq

đ

Construction C.2.2 (Semantic interpretation of Λˆ,Ñps ). For any unary Λˆ,Ñps -signature S,

cc-bicategory pB,Πnp´q,“Bq and Λˆ,Ñps -signature morphism h : S Ñ B, the interpretation

hJ´K of the syntax of Λˆ,Ñps pSq is defined by induction.

Types.

hJBK :“ hB for B a base type

hJ
ś

npA1, . . . , AnqK :“
ś

n

`

hJA1K, . . . , hJAnK
˘

hJA“BBK :“ phJAK“BhJBKq

On contexts, we set hJx1 : A1, . . . , xn : AnK :“
ś

n

`

hJA1K, . . . , hJAnK
˘

.

Terms. Let Γ :“ pxi : Aiqi“1, ... ,n be any context.

hJΓ $ xi : AiK :“ πi

hJΓ $ cpx1, . . . , xnq : BK :“ hpcq

hJp :
ś

mpB1, . . . , Bmq $ πippq : BiK :“ πi

hJΓ $ tuppt1, . . . , tmq :
ś

mpB1, . . . , BmqK :“ xhJΓ $ t1 : B1K, . . . , hJΓ $ tm : BmKy

hJf : pA“BBq, x : A $ evalpf, xq : BK :“ evalhJAK,hJBK

hJΓ $ λx.t : B“BCK :“ λ
`

hJΓ, x : B $ t : CK ˝ e‹A‚,B
˘

hJ∆ $ ttxi ÞÑ uiu : BK :“ hJΓ $ t : BK ˝ xhJ∆ $ ui : AiKyi

We omit easily-recovered typing information for the purpose of readability.



298 APPENDIX C. THE TYPE THEORY AND ITS SEMANTIC INTERPRETATION

Rewrites. For composition, constants and products the definition is direct:

hJΓ $ idt : tñ t : BK :“ idhJtK

h
q
Γ $ τ 1 ‚ τ : tñ t2 : B

y
:“ h

q
τ 1

y
‚hJτK

h
q
∆ $ τtxi ÞÑ σiu : ttxi ÞÑ uiu ñ t1

 

xi ÞÑ u1i
(

: B
y

:“ hJτK ˝ xhJσiKyi

h
q
Γ $ κ : cpx‚q ñ c1px‚q : B

y
:“ hpκq

h
r

Γ $ $
pkq
t1, ... ,tm

: πkttuppt1, . . . , tmqu ñ tk : Bk

z
:“ $

pkq
hJt1K, ... ,hJtmK

h
q
Γ $ p:pα1, . . . , αmq : uñ tuppt1, . . . , tmq :

ś

mpB1, . . . , Bmq
y

:“ p:phJα1K, . . . , hJαmKq

The structural rewrites are interpreted by composites of structural isomorphisms. For %pkq

and ι one has:

hJ%pkqu1, ... ,unK :“ πk ˝ xhJuiKyi
$
pkq
hJu‚K

ùùùùñ hJukK

hJιtK :“ hJtK –
ùñ hJtK ˝ IdhJΓK

hJtK˝ςId
ùùùùñ hJtK ˝ xπ‚ ˝ hJΓKy –ùñ hJtK ˝ xπ‚y

For assoc one has

hJttuiutvjuK hJttuitv‚uuK

phJtK ˝ xhJuiKyiq ˝ xhJvjKyj hJtK ˝
`

xhJuiKyi ˝ xhJvjKyj
˘

hJtK ˝ xhJuiKi ˝ xhJv‚Kyyi

hJassoct,u‚,v‚K

– hJtK˝post

Finally we come to the exponential rewrites εt and e:px . αq. Suppose that Γ $ u : B“BC.

Then

hJΓ, x : B $ evaltutincxu, xu : CK “ evalhJBK,hJCK ˝ xhJΓ, x : B $ utincxu : B“BCK, πn`1y

“ evalhJBK,hJCK ˝ xhJΓ $ u : B“BCK ˝ xπ1, . . . , πny, πn`1y

The interpretation hJΓ, x : B $ εt : evaltpλx.tqtincxu, xu ñ t : CK is the following composite,
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in which we abbreviate hJΓ, x : B $ t : CK by hJtKΓ,x:B:

evalhJBK,hJCK ˝
A

λphJtKΓ,x:B ˝ e‹hJA‚K,hJBKq ˝ xπ1, . . . , πny, πn`1

E

hJtKΓ,x:B

hJtKΓ,x:B ˝ Idś

phJA‚KqˆhJBK

evalhJBK,hJCK ˝
A

λphJtKΓ,x:A ˝ e‹hJA‚K,hJBKq ˝ xπ1, . . . , πny, IdhJBK ˝ πn`1

E

hJtKΓ,x:B ˝

´

e‹hJA‚K,hJBK ˝ ehJA‚K,hJBK

¯

evalhJBK,hJCK ˝
´

`

λphJtKΓ,x:B ˝ e‹hJA‚K,hJBKq ˆ hJBK
˘

˝ ehJA‚K,hJBK

¯

´

hJtKΓ,x:B ˝ e‹hJA‚K,hJBK

¯

˝ ehJA‚K,hJBK

´

evalhJBK,hJCK ˝
`

λphJtKΓ,x:B ˝ e‹hJA‚K,hJBKq ˆ hJBK
˘

¯

˝ ehJA‚K,hJBK

–

–

eval˝fuse´1

hJtKΓ,x:B˝whJA‚K,hJBK

–

–

εphJtK˝e‹q˝e

On the other hand, for a judgement pΓ, x : B $ α : evaltutincxu, xu ñ t : Cq, the

interpretation of α has type

evalhJBK,hJCK ˝ xhJΓ $ u : B“BCK ˝ xπ1, . . . , πny, πn`1y ñ hJΓ, x : B $ t : CK (C.1)

To interpret pΓ $ e:px . αq : uñ λx.t : A“BBq using the universal property of exponentials,

we distort (C.1) into a composite hJαK˝ as in the diagram below. We suppress the subscripts

on eA‚,B and e‹A‚,B to fit the diagram better onto the page.

evalhJBK,hJCK ˝ phJuKΓ ˆ hJBKq hJtKΓ,x:B ˝ e‹

`

evalhJBK,hJCK ˝ phJuKΓ ˆ hJBKq
˘

˝ Idś

2pp
ś

n hJA‚Kq,hJBKq

`

evalhJBK,hJCK ˝ phJuKΓ ˆ hJBKq
˘

˝ pe ˝ e‹q

`

evalhJBK,hJCK ˝
`

phJuKΓ ˆ hJBKq
˘

˝ e
˘

˝ e‹

`

evalhJBK,hJCK ˝
@

hJuKΓ ˝ xπ1, . . . , πny, IdhJBK ˝ πn`1

D˘

˝ e‹
`

evalhJBK,hJCK ˝
@

hJuKΓ ˝ xπ‚y, πn`1

D˘

˝ e‹

hJαK˝

–

eval˝phJuKΓˆhJBKq˝vś
2pp

ś

n hJA‚Kq,hJBKqq

–

eval˝fuse˝e‹

–

hJαKΓ,x:B˝e‹
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The unlabelled arrow is evalhJBK,hJCK ˝ xhJuKΓ ˝ $p1q, IdhJBK ˝ $
p2qy ˝ e‹hJA‚K,hJBK. Finally,

then, one has

hJΓ $ e:px . αq : uñ λx.t : B“BCK :“ e:phJΓ, x : B $ α : evaltutincxu, xu ñ t : CK˝q

đ



Appendix D

The universal property of a

bipullback

Recall the following definition of a pullback (Definition 7.3.5 on page 224).

Definition D.1. Let C (for ‘cospan’) denote the category p1
h1
ÝÑ 0

h2
ÐÝ 2q and B be any

bicategory. A pullback of the cospan pX1
f1
ÝÑ X0

f2
ÐÝ X2q in B is a bilimit for the strict

pseudofunctor C Ñ B determined by this cospan. đ

We translate this into a presentation closer to that for categorical pullbacks—namely,

that given by Lemma 7.3.6 (page 224)—by showing that, for any F : C Ñ B, there exists

an equivalence of categories HompC,Bqp∆B,F q » B{F , where each category B{F consists

of iso-commuting squares and fill-ins.

Definition D.2. Let B be any bicategory, B P B and F : C Ñ B be a pseudofunctor.

The category B{F has objects triples pγ1, γ2, γq, where γi : B Ñ Fi pi “ 1, 2q and γ is an

invertible 2-cell as in the diagram

B

F1 F2

F0

γ
ð

γ1 γ2

Fh1 Fh2

Morphisms pγ1, γ2, γq Ñ pδ1, δ2, δq are pairs of 2-cells Ξi : γi ñ δi pi “ 1, 2q such that

F ph2q ˝ γ2 F ph2q ˝ δ2

F ph1q ˝ γ1 F ph1q ˝ δ1

F ph2q˝Ξ2

γ δ

F ph1q˝Ξ1

The identity on pγ1, γ2, γq is pidγ1 , idγ2q and composition is as in B. đ
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The next lemma provides the components of the required equivalence.

Lemma D.3. Let B be a bicategory, C be the category p1
h1
ÝÑ 0

h2
ÐÝ 2q, and F : C Ñ

B a pseudofunctor. Then, for any B P B there exists an equivalence of categories

HompC,Bqp∆B,F q » B{F , where ∆ : B Ñ HompC,Bq denotes the diagonal pseudofunctor.

Proof. We begin by defining functors K : HompC,Bqp∆B,F q Ô B{F : L. Take K first.

For a pseudonatural transformation pk, kq : ∆B ñ F with components as in the square

B B

Fi F0

ki
ð

ki

IdB

k0

Fhi

we define Kpk, kq :“ pk1, k2, γpk,kqq, where

γ
pk,kq :“ F ph2q ˝ k2

k´1
2
ùùñ k0 ˝ IdB

k1
ùñ F ph1q ˝ k1 (D.1)

For morphisms, suppose Ξ : pk, kq Ñ pj, jq is a modification. One thereby obtains 2-cells

Ξi : ki ñ ji pi “ 1, 2q, and

F ph2q ˝ k2 F ph2q ˝ j2

k0 ˝ IdB j0 ˝ IdB

F ph1q ˝ k1 F ph1q ˝ j1

γ
pk,kq

modif. law
“

F ph2q˝Ξ2

k´1
2 j´1

2

γ
pj,jq

modif. law
“

Ξ0˝IdB

k1 j1

F ph1q˝Ξ1

So we may define KpΞq :“ pΞ1,Ξ2q.

Going the other way, for a triple pγ1, γ2, γq we define Lpγ1, γ2, γq to be the pseudonatural

transformation with components

ji :“ B
γi
ÝÑ Fi for i “ 1, 2

j0 :“ B
γ2
ÝÑ F2

Fh2
ÝÝÑ F0

and witnessing 2-cells

B B

Fi Fi

IdB

ji

–

ji

IdFi

ψF

–

F Idi

B B

F2

F1 F0

–

IdB

γ1

γ2

γ
ð

γ1

Fh2˝γ2

Fh2

Fh1

B B

F2

F2 F0

–

IdB

γ2

γ2

Fh2˝γ2

Fh2

Fh1
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The naturality condition is trivial—there are no non-identity 2-cells in C—and the unit law

holds by definition, so the only thing to check is the associativity law. For this one must

verify the axiom for each of the possible composites in C, namely Idi ˝ Idi, Id0 ˝ hi, and

hi ˝ Idi. This is a long exercise.

On morphisms, for any pΨ1,Ψ2q in B{F , we define LpΨ1,Ψ2q to be the modification

with components

Ψi :“ ki
Ψi
ùñ ji pi “ 1, 2q

Ψ0 :“ F ph2q ˝ k2
F ph2q˝Ψ2
ùùùùùùñ F ph2q ˝ j2

The only thing to check is the modification axiom, which we need to verify for the maps

h1, h2 and Id0, Id1, Id2. Each of these is a simple calculation.

It remains to show that K and L form an equivalence. The composite K˝L is the identity.

On the other hand, LKpk, kq has components ki for i “ 1, 2 and Fh2 ˝k2 for i “ 0. One may

then check that setting Ξ
pk,kq
i :“ idki for i “ 1, 2 and Ξ

pk,kq
0 :“

`

Fh2 ˝ k2
k´1
2
ùùñ k0 ˝ IdB

–
ùñ k0

˘

defines a modification LKpk, kq Ñ pk, kq. It remains to show that the modifications Ξpk,kq

are natural in pk, kq. The i “ 1 and i “ 2 cases are trivial, and for i “ 0 one sees that, for

any Ψ : pk, kq Ñ pj, jq,

KLpk, kq0 Fh2 ˝ k2 k0 ˝ IdB k0

KLpj, jq0 Fh2 ˝ j2 j0 ˝ IdB j0

pKLΨq0

Ξ
pk,kq
0

k´1
2

Fh2˝Ψ2

–

Ψ0

j´1
2

Ξ
pj,jq
0

–

as required. It follows that L ˝K – idHompC,Bqp∆B,F q, which completes the proof.

The mapping B ÞÑ B{F extends to a pseudofunctor as follows. For f : B1 Ñ B, we

define f{F : B{F Ñ B1{F by setting pf{F qpγ1, γ2, γq :“ pγ1 ˝ f, γ2 ˝ f, γ ˝ fq. Then for

α : f ñ f 1, the natural transformation α{F has components γi ˝ α : γi ˝ f Ñ γi ˝ f
1. This

defines a pseudofunctor with unit and associativity witnessed by structural isomorphisms.

In fact this pseudofunctor is equivalent to HompC,Bqp∆p´q, F q.

Lemma D.4. Let B be a bicategory, C be the category p1
h1
ÝÑ 0

h2
ÐÝ 2q, and F : C Ñ B a

pseudofunctor. Then, writing KB : HompC,Bqp∆B,F q Ñ B{F for the functor constructed

in Lemma D.3, the diagram below commutes for any f : B1 Ñ B in B:

HompC,Bqp∆B,F q HompC,Bqp∆B1, F q

B{F B1{F

KB

HompC,Bqp∆f,F q

KB1

f{F



304 APPENDIX D. THE UNIVERSAL PROPERTY OF A BIPULLBACK

Proof. For a pseudonatural transformation pk, kq : ∆B ñ F , pf{F ˝KBqpk, kq is the triple

with 1-cells k1 ˝ f and k2 ˝ f and 2-cell

Fh2 ˝ pk2 ˝ fq
–
ùñ pFh2 ˝ k2q ˝ f

γ
pk,kq
ùùùñ pFh1 ˝ k2q ˝ f

–
ùñ Fh1 ˝ pk2 ˝ fq

Here γ
pk,kq is the composite defined in (D.1).

On the other hand, writing f˚ :“ HompC,Bqp∆f, F q, one has that f˚pk, kq is the

pseudonatural transformation with components ki ˝ f and witnessing 2-cells given by

composing k with the evident structural isomorphism:

B1 B1

B B

Fi F0

–f

IdB1

f

ki

IdB

ki
ð

ki

Fhi

A short calculation shows that applying KB1 to this pseudonatural transformation yields

exactly pf{F ˝KBqpk, kq.

It follows that the functors KB are the components of a pseudonatural transformation.

Since each KB is an equivalence, one obtains the following.

Corollary D.5. Let B be a bicategory, C be the category p1
h1
ÝÑ 0

h2
ÐÝ 2q, and F : C Ñ B

a pseudofunctor. Then HompC,Bqp∆p´q, F q » p´q{F in HompBop,Catq.

We can now use the fact that biequivalences preserve biuniversal arrows to rephrase the

universal property of a bicategorical pullback. For any bicategory B, let pX1
f1
ÝÑ X0

f2
ÐÝ X2q

be any cospan and let F be the strict pseudofunctor C Ñ B it determines. The pullback of

this cospan, when it exists, is a biuniversal arrow pP, λ : ∆P ñ F q consisting of an object

P P B and a pseudonatural transformation λ : ∆P ñ F . The universal property then

requires that, for any other pseudonatural transformation γ : ∆Qñ F there exists a 1-cell

u : QÑ P and a universal modification ε : λ ˝∆uñ γ, such that both the unit and the

counit ε are invertible.

We pass this data through the equivalence K. The pseudonatural transformations λ

and γ become iso-commuting squares:

P

F1 F2

F0

λ
ð

λ1 λ2

Fh1 Fh2

Q

F1 F2

F0

γ
ð

γ1 γ2

Fh1 Fh2

The pseudonatural transformation λ ˝∆u then becomes
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Q

P

F1 F2

F0

λ1˝u λ2˝u
u

λ
ð

λ1 λ2

Fh1 Fh2

and the counit ε becomes a pair of 2-cells εi : λi ˝ uñ γi which is universal among 2-cells

satisfying the following:

Fh2 ˝ pλ2 ˝ uq Fh2 ˝ γ2

pFh2 ˝ λ2q ˝ u

pFh1 ˝ λ1q ˝ u

Fh1 ˝ pλ1 ˝ uq Fh1 ˝ γ1

Fh2˝ε2

–

γλ˝u

–

Fh1˝ε1

Starting this diagram from pFh2 ˝ λ2q ˝ u and inverting the isomorphisms, one obtains the

fill-in requirement from Lemma 7.3.6. One may now see that the remaining conditions of

Lemma 7.3.6 are exactly those making ε universal.





Index of notation
With typing signature and page of first definition

c“BA,B A 2-cell q“BA,B ˝mA,B ñ IdF pA“BBq, part of the data of a cc-pseudofunctor

pF, qˆ, q“Bq, page 136

cˆA‚ A 2-cell qˆA‚ ˝ xFπ1, . . . , Fπny ñ IdpF
ś

i Aiq
, part of the data of an

fp-pseudofunctor pF, qˆq, page 78

εt The counit for exponential structure, of type evalA,B ˝ pλt ˆ Aq
–
ùñ t,

page 134

$
pkq
t1, ... ,tn

The kth component of the counit for product structure, of type πk˝xt‚y
–
ùñ

tk, page 74

ηt The unit for exponential structure, of type t
–
ùñ λ pevalA,B ˝ ptˆAqq,

page 134

ςt The unit for product structure, of type t
–
ùñ xπ1 ˝ t, . . . , πn ˝ ty, page 74

mA,B The canonical map F pA“BBq Ñ pFA“BFBq for an fp-pseudofunctor

pF, qˆq, defined as the transpose of F pevalA,Bq ˝ qˆA“BB,A, page 136

q“BA,B An equivalence pFA“BFBq Ñ F pA“BBq forming part of the data of

a cc-pseudofunctor, page 136

fuseph‚; g‚q The canonical 2-cell p
śn
i“1 hiq ˝ xg1, . . . , gny ñ xh1 ˝ g1, . . . , hn ˝ gny,

page 76

fh;f‚;g‚ The canonical 2-cell fh;f‚;g‚ : hrf1 ˆ ¨ ¨ ¨ ˆ fns rg1, . . . , gns ñ hrf1rg1s, . . . , fnrgnss

in a biclone, page 47

natf‚ The 2-cells qˆA‚˝
śn
i“1 Ffi ñ F p

śn
i“1fiq˝q

ˆ
A‚

witnessing that
śn
i“1 pF p´q, . . . , F p“qq »

pF ˝
śn
i“1q p´, . . . ,“q for every fp-pseudofunctor pF, qˆq, page 79

Φh‚,g‚ The canonical 2-cell
`
śn
i“1 hi

˘

˝
`
śn
i“1 gi

˘

ñ
śn
i“1phigiq witnessing the

pseudofunctorality of
ś

np´, . . . ,“q, page 76
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postph‚; gq The canonical 2-cell xh1, . . . , hny ˝ g ñ xh1 ˝ g, . . . , hn ˝ gy, page 75

qˆA‚ An equivalence
śn
i“1pFAiq Ñ F p

śn
i“1Aiq forming part of the data of

an fp-pseudofunctor, page 78

pushpf, gq The canonical 2-cell λpfq ˝ g ñ λ
`

f ˝ pg ˆAq
˘

, page 135

swaph,f The 2-cell of type pf ˆ Xq ˝ xIdB, hfy ñ xIdB1 , hy ˝ f , defined as the

composite pf ˆXq ˝ xIdB, hfy
fuse
ùùñ xf, hfy

post´1

ùùùùñ xIdB1 , hy ˝ f , page 206

e:pαq The unique mediating 2-cell uñ λt corresponding to α : evalA,B ˝ puˆ

Aq ñ t, page 134

p:pα1, . . . , αnq The unique mediating 2-cell u ñ xt1, . . . , tny corresponding to αi :

πi ˝ uñ ti pi “ 1, . . . , nq, page 74

u“BA,B A 2-cell IdpFA“BFBq ñ mA,B˝q
“B
A,B , part of the data of a cc-pseudofunctor

pF, qˆ, q“Bq, page 136

unpackf‚ The 2-cell xFπ1, . . . , Fπny˝F xf1, . . . , fny ñ xFf1, . . . , fny ‘unpacking’

an n-ary tupling, page 80

uˆA‚ A 2-cell Idp
ś

i FAiq
ñ xFπ1, . . . , Fπny ˝ qˆA‚ , part of the data of an

fp-pseudofunctor pF, qˆq, page 78
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7, 1972.

[GJ17] N. Gambino and A. Joyal. On operads, bimodules and analytic functors.

Memoirs of the American Mathematical Society, 249(1184):153–192, 2017.

[GK13] N. Gambino and J. Kock. Polynomial functors and polynomial monads. Math-

ematical Proceedings of the Cambridge Philosophical Society, 154(1):153–192,

2013.

[GPS95] R. Gordon, A. J. Power, and R. Street. Coherence for tricategories. Memoirs

of the American Mathematical Society, 1995.

[Gra74] J. W. Gray. Formal Category Theory: Adjointness for 2-Categories, volume

391 of Lecture Notes in Mathematics. Springer, 1974.

[GTL89] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University

Press, New York, NY, USA, 1989.

[Gur06] N. Gurski. An Algebraic Theory of Tricategories. University of Chicago,

Department of Mathematics, 2006.

[Gur12] N. Gurski. Biequivalences in tricategories. Theory and Applications of Cat-

egories, 26(14):349–384, 2012.

[Gur13] N. Gurski. Coherence in Three-Dimensional Category Theory. Cambridge

University Press, 2013.

[Har69] F. Harary. Graph Theory. Addison-Wesley Publishing Company, Boston, 1969.



BIBLIOGRAPHY 315

[Her93] C. Hermida. Fibrations, Logical Predicates and Indeterminates. PhD thesis,

University of Edinburgh, 1993.

[Her00] C. Hermida. Representable multicategories. Advances in Mathematics,

151(2):164–225, 2000.

[Hil96] B.P. Hilken. Towards a proof theory of rewriting: the simply typed 2λ-calculus.

Theoretical Computer Science, 170(1):407–444, 1996.

[Hir13] T. Hirschowitz. Cartesian closed 2-categories and permutation equivalence in

higher-order rewriting. Logical Methods in Computer Science, 9:1–22, 07 2013.

[Hou07] R. Houston. Linear Logic without Units. PhD thesis, University of Manchester,

2007.

[Hue76] G. Huet. Résolution d’équations dans des langages d’ordre 1, 2, . . . , ω. PhD
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