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Abstract

In this thesis I lift the Curry-Howard—Lambek correspondence between the
simply-typed lambda calculus and cartesian closed categories to the bicategor-
ical setting, then use the resulting type theory to prove a coherence result for
cartesian closed bicategories. Cartesian closed bicategories—2-categories ‘up to
isomorphism’ equipped with similarly weak products and exponentials—arise in
logic, categorical algebra, and game semantics. However, calculations in such
bicategories quickly fall into a quagmire of coherence data. I show that there is
at most one 2-cell between any parallel pair of 1-cells in the free cartesian closed
bicategory on a set and hence—in terms of the difficulty of calculating—bring
the data of cartesian closed bicategories down to the familiar level of cartesian
closed categories.

In fact, I prove this result in two ways. The first argument is closely related
to Power’s coherence theorem for bicategories with flexible bilimits. For the
second, which is the central preoccupation of this thesis, the proof strategy has
two parts: the construction of a type theory, and the proof that it satisfies a form
of normalisation I call local coherence. 1 synthesise the type theory from algebraic
principles using a novel generalisation of the (multisorted) abstract clones of
universal algebra, called biclones. The result brings together two extensions of the
simply-typed lambda calculus: a 2-dimensional type theory in the style of Hilken,
which encodes the 2-dimensional nature of a bicategory, and a version of explicit
substitution, which encodes a composition operation that is only associative
and unital up to isomorphism. For products and exponentials I develop the
theory of cartesian and cartesian closed biclones and pursue a connection with
the representable multicategories of Hermida. Unlike preceding 2-categorical type
theories, in which products and exponentials are encoded by postulating a unit
and counit satisfying the triangle laws, the universal properties for products and
exponentials are encoded using T. Fiore’s biuniversal arrows.

Because the type theory is extracted from the construction of a free biclone,
its syntactic model satisfies a suitable 2-dimensional freeness universal property
generalising the classical Curry-Howard—Lambek correspondence. One may
therefore describe the type theory as an ‘internal language’. The relationship
with the classical situation is made precise by a result establishing that the type
theory I construct is the simply-typed lambda calculus up to isomorphism.

This relationship is exploited for the proof of local coherence. It is has been
known for some time that one may use the normalisation-by-evaluation strategy
to prove the simply-typed lambda calculus is strongly normalising. Using a

bicategorical treatment of M. Fiore’s categorical analysis of normalisation-by-
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evaluation, I prove a normalisation result which entails the coherence theorem
for cartesian closed bicategories. In contrast to previous coherence results for
bicategories, the argument does not rely on the theory of rewriting or strictify
using the Yoneda embedding. I prove bicategorical generalisations of a series
of well-established category-theoretic results, present a notion of glueing of
bicategories, and bicategorify the folklore result providing sufficient conditions
for a glueing category to be cartesian closed. Once these prerequisites have been

met, the argument is remarkably similar to that in the categorical setting.

A version of this thesis optimised for on-screen viewing is available at http:

//homepages.inf.ed.ac.uk/psaville/thesis-for-screen.pdf.
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Lay introduction

This introduction is for the friends and family who have occasionally asked what it is I
actually do, and to whom I don’t think I’ve ever managed a satisfactory answer. I hope this

goes some way to explaining what the next 200-odd pages are about.

Here’s the three-sentence explanation. This thesis is about using category theory and
type theory together to prove a coherence theorem. 1 construct a type theory—a kind of
mathematical language—to describe a category-theoretic structure which turns up in algebra
and logic. Then, by proving a property of the type theory, I deduce the category-theoretic

structure has a property called coherence.

Let’s flesh that out a bit more. Part I of the thesis is about syntazr, while Part II is
about semantics. The distinction between the two is one we are used to in our day-to-day
lives. If you read a message from me and judge me for spelling ‘life’ as ‘liffe’, you are
judging the syntax: the string of symbols that make up the message. If you nonetheless
grasped what I meant by the whole phrase ‘what have I been doing with my liffe’, you
understood the semantics: the meaning I was trying to convey. When a translator translates
a sentence from English to Mandarin, they change the syntax (from Roman letters to
Chinese characters), but maintain the semantics: a Chinese reader should finish the Chinese
sentence understanding the same thing as an English reader who has just read the English

sentence.

The syntactic-semantic distinction is central to the study of programs and programming
languages. On the syntactic side, there is the literal string of characters making up a program.
If T write print(‘hello world’), the computer has to break this up into the command (print)
and the string that I'm telling it to print (hello world), and act accordingly. If I write
((3+6) x 7)%, it has to break it up into the series of instructions

1. Add 3 to 6, then
2. Multiply the result by 7, then

3. Multiply this result by itself.

Anyone who has sat down to write a program will know that a fair amount of time is spent
chasing down the little syntactic mistakes (such as missing a crucial ‘;’) that, as far as the

computer is concerned, make what you have written unreadable.

Comparing programs only by their syntax is not very helpful, however. Here are three
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different programs that take in a number x and give back another number:

(5+5)x6

. E+5)x2 z+10 (1)

2

The string of symbols in each case is different, so syntactically they are different programs.
But, as we learn in secondary school algebra, these all mean the same thing: they evaluate
to the same answer. Intuitively, we can think of all these programs as the same. From
the programmer’s perspective, writing any one of these is as good as the other. So if the
computer transforms between them (for example, because one of them is quicker to run),
then the programmer doesn’t care. But if the computer transforms one of these programs

into x + 1, then they most certainly will.

This suggests that we should study programming languages not just by thinking about
the syntax, but by making precise our intuitive idea of what a program ‘says’. First we
provide a mathematical description of what each part of a program means. For example,
the command add(2) (3) ‘means’ 2 + 3. Then we say that two programs are the same if
they have the same mathematical description. The idea is that the mathematics captures
the meaning of the program (its semantics), and allows us to abstract away from its syntax.
We can then prove all kinds of useful guarantees. For example, we can show that every
syntactically correct program will eventually stop, and that the answer it will give is the
one you would expect.

What does this have to do with category theory, type theory, or coherence? It turns out
that type theory can be thought of as the logic of programs, and that category theory is
one of the best ways of describing what these programs mean.

Type theory grew up in the early 20th century in response to problems in logic, most
famously Russell’s paradox. One formulation of the paradox is this. Imagine you are a very
organised person, and are constantly making lists: to-do lists, shopping lists, and so on.
But one day you worry that you might be missing something, so you sit down to enumerate
all the things that do not appear on any of your lists. Do you add this list to this new list?
If you do, it appears on a list, so shouldn’t be on the list. If you don’t, it doesn’t appear on
any list, so should be on the list. It seems neither choice is correct! The solution suggested
by Russell is to stratify objects: at the first level are things that may appear in a list (things
you need to do, food you need to buy), at the second level are lists of things in the first
level, at the third level are lists of things at the second level, and so on. Every list has a
level, and a list can only contain things at lower levels, so you never encounter the question
of whether a list must contain the entry this list.

This kind of logic is governed by the principle that everything has a type, and a thing’s
type determines how it can behave. So you have a type of things that go in lists, a type of
lists of things that go in lists, a type of lists of these lists, and so on. Similarly, you might
have a type nat of natural (counting) numbers, and the numbers 0, 1,... all have type nat.
From this point of view, the expression 0 = 1 is false, but expressions like % or print + 2

are ruled to be nonsense: the language of type theory simply doesn’t allow you to form such



vii

expressions. With enough types and enough ways of forming new types, one can go a long
way to formulating all of mathematics in a type theory.

This way of thinking has been absorbed into computer science as a way of structuring
programs. When a programmer sits down to write a program, they have in mind some kind
of input (say, a list of numbers) and an output (say, the highest number in the list). One
can therefore think of a program as something that takes in something of some type, and
gives out something of another type. For example, I can tell the computer that I want it to
treat add(2) (3) as something of type int—as a whole number, obtained by adding 2 to
3—or as something of type string—as a list of nine characters that happen to look like a
command to add two numbers. If I declare add(2) (3) to be of type string, I can’t treat it
as a number: I can ask for its length (9), but can’t multiply it by two. The more types you
have, and the more constructions for new types you allow, the more precise you can make
these restrictions.

Type theory, then, can be viewed in two ways. As a kind of logic, in which every true
or false statement is attached to a type. Or as a programming language, in which the
statements I can write down correspond to programs with a set input type and a set output
type.

Thinking of programs as processes which take an input and return an output helps
clarify the connection with category theory. Category theorists are mathematicians who
truly believe that it’s not about the destination, it’s about the journey. Instead of asking
about particular objects, category theorists study the way things are related. The diagrams
that you’ll see if you flick through this thesis say exactly this: if you walk around the
diagram following the arrows in one direction, and then walk around the diagram following
the arrows in the other direction, the two walks will be equal. The fundamental idea is
that, if I know all the ways to get into an object, and all the ways to get out of it, then I
can discover everything I need to know. More than this: I can discover other, seemingly
unrelated, objects that are related to the things around them in the same way. For example,
the ‘if ... then’ construction of logic, the collection of ways to assign an object of a set B
to every object of a set A, and the notion of group from algebra—which axiomatises the
ways of rotating and reflecting shapes like triangles, squares, and cubes—are all examples
of the same categorical construction.

The categorical perspective has unearthed unexpected relationships between geometry,
algebra, and logic, but it also plays an important role as a mathematical description for
programming languages: category theory is the semantics for the syntazr of type theory.
For a type theorist, a program is a particular way of constructing objects of a certain
type. For the category theorist, this is exactly a way of getting from one object (the input
type) to another (the output type). Type theory and category theory are intertwined: by
carefully choosing our categories, we can provide constructions that correspond exactly to
the allowed type-theoretic expressions. By studying these categories, we can learn about
type theory; by studying type theories, we can learn about their corresponding categories.

Broadly speaking, this is the what I do in this thesis: I construct a type theory, show it
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corresponds to a special class of categories, and then—by proving something about the type
theory—solve a problem about the class of categories.

The problem is called coherence. The special categories I work with—the ‘cartesian
closed bicategories’ of the title—have uses in other areas of category theory, as well as in
algebra and in the study of programming languages, but they are intricate. As well as the
ways of getting from A to B, they include the routes between these routes. Imagine A and
B are Cambridge and Oxford. Then the routes between them might be walking directions
for the various routes, and the routes-between-routes might be the ways you can change
one set of directions into the other: change ‘left’ for ‘right’ at this junction, replace ‘100
yards’ with ‘2 miles’, and so on. Or you can imagine studying programs, and the ways of
transforming them stage-by-stage into something that you can run in 0s and 1s on your
hardware. In this example, you might have two programs with the same input type and the
same output type—such as those in above—and think about the ways of transforming
one into another: replacing yTXG by y x 2, and § x 2 by just z, and so on.

Precisely describing these two levels, and the ways they must interact, requires many
axioms and many checks at every stage of a calculation. This quickly becomes tedious,
and leads to proofs that are so long it is hard to check they are correct, let alone fit them
onto a page so that they can be verified by the community. In this thesis I show that
cartesian closed bicategories have the property that any equation you can write down for
any cartesian closed bicategory (not relying on any special properties of a specific one) must
hold. This means that those long tedious calculations are dramatically simplified: all those
things that you had to check before are now guaranteed to hold by the theorem.

In Part I, then, I construct a type theory for describing cartesian closed bicategories. If
a type theory is a logic for programs, this is a logic for programs and ways of transforming
programs into one another. I show that expressions in this type theory correspond exactly
to data in any cartesian closed bicategory, so that a proof about the type theory is a proof
about every cartesian bicategory. Then, in Part II, I prove a property of the type theory
that guarantees that every cartesian closed bicategory is coherent. If you want to see what
it all looks like, the type theory is in Appendix [C} and the big theorem is Theorem [8.4.6]
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Chapter 1

Introduction

The Curry—-Howard—Lambek correspondence and beyond

The simply-typed lambda calculus lives a remarkable double life. It can be seen as a term
calculus for intuitionistic logic, or as the syntax of cartesian closed categories—a class of
algebraic structures encompassing many important examples. This two-fold relationship,
known as the Curry—Howard—Lambek correspondence, is fundamental to the study of logic,

type theory, and programming language theory.

In this thesis we are largely concerned with the relationship between type theory and
category theory. In the context of the simply-typed lambda calculus the crucial observation
is due to Lambek [Lam80, Lam86], who showed that the simply-typed lambda calculus may
be interpreted in any cartesian closed category, that any cartesian closed category gives
rise to a simply-typed lambda calculus, and moreover that these two operations are—in a
suitable sense—mutually inverse. For a computer scientist, this says that cartesian closed
categories capture the meaning, or semantics, of the simply-typed lambda calculus: to
give a model of the simply-typed lambda calculus is to give a cartesian closed category.
For a category theorist, this says that one may use the simply-typed lambda calculus as a

convenient syntax or internal language for constructing proofs in cartesian closed categories.

The simply-typed lambda calculus is just the starting point. Internal languages are a
key tool in topos theory [MR77, [Joh02], and there are well-known versions of Lambek’s
correspondence for linear logic [BBAPH93| (see e.g. [Mel09] for an overview) and Martin-Lof
type theory [See84l [CD14]. Meanwhile, categorical constructions such as monads have
become standard for semantic descriptions of so-called ‘effectful programs’, which display

behaviours beyond merely computing some result [Mog89, [Mog91].

Latent within each of these developments is the notion of reduction or rewriting. In a
Lambek-style semantics one begins with a type theory together with rules specifying how
terms reduce to one another. These reduction rules generate an equational theory, and one
identifies terms modulo this theory with morphisms in a suitable category. This is generally
sufficient for type-theoretic applications, despite the loss of intensional information. To

study the behaviour of reductions, however, this information must be retained.



2 CHAPTER 1. INTRODUCTION

One way to retain this information is through 2-categories. A 2-category consists
of objects, morphisms, and 2-cells relating morphisms, subject to the usual unit and
associativity laws. In the late 1980s multiple authors suggested 2-categories as a semantics
for rewriting (e.g. [RS87, Pow89al]). In particular, Seely [See87] sketched a connection
between 2-categories equipped with a (lax) cartesian closed structure and the fSn-rewriting
rules of the simply-typed lambda calculus. In this model, n-expansion and S-reduction
form the unit and counit of the adjunction defining 2-categorical cartesian closed structure.
Hilken [Hil96] then took the identification between cartesian closed 2-categories and the
rewriting theory of the simply-typed lambda calculus a step further by introducing a
‘2X-calculus’ consisting of types, terms, and rewrites between terms. Syntactically, rewrites
model reduction rules—for example, the Sn-rules of the simply-typed lambda calculus—while
semantically they play the role of 2-cells.

Since Hilken’s work, 2-dimensional type theories consisting of types, terms and rewrites
have been employed for a range of applications, from rewriting theory [Hirl3] to the study
of Martin-Lof type theory and its connections to homotopy theory and higher category
theory (e.g. [Gar09, [LH11, ILHI12]). In this thesis I also connect 2-dimensional type theory
to higher category theory, but with different aims. Here, the focus is on a class of higher
categories of recent importance for applications in logic [FGHWOT7, |GJ17, [Oli20], the
semantics of programming languages [Paq20], and the study of category theory itself [FJ15]
Fio16] known as cartesian closed bicategories. The copious data required to define a cartesian
closed bicategory makes calculations within them a demanding undertaking: the aim of this

thesis is to drastically reduce those demands.

‘The technical nightmares of bicategories’

Suppose given a pair of spans (A «— B — C) and (C «<— D — FE) in a category with finite
limits. By analogy with the category of sets, these could be thought of as ‘relations’ A v C'
and C v E. How should the composite A v~ E be defined? A natural suggestion is to
take the pullback of (B — C <« D) and use the associated projection maps, thus:

BXCD
B/v \D
A/ \C/ \E

Because limits are only unique up to unique isomorphism, this definition does not satisfy
the unit and associativity laws of a 2-category. However, such laws do hold up to specified
isomorphism, and these isomorphisms satisfy coherence axioms. The resulting structure is
called a bicategory. Bicategories are rife in mathematics and theoretical computer science,
arising for instance in algebra [Bén67, [Str95], semantics of computation [GEW9S, [CCRW17],
datatype models [Abb03, [IDM13|, categorical logic [FGHWO07, [GK13|, and categorical
algebra [FJ15, [GJ17, [FGHW17]. More generally, one may (loosely) consider weak n-



categories to have k-cells relating (k — 1)-cells for k£ = 1,...,n, such that the coherence
axioms for k-cells are themselves witnessed by a specified (k + 1)-cell.

Weak higher category theory entails layers of complexity that do not exist at the
1-categorical level. Morphisms (more generally, k-cells) satisfying axioms up to some higher
cell may exist in new relationships; specifying their behaviour leads to intimidating lists of
axioms, for which the intuitive content is not immediately obvious. Proofs become purgatorial
exercises in drawing pasting diagram after pasting diagram, or diagram chases in which an
intuitively-clear kernel is dominated by endless structural isomorphisms shifting data back
and forth. Even at the level k£ = 2, Lack—certainly a member of the higher-categorical
cognoscenti—refers to (strict) 2-category theory as a “middle way”, avoiding “some of the
technical nightmares of bicategories” [Lacl0].

A small example highlights how the step from categories to bicategories blows up the
length of a proof. Consider the following lemma, which is an elementary exercise in working

with cartesian closed categories.

Lemma 1.1.

1. Every object X in a category with finite products (C, x,1) has a canonical structure

as a commutative comonoid, namely <1 XA xxXx )

2. Every endo-exponential [X = X in a cartesian closed category (C, x,1,=>) has a

canonical structure as a monoid, namely

1195 [X = X] < [X = X] % [X = X]

O

Following the principle that higher categories behave in roughly the same manner as
1-categories so long as care is taken to specify the behaviour of the higher cells, one expects
a version of this result to hold for cartesian closed bicategories. The bicategorical notion of
monoid is called a pseudomonoid [DS97]. In a bicategory B with finite products (x, 1), this
is a structure (1 S M <% M x M) equipped with invertible 2-cells a, A and p witnessing

the categorical unit and associativity laws:

M xm

Tx MM a2 prx1 (M xM)x M —=5 M x (Mx M) 22 Mx M
§ 7\‘7; é mel & lm
= M = M x M — M

These 2-cells are required to satisfy two coherence laws, corresponding to the triangle and
pentagon axioms for a monoidal category. Indeed, the prototypical example—obtained
by instantiating the definition in Cat—is of monoidal categories. Comparing with our

categorical lemma suggests the following.
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Conjecture 1.2.

1. Every object X in a bicategory with finite products (B, x, 1) has a canonical structure

|
as a commutative pseudocomonoid, with 1-dimensional structure <1 XA xxXx )

2. Every endo-exponential [X == X in a cartesian closed bicategory (B, x,1,=>) has a

canonical structure as a pseudomonoid, with 1-dimensional structure

11955 [X = X] < [X = X] x [X = X]

Moreover, in each case the 2-cells witnessing the 1-categorical axioms are canonical choices

arising from the cartesian (closed) structure of 5. “«

Constructing the witnessing 2-cells a, A and p is relatively straightforward: roughly
speaking, one can translate each equality used in the categorical proof into a 2-cell, and
then compose these together. The difficulty arises in checking the coherence laws, which
entails a series of long diagram chases unfolding the properties of these composites. It is
this extra work that makes bicategorical calculations more burdensome than their strict
counterparts: it is not enough to merely witness the axioms—which corresponds to checking
them in a strict setting—one must also check the witnesses are themselves coherent.

Not only do these checks entail extra work, they are often extremely tedious. Generally
one does not have to apply clever tricks or techniques, only plough through diagram chases
until the result falls out. This is the case, for example, when one sits down to verify the
coherence laws for Conjecture This leads to a false sense of security: it is tempting to
believe that the coherence axioms ‘must’ work out as expected, and that these extra checks

may be omitted. As Power put it as long ago as 1989 [Pow89b]:

The verification is almost always routine, and one’s intuition is almost always
vindicated; but to check the detail is often a very tedious job. Of course,
one should still do it.. . [ignoring such details] can be dangerous, as illustrated

in [Bén&5], because on rare occasions, one’s intuition fails. . .

Despite these difficulties, higher categories—either as oo-categories or as bicategories
and tricategories—present an intuitively appealing and technically rich setting for studying
phenomena arising throughout mathematics and theoretical computer science. Examples
arise in topology [Lei04], categorical logic [FGHWQT], categorical algebra [Bén67], semantics
of computation [CEW98], and datatype semantics [Abb03], to name but a few. The success
of the ‘Australian school” of the 1970s and 1980s highlights especially the fruitfulness of
studying categorical constructions in the bicategorical setting (e.g. [Str72, [Str80, BKP89]).

One is, therefore, caught between interest and difficulty: one wants to be able to work
in higher categories, but the technicalities of doing so are formidable. And the squeeze only
becomes tighter as the structure becomes richer. The question then becomes: how can one

construct a way out?



Coherence laws and coherence theorems

One solution to the difficulties of working in a higher category is to develop a formal calculus
that provides a pragmatic language for constructing and presenting proofs. In recent
years there has been a great deal of work along these lines (e.g. [RS17, [CHTM19, [Shul9]),
generally motivated by applications to co-categories (although not always, see e.g. [Frel9]).
Much of the impetus stems from the connections between type theory, homotopy theory, and
oo-categories (e.g. [Gar09 [LHI1]), particularly the versions of Martin-Lof type theory known
as homotopy type theory or univalent type theory (e.g. [Theld]). The type theory is generally
strict—allowing for simpler reasoning—but satisfies an up-to-equivalence universal property
interpreting it in the weak structure in question; this is analogous to the relationship
between Martin-Lof type theory with extensional identity types and locally cartesian closed
categories [CDI4]. A related strand of research is the development of computer-aided
systems such as Globular [BKV18], which aim to provide interactive theorem-proving tools

for certain weak m-categories.

An alternative approach is to show that the weak structure in question is (weakly)
equivalent to a strict structure: the so-called coherence property. To paraphrase Jane

Austen:

It is a truth universally acknowledged, that a higher category in possession

of a good structure, must be in want of a coherence theorem.

So long as equivalences are injective-on-cells in the appropriate sense, one can then parley
this into a result proving that classes of diagrams always commute. Since Mac Lane’s first
coherence theorem for monoidal categories, together with its pithy slogan all diagrams
commute [Mac63], a cottage industry has sprung up proving coherence results in various
forms (notable examples include e.g. [MP85, [Pow89bl, Pow89¢, [JS93, [GPS95]). Coherence
proofs often rely on the Yoneda embedding, which allows one to embed a weak structure (such
as a bicategory) into a strict structure (such as the 2-category of Cat-valued pseudofunctors),
or on the sophisticated machinery of 2-dimensional universal algebra. Rewriting theory
provides an alternative, syntactic, approach (e.g. [Hou07, [FMI18]).

However, coherence turns out to be a subtle property. Certainly, one can not always show
that all diagrams commute: consider, for instance, the case of braided monoidal categories.
In general, the dividing line between ‘coherent’ and ‘non-coherent’ definitions may not be
where one would naively hope it to be, and the exact line can be surprising. Tricategories
are not generally triequivalent to strict 3-categories |[GPS95], and the tricategory Bicat
is not triequivalent to the tricategory Gray of 2-categories, 2-functors, pseudonatural
transformations and modifications [Lac07].

The difficulty, therefore, is twofold: first, to identify the boundaries between commut-
ativity and its failure, and second, to prove that all diagrams within a conjectured boundary

do in fact commute.
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Coherence for cartesian closed bicategories

In this thesis I prove a coherence theorem for bicategories equipped with products and
exponentials in an ‘up to equivalence’ fashion. As far as I am aware, these were first studied
in [Mak96], and the coherence result I prove was first conjectured by Ouaknine [Oua97]. It
is an unfortunate accident of terminology that there is no connection to the ‘cartesian bicat-
egories’ of Carboni & Walters [CW87), (CKWWO0S§]|, nor to the ‘closed cartesian bicategories’
of Frey [Frel9]. Precisely, the theorem is the following.

Theorem. The free cartesian closed bicategory on a set of O-cells has at most one 2-cell

between any parallel pair of 1-cells. O

Note that this is a particularly concrete statement of coherence. In terms of Conjec-
ture [1.2] it goes further than showing that, once one has constructed witnessing 2-cells such
as a, A and p using only the axioms of a cartesian closed bicategory, then the coherence laws
will hold. The theorem also guarantees that there is a unique choice of witnessing 2-cells.
Using this in tandem with a precise connection between the 2-cells of the free cartesian
closed bicategory and equality in the free cartesian closed category (Section , we shall
be able to show further that it suffices to calculate completely 1-categorically.

This work was initially motivated by the difficulty of proving statements such as
Conjecture [1.2] and the corresponding obstruction to the development of a theory of
oo-categories [Fiol6] in the cartesian closed bicategories of generalised species [FGHWOT]
and cartesian distributors [FJ15]. However, cartesian closed bicategories appear more widely,
for example in categorical algebra |GJ17] and game semantics [YA1S8] [Paq20].

The strategy has two parts. First, I develop a type theory Ay~ for cartesian closed
bicategories and show that it satisfies a suitable 2-dimensional freeness property. This
extends the classical Curry—Howard—Lambek correspondence to the bicategorical setting.
The shape of the type theory follows the tradition of 2-dimensional type theory instigated by
Seely [See87] and Hilken [Hil96]. The up-to-isomorphism nature of bicategorical composition
is captured through an explicit substitution operation (c.f. [ACCL90]). Second, I adapt the
normalisation-by-evaluation technique introduced by Berger & Schwichtenberg [BS91] for
proving normalisation of the simply-typed lambda calculus to extract the theorem above.
Here I closely follow Fiore’s categorical treatment of the proof [Fio02].

Of course, for A~ to be a type theory for cartesian closed bicategories, one must

impose some constraints. I stipulate the following three desiderata.

Internal language. The syntactic model of the type theory must be
free, in an appropriately bicategorical sense. From a logical perspective, this
corresponds to a soundness and completeness property. We shall not go so far
as, say, constructing a triadjunction between a tricategory of signatures and the
tricategory of cartesian closed bicategories. Instead, we prove strict universal
properties (c.f. [Gur06]) wherever possible. As well as being readily verifiable,

these properties are often easier to work with.



Relationship to STLC. The type theory we construct must have the ‘fla-
vour’ of type theory. In particular, one should be able to recover the simply-typed
lambda calculus (STLC) as some kind of fragment: following the intuition that
cartesian closed bicategories are cartesian closed categories up-to-isomorphism,
a corresponding property should relate the simply-typed lambda calculus to
Aps” . This also imposes restrictions on the form of judgements and derivations:

they should be presented in a style recognisable as type theory.

Usability. This is connected to the preceding point. There is no gain in
constructing a syntactic calculus that merely re-phrases the axioms of a cartesian
closed bicategory. Instead, the type theory ought to be a reasonable tool for
constructing proofs. Its equational theory ought to be kept small, and express

requirements that are natural from the semantic perspective.

These desiderata are not merely stylistic: they will play a key part in our eventual
proof of coherence. The precise correspondence with the simply-typed lambda calculus,
for example, will allow us to leverage the categorical arguments of [Fi002] in a particularly
direct way. Moreover, they should also make the type theory amenable to deep embedding
in proof assistants such as Agda [Agd], and to extension with further structure in future

work.

Outline

The thesis is in two parts. Part [Ilis devoted to the construction of Ap¢~ and a proof of its
free property. Part [[I] covers the normalisation-by-evaluation proof.

In Chapter[2]I present an overview of the basic theory of bicategories. Much of the theory
is well-known, but I take the opportunity to develop it with a focus on T. Fiore’s biuniversal
arrows [Fio06, Chapter 9]. This bicategorification of universal arrows encompasses both
biadjunctions and bilimits, and is particularly amenable to being translated into type theory.

Chapter [3| constructs the core part of Ap¢, namely a type theory for mere bicategories.
This type theory is synthesised from an algebraic description of bicategorical substitution,
called a biclone, which generalises the abstract clones of universal algebra (e.g. [Coh81l
Plo94]). We also establish a coherence theorem for this fragment of the type theory,
generalising the Mac Lane-Paré coherence theorem for bicategories [MP85].

In Chapter [ we extend the type theory with finite products. We pursue a connection
between the representable multicategories of Hermida [Her00], introducing the notion of
representable (bi)clone and showing that it coincides with a notion of (bi)clone with cartesian
structure. Thereafter we synthesise a type theory from the free such biclone, and show that
its syntactic model is free.

Chapter [p| follows a similar pattern: we define cartesian closed biclones and extract
a type theory from the construction of the free such. Establishing the free property for

cc-bicategories throws up more complications than the preceding two chapters, so we spend
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some time over this. Thereafter we establish that the simply-typed lambda calculus embeds
into Aps~ and that, modulo the existence of invertible rewrites (2-cells), this restricts to
a bijection on fBn-equivalence classes of terms. We also observe that Power’s coherence
theorem for bicategories with flexible bilimits [Pow89b] may be adapted to the case of
cc-bicategories (Proposition .

In each of Chapters the development is motivated by the construction of a version
of the following diagram. This provides a technical statement of the intuitive fact that, in
order to construct a type theory for cartesian or cartesian closed (bi)categories, it suffices
to construct a type theory for the corresponding (bi)clones. As a slogan: (bi)clones are the

right intermediary between syntax and semantics.

structured (bi)clones

many-in one-out morphisms

free restriction
T
structured (bi)categories

signatures

one-in one-out morphisms
restriction
free
\ //
inclusion

unary signatures

We then move to the normalisation-by-evaluation proof. In Chapter [f] we prove bicat-

egorical correlates of three well-known facts about presheaf categories, namely:
1. Every presheaf category is complete,
2. Every presheaf category is cartesian closed,

3. For any presheaf P and representable presheaf y(X) on a small category with binary

products, the exponential [yX, P] is, up to isomorphism, the presheaf P(— x X).

The reader willing to believe versions of these results for every 2-category Hom(B, Cat) of
Cat-valued pseudofunctors may safely skip this chapter.

Chapter [7]introduces the notion of glueing of bicategories and establishes mild conditions
for the glueing bicategory to be cartesian closed. In the 1-categorical setting, this implies
the so-called fundamental lemma of logical relations [Plo73, [Sta85].

In Chapter [§| we complete the proof of the main result via a bicategorical adaptation of
Fiore’s [F1002]. Much of the apparatus required is contained in the preceding two chapters.
Finally, Chapter [9] briefly lays out some applications and suggestions for further work.

Appendices [AHC| contain an index of the bicategorical free constructions and syntactic
models throughout this thesis, an overview of the cartesian closed structures we construct,

and the complete set of rules for Aps~ together with their semantic interpretation.

Previous publication. The type theory Ap¢ was presented in the paper A type theory
for cartesian closed bicategories [FS19]. This is available online at https://ieeexplore.
ieee.org/document/8785708.


https://ieeexplore.ieee.org/document/8785708
https://ieeexplore.ieee.org/document/8785708

Contributions

The most obvious contribution is the coherence theorem for cartesian closed bicategories.
In fact, we prove this in three different ways: two closely-related arguments using the
Yoneda lemma (Proposition and Theorem and the third by normalisation-by-
evaluation (Theorem . In each case the strategy is of interest in its own right. The
arguments from the Yoneda argument extend Power’s coherence argument for bicategories
with flexible bilimits [Pow89b] to closed structure for the first time. On the other hand, the
normalisation-by-evaluation argument shows potential for further development. First, it
is plausible that, by further refining the normalisation-by-evaluation one would be able to
extract a normalisation algorithm computing the canonical 2-cell between any given 1-cells
in the free cartesian closed bicategory. Second, the combination of syntactic and semantic
methods employed here is a novel approach to proving higher-categorical coherence theorems
(although Licata & Harper have gone some way in this direction, using a groupoidal model
to prove canonicity for their 2-dimensional type theory [LHI12]). This approach may extend
to situations where other proofs of coherence—employing either syntactic approaches or the
apparatus of 2-dimensional universal algebra—are less successful.

From the type-theoretic perspective, I believe the view taken here—namely, that the
appropriate mediator between syntax and semantics is some version of abstract clones—
is a fruitful one. Indeed, the definition of the type theory A}~ follows automatically
from the definition of cartesian closed biclones. As far as I am aware, this is the first
attempt to construct a type theory describing higher categories from such universal-algebraic
grounds, and the first to exploit the machinery of explicit substitution (although Curien’s
diagrammatic calculus for locally cartesian closed categories shows similar ideas [Cur93]).

The theoretical development required for the normalisation proof—such as the work
on bicategorical glueing in Chapter [(}—lays important foundations for further work. For
instance, the machinery of Part [l is the groundwork for proving a conservative extension
result for cartesian closed bicategories over bicategories with finite products in the style
of [Laf87, FDCB02].

Finally, this thesis contains moderately detailed proofs of results that one would certainly
expect but I have not seen proved in the literature, such as the cartesian closure of the
2-category Hom(B, Cat) of Cat-valued pseudofunctors, pseudonatural transformations and
modifications. At the very least, I hope this saves others the work of reproducing the

extensive calculations required.

Notation and prerequisites

I have tried to keep the presentation self-contained and accessible to type theorists with
a categorical bent, as well as to (higher) category theorists with less experience in type
theory. I recap the bicategory theory we shall need, and do not employ any heavyweight

results without proof. Similarly, I take the simply-typed lambda calculus and its semantics
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(as in e.g. [LS86, [Cro94]) as known, but do not assume familiarity with strategies such as
glueing or normalisation-by-evaluation. This occasionally requires recapitulating folklore
or standard results, but I hope in these cases the presentation is original enough to be of
interest in itself.
I have attempted to generally (but not universally) maintain the following typographical
conventions:
e Named 1-categories are written in Roman font (e.g. Set); named higher categories
are in bold font (e.g. Cat). Arbitrary categories are written in blackboard bold
(C,D,...) and arbitrary bicategories in calligraphic font (5,C,...).

e 2-cells are denoted either by lower-case Greek letters (o, 8, 7,0, ...) or given suggestive
names in sans-serif (e.g. push).
An index of notation covering most of the recurring 1- and 2-cells is on page [308]
I have also borrowed the convention of Troelstra & Schwichtenberg [TS00] for denoting
the end of environments. The end of a proof is marked by a white square ([J) and the end

of a remark, definition or example by a black triangle («).



Chapter 2

Bicategories, bilimits and

biadjunctions

This chapter introduces the basic theory of bicategories, bilimits and biadjoints. Much of the
content is well-known, and many excellent overviews of the material are available (e.g. [Bén67,
Str80), Bor94l, [Str95l Lei04]). The intention behind recapitulating it here is two-fold. Firstly,
to fix notation. Second, to introduce concepts in a style that is convenient for later chapters.
There are many equivalent ways of formulating basic notions such as adjunction, adjoint
equivalence and universal arrow. In the categorical setting, translating between the various
formulations is generally straightforward. Bicategorically, however, such translations can
require extensive checking of coherence data. We avoid this by taking the most convenient
definition for our purposes as primitive, and by focussing on the biuniversal arrows of [Fio06l
Chapter 9]. These capture both bicategorical limits and adjunctions—and thereby cartesian
closed structure—in a uniform way. We therefore spend some time developing the theory of
biuniversal arrows before showing how it specialises to standard results about bilimits and

biadjunctions.

2.1 Bicategories

The fundamental notion is that of a bicategory, due to Bénabou [Bén67]. These structures
often arise when one defines composition by a universal property. Such an operation
will generally not be associative and unital up to equality, only up to some mediating
isomorphisms. A classical example is the bicategory of spans over a category C with
pullbacks. The objects are those of C, the morphisms A v B are spans A Ix9p , and

composition is given by pullback.

11
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Definition 2.1.1. A bicategory B consists of
A class of objects ob(B),

e Forevery X,Y € ob(BB) a hom-category (B(X,Y), ,id) with objects I-cells f : X -V
and morphisms 2-cells o : f = f': X — Y; composition of 2-cells is called vertical

composition,

e For every X,Y, Z € ob(B) an identity functor Idx : 1 — B(X, X) (for 1 the terminal
category) and a horizontal composition functor oxy z : B(Y,Z) x B(X,Y) — B(X, Z),

e Invertible 2-cells

angf:(hog)of=ho(gof):W—>Z
ly:Idxof=f:W—->X
rg:goldy =9g: X ->Y

forevery f: W — X, g: X - Y and h: Y — Z, natural in each of their arguments
and satisfying a triangle law and a pentagon law analogous to those for monoidal

categories:

ak,h,gof

((koh)og)of (ko(hog))of

akoh,g,fl lak,hog,f

(koh)o(gof) ko((hog)of)

amﬁ Ah,g,f
ko(ho(gof))

dg,1d, f

(goldx)o f ——= go(Idx o f)
f
gof

S

rgo

The functorality of horizontal composition gives rise to the so-called interchange law: for

suitable 2-cells 7,7, 0, 0" we have (7' e7) o (c’ec) = (7' 00’)e(T00). <

Notation 2.1.2. In the preceding we employ the standard notation for the whiskering
operations. For a 1-cell f: X - Y and 2-cellsoc:h=h:W > X and7:9=¢:Y - Z
we write foo and 7o f foridfoo : foh = foh’ and Toids : go f = ¢'o f, respectively. «

The category Rel of sets and relations may be viewed as a locally posetal bicategory—i.e. a
bicategory in which each hom-category is a poset—by stipulating that R < S: A — B if
and only if aRb implies aSb for all a € A and b e B. A relation R : A — B is equivalently
amap A x B — {0,1}. Replacing sets by categories, one obtains the bicategory Prof:
this has objects categories, 1-cells C —» D the functors D°? x C — Set, and 2-cells natural
transformations. The identity on C is the hom-functor Hom(—, =), and composition is given

using the universal property of a presheaf category (see e.g. [Bén00]).
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Remark 2.1.3. The coherence theorem for monoidal categories [Mac98, Chapter VII|
generalises to bicategories: any bicategory is biequivalent to a 2-category [MP85]. Loosely
speaking, then, any diagram constructed from only the identity and the structural constraints
a, L, r with the operations of horizontal and vertical composition must commute (see [Lei04]
for a readable summary of the argument). We are therefore justified in treating a,l and r as

though they were the identity, and we will sometimes denote such 2-cells merely by =~. <«

Every bicategory B has three duals. Following the notation of [Lacl(, §1.6], these are

e B°P obtained by reversing the 1-cells,
e 3°° obtained by reversing the 2-cells,
e B°°°Pobtained by reversing both.
We call the first option the opposite bicategory. This is the only form of dual we shall employ

in this thesis.
A morphism of bicategories is called a pseudofunctor (or homomorphism) [Bén67)]. It
is a mapping on objects, 1-cells and 2-cells that preserves horizontal composition up to

isomorphism. Vertical composition is preserved strictly.

Definition 2.1.4. A pseudofunctor F : B — C between bicategories B and C consists of
e A mapping F' : ob(B) — 0b(C),
e A functor Fxy : B(X,Y) - C(FX,FY) for every X,Y € ob(B),
e An invertible 2-cell ¢y : Idpx = F(Idy) for every X € ob(B),
e An invertible 2-cell ¢f 4 : F(f)oF(g) = F(fog) forevery g: X - Y and f:Y — Z,

natural in f and g,

subject to two unit laws and an associativity law:

Idpyr o Ff X0 p1dy) o F(F) Ffoldpx ~V%% £y o F(ldy)

I.Ffl \Ld’ldx,,f "Ffl \L(bf,ldx

FfTF(IdX/of) FfTF(foIdx)
aFh,Fg,Ff F(h)ogg,n
(FhoFg)oFf Fho (FgoFf) ——== F(h)oF(go f)
(z)h,gOFfl l¢h,gof
F(hog)oFf ——— F((hog)of) —p— F(ho(go /)
og,f ahg,f
A pseudofunctor for which ¢ and ¢ are both the identity is called strict. <

We often abuse notation by leaving ¥ and ¢ implicit when denoting a pseudofunctor.
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Example 2.1.5.
1. A monoidal category is equivalently a one-object bicategory; a monoidal functor is

equivalently a pseudofunctor between one-object bicategories,

2. A 2-category is equivalently a bicategory in which a, | and r are all the identity. A strict

pseudofunctor F': B — C between 2-categories B and C is equivalently a 2-functor.

3. For every locally small bicategory B (see Notation [2.1.10) and X € B there exists the
Yoneda pseudofunctor YX : B — Cat, defined by YX := B(X, —). The 2-cells ¢ and

1 are structural isomorphisms. <

Morphisms of pseudofunctors are called pseudonatural transformations [Gra74]. These
are 2-natural transformations (Cat-enriched natural transformations) in which every natur-
ality square commutes up to a specified 2-cell. Morphisms of pseudonatural transformations
are called modifications [Bén67, [Str80].

Definition 2.1.6. A pseudonatural transformation (k,k) : F = G : B — C between
pseudofunctors (F, ", ¢*") and (G, ¢, ¢%) consists of the following data:

1. A l-cell kxy : FX — GX for every X € B,
2. An invertible 2-cell Ef tkyoFf=Gfokx: FX — GY forevery f: X - Y in B,

natural in f and satisfying the following unit and associativity laws for every X € B,
f: X' > X"andg: X - X' in B. :

(Gfokxs)o Fg

Efoy W,Fﬂ

(kx»o Ff)oFg Gfo(kx oFg)
akavagl JG(f)OEg
kx» o (FfoFg) Gfo(Ggokx)

F —1
I<X”O‘z’f,gl lacf,cg,k

kxvoF(fog (Gf oGg)okx

\ /qﬁfg,go Ky

)
Kfg
G(fog)oky

kx
VRN

kXOIdFX IdGXOkX
kxo’l[})F(l lﬂ)gokx
kX o FIdX E— GIdX o kX
krd

A pseudonatural transformation for which every Ef is the identity is called strict or

2-natural. <
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Remark 2.1.7. Note that we orient the 2-cells of a pseudonatural transformation as in the

following diagram:

rx 2, py

| k |
(Xl é \L(y

This is the reverse of [Lei98] but follows the direction of [Bén67, [Str80]. Of course, since we

require each Ef to be invertible, the two choices are equivalent. <

Definition 2.1.8. A modification = : (k,k) — (j,j) between pseudonatural transformations
(k,k), (j,j) : F = G : B — C is a family of 2-cells Zx : kx = jx, such that the following
commutes for every f: X — X’ in B{]]

k
ky o Ff —2 Gf oky
EX,oFfl leoEX

ixioFf - Gfojx
f

Example 2.1.9. For every pair of bicategories B and C there exists a bicategory Hom(B,C)
of pseudofunctors, pseudonatural transformations and modifications. If C is a 2-category, so
is Hom(B,C). In particular, for every bicategory B there exists a 2-category Hom(B, Cat),
which one might view as a bicategorical version of the covariant presheaf category SetC.
Where C is a mere category, pseudofunctors C — Cat are called indexed categories [MP85].

<

Bicategories, pseudofunctors, pseudonatural transformations and modifications organise
themselves into a tricategory (weak 3-category, see [GPS95, |Gur(6, [Gurl3]) we denote
Bicat [GPS95].

Notation 2.1.10. A bicategory B (resp. pseudofunctor F') is said to be locally P if the
property P holds for each hom-category B(X,Y) (resp. functor Fxy). In particular, a
bicategory is locally small if every hom-category is a set, and small if it is locally small and
its class of objects is a set. We shall use Cat to denote the 2-category of small categories
and stipulate that, whenever we write Hom(B, Cat), then it is assumed that B is small. As

usual, such issues can be avoided using technical devices such as Groethendieck universes
(see e.g. [Shu08]). «

The bicategorical Yoneda Lemma takes the following form, due to Street [Str80]E|

'Leinster [Lei04] requires both the above coherence law and that the family of 2-cells Ex be natural in
X; this appears to be an oversight, as neither Leinster’s own [Lei98] nor Street’s [Str95] mention naturality.

2The bicategorical Yoneda Lemma is an example of a result that one would certainly expect to hold—and
is generally only ever stated in the literature—but for which the proof actually requires a significant amount
of work: see [Bak| for the gory details.
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Lemma 2.1.11. For any bicategory B and pseudofunctor F': B — Cat, evaluating at the
identity for each B € B provides the components Hom(B, Cat) (B(B, =), F) = FB of an
equivalence in Hom(B, Cat). Hence, the Yoneda pseudofunctor Y : B — Hom(B, Cat) :
X — B(X, —) is locally an equivalence. O

Bicategories provide a convenient setting for abstractly describing many categorical
concepts (e.g. [Lawl7]); this perspective that has been used to particular effect by the
Australian school (see for instance [LS12] [LS14]). The following definition is a small example

of this general phenomenon.

Definition 2.1.12. Let B be a bicategory.

1. An adjunction (A, B, f,g,v,w) in B is a pair of objects (A, B) with arrows f: A <
B :gand 2-cellsv:Idg = go f and w : f og = Idp such that the bicategorical
triangle laws hold (e.g. |[Gurl2]):

—1 —1

=1 foldx 2% fo(gof) g s Tdyog = (gofog
| b o
fTIdYOfW(fOQ)Of g%goldxng(fog)

2. An equivalence (A, B, f, g,v W) in B is a pair of obJects (A, B) witharrows f : A5 B: g
and invertible 2-cells v:Idy = go fandw: fog = Idp,

3. An adjoint equivalence is an adjunction that is also an equivalence.

If 1-cells f and g are part of an equivalence, we refer to g as the pseudoinverse of f.

Pseudoinverses are unique up to invertible 2-cell. <

In Cat, an (adjoint) equivalence is exactly an (adjoint) equivalence of categories.
Moreover, just as in Cat, every equivalence induces an adjoint equivalence with the same
1-cells (see e.g. [Lei98]). The appropriate notion of equivalence between bicategories is

called biequivalence [Str80).

Definition 2.1.13. A biequivalence between bicategories B and C consists of pseudofunctors
F . B < C: G and chosen equivalences G o F' ~ idg and F o G ~ id¢ in the bicategories
Hom(B, B) and Hom(C, C), respectively. <

By a result of Gurski [Gurl2], one may assume without loss of generality that a

biequivalence is an adjoint biequivalence, in which F' and G also form a biadjunction (see

Definition [2.4.1)).

Notation 2.1.14. Following standard practice from Cat, we shall sometimes refer to a
pair of arrows f: A < B : g as an (adjoint) equivalence, leaving the 2-cells implicit. When
we wish to emphasise that these 2-cells are given as data, we refer to a chosen or specified

equivalence.
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Similarly, we may sometimes leave most of the data implicit and refer to the pseudofunctor
F on its own as a biequivalence. Unlike the 1-categorical case, however, we shall always

assume this biequivalence to be chosen. <

Example 2.1.15.

1. A biequivalence between one-object bicategories is exactly an equivalence of monoidal
categories (that is, an equivalence in the 2-category MonCat of monoidal categories,

monoidal functors and monoidal natural transformations).

2. Prof is biequivalent to its opposite bicategory [DS97, Section 7] (c.f. the fact that

the category Rel is isomorphic to its opposite). <

Loosely speaking, an equivalence of categories relates objects that are the same up to
isomorphism, and a biequivalence of bicategories relates objects that are the same up to
equivalence. Indeed, since every pseudofunctor preserves (adjoint) equivalences, an (adjoint)
equivalence A ~ B in a bicategory B induces an (adjoint) equivalence B(A, —) ~ B(B, —)
in Hom(B°, Cat) and hence an (adjoint) equivalence B(A, X) ~ B(B, X) for every X € B.
One consequence is that, if the pseudofunctor F': B — C is a biequivalence, then

1. For every C € C there exists an object B € B and an equivalence C ~ F'B,

2. F is locally an equivalence: for every B,B’ € B the functor Fp p is part of an
equivalence of categories B(B, B') ~ C(F'B, FB'); in particular, every F'p p is fully
faithful and essentially surjective.

In the presence of the Axiom of Choice, this formulation is equivalent to the definition given
above (e.g. [Lei04, Proposition 1.5.13]).

In the categorical setting it is elementary to check that a natural isomorphism—as an
iso in a functor category—is exactly a natural transformation for which every component is

invertible. The bicategorical version of this result is the following.
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Lemma 2.1.16. Let F,G : B — C be pseudofunctors and suppose (k,k) : F = G is a
pseudonatural transformation such that every kx : FX — GX is part of a specified adjoint
equivalence (ky, k%, wx : k} okx = Idpx,vx : Idpx = kx o k). Then:
1. The family of 1-cells ky : GX — FX are the components of a pseudonatural
transformation (k*, k") : G = F, where for f : X — Y the 2-cell E} is defined by

commutativity of the following diagram:

k
ki o Gf ! Ffokk
k;/o (GfOIdGX) IdFyO (Ffok;()
ki oG fovx wy oF fok’,
ki o (Gf o (kx ok¥)) (k{ oky) o (Ffoky)

ki o ((Gfokx)okyk) ————— ki o((ky o Ff) ok¥)
kj-oky ok
2. The pseudonatural transformations (k,k) : F < G : (k*, k") are the 1-cells of an
equivalence F' ~ G in Hom(B,C).

Proof. To see that (k*, k*) is a pseudonatural transformation, the naturality and the unit
laws follow from the corresponding laws for Ef. For the associativity law the process is
similar, except one also applies the triangle law relating v and w.

For the second claim we construct invertible modifications (k*, k™) o (k,k) = Idp and
Idg = (k, k) o (k*,F). The obvious choices for the components are wx : k o kx = Idpx
and vy : Idgx = kx ok’. It remains to check the modification axiom. To this end, observe
that for every f: X — Y in B, is the composite

o ~ Ffo <
(I<§/o|<y)oFfWY:FJCIdFyoFf:SFfoIdFX #Ffo(k}okx)

Similarly, (k o k*), is the composite

R v;lon ~ G fovx *
(ky oky) o Gf == Idgy o Gf = Gf oldgx == G f o (ky o ky)

One then sees that

(Kb oky) o Ff M gy o Ff

wy oF f /
Ef

IdFY (¢]

I1e

(k;oky)f =
Ffoldpx

Ef OW;(l \

— FfO(k;(OkX) W FfOIdFX

so that (wx)xep does indeed form a modification. The proof for v is similar. ]
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This lemma is particularly useful when it comes to constructing a biequivalence: to
construct an equivalence F' o G ~ id it suffices to construct a pseudonatural transformation
for which each component is an equivalence.

The lemma also justifies the following terminology. We call a pseudonatural transform-
ation (k,k) a pseudonatural equivalence if every component kx is an equivalence, and a

pseudonatural isomorphism if every kx is invertible.

2.2 Biuniversal arrows

In his famous textbook [Mac98], Mac Lane makes precise the notion of universal property
by introducing universal arrows. The Yoneda Lemma, limits and adjunctions are then all
characterised in these terms. We adopt a similar approach, focussing on T. Fiore’s biuniversal
arrows [Fio06]. As well as providing a uniform way to describe bicategorical limits and
bicategorical adjunctions, this perspective is particularly amenable to syntactic description.
Biuniversal arrows are fundamental to the type theoretic description of bicategorical products
and exponentials we shall see in Chapters [4] and

A detailed development of the relationship between biuniversal arrows and biadjoints,
complete with proofs, is available in [Fi006, Chapter 9]. The other results in what follows
are implicit in much historical work on bicategory theory (e.g. [Str80]), but—as far as I am
aware—have not previously been collected together in this form.

We begin by recapitulating the notion of universal arrow and its bicategorical counterpart.

Definition 2.2.1. Let ' : B — C be a functor and C € C. A universal arrow from F to
Cis a pair (Re B,u: FR — () such that, for any B € B and f : FB — C, there exists a
unique fT: B — R such that uo FfT = f. <

It is an exercise to show that every universal arrow (R, u) from F' to C' is equivalently a
chosen family of natural isomorphisms B(—, R) = C(F(—),C), or—equivalently again—a
terminal object in the comma category (F' | C'). It follows that a right adjoint to F': B — C
is specified by a choice of universal arrow ¢ : FUC — C for every C € C. The mapping U
extends to a functor with Uf := (f o 50)T for f : C — C’. The counit is then ¢ and the
unit 7 arises by applying the universal property to the identity: np := (idg B)Jr :B—->UFB.
If both € and 7 are invertible, the result is an adjoint equivalence.

To define biuniversal arrows, one weakens the isomorphisms defining a universal arrow
to equivalences. We take particular care in choosing how we spell these out. It is generally
convenient to require adjoint equivalences; by the well-known lifting theorem (e.g. [Lei04,
Proposition 1.5.7]) this entails no loss of generality, while providing a more structured
object to work with. We also go beyond T. Fiore’s definition by requiring that each adjoint

equivalence is determined by a choice of universal arrow.
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Definition 2.2.2 (c.f. [Fio06]). Let F' : B — C be a pseudofunctor and C € C. A biuniversal
arrow from F to C consists of a pair (R € B,u: FR — C) and, for every B € B, a chosen

adjoint equivalence of categories
B(B,R) = C(FB, ()
(B Ry~ (FBEL FR S ©)

specified by choosing a family of invertible universal 2-cells as the counit.

Explicitly, a biuniversal arrow from F' to C' consists of the following data:

e A pair (Re B,u: FR — C),

e For every Be B and h: FB — C, a map ¥g(h) : B — R and an invertible 2-cell
ep,y : wo Fip(h) = h, universal in the sense that for any map f : B — R and 2-cell
7:uo Ff = h there exists a 2-cell 71 : f = ¢g(h), unique such that

Ff
4
FB y Frt FR

FR
— vf u (2.1)
FB / “hT \ C

such that the 2-cell (idquf)Jr : f = ¢Yp(uo Ff) is invertible for every f: B — R. «

Remark 2.2.3. Pictorial representations such as are known as pasting diagrams. It
is a consequence of the coherence theorem for bicategories that, once a choice of brack-
eting is made for the source and target 1-cells, a pasting diagram identifies a unique
2-cell (c.f. [Gur06, Remark 3.1.16]; for a detailed exposition, see [Ver92, Appendix A]). <«

On the face of it, a biuniversal arrow is only local structure: the data imposes a
requirement on each hom-category, but no global constraints. This property will be
particularly useful for our later work synthesising a type theory, where we shall encode
bicategorical products and exponentials as biuniversal arrows. Global structure arises in
the following way (c.f. [Mac98, I11.2]).

Lemma 2.2.4. Let F' : B — C be a pseudofunctor and C' € C. There exists a biuniversal
arrow (R,u) from F to C if and only if there exists an equivalence of pseudofunctors
B(—,R) ~C(F(—),C) in Hom(B°P, Cat),

Proof. For every equivalence of pseudofunctors B(—, R) - C(F(—),C) one obtains from the
Yoneda Lemma an arrow yg(Idg) : FR — C. This arrow is biuniversal: indeed, the image of
vr(Idg) under the pseudofunctor C(FR,C) — Hom(B°P, Cat)(B(—, R),C(F(—),C)) given
by the Yoneda Lemma is isomorphic to v, and hence an equivalence. The converse is [Fi006,
Theorem 9.5]. O
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Remark 2.2.5. In Chapter [7| we shall see that a biuniversal arrow from F' : B — C to
C € C is equivalently a terminal object in the bicategorical comma category (F' | const¢),

for constc the constant pseudofunctor at C. <

Elementary properties of biuniversal arrows. Many standard properties of universal
arrows—such as those in [Mac98]—extend to biuniversal arrows. Biuniversal arrows are

unique up to equivalence, and the (—)T operation preserves both invertibility and naturality.

Notation 2.2.6. In the next lemma, and throughout, we shall abuse notation by writing
just =~ for the invertible 2-cell filling a square. Unless marked otherwise, it is assumed this
2-cell is oriented right-to-left (c.f. Remark [2.1.7)). «

Lemma 2.2.7 ([Fio06, Lemma 9.7]). Let F' : B — C be a pseudofunctor and C € C. For
any two biuniversal arrows (R,u) and (R',u') from F to C there exists an equivalence

e: R — R’ and an invertible 2-cell & filling

FR %5 C

S

FR’T>C

lle=

Moreover, for any other pair (f : R — R/, \:u o Fe = u) filling the above diagram, e and

f are isomorphic via AT O

It follows from the essential uniqueness of equivalences that, if v : FR — C is a
biuniversal arrow from F to C' and v’ = u, then u/ is also a biuniversal arrow from F to C.

The next lemma follows from further standard facts about adjoint equivalences of categories.

Lemma 2.2.8. Let F': B — C be a pseudofunctor and (R, u) a biuniversal arrow from F
to C € C. For every object B € B,

1. If f : B — R is any morphism and a : uwo Ff = h is invertible, then so is af.

2. If the 1-cells h,h' : FB — C and f,f' : B —> R and 2-cells a : uo Ff = h and

B:uoFf' = h' are related by a commutative diagram of 2-cells as on the left below

«a an)t
woFf —yp FRERENSTA
quoi JT Ul lﬁ’B (1)
UOFf/ Tf’> h/ f/ ﬁ wB(h/)
J ag

then the diagram on the right above commutes. In particular, if a : uwo F(—) =

id¢(rp,c) 1s a natural transformation, then so is ol idg(p,r) = ¥B(—)- O

It is sometimes convenient, for example when working with bilimits, to work with the

notion of birepresentable pseudofunctor.
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Definition 2.2.9 ([Str80]). Let F': B — Cat be a pseudofunctor. A birepresentation (R, p)
for F consists of an object R € B and an equivalence p : B(R, —) — H in Hom(B, Cat). <

Representable functors F' : B — Set correspond to universal arrows from the terminal
object to F'. Similarly, to relate biuniversal arrows to birepresentable functors we employ

the dual notion of a biuniversal arrow from an object to a pseudofunctor.

Lemma 2.2.10 (c.f. [Mac98, Proposition II1.2.2]). A pseudofunctor F' : B — Cat is
birepresentable if and only if there exists a biuniversal arrow from the terminal category 1
to F.

Proof. 1t is certainly the case that Cat(1, F'(—)) ~ F' in Hom(B, Cat). From birepresent-
ability and the closure of equivalences under composition one obtains Cat(1, F(—)) ~ F' ~
B(R,—), so the result follows from Lemma [2.2.4 O

2.2.1 Preservation of biuniversal arrows

Preservation of biuniversal arrows will provide a systematic way to define preservation of
bilimits and preservation of biadjoints. We begin by examining preservation of universal
arrows. Using the fact that a right adjoint to F': B — C is completely specified by a choice
of universal arrow (UC, F(UC) — C) for each C' € C—namely, the counit—it is reasonable
to define morphisms of universal arrows analogously to morphisms of adjunctions [Mac98|
Chapter IV].

Definition 2.2.11. Let F': B — C and F’ : B’ — C’ be functors and suppose (R,u) is a
universal arrow from F' to C' € C. A pair of functors (K, L) preserves the universal arrow

(R, u) if the following diagram commutes

F

B——C
o |
B —— C
F
and F'LR = KFR K, KC is a universal arrow from F’ to KR. «

Equivalently, we ask that the functor (F' | C') — (F’ | KC) defined by (B,h: FB —
C) — (LB,F'LB = KFB Kh, KC) preserves the terminal object. This is a slight
weakening of the definition of transformation of adjunctions given in [Mac98]: Mac Lane
asks that the unit (or counit) be strictly preserved.

The bicategorical translation is as one would expect.
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Definition 2.2.12. Let F': B — C and F’ : B’ — C’ be pseudofunctors and suppose (R, u)
is a biuniversal arrow from F to C' € C. A triple of pseudofunctors and pseudonatural

transformations (K, L, p) as in the diagram
Li 2 lx (2.2)

preserves the biuniversal arrow (R, u) if F'LR *% KFR K4, K(C is a biuniversal arrow
from F’' to KC. “«

By Lemma if (K, L, p) preserves the universal arrow (R, u) as in then one
obtains a pseudonatural family of equivalences B'(B’, LR) ~ C'(F'B', KC).

Just as an equivalence of categories preserves all ‘categorical’ properties, so a biequi-
valence preserves all ‘bicategorical’ properties. In particular, a biequivalence preserves all

biuniversal arrows.

Lemma 2.2.13. Let H : C — D be a biequivalence and F' : B — C be a pseudofunctor. If
(R, u) is a biuniversal arrow from F' to C € C, then Hu is a biuniversal arrow from HF to

HX. Hence, the triple (H,idp,id) preserves the biuniversal arrow.

Proof. Since H is locally an equivalence, for every B € B there exists a composite adjoint
H

equivalence of categories B(B, R) ~ C(FB,C) e D(HFB,HC) taking h : B — R to

H(uo Fh). Since H(u) o HF(—) is naturally isomorphic to this adjoint equivalence, it is

an adjoint equivalence itself. O

There are two ways of formulating that a functor F' preserves limits: one can either
ask that the image of the terminal cone is also a terminal cone, or that the canonical map
F(lim H) — lim(F H) is an isomorphism. Similar considerations apply to preservation of

biuniversal arrows.

Lemma 2.2.14. Consider a square of pseudofunctors K, L, F, F' related by a pseudonatural
transformation (p,p) : KF = F'L as in (2.2)), thus:

For every pair of biuniversal arrows (R, u) and (R',u’) from F to C € C and F’ to KC €/,

respectively, the following are equivalent:

1. (K, L, p) preserves the biuniversal arrow (R, u),

2. The canonical map ¢} p(Kuo pr) : LR — R’ is an equivalence, where we write ¢
for the chosen pseudo-inverse to v’ o F'(—) : B(LR,R') — C'(F'LR, KC).
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Proof. Suppose first that ¢} o(Ku o pr) is an equivalence. Since pseudofunctors preserve
/ Kuo o(— 'oF! (—
wLR( u pR) ( ) B/(B/,R/) u F( ) C/(F/C/,KC)

is an equivalence. Hence u' o F'(¢} p(Ku o pr)) is a biuniversal arrow. But then the 2-cell

equivalences, the composite B'(B’, LR)

e} p(Kuopgr) provides a natural isomorphism v’ o F' (¢} p(Kuo pr)) = Kuopg, so Kuopg
is also a biuniversal arrow.

The converse is a straightforward application of universality (c.f. also Lemma [2.2.7)): if
(LR, Kuo pr) and (R',u’) are both biuniversal arrows from F’ to KC, then the canonical
arrows LR — R’ and R’ — LR obtained from the universal property must form an

equivalence. ]

It will be useful to define strict preservation of biuniversal arrows. This strictness will
play an important role in later chapters, where we will ask that the syntactic models of our
type theories satisfy a strict freeness property. The aim of this definition is to ensure that
the chosen structure witnessed by a biuniversal arrow (e.g. a bilimit) is taken to exactly the

chosen structure in the target.

Definition 2.2.15. Let F': B — C and F’ : B’ — C’ be pseudofunctors and suppose (R, u)
and (R',u’) are biuniversal arrows from F to C € C and from F’ to C’" € ', respectively.
A pair of pseudofunctors (K, L) is a strict morphism of biuniversal arrows from (R, u) to
(R, ') if

1. K and L are strict pseudofunctors such that KF' = F'L,

2. The data of the biuniversal arrow is preserved: LR = R/, KC = C' and Ku = v/,

3. The mappings ¢p : C(FB,C) — B(B,R) and ¢, : C'(F'B',C") — B'(B',R’) are
preserved, so that Ly g(f) = ¢ gK(f) for every f: FB — C,

4. For every B € B and equivalence uo F(—) : B(B,R) < C(FB,(C) : ¢¥p the universal
arrow e, : u o Fipp(h) = h is strictly preserved, in the sense that Kppc(epp) =

/
€LB,Kh* <

In bicategory theory it is usually good practice to specify data up to equivalence, as
pseudofunctors preserve equivalences but may not preserve isomorphisms or equalities.
The preceding definition abuses this convention, and so is not ‘bicategorical’ in style. A
consequence is that an arbitrary biequivalence may not strictly preserve biuniversal arrows
(c.f. the proof of Lemma. This level of strictness does, however, provide a way to talk
about free bicategories-with-structure using the language of 1-category theory (c.f. [Gur06,
Proposition 2.10]).

Remark 2.2.16. We distinguish between preservation of biuniversal arrows in the sense of
Definition [2.2.12| and a morphism of biuniversal arrows as in the preceding definition on
the following basis. In Definition [2.2.12| we require that the image of the given biuniversal
arrow is a biuniversal arrow, but do not specify its exact nature. In the preceding definition,
by contrast, we require that the pair (K, L) takes the biuniversal arrow specified in the

source to exactly the biuniversal arrow specified in the target. <
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Strict preservation of a biuniversal arrow is sufficient to imply preservation of the

corresponding universal property, in the following sense.

Lemma 2.2.17. Let F : B — C and F’ : B' — (' be pseudofunctors and suppose (R, u)
and (R',u’) are biuniversal arrows from F to C' € C and from F’ to C’' € C’, respectively. If
(K, L) is a strict morphism from (R,u) to (R',u), then for every B € B, h: B — R and
TiuoFh= f, LT = (K7).

Proof. Tt suffices to show that L7 satisfies the universal property of (K T)T. For this one

observes that

o F'LTl = K(epy) o KF(rT) by strict preservation
= K(ep o Frl)
=Kr

as required. O

A strict morphism of biuniversal arrows (K, L) defines a morphism of adjunctions (in
the sense of Mac Lane) at every hom-category. Indeed, it follows directly from the definition

that for every B € B the following square commutes:

B(B,R) vock() C(FB,C)
LB,RJV lKFB c
B/(LB,LR) = B'(LB,R/) — C’(F/LB,C/) — C/ KFB KC)

u goF'(—)

and Krp ¢ preserves the counit by assumption.

2.3 Bilimits

We are now in a position to introduce bilimits and preservation of bilimits. The formulation
in terms of biuniversal arrows is pleasingly concise. For every pair of bicategories 7, B one has
a diagonal pseudofunctor A : B — Hom(7,B) taking B € B to the constant pseudofunctor
at B. Explicitly, AB : J — B takes a 2-cell 7 : h = h/ : j — j’ to the identity 2-cell
idg : Idp = Idp : B — B. The 2-cell ¢; : Id(ap);) = (AB)(Id;) is the identity and
for a composite j & j’ ENyL J"in J the 2-cell ¢54: (AB)(f) o (AB)(g9) = (AB)(foyg) is

llap : Idp oIdp = Idpg. A bilimit is then a biuniversal arrow.

Definition 2.3.1. A bilimit for F' : J — B is a biuniversal arrow from the diagonal
pseudofunctor A : B — Hom(J, B) to F. <

Unwrapping the definition, we require a pair (bilim F, A : A(bilim F') = F') such that
for every object B € B and cone (pseudonatural transformation) s : AB = F' there exists a

map u, : B — bilim F' and an invertible modification ep 4 filling
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AB —> A(bilim F)
This modification is required to be universal in the sense that, for any 1-cell v : B — bilim F'

and 2-cell B : XA o Av = k, there exists a unique 3 : v = u,, such that

Av
T
AB  yapt A(bilim F) A(bilim F)
~_ A = Av A
Aug |8

lebk F AB F

K

Finally, we require that for every w : B — bilim F' the 2-cell (id,\ko)Jr DW= UpoAw 1S
invertible.

By Lemma this definition can be rephrased as a pseudonatural family of ad-
joint equivalences B(B, bilim F') ~ Hom(J, B)(AB, F). It therefore coincides with that of
Street [Str80] in terms of birepresentations. We say that a bicategory B is bicomplete or
admits all bilimits if for every small bicategory J and pseudofunctor F': J — B the bilimit

bilim F' exists in B.

Preservation of bilimits. We define preservation of bilimits as preservation of the

corresponding biuniversal arrows, via the following lemma.

Lemma 2.3.2. For any bicategory J and pseudofunctor H : B — C the following diagram

commutes up to canonical isomorphism:

B 2%, Hom (7,B)
HJ = J/Ho( (2.3)
C T Hom(j,C)

Proof. Let us write Hy := Ho(—). Unwinding the respective definitions, (Hy0AP)B : J — C
is the pseudofunctor sending every j € J to HB, every p : j — j’ to Hldg and every
2-cell o : p = p to the identity. This coincides with (AC o H)B everywhere except that
(A€o H)(B)(j & j/) = Idgp. So for every B € B there exists a pseudonatural isomorphism
ap = (Hy 0o AP)B = (A€ o H)B with components ap(j) := Idgp for all j € J. The
witnessing 2-cell is the evident composite of 1 with structural isomorphisms. Thus
one obtains an invertible 1-cell ap in Hom(J7,C) for every B € B. To extend this to a
pseudonatural isomorphism, one takes @y : aps oH(ABf) = AC(Hf)oag (for f: B— B')
to be the invertible modification with components given by the structural isomorphism

Idgp o Hf =H foldgp. Then (a, @) is the required isomorphism. O
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Thus, assuming the bilimit exists in C, we say that H preserves the bilimit of F' : J — B if
(Hx, H, (o, @)) preserves the biuniversal arrow (bilim F, A). By Lemmal[2.2.14] this condition
is equivalent to requiring that the canonical map H (bilim F') — bilim(H F') is an equivalence.

The general perspective of biuniversal arrows leads to a straightforward proof that

biequivalences preserve all bilimits.

Corollary 2.3.3. For any biequivalence H : B < B : G,

1. H preserves all bilimits that exist in B,

2. If B has all J-bilimits then B’ has all J-bilimits.

Proof. For (1), suppose F': J — B has a bilimit. By Lemmaone obtains a biuniversal
arrow from H, o A to H,.(F'), which by is biuniversal from AP H to HF. So the
bilimit is preserved.

For (2), suppose F : J — B’. Then GF : J — B has a bilimit and hence, by the
previous part, so does HGF : J — B’. Since HG ~ idp, it follows that F' has a bilimit. [

Two other classes of pseudofunctors that one would certainly expect to preserve bilimits
are right biadjoints (see Definition [2.4.1)) and birepresentables. This is indeed the case.

Lemma 2.3.4.
1. If the pseudofunctor F': B — C has a left biadjoint, then F' preserves all bilimits that

exist in B.
2. If F': B — Cat is a birepresentable pseudofunctor, then F' preserves all bilimits that

exist in B.

Proof. These are [Str80), §1.32] and [Str80) §1.20], respectively. O]

2.4 Biadjunctions

Recalling that an adjunction is specified by a choice of universal arrows, we define a

biadjunction by a choice of biuniversal arrows (c.f. [Pow98]).

Definition 2.4.1. Let F': B — C be a pseudofunctor. To specify a right biadjoint to F is
to specify a biuniversal arrow (UC,uc : FUC — C) from F to C for every C € C. <

Spelling out the definition, to give a right biadjoint U : C — B to F is to give:
e A mapping U : 0b(C) — ob(B),
e A family of 1-cells (u¢ : FUC — C)cec,

e For every Be€ B and h: FB — C a 1-cell ¥g(h): B — UC and an invertible 2-cell
eph : uc o Fiyp(h) = h that is universal in the sense of (2.1) (p. , such that the
unit 7y, := (iduCth)T : h = Yp(uc o Fh) is invertible for every h.
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One thereby obtains a pseudofunctor U : C — B by setting U(C) := UC on objects,
UC S ") = ype(gouc) and U(g = ¢) := ((c oug) esepcy)’. By Lemma this
definition is equivalent to asking for a pair of pseudofunctors F' : B < C : U together with
a pseudonatural family of equivalences B(B,UC) ~ C(FB,(C'). For detailed proofs of this
and related results, see [Fio06, Chapter 9.

The biuniversal arrow formulation of biadjoints, relying as it does on universal properties
at each level, is perhaps easiest to work with when it comes to calculations (c.f. [FGHWO0T]).
As we shall see in Chapters [4] and [5] it is also particularly amenable to being expressed
syntactically.

Remark 2.4.2. The definition of bilimit can now be rephrased in the following fashion:
the pseudofunctor bilim : Hom(7, B) — B, when it exists, is right biadjoint to the diagonal
pseudofunctor (c.f. [Fio06, Remark 9.2.1]). <

We have chosen to place bilimits and biadjoints on a similar footing by presenting them
both as instances of biuniversal arrows. The preceding remark indicates that the theory
of bilimits could alternatively be phrased using biadjoints. For example, one may use the
fact that a right biadjoint preserves all bilimits, together with the observation that every

biequivalence can be ‘upgraded’ to an adjoint biequivalence [Gurl2], to obtain an alternative

proof of Corollary [2.3.3](1)).

Preservation of biadjunctions. We shall use the notion of preservation of biadjunctions

to define preservation of exponentials.

Definition 2.4.3. For any biadjoint pair F': B < C : U and pseudofunctor F’ : B/ — (’,
we say that the triple (K, L, p) as below

B¢
Li 2 lK (2.4)

B ——
F

preserves the biadjunction if (K, L, p) preserves each biuniversal arrow uc : FUC — C.  «

A triple (K, L,p) preserving a biadjunction preserves the corresponding counits up
to isomorphism. By definition, whenever (K, L, p) preserves the biadjunction F 4 U as
in 1) then F'LUC 2% KFUC £, KO is a biuniversal arrow from F'L to KC. The

next lemma entails that, if F/ has a right adjoint U’, then
FU'KC = F'LUC < KFUuC 2, k¢

is another such biuniversal arrow. By Lemma this must be canonically isomorphic to

the biuniversal arrow . witnessing the biadjunction F' 4 U’.

Lemma 2.4.4. Let (K, L, p) preserve the biadjunction F' - U as in (2.4)) and suppose F’
has a right biadjoint U’. Then U'K ~ LU.
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Proof. The definition of preservation of a biuniversal arrow, together with the definition of

a biadjunction, entails that for any B € B and C € C:
B(B,LUC) ~C'(F'B,KC) ~ B (B,UKC)

By Lemma [2.2.4] these equivalences may equally be expressed as equivalences of pseudofunc-
tors. Hence, Y o (LU) ~Y o (U'K), for Y : B — Hom ((B')°", Cat) the Yoneda embedding.
The Yoneda Lemma then entails that LU ~ U'K, as claimed. 0

We end this chapter by instantiating Lemma[2.2.13]in the particular case of biadjunctions.

Lemma 2.4.5. Suppose that F': B — C has a right biadjoint U and that H : C = C': G is
a biequivalence. Then HF : B < C' : UG is a biadjunction.

Proof. By Lemma [2.2.13] each biuniversal arrow uc : FUC — C defining the biadjunction
F — U is preserved. In particular, taking C’ € C’ such that GO’ ~ C and the biuniversal
arrow ugcr : FUGC'" — GC', one obtains a biuniversal arrow HFUGC' — HGC' from
HF to HGC'. But from the biequivalence one has an adjoint equivalence HG ~ id¢s for
which the component at C” is an adjoint equivalence HGC" ~ C’. Composing, there exists
a biuniversal arrow (HF)(UG)C' — C' from HF to C’, as required. O
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Chapter 3

A type theory for biclones

In this chapter we begin our construction of the type theory A}~ for cartesian closed
bicategories. We focus on the bicategorical fragment: we construct a type theory Agécat for
bicategories and use it to recover a version of the Mac Lane-Paré coherence theorem for
bicategories [MPS85].

The work is driven by the theory of biclones, a bicategorification of the abstract clones
of universal algebra [Coh81]. Abstract clones axiomatise the notion of equational theory
with variables and a substitution operation, and provide a natural intermediary between
syntax (in the form of the set of terms generated from operators over a set of variables) and
semantics (in the form of categorical algebraic theories) (see e.g. [Plo94, p.129]). Biclones
will play the same role in our construction, axiomatising syntax with an up-to-isomorphism
b
P

substitution operation. We shall then synthesise the rules of our type theory AP from

biclone structure.

The resulting type theory varies from classical type theories such as the simply-typed
lambda calculus in two important respects. First, we make use of a form of explicit
substitution [ACCLI0]; second, it is 2-dimensional in the sense that judgements relate types,

terms and rewrites between terms.

These two developments both arise in the study of rewriting in the lambda calculus, but
have previously only been studied independently. Explicit substitution calculi were first
studied as versions of the lambda calculus closer to machine implementation [ACCL90] and
have found applications in proof theory [RPW00] and programming language theory [LM99].
Much recent research (e.g. [DK97, Rit99]) has focussed on Mellies’ observation that, contrary
to what one might expect from the lambda calculus, such calculi may not be strongly
normalising [Mel95] (see e.g. [RBL11] for an overview).

Two-dimensional type theories, on the other hand, first arose from Seely’s observa-
tion [See87] that n-expansion and S-reduction form the unit and counit of a laz (directed)
cartesian closed structure, a perspective advocated further by Jay & Ghani [Gha95, [JG95)
and put to use by Hilken [Hil96] for a proof-theoretic account of rewriting. In the strict
setting, Hirschowitz [Hirl3] and Tabereau [Tabll] have constructed 2-dimensional type

theories to describe 2-categorical structures in rewriting theory and programming language

33
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design, respectively. The connection with intensional equality, meanwhile, has recently
sparked significant interest in type theories with a notion of ‘rewrite’ or ‘equality’ motivated
by the connection between higher category theory, topology and type theory. Examples
include Licata & Harper’s 2-dimensional directed type theory [LHI11l [LH12], Riehl & Shul-
man’s type theory for synthetic co-categories [RS17], and Garner’s 2-dimensional type
theory [Gar09].

The type theory we shall construct brings together a novel combination of explicit
substitution and 2-dimensional judgements. Following Hilken, we relate terms by separate
syntactic entities called rewrites, and interpret these as 2-cells. This contrasts with many
type theories motivated by connections with homotopy type theory (e.g. the Riehl-Shulman
and Garner type theories), which capture 2-cells using Martin-Lof style identity types. The

relationship between the two approaches remains to be explored.

Outline. The chapter breaks up into three parts. In Section[3.1|we consider the appropriate
form of signature for a 2-dimensional type theory and construct the free biclone over such a
signature. This drives the second part (Section , where we synthesise the type theory
ABiSCI and show that it is the internal language of biclones; as a corollary, we obtain an
internal language for bicategories. Finally, in Section we use Agisd to prove a coherence

result for biclones, amounting to a form of normalisation for the corresponding type theory.

3.1 Bicategorical type theory

3.1.1 Signatures for 2-dimensional type theory

A signature for the simply-typed lambda calculus is specified by a choice of base types and
constants (sometimes called a Ax -signature [Cro94]). A natural way of packaging such data,
exemplified by Lambek & Scott [LS86], is as a graph. Taking inspiration from Lambek’s
notion of multicategories as models of deductive systems [Lam69, [LS86], one may extend
this using a multigraph (c.f. [Lam89, Her00, [Lei04]). Here, one thinks of a judgement
(x1:Aq, ... ,zy: Ay - t: B) as corresponding to an edge with source (41, ... ,A,) and
target B E|

Definition 3.1.1. A multigraph G consists of a set Gy of nodes together with a set
G(Ai, ... ,An; B) of edges from (Ai,...,A,) to B for every Ay, ... ,A,, B € Gy (we al-
low n = 0). A homomorphism of multigraphs h = (h,ha, .. a,.B) : G — G consists
of a function h : Gy — G together with functions ha,, . a,.B : G(A1, ... ,An; B) —
G'(hAy, ... hAy; hB) for every Ay, ..., A,, B € Gy (n € N). We denote the category
of multigraphs and multigraph homomorphisms by MGrph. The full subcategory Grph
of graphs has objects those multigraphs G such that G(A;, ..., A,; B) = & whenever
n # 1. <

1This should not be confused with the terminology in graph theory, where a multigraph sometimes refers
to a graph in which there are allowed to be multiple edges between nodes (e.g. [Har69, p.10]).
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Example 3.1.2. Every graph freely generates a typed \-calculus [LS86] with types the
nodes and a unary operator for each edge. Conversely, the simply-typed lambda calculus

over a fixed set of base types determines a multigraph with nodes the types and edges

(A1, ..., A,) — B the derivable terms 1 : Ay, ... ,x, : A, t: B up to a-equivalence
(we assume a fixed enumeration of variables x1,x9,... determining the name of the ith
variable in the context). «

In this vein, the appropriate notion of signature for a 2-dimensional type theory is a
form of ‘2-multigraph’ (c.f. [Gurl3, Chapter 2]).

Notation 3.1.3. In the following definition, and throughout, we write A, for a finite
sequence (Aq, ... ,An>E| Following Example we use Greek letters I', A, ... to denote
sequences (A1, ..., A,y in which the names of the terms A; are not of importance. We use
I'1,T9 or I'1 @QT'5 to denote the concatenation of I'y and I'e, and write |T'| for the length of
Ir. <

Definition 3.1.4. A 2-multigraph G is a set of nodes Gy equipped with a multigraph
G(A.; B) of edges and surfaces for every Ay, ..., A,, B € Gy (we allow n = 0). A homo-
morphism of 2-multigraphs h = (h, ha, B, htg) : G — G’ is amap h : Gy — G, together with

functions
hay. .. A :G(Ae; B) > G'(hA1, ... ,hA,; hB)
hg:G(Ae; B)(f,9) = G'(RA1, ... . hAy; hB)(hf, hg)
for every Ay, ..., A,,B € Gy (n € N) and f,g € G(A.;B). We denote the category

of 2-multigraphs by 2-MGrph. The full subcategory 2-Grph of 2-graphs is formed by
restricting to 2-multigraphs G such that G(A1, ..., Ay; B) = & whenever n # 1. <

Example 3.1.5.
1. Every category determines a graph; every bicategory determines a 2-graph.

2. Every monoidal category (C,®,I) determines a multigraph Gc with nodes (Gc), :=
ob(C) and Ge (X1, ..., X3Y) =C(X1 ®...® X,,,Y) (for some chosen bracketing of

the n-ary tensor product).

3. More generally, every multicategory [Lam69] determines a multigraph. <

We shall see in Chapter [ that every bicategory with finite products determines a

bi-multicategory and every bi-multicategory determines a 2-multigraph.

3.1.2 Biclones

We turn to constructing bicategorical substitution structure over a 2-multigraph. As

indicated above, our approach is to bicategorify the notion of abstract clone [Coh8&1].

2This notation is adopted from homological algebra, where one writes X, for a chain complex
X1 Xo— -+ (e.g. [Weidd]).
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Abstract clones. Abstract clones provide a presentation-independent description of
(algebraic) equational theories with variables and substitution. A leading example is the
clone of operations given by the set of terms over a fixed signature, subject to the substitution
operation. We shall recall only the basic properties we require: for an introduction to the

theory of clones from the perspective of universal algebra, see e.g. [Plo94l [Tay99].

Definition 3.1.6. A (sorted) abstract clone (S,C) consists of a set S of sorts with

o Aset C(Xy, ..., X,;Y)of operations t : X1, ... ,X,, > Y foreach Xy, ..., X,,Y € S(neN),

e Distinguished projections pg?. eC(Xy, ..., X3 Xy)(i=1,... ,n)foreach Xy, ... , X,, € S(neN),

e For all sequences of sorts I and sorts Y7, ... ,Y,, Z (n € N) a substitution function
subry, z : C(Ye; Z) x [ i ,C(I';Y;) — C(I'; Z)

we denote by SUb(f7 (917 e 7971)) = f[gla 7gn]7

such that
1. t[pgz, ,pg?.)] =t for all t e C(X,;Y),

2. pg/ki)[tl, costn] =tp (k=1,...,n) for all (¢t; € C(I';Y3));—1 _ p»
3. t{ue][ve] = t[ue[ve]] for all v; € C(We; Xj), u; € C(Xo;Y;) and ¢t € C(Ye;2) (i =
I,...,nand j =1, ... ,m).
We write (t[ue])[ve] for the iterated substitution t[uy, ... ,uy][v1, ..., vn]; by default, we
bracket substitution to the left. An operation of form ¢ : X — Y is called unary.
A morphism h = (h, hx,.y) : (S,C) — (5’,C’) of abstract clones is a map h : S — 5’
together with functions hx,y : C(Xi, ..., X,;Y) — C/(hXy, ... ,hX,;hY) for each

Xi, ..., Xn, Y €S, such that the projections and substitution operation are preserved.

We denote the category of clones by Clone. <

Following the terminology for multicategories, we occasionally refer to the operations
t:Xq,...,X, oY of aclone as multimaps or arrows. Where the context is unambiguous,
we refer to a sorted clone (5, C) simply as an S-clone and denote it by C; a clone with a

single sort is called mono-sorted.

Example 3.1.7.

1. Every clone (S, C) defines a category C by restricting to the unary operations. We

call this the nucleus of (S,C). Composition is given by substitution in (S,C) and the

identity on X € S is pg?.

2. Any small category C with finite products defines an 0b(C)-clone C1(C) with C1(C) (X7, ...

C(Xy x -+ x Xp,Y). The projections are the projections in C; the substitution

t{ui, ... ,uy,] is the composite t o (uy, ..., up). “

One may read the two cases just presented as follows: every Lawvere theory defines a

mono-sorted clone, and every mono-sorted clone defines a Lawvere theory. In fact, the full

X Y) =
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subcategory of Clone consisting of just the mono-sorted clones is equivalent to the category
of Lawvere theories (see e.g. [P1lo94]). This makes precise the sense in which clones capture
a notion of algebraic theory. In the next chapter we shall explore the relationship between

multi-sorted clones and cartesian categories more generally.

Clones and type-theoretic syntax. The definition of abstract clone isolates three
axioms sufficient to describe substitution. The next example shows how a clone augments a
graph with a notion of substitution (c.f. Example 3.1.2)).

Example 3.1.8. For a chosen set of base types % and multigraph G with nodes generated

by the grammar
X, Y :=B|XxY |X=Y (B € B)

the corresponding lambda calculus may be equipped with a simultaneous substitution
operation (t, (u1, ... ,up)) — tlui/z1, ... ,un/xy,] which respects the typing in the sense

that the following rule is admissible:

a}liAl,...,.TnlAnl—t:B (Al—ui:Ai)i:L...,n
A tuy/xy, .. un/Th]

One therefore obtains a clone with sorts the types and multimaps Xq, ..., X, — Y the
a-equivalence classes of derivable terms =1 : Xy, ... ,z, : X, — t: Y. The three axioms
encapsulate the following standard properties of simultaneous substitution (c.f. the syntactic

substitution lemma [Bar85, p.27]):

xplur/x1, oo un /] = ug tlxy/x1, ... s xp/Tn] =t

tlui/xi][v;/y;] = tluilvi/y;)/i]
One still obtains a clone if one takes affn-equivalence classes of terms; we denote this by

CAx,—>(g). <

Example exemplifies the way in which clones provide an algebraic description of
(type-theoretic) syntax. The tradition of categorical algebra, on the other hand, describes
such syntax through the construction of a syntactic category, for which one aims to prove
a freeness universal property. Generally some massage is required to account for the fact
that categorical morphisms take a single object as their domain, but terms may exist in
contexts of arbitrary length. For example, one may take contexts as objects and morphisms
as lists of terms (e.g. [Pit00]), or restrict to unary contexts and take morphisms to be single
terms (e.g. [Cro94]). It turns out that, if one employs the latter strategy, the relationship

between the clone-theoretic and category-theoretic perspectives is particularly tight.
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Lemma 3.1.9.

1. The inclusion Grph < MGrph has a right adjoint given by restricting to edges of the
form X - Y.

2. The forgetful functor Clone — MGrph taking a clone to its underlying multigraph
has a left adjoint.

3. The functor (—) : Clone — Cat restricting a clone to its nucleus has a left adjoint.

Proof. For define a functor £ : MGrph — Grph by taking £G to be the graph with nodes
exactly the nodes of G and edges (LG)(X,Y) := G(X,Y). The action on homomorphisms
is similar: for h : G — G’ one obtains L(h) by restricting to edges of the form X —
Y. Then, where ¢ : Grph — MGrph denotes the obvious embedding, a multigraph
homomorphism % : «(G) — G’ is a map on nodes h : (tG)y — G, together with maps
hx,v: (G) (X1, ..., Xn;Y) > G'(hX1, ... ,hX,; hY) for each X1, ..., X,,,Y € (1G), (n €
N). Since (¢G)(Xy, ..., X,;Y) is empty except when n = 0, this is equivalently a graph
homomorphism G — LG'.

For (2) we construct the free clone FCI(G) on a multigraph G. The construction is
similar to that for the free multicategory on a multigraph (c.f. [Lei04, Chapter 2]). The

sorts are the nodes of G, and the operations are given by the following deductive system:

cegG(Xy, ..., X Y) X;e{Xy, ..., X}
ce FCI(G) (X1, ..., Xn;Y) P ¢ eFCIG) (X1, ..., Xu Xi)

feFCUG) (X1, ..., Xn)Y)  (g: € FCUG)(T; X)), _,
flg1, -+, gn] € FCHG)(T;Y)

3y

subject to the equational theory requiring the three axioms of a clone. To see this is free,
observe that for any clone (5, C) and multigraph homomorphism h : G — C from G to the
multigraph underlying (S, C), the unique clone homomorphism h# : FCI(G) — C extending
h must be defined by

) =h(e) D) =Pk, BT ) = (D), ()|

For , let C be a category. Define a clone PC with sorts the objects of C and hom-sets
constructed as follows:
feC(X,Y) Xie{Xy, ..., Xy}
fe(PC)(X;Y) PV x, € (PO)(X1, ..., Xn; X))

fe(PC) (X1, ..., XY)  (gie (PCO)T;Xy))
flg1, - sgn] € (PC)(T;Y)

i=1,...n

The equational theory = is the three laws of a clone, augmented by
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feC(Y,Z) geC(X,Y)
pY = idy € (PC)(X; X) fog=flgl e (PC)(X;2)

For any clone (7,D), a clone homomorphism h : PC — D consists of a map of ob-
jects 0b(C) — T together with substitution-preserving mappings (PC)(Xy, ..., Xp;Y) —
D(Xy, ..., X,;Y) for each X1, ..., X,,Y € 0b(C) (n € N). Restricting to unary operations,
this is exactly a functor C — D. Conversely, since any clone homomorphism is fixed on the

projections, a functor C — D corresponds uniquely to a clone homomorphism PC — D. O

In the light of the preceding lemma one obtains the diagram below. The adjunction
between the 1-category Cat and Grph is the usual free-forgetful adjunction, and the functor
(—) : Clone — Cat restricts a clone (S, C) to its unary operations (i.e. its nucleus). The

outer square commutes on the nose and hence the inner square commutes up to natural

forget Clone =)
/j k
MGrph FCI=) Cat (3.1)
forget

L Grph

isomorphism.

Indeed, examining the constructions one sees that (—) o P = idg,t and hence that
Cat(FCat(G), C) = Cat (P(FCat(g)), C) ~ Cat(FCI(:G), C) (3.2)

For our purposes, the moral is the following: to provide a type-theoretic description of the
free category on a graph, it is sufficient to describe the free clone on a multigraph. One
thereby obtains a more natural type theory—one does not need to restrict the rules to
unary contexts—and the commutativity of this diagram guarantees that, when one does
perform such a restriction, the result is (up to isomorphism) as intended.

Our aim in what follows is to lift this story to the bicategorical setting, and use it to

extract a type theory for bicategories. We begin by defining a bicategorified notion of clone.
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Biclones. Abstract clones may be defined in any cartesian category (and much more
generally, see [Stal3,[Fiol7]). The bicategorified version arises by instantiating this definition

in Cat and weakening the axioms to natural isomorphisms.

Definition 3.1.10. A (sorted) biclone (S,C) is a set S of sorts equipped with the following
data:

e Forall X3, ...,X,,,Y €S (neN) a category C(Xy, ..., X,;Y) with objects mul-
timaps f : Xe — Y and morphisms 2-cells a: f = g: Xoe — Y, subject to a wvertical

composition operation,

e Distinguished projection functors pg?. 1 ->C(Xq, ..., X3 X)) (i=1, ... ,n) for all
X1, ..., X,e8 (neN),

e For all sequences of sorts I and sorts Y1, ... ,Y,,Z (n € N) a substitution functor
subry, z : C(Ye; Z) x [ [1=,C(1;Y;) — C(T'; Z)

we denote by SLIb(f? (gla R ;gn)) = f[glv 7gn]7

e Natural families of invertible structural isomorphisms

assOCtu, v, : tUl, ... s up][ve] = tlui[ve], ... ,unlve]]
Ly U= u[p%f, ,pg?.)]
Qgi)un : pgi)[ul, coup] =u (k=1,...,n)

for every t € C(Y,,Z), uj € C(X.,Y;), v, e C(We, X;) and ue C(X,,Y) (i =1,...,n
and j =1,...,m),
This data is subject to coherence laws corresponding to the triangle and pentagon laws of a

bicategory:

t[ve] talve] t[pM, ... p™][ve]
laSSOCt;p(.);v.

t[|3(1)[v.], ,p(")[v.]]

t[gwa ,95;7:)]

ASSOCt;ue;ve [We] ASSOCt;y4[ve]

tlus][ve][ws] tlue [ve]][ws] —— t[ua[ve][ws]]

assocf[“o]w-;wol lt[assocu.;v.;w-]

t[“'] [UO [w°]] ASSOC¢; 14300 [we] t[u' [UO [w']]]

Remark 3.1.11. Note that an invertible 2-cell is simply an iso in the relevant hom-category,
but the definition of invertible multimap is more subtle (see Definition [4.2.15)). “
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We direct the 2-cells to match the definition of a skew monoidal category [Szl12]; the
definition should therefore generalise to the lax setting. When we wish to emphasise the set
of sorts, we call a biclone (S,C) an S-biclone; where the set of sorts is clear from context,
we refer to a biclone (S,C) simply by C. One obtains a 2-clone—a clone enriched over
Cat—when all the structural isomorphisms assoc, ¢, ¥ (i =1,...,n) are the identity. The
second half of this chapter will be devoted to a coherence theorem showing that every

freely-generated biclone is suitably equivalent to a 2-clone.

Example 3.1.12 (c.f. Example [3.1.7)).

1. Every clone defines a locally discrete biclone, in which each hom-category is discrete.

2. Every bicategory B with finite products defines a biclone; if B is a 2-category with

strict (2-categorical) products, this is a 2-clone.

3. Every biclone (S, C) gives rise to a bicategory C by taking the unary hom-categories,
i.e.by taking C(X,Y) := C(X;Y). We call this the nucleus of (S,C). “

One may think of a biclone as a generalised deductive system in which the multimaps
f:Ay, ... A, — B are judgements Ay, ... , A, — f: B, related by proof transformations
7 f = f' (c.f [See87]). Conversely, Example shows that a type theory for
biclones would encompass bicategories as a special case. In Lemma [3.1.18 we shall see that
the type theory describing the free biclone on a 2-graph restricts to a type theory for the
free bicategory on a 2-graph (c.f. diagram (3.1))).

Remark 3.1.13. Biclones are objects worthy of further study in their own right. Thinking
of them as ‘bicategorified clones’ suggests a connection—to be fleshed out—with some
notion of ‘bicategorical Lawvere theory’, and with pseudomonads. On the other hand,
biclones provide a categorical description of certain kinds of explicit substitution; possible
connections with the categorical semantics of the simply-typed lambda calculus with explicit

substitution (e.g. [GAR99]) remain to be explored. <

Free biclones and free bicategories. Defining a free biclone requires an appropriate

notion of morphism. The definitions are natural extensions of those for bicategories.
Definition 3.1.14. A pseudofunctor F : (S,C) — (5’,C’) between biclones consists of a
mapping F : 0b(C) — 0b(C’) equipped with:

e Afunctor Fy,y : C(X1, ..., X Y) > C'(FXy, ... ,FX,,; FY)forall Xy, ... , X,,,)Y €

S (neN),
e Invertible 2-cells 1/1&? : p%X. = F(pg?.) (i=1,...,n) for each X € S,
e An invertible 2-cell ¢y, : (Ft)[Fuq, ..., Fuy] = F(t[ui, ... ,uy]) for every

(uj: Xe = Yi)j=1,..nand t : Yy — Z, natural in ¢t and u1, ..., uy,
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subject to the following three coherence laws for i =1, ... ,n:
(%)
Pg)x. [Fuy, ..., Fuy] —=— Fu,
o2t [ et (33
(FPR)Fua] - PR [ua])
F(t) i F(t[p%}, ,p&?}])

LF{ oo (3.4)
(F)PSkes - s pox.] (FO[FpSY, ... Fpi)]

(F) D, ... W]

ASSOCFt;: Fue;Fve

F(t)[Fua] [Fve] F(t)[Fue[Fuv.]]
Brrue [Fv.]l lF(t)wu.w.]
F(t[us])[Fva] F(t)[F(ua[ve])] (35)
%[“']‘“’l lﬂﬁt;u.[v.]
F(t[ue] [ve]) FIe— F(t{ue[ve]])
A pseudofunctor for which ¢ and every ¢/, ... (" is the identity is called strict. «

Example 3.1.15. Every pseudofunctor of biclones F' : (S,C) — (T,D) restricts to a

pseudofunctor of bicategories F : C — D between the nucleus of (S,C) and the nucleus of

(T, D) (recall Example [3.1.12)(3)). <

The construction of the free biclone on a 2-multigraph follows the pattern of its 1-

categorical counterpart.

Construction 3.1.16 (Free biclone on a 2-multigraph). Let G be a 2-multigraph. Define
a biclone FCI(G) as follows. The sorts are nodes of G and the hom-categories are defined

by the following deductive system:

ceG(Ay, ..., An; B) k€ G(A1, ..., An; B)(c, )
ce FClU(G)(Ax,...,Apn; B) k€ FCIU(G)(Ay, ... ,An; B)

Pfﬂ,...,An € FCUG) (A1, ..., Ap; A))

feFCUG) (AL, ..., A B) (g€ FCUG)(Xui Ai)),_y
flgr, -, gn] € FCUG)(Xo; B)

Te FCUG) (A1, ... ;A B)(f. ) (0i € FCUG)(Xe; Ai)(9i, 97)),
Tlow, .. on] € FCUG)(Xe; B)(flg1s - gnl. fl91s -+ 5 9n))

=1,...,n
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f € FCU(G)(A.; B)
idy € FCU(G)(Ae; B)(f, f)

T e FCUG) (A B)(f', [") o€ FCUG)(As; B)(f, [)
Teo € FCUG)(As; B)(f, f")

f € FClU(G)(B.; C) (i € FCUG)(Aa; Bi)),_y ., (hj € FCUG)(Xa; By))

Jj=1,....m
assocy,g, h, € FCUG)(Xe; O)(f[ge] [ha], fga[ha]])
feFCUG) (AL, ..., A B)
FCU(G)(As; B @ @
Lfe ( )( ) ) f?f[pA.J"‘apA.]
(gi € fCl(g)(X., Ai))izl n
0 o (=ism
045, ... A, € ]'—Cl(g)(XdAi)(|3A17,__7,4n[917 -y 9nl, 9i)
The equational theory = requires that
e Every FCI(G)(A1, ..., Ay; B) forms a category with composition the e operation and
identity on f e FCI(G)(A1, ..., An; B) given by idy,
e The operation (f, (g1, ... ,9n)) — f[g1,-..,9n] is functorial with respect to this
category structure,
e The families of 2-cells assoc, ¢ and 0¥ (1 =1,...,n) are invertible, natural and satisfy
the triangle and pentagon laws of a biclone. <

It is clear that this construction yields a biclone. Indeed, Lambek’s definition of the
internal language of a multicategory [Lam89] transfers readily to clones, and the preceding
construction may be used to extend this definition to biclones. The only adjustment is that
the operation symbols f : Ay, ..., A, — B are now related by transformations 7 : f = f’.
The judgements in our type theory Agisd will match these sequents precisely.

We shall, so far as possible, phrase the free properties we prove in terms of a unique strict
pseudofunctor of biclones (c.f. [Gurl3l, Proposition 2.10]): this obviates the need to work with
uniqueness up to 2-cell, in which the 2-cells may themselves only be unique up to a unique
3-cell. In particular, we bicategorify diagram by using 1-categories of bicategorical
objects (biclones and bicategories) in which the morphisms are strict pseudofunctors. Write
Biclone and Bicat for these two categories. The relevant freeness universal property of

Construction [3.1.16] is therefore the following.

Lemma 3.1.17. The forgetful functor Biclone — 2-MGrph taking a biclone to its underlying
2-multigraph has a left adjoint.

Proof. Let G be a 2-multigraph and (7', D) be a biclone. We show that for every 2-multigraph
morphism h : G — D there exists a unique strict pseudofunctor of biclones ht . FCl (G) > G
such that hfor = h, for 1: G — FCI(G) the inclusion.
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Define h# by induction as follows:

h#(c) := ha..p(c) force G(Ay, ..., Ay; B)
h# (k) == ha..B(r) for k€ G(A1, ..., An; B)(c, )
W#(dy) = iy
W (1 e0) := h¥(r) e h ()

We then require that h# strictly preserves the projections, the substitution operations
and the structural isomorphisms. This is a strict pseudofunctor FCI(G) — D extending h.
Uniqueness follows because any strict pseudofunctor must strictly preserve projections and

the substitution operations, and so also strictly preserve the structural isomorphisms. [J

The proof of Lemma [3.1.9| extends straightforwardly to an adjunction between 2-Grph

and 2-MGrph. The following lemma therefore completes our bicategorical adaptation of
diagram (3.1)).
Lemma 3.1.18.

1. The forgetful functor Bicat — 2-Grph taking a bicategory to its underlying 2-graph
has a left adjoint (c.f. [Gurl3, Proposition 2.10]).

2. The functor (—) : Biclone — Bicat restricting a biclone to its nucleus (recall Ex-
ample |3.1.12) has a left adjoint.

Proof. For we define the free bicategory FBct(G) on a 2-graph G as the following deduct-

ive system (c.f. the description of bicategories as a generalised algebraic theory [Oua97]):

ceG(A,B) k€ G(A, B)(c,d)
ce FBct(G)(A, B) k€ FBct(G)(A, B) Idy € FBet(G)(4, A)

feFBct(G)(A,B) ge FBct(G)(X;A)
foge FBct(G)(X;B)

T € FBct(G)(A,B)(f, ) o€ FBct(G)(X,A)(g,9")
Too € FBct(G)(X;B)(fog,f o)

f e FBct(G)(A, B) re FBet(G)(A,B)(f, f") o€ FBet(G)(A, B)(f, ')

ids € FBct(G)(A, B)(f, f) Teo € FBct(G)(A, B)(f, ")

feFBct(G)(B,C) g€ FBct(G)(A, B) he FBct(G)(X, B)
afigh € FCUG)(X; C)(flg] [h], flglh]])

feB(A,B) fe FBet(G)(A, B)
[y € FBct(G)(A, B)(Idp o f, f) rr € FBct(G)(A, B) (f o lda, f)

subject to an equational theory requiring
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o Every FBct(G)(A, B) forms a category with composition the e operation and identity
on f e FBct(G)(A, B) given by idy,

e The operation (f,g) — f o g is functorial with respect to this category structure,

e The families of 2-cells a,| and r are invertible, natural and satisfy the triangle and

pentagon laws of a bicategory.

Since strict pseudofunctors are determined on all the structural data, any 2-graph homo-
morphism h : G — C to the 2-graph underlying a bicategory C determines a unique strict
pseudofunctor h# : FCI(G) — C restricting to h on G.

For , let B be any bicategory. Define a biclone PB as follows. The sorts are objects
of B and the hom-categories (PB)(X1, ..., X,;Y) are those given by the deductive system
of Construction adapted by replacing the first two rules by

feB(X,Y) ke BX,Y)(f, [)
fe(PB)(X;Y) ke (PB)(X;Y)(f, f)

and augmenting the equational theory with rules ensuring the biclone and bicategory

structures coincide wherever possible:

feB(Y,2) ge B(X,Y)
pY) =1dy € (PB)(X; X) fog=flgle (PB)(X;Z)

feB(X,Y)
(idy)s = (idf)ps € (PB)(X;Y)

TeBY,Z)(f,f) oeB(X,Y)(g.q)
Too =7[o] e (PB)(X;Z)(flg], f'lg'])

TeBX.Y)(f, )  oeBXY)(f, ")
Tego=T1epgoc (PB)(X;Y)(f, ")

feFBct(G)(B,C)  ge FBct(G)(A,B) he FBct(G)(X, B)
assoCfgp =afgn € FBct(G)(X,CO)

feB(X,Y) feB(X,Y)
=7 (PBYX Y)Y o =L (PBYX,Y) (S f)

The free property is a simple extension of that for clones (Lemma [3.1.9((3)). O

One therefore obtains the following diagram of adjunctions, generalising diagram (3.1)).

As for (3.1)), the outer diagram commutes on the nose so the inner diagram commutes up to
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forget Biclone =)
/ P \
Fei(-)

2-MGrph Bicat (3.6)

FBet(—)
Q (/
forge
£ 2-Grph Bt

It follows that, modulo a natural isomorphism, the free bicategory on a 2-graph G is obtained

isomorphism.

as the nucleus of the free biclone on G (regarded as a 2-multigraph). Indeed, examining

the constructions one sees that (—) o P = idpjcat, yielding the following chain of natural
isomorphisms (c.f. equation (3.2))):

Bicat(FBct(G), B) ~ Bicat (P(]—"Bct(Q)), B) ~ Bicat(FCI(:G), B) (3.7)

For us, the moral is the following: Construction [3.1.16| gives precisely the rules required
to freely define bicategorical substitution structure. In Section [3.2] we shall use this to
construct a type theory for bicategories. Before that, we finish giving the definitions required
to specify an equivalence of biclones. These will be a key part of the coherence result at the

end of this chapter.

Relating biclone pseudofunctors. The definition of transformation between biclone
homomorphisms is rather involved. There is a well-known notion of transformation between
maps of multicategories (e.g. [Lei04], Definition 2.3.5]), but the cartesian nature of biclone
substitution means the definition is not directly applicable. However, every clone canonically
gives rise to a multicategory—we discuss this in some detail in Section [{.2}—and this
suggests the definition of transformation should be a bicategorical adaptation of that for
multicategory maps. The definition of modification is then fixed.

The following notation is intended to be reminiscent of the notation f x g for the action

of the categorical cartesian product on morphisms.

Notation 3.1.19. For multimaps (f; : I'; — Y;)i=1,..» and in a (bi)clone, one obtains the

composite

SRS vl D ISR v O]

Ty, ...T," [y =5 Y

for k=1,...,n. For h:Y1,...Y, — Z we therefore define h[[X]\"; fi] = h[i® - K fn] :
I'y, ..., I', = Z to be the composite

h[f1 [p<l>, o pﬂFll)], o fn[p<1+2?:f R, | p(TalE |n-|)]]
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In particular, for (g; : I' = Xj)j=1,.m, (fi : Xi = Yi)iz1, . mand h: Yy, ... Y, > Z

there exists a canonical isomorphism
fh;f.;g. : h[fl e fn] [gla e 7gn] = h[fl[gl]7 e afn[gn]]

given by applying assoc twice and then the projections o).
Definition 3.1.20. Let F,G : (C,S) — (C', S") be pseudofunctors of biclones. A transform-
ation (a,@) : F = G consists of the following data:

1. A multimap ax : FX — GX for every X € S,

2. An invertible 2-cell

o ay[Ft] = Gt)|ax, X -+ Kax, ] : FXy, ... ,FX, > GY (3.8)
for every t: X1, ..., X, — Y in C, natural in ¢t and satisfying the following two laws
fork=1,... ,n:

aY[¢t;uo]

ay[F()[Fu]] — ay[F(t[u.])]

assocV ﬂ

ay[F(t)] [Fu.] G(tlue DIXIZ, ax,]
at[Fue|
GOIXEZy ax,] [Fue]
fct;a.;m.l brue [Ny x|

G(t)[aXl [Ful], . ,aXn[Fun]]
G(®)[@uy s o T |

G(0)[G(us)

G()[G(ue)] [X]iy x;]

—

sy ax;]]

—1
assoc
Gt;Gue;X]; ax;

¥§) [ox, B+ Rax,,
b o, ® -+ Kax,] — [ox, ] G )ax, ® - Rax,]

(k) a
oy ax, )‘/ TQ(PE?.))

oy, [pgf))(.] > ax, [Fpg};.)]

axy, [wﬁ?}]

Definition 3.1.21. Let (o, @), (8,8) : F = G be transformations of pseudofunctors
(S,C) — (9,C"). A modification = : (a, @) — (B, B) consists of a 2-cell Ex : ax = Bx for
every X € 5, such that the following diagram commutes for every t: Xy, ... , X, > Y:

ay [Ft] =vlF] » By [Ft]

atl lBt
Gt)ax, X - Hax,] ————— GO)[Bx, ¥ --- ¥ Bx, ]
G)[Ex, - REx, |
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It is natural to conjecture that biclones together with their pseudofunctors, trans-
formations and modifications form a tricategory Biclone into which Bicat embeds as a
sub-tricategory. We do not pursue such considerations here, but we do give the definition of

equivalence they would suggest.

Definition 3.1.22. A biequivalence between biclones (S,C) and (S’,C’) consists of
e Pseudofunctors F': C < C' : G,

e Pairs of transformations (o, @) : FoG S ider : (o/,o/) and (3,3) : Go F S ide : (8, 3),

e Invertible modifications Z: a 0o’ — idjq,,, ' : idpg — o’ 0o, ¥: fo f" — idjq, and
U idgr — B’ o 8. <

Lemma 3.1.23. For any biequivalence F' : (S,C) < (S',C’) : G of biclones,

1. The pseudofunctor F'is a local equivalence, i.e. every Fx, . x,.v : C(X1, ... , Xp;Y) —
C'(FXy,...,FX,;FY) is full, faithful and essentially surjective,

2. For every X' € S’ there exists X € S such that FX ~ X" in C’.

Proof. Just as for categories and for bicategories, c.f. [Awol0) p. 173]. O

3.2 The type theory AN

We now turn to constructing the type theory Agisd that will be the internal language of
biclones. Following the general philosophy of Lambek’s internal language for multicategor-
ies [Lam89], our approach is to define a term calculus for the rules of Construction
Thus, for every rule in the construction we postulate an introduction rule in the type
theory. These rules are collected in Figures Note that we slightly abuse notation
by simultaneously introducing the structural isomorphisms (corresponding to assoc, ¢ and
o)) and their inverses.

The equational theory = is derived directly from the axioms of a biclone; the rules are
collected together in Figures [3.6H3.11} The typing rules respect this equational theory in

the following sense.

Lemma 3.2.1. For any 2-multigraph G and derivable judgements ' - 7=7":t=1t: B
in Agisd(g), the judgements I' 7 :t =1t : Band I' - 7' : t = ' : B are derivable. O

We denote the type theory over a fixed 2-multigraph G by A'gi;l(g); when we do not
wish to specify a particular choice of signature, we simply write Agisd.
In what follows we provide a more leisurely introduction to Agisd and establish some

basic meta-theoretic properties.
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Judgements. We must capture the fact that a biclone has both 1-cells and 2-cells: for
this we follow the tradition of 2-dimensional type theories consisting of types, terms and
rewrites (c.f. [See87, Hil96l Hirl3]). Accordingly, there are two forms of typing judgement.
Alongside the usual I' - ¢ : A to indicate ‘term t has type A in context I, we write
I'—7:t=1t':Atoindicate ‘T is a rewrite from term ¢ of type A to term t’ of type A, in
context 1.

Contexts are finite lists of (variable, type) pairs in which variable names must not occur
more than once: the relevant rules are given in Figure [3.1] Writing Var for the set of
variables, any context I' determines a finite partial function from variables to types; we write
dom(T") for the domain of this function. The concatenation of contexts I' and A satisfying
dom(I") N dom(A) = ¢F is denoted I' @ A.

I' ctx x ¢ dom(T")
o ctx I'x: Actx

(A € go)

Figure 3.1: Context-formation rules for ABiSCI(g).

Raw terms. Following the template provided by clones, we may capture constants in a
signature—that is, edges in a 2-multigraph—by constants in the type theory, and projections
by variables. The outstanding question is how to model the substitution operation of a
biclone. This cannot be the standard meta-operation of substitution: Construction
requires that substitution is not associative on the nose, only up to the assoc 2-cell.
Our solution is to model the substitution operation of the free biclone by a form of
explicit substitution [ACCLI0]. For every family of terms w1, ..., u, and term ¢ with free
variables among x1, ... ,z, we postulate a term ¢{z — w1, ... , Ty — uy}; this is the formal
analogue of the term t[u;/z1, ... ,un/zy] defined by the meta-operation of capture-avoiding
substitution (c.f. [ACCLI0, [RdP97]). The variables x1, ... ,x, are bound by this operation.
For a fixed 2-multigraph G the raw terms are therefore variables, constant terms and explicit

substitutions, as in the grammar

tuy, ... up i=x | c(x1, ... ,xp) | {xy — w1, ... 20— up} (ce G(Ay, ..., An; B))
One may think of constants ¢(x1, ... ,x,) as n-ary operators: indeed, for every sequence of
n terms (uq, ... ,u,) explicit substitution defines a mapping

(Uty oovyty) (T, vy xp){T1 > UL, Ty o Uy )

This is emphasised by the following notational convention.
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Notation 3.2.2. We adopt the following abuses of notation:

1. Writing t{z; — wu;} or just t{u;} for t{z1 — u1, ... ,zn — Uy},
2. Writing c{uy, ... ,up} for the explicit substitution ¢(x1, ... ,x,){z; — u;} whenever
c is a constant. <

Remark 3.2.3. Alternative notations for explicit substitution include t{(z := u) and the
let-binding operation let = =wu in t (e.g. [RAP97, [DLI11]). <

a-equivalence on terms. We work with terms up to a-equivalence defined in the stand-
ard way (c.f. [RAP9T]).

Definition 3.2.4. For any 2-multigraph G we define the a-equivalence relation =, on raw

terms by the rules

— / _ / ! __ "
—— refl ﬂ symin t=atl P =at trans
t=qt t =t t=4t"
tlyi/zi] =a t'[yi/x}] (Wi =a U)i=1, .. n Y1, .- ,Yn fresh
t{xy — ut, ... xp > up} =q t{z] >, oL 2 -2}

The simultaneous substitution operation t[u;/z;] is defined by
xk[ul/xz] = Uk

)
)

[ui/x;] == c{uy, ..., up}

[vi/2i] := t{z; — uj[vi/z;]}

c(x1, oo, Zn
(t{z; — uj}

where in the final rule we assume that each z; does not occur among the x; or freely in any

of the v;. <

Raw rewrites. Following the pattern set for terms, we define the class of raw rewrites

between terms by the following grammar, where ¢,u, and v, are (families of) terms,

1, ... ,xpy are variables and 1 <17 < n:

T,0,0 Op 1:= assoC | e | 0 | idy | w( xn) | Too | T{x1 > 0O Ty > op}
0,01, -+« ,0pn .= C tiueive | Ut | Oy t 1, - rdn 1 ny -+ 4dn n
with a family of inverses (for i = 1,...,n), as follows:

-1 —1 | (=)
ass0Cyy, 4, | v | o,

Taking the rewrites in turn, we have invertible structural rewrites assoc,: and o(*) (1 =
1,...,n) and an identity rewrite id; for every term t. Next, for every constant x €
G(A1,...,Ay; B) we have a constant rewrite k(z1, ... ,x,). Vertical composition is cap-
tured by a binary operation on rewrites (c.f. [Hil96 Hirl3 [LSR17]), while the explicit
substitution operation mirrors that for terms. (Note that vertical composition follows func-

tion composition order, not diagrammatic order.) We adopt the standard category-theoretic



3.2. THE TYPE THEORY A} 51

convention of writing ¢ for id; where no ambiguity may arise, as well as adapting the
conventions of Notation to rewrites. In particular, one obtains whiskering operations

t{o} and 7{u} for terms ¢,u and rewrites 7 : ¢t = t/,0: u = u'.

a-equivalence on rewrites. The a-equivalence relation extends to rewrites in the way
one would expect: as for terms, the substitution operation binds the variables being explicitly
substituted for. The definition of the meta-operation of substitution on rewrites is analogous
to that employed by Hilken [Hil96] and Hirschowitz [Hirl3].

Definition 3.2.5. For any 2-multigraph G we define the «-equivalence relation =, on
rewrites by the rules

T=qT T=qT 7 =0 7"

- refl —)——— symm trans
T=aT T =aT T=0T1"
/ UL =q U Up =q U
t = t 1 a Ug e n —a Wy l<k<n
U =a by (k) (k)
Oui,y..un Ta O A
e yuly
/ /
(’LL]' =a uj)jzl,.‘.,m (Uz’ =a Uy )Z 1,. t=qt

ASS0Ct yy ue =a assoct/,vnu.

T =0T o =40

Teo =47 00’

T[yl/xz] =« T’[Z/z/ﬂfé] (Uz' e U;)izl,.,.,n Y, -, Yn fresh
T{x1 > 01, ..., Tn > op} = T{Z) > 0, ... 2] > o}

The meta-operation of capture-avoiding substitution is extended to rewrites as follows:

uz/xz = bufu;/z;]

(k)

(k)
= Ctufui/a;]

Qtlv wotn

aSS0Ct 4y v = assocy|

ul/zz] ,Ue [ul/:vl] Ve [uz/xz]

[wi/zi] -
[wi/z:] -
[ui/zi] -

k(z, ... ,xn)[ul/xz] = r{ul, ... ,up}
T)ui/ai] = 7' [ui/xi] @ Tlui/2i]
[ui/i] := idyu, /2y
[wi/z:] :

(r{zj = oluifwi] := T{zj = oj[ui/zi]}

where in the final rule we assume that each z; does not occur among the x; or freely in any

of the u;. These rules extend to the inverses of rewrites in the obvious fashion. <
A structural induction shows the typing judgement respects a-equivalence.

Lemma 3.2.6. Let G be a 2-multigraph. Then in Abld(g).
1. fT'~t:Bandt=,t then 't : B,
2. ' —7:t=t:Bandt =47 then'7:t=¢: B. O
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In an explicit substitution calculus the structural operations manifest themselves in
a correspondingly explicit manner. Indeed, the fact that Agisd admits arbitrary context

renamings follows immediately from the horiz-comp rule.

Definition 3.2.7. Let I' := (z; : A;)i=1,..,n and A := (y; : Bj)j=1,..m be contexts. A
context renaming r: ' — A is a mapping 7 : {x1, ... ,xn} — {y1, ... ,ym} on variables

which respects typing in the sense that whenever r(z;) = y; then A; = B;. <

The following rules are then derivable for any context renaming 7.

'—t: A r:I' > A
A+ t{zy > r(x1),...,xn > 1(Tyn)}: A

T'7r:t=t:A r:I' > A
A m{z; — r(x)}: t{z;— r(x)} = t{x;— r(x)}: A

Figure 3.2: Context renaming as a derived rule (for I' = (x; : Ai)i=1,..n)

Weakening arises as a special case: for a fresh variable ¢ dom(I'), one takes the

inclusion inc, : I' = I', z : A.

Notation 3.2.8. For a context renaming r we write ¢{r} and 7{r} for the terms and rewrites
formed using the admissible rules of Figure “«
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var (1 <k <n)

T1: A, o A oag s Ag
ceG(Ay,...,A,; B)

x1: A1, A (T, y)

const

1A, ., Ayt B (A u;: Ay)i=1
A+ t{xy —u,...,xn— up}: B

yeeey TV

horiz-comp

Figure 3.3: Introduction rules on basic terms

x1: A, At B
x1: A, A by it =t > a) 0 B
Jc1:Al,...,xn:AnkLt_l:t{xw—»xi}:t:B

t-intro

1‘15A1,...,1'n5An|*£Ek2Ak (AFuzAz)zzl n

20ty

® o®)-intro (1 < k < n)
A Qupnoun  Trfmi > i} = ug o Ay

A+ Q&?k)un sup = xp{a; o ui} o Ag

(A uj:Aj)j-1,..m
(@1: A1, Tt A 0 By)iz1,m
y1:B1,...,yn : Bp—t: C

assoc-intro
A assoct v, v, Hy: — viH{z; — u;} = t{y; — vi{z; —u}}: C

At aSSOCt_,i.,u. sty = vl o ugtt = Hys - vi{ag o oug) C

Figure 3.4: Introduction rules on structural rewrites

I'—t: A
I'Hidg:t=1¢: A

id-intro

ReG(Ar,..., Ay B)(c,d)

1AL, A R(X, X)) s e(Ty, e x) = (X1, )

2-const

T'r:t=t:A 7 :¢=1¢t:4
-7 er:t=1t": A

vert-comp

1 A, .., ATt =t B (Ao iuy=ul: Aj)izca,on
A T1{z; — o} t{z; —» uw} =t {z; > ul}: B

horiz-comp

Figure 3.5: Introduction rules on basic rewrites

Introduction rules for terms, structural rewrites and basic rewrites in Agisd(g).
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. ’ . . /.
Thr:t=1t:A «-right-unit Phrit=¢:4 e-left-unit

Threidi=7:t=t:A4A Fr=idperT:t=1t:A

T t"=¢t":A T t/=t":A THr:t=1t:A
F ("o Yer=7"e(rT"e7):t=1t": A

0-aSS0C

Figure 3.6: Categorical structure of vertical composition

X1 ZAl,...,.’L'nZAn}—tZB (Al_ui:Ai)z’=1,u.,n
A+ ldt{lZ d ul} = ldt{ml'—ml} : t{iL‘i — uz} = t{l’i — ui} : B

id-preservation

21 : A1, A T:t=>1t B (A oi:u =) Ai)izt,..n
z1: A1, 2 AT it =t B (At ofiu; = uj : Ai)izt,...n

interchange
A - T/{LL'Z' — J{} er{z;—>o;} = (7 n—){xi — o oai} cH{mio— u) = t”{xi — u;'} : B
Figure 3.7: Preservation rules
Aro;:iu=u,:A)i-
@ ( ~ 3 0 Z(k) ’L)’L 1,....n (1 <k< n)
A - L exp{x; — 0} =0k @ 0uy, oy P TRAT U} = UL Ag

1A, ., A T:it=t B
x1: Ay, o An b wer=1{r; > x ey it =t'{x; > x;}: B

(A pyuy = u): Aj)j=1,..m
(1 : A1, @ A 04 v = V) Bi)iz1,. 0
y1:B1,...,Yn :Ba-T:t=>t:C

A b ass0Cy 4y e @ T{Yi > oi{T; > i} = T{yi — oi{x; — p;}} e assoct,v, u.

sy — vy = u) =y - vi{n; - Uy O

Figure 3.8: Naturality rules on structural rewrites

1Ay, et Ay -t B (At Ay)iz1,.n

A tf{x; — ggf)} ®aSS0Ct 4y uy @ Li{Ti > Ui} = idy(p,mn,y  HEi = wi} = Ha; > wi} : B

(A uj:Aj)j=1,...m (y1: B, yYn : Bn Fwj : Ci)r=1,....
(1 : A1, T A vt Bi)iz1,.on z21:C1,...,21:Ci=t:D

A t{z — aSSOCuw,,,ve,u, } ® ASSOC

tiwe {yj >—>1Jj},u. ® aSSOCt,w,,ve {IJ = Uj}
= aSSOCLw.’U’ {z7r—>u7} ® ASSOCt{z) 1 >wp},ve,ue

st{ze = weHys = viH{z; = ui} = e > welys & vz > ubt} i D

Figure 3.9: Biclone laws

Equational theory for structural rewrites in A'gisd(g).
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I't:B
Fl—Lt_loLtEidt:t:t:B

1Ay, Ayt B

Ty Ay, T Ap e =idy s o o 2} = oy — 2} 0 B

$11A1,...,xn2An}—U12A1 x1:A1,...,xn:An}—un:An

T1 Ay, Ty A g&fk) .gg’? = idyy oo} ThiTi = wi} = wp{z = w} 0 Ay

(1<k<n)

r1:A,.. .,z Ay u: B

xl:Al,...,xn:An}—Qgtli)ogq(gk)zidu:u@u:fl

(1<k<n)

(At uj:Aj)jm1,.m

(.’L’liAl,...,iCmZAm Fvi:Bi)i=1,...,n ylth...,yn:Bn l_tC

A assoc;i”u_ ® ass0Ct v, uy = (v, }{u,) Hy — viH{z; =y} =y, — vi{z; — v} : C

(A uj:Aj)j=1,..m
(1 : A1, .. 2 A vt Bi)ic1,. y1:B1,.. . yn : BpHt:C

A+ ass0Ct,v,,ue ® assocgi.’u_ = idt{vi{Uj}} : t{yi = vi{xj - uj}} = t{yi = 'Ui{xj = uj}} :C

Figure 3.10: Invertibility of the structural rewrites

. /. — /. /.
'br:t=t: A ol Fl—T:T.t:>t.ASymm

I'—r=7:t=t:A4 I'—7=7r:t=t:A

'—7=7":t=¢t:4 I'—r=7":t=t:A
I'7=7":t=t:A

trans

Fr=0:t'=t":A Fr=0:t=>t:A
FI—(TI.T)E(O'/QO')ZZ&:}t”:A

1A,y A T=7t=t:B (Aroi=0u = u}: A;)ima

A 1{x; — o} =7{x; — o} t{x; — u} = t{x; —» ul} : B

yees

Figure 3.11: Congruence laws

Equational theory for structural rewrites in A};isd(g).
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Well-formedness properties of Agisd. We finish this introduction to Agisd by showing
that it satisfies versions of the standard syntactic properties of, for example, the simply-typed
lambda calculus (c.f. [Cro94, Chapter 4]). The intention is to justify the claim that the
properties one would expect by analogy with the simply-typed lambda calculus do in fact

hold. The proofs are all straightforward structural inductions.

Definition 3.2.9. Fix a 2-multigraph G. We define the free variables in a term t in Agisd(g)

as follows:

tv(z;) := {z;} for x; a variable,
fv(c(:zl, ,xn)) = {x1, ... ,Tn} for ce G(Ay, ..., An; B),
fv(t{z1 = ui, ... xn > up}) = (Ev() — {z1, ... z0}) U Ui £V (us)

Similarly, define the free variables in a rewrite T in AB;CI(Q) as follows:

)
fv(ggi)’m ) = fv(ug)
fv(assoct, v, u. )

= fv(t)

fy(idy)
fv(r' o 7) 1= fv(r') U tv(7)
(o (z1, ... w0)) = {21, .. 20} for o€ G(Ay, ..., An; B)(c,c)
f(r{z) o 01, o on}) = (8(7) = {21, ..z }) U U v (0)

We define the free variables of a specified inverse ¢! to be exactly the free variables of o.

An occurrence of a variable in a term (rewrite) is bound if it is not free. “«

Lemma 3.2.10. Let G be a 2-multigraph. For any derivable judgements I' -+ u : B and
[ 7:t=1t":Bin ANYG),
1. fv(u) < dom(T"),
2. fv(r) < dom(I'),
3. The judgements I' — ¢ : B and I" - ' : B are both derivable.
Moreover, for any context I' := (z; : A;)i—1,... » and derivable terms (A - u; : A;)i=1,.. ns
1. f T+ t: B, then A  t[u;/x;] : B,
2. T 7:t=1t":B, then A 7[u;/x;] : t{u;/x;] = t[u;/x;] : B. O

3.2.1 The syntactic model

The rules of Agisd are synthesised directly from the construction of the free biclone on a
2-multigraph. It is not surprising, therefore, that its syntactic model satisfies the same free
bicl
Ps

property, justifying our description of A2X as a type theory for biclones. In this section we

spell out the construction and show that it restricts to bicategories.
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Constructing the syntactic model is a matter of reversing the correspondence between

the rules of Agisd and Construction [3.1.16

Construction 3.2.11. For any 2-multigraph G define the syntactic model Syn(G) of Agi;l(g)

as follows. The sorts are nodes A, B,... of G. For Ay, ..., A,, B € Gy the hom-category
Syn(G)(Aq, ..., Ay; B) has objects a-equivalence classes of terms (z1 : Ay, ... , 2 : Ay =t : B)
derivable in Agisd(g). We assume a fixed enumeration x1,x2,... of variables, and that
the variable name in the ith position is determined by this enumeration. Morphisms in
Syn(G)(Ay, ..., A,; B) are a=-equivalence classes of rewrites
(1 : A1, ..., 2n : Ap b T:t =1 :B)
Composition is vertical composition and the identity is id;.
The substitution operation (t, (ug, ... ,un)) — tlug, ... ,uy,] is explicit substitution

ty(ur, ooy ty) — t{xy > ug, ... Ty o U}

T, (01, .. yom) — T{x1 — 01, ... ,Tp — Op}
and the projections (41, ..., A,) — Ay are instances of the var rule xy : Ay, ...,z 0 Ap - x : Ag
for k =1, ... ,n. The 2-cells assoc,: and o) are the corresponding structural rewrites. «

Notation 3.2.12. We shall generally play fast and loose with the requirement that the
variables in a context (z1 : A, ...,z, : A,) are labelled in turn by the enumeration
Tl, - Ty, ... We will allow ourselves to pick more meaningful variable names as a simple
form of syntactic sugar, and rely on the fact that the proper variable names can always be

recovered when required. <

The equational theory guarantees that Syn(G) is a biclone. The proof of the free property
mirrors Lemma

Lemma 3.2.13. For any 2-multigraph G, biclone (5,C) and 2-multigraph homomorphism
h : G — C there exists a unique strict pseudofunctor h[—] : Syn(G) — C such that
h[—] ov = h, for ¢ : G — Syn(G) the inclusion.

Proof. Fix a context I' := (z; : A;)i=1,..n. We define h[—] by induction on the derivation

bicl.

of judgements in A

h[B] := h(B) on types

RIT' - c(z1, ... ,zy) : B] := h(c) for c € G(A.; B)
hA & t{z; — w;} : B] := (R[T -t : B])[R[A - ue : AJ]]

AT idy i t =t : B] := idp[rep)
AT F k(xs) : c(xe) = (ze) : B] := h(k) for k € G(A., B)(c, )
AL+ 7 er:t=1t":Bl:=h[l+7:¢=1t":Bleh[[+71:t=1":B]
hlr{z; — oi}] == (R[L 7 :t =t : B])[hW[A F 04 : ue = u, : Ad]]
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where we omit the full typing derivation A - 7{x; — o0} : t{z; — u;} = t'{z; — u}} : Bin
the final case for reasons of space. In order for h[—] to be strict we must require that it

strictly preserves the assoc, ¢ and o®) 2-cells. Uniqueness holds just as in Lemma/[3.1.17, [

Theorem 3.2.14. For any 2-multigraph G, the syntactic model Syn(G) of A‘gi;l(g) is the

free biclone on G. O

A type theory satisfying a property of this form, and which is therefore sound and
complete for reasoning in the freely constructed structure, is often referred to as the internal
language or internal logic (e.g. [MRT77, [LS86) [Cro94), [GK13]). This terminology is used
with varying degrees of precision, and generally not in the precise sense of Lambek [Lam89,
Definition 5.3]; nonetheless, we may now justifiably state that Agisd is the internal language
of biclones.

By the theorem, we may identify Syn(G) with the free biclone FCI(G) on G. The diagram
of adjunctions (p. then entails that for a 2-graph G the nucleus of Syn(G)—obtained
by restricting the syntactic model of Agisd to unary multimaps—is the free bicategory on
G. Equivalently, one may restrict the type theory Agisd to unary contexts and construct its
syntactic model as in Construction Let Agiscat denote the type theory obtained by

replacing the context-formation rules of Figure with the single rule of Figure [3.12

x: Actx (4¢€ o)

Figure 3.12: Context-formation rule for Agiscat (G).

Construction 3.2.15. For any 2-graph G, define a bicategory Syn(g)}1 as follows. Objects

are unary contexts (z : A) for = a fized variable name. The hom-category Syn(g)|1 (z:A),(z:

has objects a-equivalence classes of derivable terms (z: A+ ¢: B) in Agiscat and morphisms
a=-equivalence classes of rewrites (z: A 7:t=1t": B) in Agiscat. Vertical composition is
the o operation. Horizontal composition is given by explicit substitution and the identity
on (x : A) by the var rule (z: A+ x : A). The structural isomorphisms L, r and a are p,

.~ and assoc, respectively. <

Remark 3.2.16. The structural isomorphism r is given by ¢t~ because we have directed
the structural isomorphisms in a biclone to match that of a skew monoidal category, but
followed Bénabou’s convention [Bén67] directing the unitors in a bicategory to remove

compositions with the identity. <

The required theorem follows immediately from Theorem and the chain of
isomorphisms (3.7) (p. [46)).

Theorem 3.2.17. For any 2-graph G, the syntactic model Syn(g)|1 of A'gi;at(g) is the free
bicategory on G. O
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The restriction to a fixed variable name is necessary for the free property to be strict.
Without such a restriction there are countably many equivalent objects (z1 : A), (z2 : A),...
in Syn(g)|1, and the action of the pseudofunctor defined in Lemma is unique only up
to its action on each variable name. The next lemma shows that—up to biequivalence—this

restriction is immaterial.

Lemma 3.2.18. Let B be a bicategory and S a sub-bicategory. Suppose that for every
X € B there exists a chosen [X] € § with a specified adjoint equivalence fx : X < [X] : gx
in B such that

1. For X € S the equivalence X ~ [X] is the identity, and

2. If h: X - Y isal-cellin S, then so is the composite (gy o h) o fx : [X] — [Y].
Then B and & are biequivalent.

Proof. Let us denote the 2-cells witnessing the equivalence X ~ [X] by

Vx Id[X] = (gx 0 fX

wx : fxogx = Idx

There exists an evident pseudofunctor ¢ : § < B given by the inclusion. In the other

direction, we define F/ : B — S by setting
E(X):=[X] and E(r:t=t:X->Y):=(gyvo7)ofx

We then define ¢x := Id[x 129 gx o fx = (9x oIdx) o hx = E(Idx). For a composable
pair X Y 4, 7 we define ¢¢.u by commutativity of the following diagram:

¢t,u

(gzo(tofy)))o(gy o(uo fx)) gzo((tou)o fx)

=| E

(gzot)o ((fy ogy) o (uo fx)) (9zot)o(Idy o (uo fx))
(gzot)o(wyo(uofx))

The unit and associativity laws for a pseudofunctor follow from coherence and the triangle
laws of an adjoint equivalence. We then need to construct pseudonatural transformations
(a,@) :idg S 1o E: (3,8) and (7,7) :ids < Eov: (6,9).

For a, we take ax := gx and @y to be the composite

gy ot ——— (gy o (to fx)) o gx

=| E

(gy ot)oldxy ——— (9v ot) o (fx °gx)
gy otow 5

for t : X — Y. For B and 3 the idea is the same. We define Bx := fx and for t : X —» Y

we set
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fyolgyo(tofy)) — s tofy

x| E

(fyogy)o(to fx) Idy o (to fx)

wy oto fx

The definitions of (v,7%) and (4, 0) are identical. One then obtains modifications Z : id = aof3
and ¥: fBoa = id by taking Zx := Idx =X gx o fx and ¥ := fy ogx =X X; similarly
vod =id and d oy = id. O

Hence, ABiscat is the internal language for bicategories. If one restricts to a single variable
name the universal property is strict, else it is up to biequivalence. In the next section we
show that the syntactic model of Agisd is biequivalent as a biclone to the syntactic model of a
strict type theory. From this we deduce a coherence result for biclones, which amounts to a
form of normalisation for the rewrites of Agisd. All of this will restrict to unary contexts, and

hence to Agiscat, recovering a version of the coherence theorem of Mac Lane & Paré [MP85].

3.3 Coherence for biclones

In practice, the coherence theorem for bicategories [MP85] entails that one may treat any
bicategory as though it were a 2-category: roughly, one may assume that the structural
isomorphisms a, | and r behave as though they were the identity (see e.g. [Lei04, Chapter 1]
for a detailed exposition). In terms of Agiscat, this amounts to treating assoc, 0% and ¢ as
though they were all identities. Our aim in this section is to extend this result to Agisd.

The motivation is three-fold. First, the coherence theorem will simplify the calculations
we shall require in future chapters. Second, the proof involves some of the calculations
we shall need to extend when it comes to defining a pseudofunctorial interpretation of the
full type theory Aps~ (see Section . Finally, the proof strategy is of interest in itself.
The strategy may be regarded as a version of Mac Lane’s classical strategy for monoidal
categories [Mac98, Chapter VII], in which the syntax of the respective type theories provide
structural induction principles. It is reasonable to imagine that one may prove similar
results for monoidal bicategories (via a linear calculus), tricategories (via a 3-dimensional
calculus) or even higher-dimensional structures, by an analogous strategy.

To foreshadow the coherence result we shall prove in later chapters, let us make precise
the notion of normalisation we are interested in. We wish to lift the standard notion of
normalisation for systems such as the (untyped) A-calculus (e.g. [GTL89]) to a normalisation
property on rewrites. More precisely, we wish to consider versions of abstract reduction
systems [Hue80] in which one also tracks how a reduction might happen; that is, the possible
witnesses of a reduction. Our notion of normalisation then becomes: there is at most one
witness to any possible reduction. This suggests the following definitions. We use the term
constructive by analogy with constructive proofs, in which one requires an explicit witness
to the truth of a statement, to emphasise that we are requiring an explicit witnesses to the

existence of a reduction.
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Definition 3.3.1.
1. An abstract reduction system (ARS) (A, —) is a set A equipped with a binary reduction

relation — < A x A.

2. A constructive abstract reduction system (CARS) consists of a set A together with a
family of sets W4 (a,b) of reduction witnesses indexed by a,be A. A CARS is coherent

if for every a,b € A and u,v € Wy(a,b), one has u = v. <

In a CARS we are not merely interested in the existence of a reduction: we are also
interested in the equality relation on reductions. In particular, an ARS in the usual sense is
a CARS in which every W(a,a') is either empty or a singleton: either a reduces to a, or it
does not.

The term ‘coherent’ is motivated by the following example.

Example 3.3.2.

1. Every graph G defines a CARS A(G) with underlying set Gy and reduction witnesses
Wa)(t,t") :== G(t,1).

2. Every category C defines a CARS C on 0b(C) by taking Wg(A, B) := C(A, B). The
coherence theorem for monoidal categories of [Mac98, Chapter VII] then states that the

CARS corresponding to the free monoidal category on one generator is coherent. <«
In the bicategorical setting, we are interested in coherence in each hom-category.

Definition 3.3.3.

1. A 2-multigraph G is locally coherent if for every Aq,...,A,, B € Gy the associated
CARS A(Q’(Al, ,An;B)) is coherent.

2. A biclone (bicategory) is locally coherent if its underlying 2-multigraph is locally

coherent. <

Spelling out the definitions, a 2-multigraph G is locally coherent if for all edges
e, € G(A1, ..., Apn; B) there exists at most one surface k : e = €/, and a biclone is
locally coherent if there is at most one 2-cell between any parallel pair of terms. The
coherence theorem for bicategories [MP85] can therefore be rephrased as stating that the
free bicategory on a 2-multigraph is locally coherent.

Now, every type theory consisting of types, terms and rewrites has an underlying
2-multigraph with nodes given by the types, edges Ay, ..., A, — B by the a-equivalence
classes of derivable terms x1 : Ay, ... ,z, : A, -t : B and surfaces by the derivable rewrites
modulo a-equivalence and the equational theory. We call the type theory locally coherent if

this 2-multigraph is locally coherent. We spend the rest of this chapter proving that A2 is

bicl
p
locally coherent.

Our strategy is the following. We shall adapt the calculi of Hilken [Hil96] and Hirschow-

itz [Hirl3] to construct a type theory that matches Agisd but has a strict substitution
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operation; the syntactic model will be the free 2-clone (c.f. Construction [3.1.16]). We
shall then construct an equivalence between the two syntactic models by induction on
the respective type theories. We finish by briefly commenting how the result restricts to

bicategories.

3.3.1 A strict type theory

The first step is the construction of a strict type theory. Since we draw heavily on previous
work, our presentation will be brief. Fix some 2-multigraph G. The type theory H(G)
(where H stands for both Hilken and Hirschowitz) is constructed as follows. Contexts are as

in Agéd. The raw terms are either variables or constants, given by the following grammar:
ULy ooe Uy m=a | c(Ur, ...y Up)

As for Agisd, we think of constants c¢(x1, ... ,z,) as n-ary operators. The raw rewrites are

vertical composites of identity maps and constant rewrites:
Oly eovyOn,Ty0 u=1dy | K(ug, ... yup) | c(o1, ... ,0n) | Te0O (ug,...,u, terms)

Note that we require two forms of constant rewrite, corresponding to substitution of terms
into rewrites and substitution of rewrites into terms: these form the right and left whiskering
operations in the syntactic model.

The typing rules for HY(G) are collected in Figure

var

1 Al Ty A Tyt A

ceG(Ar,..., Ay B) (A wi:A)iz1,..m I't: B )
const id

x1: AL, T A oe(ug, .. uy) 2 B I'-id¢:t=1t:B

I'—7:¢=1¢%:8B F—7:t=1t:8B
F'7er:t=1t":B

K€ g(Alv s 7ATL;B>(C’ Cl) (A = Ai)i:l

A E(ur, . .upn) s c(ur, ..o un) = (ur, ... up)

vert-comp

yeeey T

right-whisker

ceG(Ay,...,An; B) (ArFoiiu=ul:A)iz1,.n

left-whisker
At clor,...,op) i c(ut, ... up) = (ug,...,uy) :

Figure 3.13: Introduction rules for H(G).
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F'—7:t=¢t:A
IF'-reid;=7:t=¢t:A4

e-right-unit

THr:t=t:A

o-left-unit
N-r7=idper:t=1t:A e
T t"=t".A T t=t:A FI—7’:1§:>15’:A._assoC
P ("ot )er=7"e(r"e7):t=t": A
Figure 3.14: Categorical rules for vertical composition
ceG(A,...,An; B) (Aol u,=ul: A)ic1,. n (Ao iu=ul: Ai)iza,om
Abc(r,...,mh)ec(rr,...,T) =c(1]{®T1,..., T, ®Ty) s (U1, ..., up) = c(uf,...,ul): B
CE Q(Al, ... ,An; B (A = wg e Ai)izl’...7n
At c(idyy, - idy,) = ideguy,u,) @ C(U1s -5 un) = c(ur, ... un) B
HEg(Al,...,An;B)(C,C/) (AI—O‘Z‘ Z’U,i=>’u,;;1Ai)l_1 ’’’’ n
A g(uy, .. u)ec(or,...,on) = (01, .. 0n) 0 K(U1, ..., uy) : c(us) = ' (u)) : B
Figure 3.15: Compatibility laws for constants
IF'71:t=t:A q l—7=7:t=t:A
re
l—r7=71:t=t:A

symm
I—7r=7:t=t:A
T—r=7":t=¢t:A

F—7=7:t=1t":
Fr=71":t=¢:A4

trans
F-7r=0:t'=t":A l'r7=0:t=1t:A
IF'7er=0dec:t=1t": A
ceG(Ay,...,An; B)
A+ ¢(oy,

(Aroi=0 uj=u}: A)ic1,..n
on) =clof,...,o}): clu,

Sup) = c(uf,

coul)
Figure 3.16: Congruence rules
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For HY to be a strict biclone we require a strictly associative and unital substitution
operation. Accordingly, we define substitution of terms into terms, of terms into rewrites,

and of rewrites into terms as follows.

xk[ul/xz] = Uk
clu, ... ,un)[vj/y;] == c(uiv/ys], - unlvj/y;])
1dt[uz/x1] ldt [wi/zi]
(7" o T)[ui/z;] = 7' [ui/x;] @ T[ui /4]
[uz/xl] (al[ul/xl]...,an[ui/xi])
[vj/y;] =

)
(o1, ... ,0n)
) o (uilvi/ysl, - - s unlv/y;])

o(ui, ..., un)vj/y;
xk[al/xz] =0k
c(ur, ... up)oj/y;] == c(ul[aj/yj], ,un[aj/yj])

The Substitution Lemma holds for all three forms of substitution.

Lemma 3.3.4. For any 2-multigraph G, the following rules are admissible in HY(G):

r1: A, ..o, At B (Al—ui:Ai)i:L,_,n
A+ tlui/z;] : B

$11A1,...,$n2An|—TZt=>t/:B (Akui:Ai)i:L...,n
A 7lui/x;] « tlui/x;] = t[ui/x;] - B

1: A1, ... ,op Ay -t : B (A oju=ul: Aj)is
A& tloi/x;] « tui/xi] = t[u)/z;] : B

sy

O]

As there are no operations that bind variables, the definition of a-equivalence is trivial.
The equational theory = is defined in Figures The rules diverge from Agisd most
importantly in Figure which ensures the meta-operation of substitution is functorial,
and that the two different ways of composing with constant rewrites are equal. This
guarantees that the composites 7[u}/x;] o t[o;/x;] and t'[o;/x;] ® T[u;/x;] coincide (c.f. the
permutation equivalence of [Hirl3]).

Following the pattern of [Hil96, [Hir13|], we define a substitution operation making the

following rule admissible, where 7[o;/x;] := t'[0;/z;] ® T[u;/2;]:

1AL, AT it=t B (AFoiiu=u,: A)izi, . m
A 1loi/xi] : tui/zi] = U[u)/z] - B

subst

We could have defined vertical composition by whiskering in the opposite order, thus:
T[oi/x;] := T[u;/z;] @ t[o;/x;]. The next lemma guarantees that these two coincide. The

proof is by structural induction, using Figure for the constant cases.
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Lemma 3.3.5. For any 2-multigraph G, the following rule is admissible in H(G):

1A, AT it=t B (A ojiu=u,: A)ic1, o,
A toi/xi] e T[ui/xi] = T[u)/z] e t[oi/i] « twi/z;] = t'[u}/xi] - B
O

Further structural inductions establish the key properties we shall be relying on.
Lemma 3.3.6. For any 2-multigraph G and terms ¢, uq, ... ,u, in Agi;l(g):

1. xk[ul/xz] = Uk,

2. t[arz/x,] = t,

3. tlui/wi][vi/y;] = tluilvj/y;]/2i].
Moreover, for any rewrites 7,01, ... ,0p,

1. idmk [UZ/:LZL] =0k,

2. 7[idy, /zi] = T,

8. Tloi/wi)[u;/y;] = loilus/yil/xi]- O

Hence the three laws of an abstract clone hold on both terms and rewrites. It is
similarly straightforward to establish that t[o} e 0;/x;] = t[o}/x;] @ t[o;/x;] and hence de-
duce the interchange law (7' e T)[o] ® 0;/x;] = T'[0}/x;] @ T[0;/x;]. Finally we observe that
id[idy, /7] = idy[y,/z,)- Together these considerations establish the following does indeed

define a strict biclone.

Construction 3.3.7. For any 2-multigraph G, define a strict biclone H(G) as follows. The

sorts are nodes in G. The 1-cells are terms (x1 : Ay, ..., 2, : Ay -t : B) derivable in HY(G),
for x1,xs,... a chosen enumeration of variables, and the 2-cells are =-classes of rewrites
(x1: A1, ... ,2p: Ay B 7:t =1t : B). Composition is the e operation and the identity on

a term-in-context t is id;.

Substitution is the meta-operation of substitution in H(G):

t(uty ooy uy) o tlur/Te, oo up /Ty
T, (01, ... yop) = Tlo1/T1, - .. ,0pn/Tn]
The projections PXZ : Ay, ..., A, > A; are given by the var rule. <

It is not hard to see that H(G) is the free 2-clone on G.
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Lemma 3.3.8. For any 2-multigraph G, strict biclone (7', D) and 2-multigraph homomorph-
ism h : G — D, there exists a unique strict pseudofunctor h[—] : H(G) — D such that
h[—=] ot = h, for v : G — H(G) the inclusion.

Proof. A straightforward adaptation of the proof of Lemma [3.2.13] The most significant

work is showing that the pseudofunctor h[—] respects substitution, in the sense that

h[A & 7[oi/x;i] « tui/z;] = t'[u;/z;] : B]
= (h[[:nlel, ,xn:AnkT:t:Mf’:B]])[Aka.:u.:>u',:A.]

for all judgements 1 : Ay, ...,z Ap 7t =t :Band (A 0w = U} Aj)ic1 . p

This is proven by two structural inductions, one for each of the whiskering operations. [

3.3.2 Proving biequivalence

The next stage of the proof is to construct a biequivalence of biclones H(G) ~ Syn(G) over a
fixed 2-multigraph G. We shall then see how this restricts to a biequivalence of bicategories
when G is a 2-graph and H and Agisd are restricted to unary contexts.

Fix a 2-multigraph G. We begin by constructing pseudofunctors (—)) : #(G) < Syn(G) : (—).
The definition of m is simpler, so we do this first. Intuitively, this mapping is a strictifica-
tion evaluating away explicit substitutions; for constants we exploit the fact the underlying

signatures are the same.

Construction 3.3.9. For any 2-multigraph G, we define a mapping from raw terms in
A'gisd(g) to raw terms in H(G) as follows:

T -

T
(1}1,... ) (1'1,‘.., )

t{fEl g} = /7]

This extends to a map on raw rewrites:

- ‘ E = idf
ASSOCt yy v, = ldz[uﬁ/wi][v?/yj] ﬁ ( )
Kz, ..., T = RkrR(T1, ... ,T
it 1= idg 7 " - *, o
Teo ' —=Teqo
k .
Q&.) = ide;;

T{l’l — 0;} = T|0;/xi]

This mapping respects typing and the equational theory.

Lemma 3.3.10. For any 2-multigraph G,
1. For all derivable terms ¢,t in A‘;i;l(g), ift =4t/ thent =1,

2. For all derivable rewrites 7,7/ in ADN(G), if 7 =, 7/ then 7 = 7/,
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3. f 't: Bin Agisd(g) then T' 7 : B in HY(G),
A T H7:t=1t:Bin ANYG) then T -7 :¢= ¢ : B in HY(G),
5. UTr=7:t=1t:Bin AJYG) then T -7 =7":%=t: B in HYG).

Proof. By structural induction. O

Proposition 3.3.11. For any 2-multigraph G the mapping (—) extends to a pseudofunctor
Syn(G) — H(9).

Proof. By Lemma, [3.3.10] and the definition of @ on identities and vertical compositions,

the mapping (—) defines a functor Syn(G)(A.; B) — H(A.; B) on each hom-category by

Cr7:t=t:B):=(+~7:t=t: B). For preservation of projections and substitution,

one notes that

x1: A, oo Ap e ag A = (1 Ay, o xn t Ap o Ag)

and that, for T = (z; : Ai)i=1, .. ns

CHt:B)|Aru: A, ..., Au,: A, =T +1t:B)[AF 1, : Al
= (A + t[wi/xi] - B)
= A+ t{z; — u;}: B

so (—) is indeed a strict pseudofunctor. O

Now we turn to defining the pseudofunctor (—) : H(G) — Syn(G). The mapping we

choose makes precise the sense in which H is a fragment of Agéd.

Construction 3.3.12. For any 2-multigraph G, define a mapping from raw terms in HCI(Q)

to raw terms in ADIY(G) as follows:

(71 ) := x

(c(ur, .. yup)) :=c{(ur), .-, (un)}

Extend this to a map on raw rewrites as follows:

(id¢) :=idgy) (clo1, ... ,on)) = clx; — (oi)}

(rec):=(7)e(o) (r(ut, ... yupn)) = w{z; — (ui))}

Once again, the mapping respects typings and the equational theory.



68 CHAPTER 3. A TYPE THEORY FOR BICLONES

Lemma 3.3.13. For any 2-multigraph G,
1. For all derivable terms ¢,¢ in H(G), if t = ¢ then (t) =4 (t'),
2. For all derivable rewrites 7,7’ in HY(G), if 7 = 7/ then (7) =4 ('),
3. If T+t : B in HY(G) then ' + (¢) : B in AD(G),
4 T H7:t=1t:BinHYG) then T+ (7): (t) = (') : B in ADY(G),

5 T -7=7:t=1+:Bin HYG) then T I (7) = (7') : (t) = (¢) : B in
Ab(G). O

It is immediate from the preceding lemma that ( — ) defines a functor H(G)(Ae; B) — Syn(G)(A.; B)
on each hom-category, and that (— | strictly preserves identities. For preservation of substitu-
tion, however, we are required to construct a family of 2-cells (t){x; — (u; )} = (t[wi/x;]).
This should be compared to [RAP97], where a similar translation is constructed at the

meta-level.

Construction 3.3.14. For any 2-multigraph G, define a family of rewrites sub in Agéd(g)
so that the rule

w1 A Ap = ()0 B (A (i) s Adi=t,
A+ sub(t;ue) : (t){x; — (wi)} = (t[ui/z;i]) : B

is admissible by setting

(k)
sub(zk; ue) := zp{x; — (u;)} TN (ur)

sub(c(ue);ve) := c{u;}{v;} c{ui{v; 1}

ASSOCc(x4),ue,ve c{sub(u;;ve)}

c{(uilvi/y;]1)} <

We establish the various properties required of sub by induction. The naturality of

structural rewrites implies the following.

Lemma 3.3.15. For any 2-multigraph G, the following judgements are derivable in Syn(G):

Fl—(]tDZB (A}—(]O’z[)(]UZD=>(]u;DAZ>Z:L7n
R sub(tral) » (2){{o:0) = (2ol )+ sub(ts ua) = (1) (e ]} = (7 )iui)) - B

CHE(r): ()= (¥):B  (AF (u): Az,
At sub(t;ue) e (T){(ui )} = (7[uwi/x;]) e sub(t;u,) : (]t[){(]uz[)} = (] ){(u)}: B

Hence the following judgement is derivable:

L (7):(t)=(¥):B (AF (o) : (wi) = (uw) s Ai)i=1,...n

7

A= sub(thug) o (7){(0i)} = (7[oi/zi]) e sub(t;we) : (E){(ui)} = (¢'D{(ui)} : B

and the sub rewrites are natural. O
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Next we want to prove the three coherence laws for a pseudofunctor. The law for
o9 1' holds by definition. We prove the other two laws using correlates of Mac Lane’s

original five axioms of a monoidal category [Mac63].

Lemma 3.3.16. For any biclone (5,C) the following diagrams commute:

p(k) - p(k)[p(l), ,p(")] p(k) [p(l), ,p(”)] e p(k)
Q(k)T / . /
p(k) [p(l), . ,p(n)] p(k)
assoc k) ol®
tlua] [ ( . ")] =t ue p ,p(")]] PP ua][ve] —— ug[ve]
T / assocT 4[%]
p*)[ue] [va]
Proof. By adapting Kelly’s arguments for monoidal categories [Kel64]. O
Lemma 3.3.17. For any 2-multigraph G and derivable terms (x1 : Ay, ...,z : Ap = (t) : C),

(y1:Bi1, ... sYm : Bm Fui s Ai)iz1,..m and (A vy Bj)j=1,.. m in Abld(g), the following

diagrams commute in Syn(G):

sub(t;ue ){v;}
—

(D {Qui D3 {w; D} (tlui/zi] D{(v;)}

(]tD{xz = xz} (]t[) assocl

1l / (D4 (uid{(v;D}} Sub(t /)

(] t D (]t[){sub(ui;v.)}l
() {Quilvs/y;] }SW [uz Uj/yj]/xl][)

Proof. Both claims are proven by induction using the laws of Lemma [3.3.16] For the unit

sub(t;xe)
—

law one uses the two laws on ¢; for the associativity law one uses naturality and the law

relating o9 and assoc. O
We have shown that sub is natural and satisfies the three laws of a pseudofunctor.

Corollary 3.3.18. For any 2-multigraph G the mapping (—) extends to a pseudofunctor
H(G) — Syn(G). O
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Relating the two composites. With the two pseudofunctors in hand, we next examine

the composites (—|) o (=) and (=) o (—). Our first observation is that the strictification of

an already-strict term (¢ is simply ¢.

Lemma 3.3.19. For any 2-multigraph G, the composite (—) o (—) is the identity on H(G).

Proof. On objects the claim is trivial. On multimaps one proceeds inductively:

rp = (k) = 78 > T = T
c(ut, oo yup) = c{(ur), ..., (up)} — clzr, ... ,20) [m/xl] =c(ug, ... ,uy)

The induction for 2-cells is similar:

idy — idg) — idm =idy by the preceding
Ter— (T )e(T) > (T )e(T ) =TT by inductive hypothesis
R(ut, ... up) = &{(ur), ..., (un)} = K(z1, ... s zp)[(wil)/zi] = &(ug, ... uy)
(o1, o yon) = c{lor), ..., (on )} — c(x1, ... sxn)[(03)/zi] = clor, ... ,0on)

O]

We finish our construction of the biequivalence H(G) ~ Syn(G) by defining an invertible
pseudonatural transformation (—) o (—) = idgyn(g)- This amounts to defining a reduction
procedure within Agéd(g) taking a term to one in which explicit substitutions occur as far
to the left as possible. The sub rewrites of Construction will play a crucial role.

Construction 3.3.20. For any 2-multigraph G, define a rewrite reduce typed by the rule

I'-t¢:B
I' - reduce(t) : t = (t) : B

inductively as follows:

id,,
reduce(zy) := xp = )
reduce(c(zy, ..., @) i= (@1, ..., xn) = cfzr, ... 20} = c(x1, ... ,20)
red red Uq _ ub(%;t, _
reduce(t{z; — u;}) i= Hary o> u;} e NI, 7)o (a7 )} 22 (/] )

We think of reduce as a normalisation procedure on terms. When such a procedure is

defined as a meta-operation, it passes through the term constructors; in Agisd, it is natural.

Lemma 3.3.21. For any 2-multigraph G, the following rule is admissible in Agi;l(g):

F7:t=1t:B
[+ (7)) ereduce(t) = reduce(t')e7:t = (') : B
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Proof. By induction on the derivation of 7. For the structural maps one uses the fact
the structural maps are all natural; for + and assoc one also makes use of the unit and

associativity laws of Lemma respectively. The other cases are straightforward. [
Terms in which no substitutions occur do not reduce any further.

Lemma 3.3.22. For any 2-multigraph G and judgement I' - ¢ : B derivable in H(G), the
rule
'~ (t):B
[ reduce((t)) =idg) : (t) = (t) : B

is admissible in A'gisd(g).

Proof. The claim is well-typed because ((t)) = (t) by Lemma [3.3.19. The result then
follows by structural induction: the var case holds by definition, while the const case is

just the triangle law of a biclone. O

The reduce rewrite is central to our definition of the invertible transformation idgy,g) = (()D;
the rest of the work is book-keeping. We define a transformation of pseudofunctors (Defin-

ition (3.1.20)) as follows. Take the identity Qg) : B — B on multimaps; as a term this is
(x1: Bt 21 : B). Foreach I" := (z; : A;)i=1,... »n and derivable term (I' - ¢ : B) we are now

required to give a 2-cell
(T z1{z1 — t}: B) = (T + (t){x; — zi{z; — z;}} : B)

For this, take the composite T(t) defined by

() - (E){zi — i}

reduce(t)

in context I'. The composite is natural because reduce is.

Corollary 3.3.23. For any 2-multigraph G, the multimaps gg) : B — B together with the

2-cells T(t) defined in 1' form an invertible transformation idgy,g) = ((—)).

Proof. By induction, the 2-cell reduce is invertible, so T(t) is invertible for every derivable

term t. It remains to check the two axioms, for which one uses naturality and the laws of

Lemma [3.3.16] O

Let us summarise what we have seen in this section. We have a pair of pseudofunctors

(=) : H(G) < Syn(G) : (—) related by invertible transformations (— | o (—) = idgyu(g) and

(=)o (—) = idyg). Together these form the claimed biequivalence.
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Theorem 3.3.24. For any 2-multigraph G, the pseudofunctors (—) : H(G) < Syn(G) : (—)

form a biequivalence of biclones.

O

We restate the result as a statement of coherence in the style of [JS93].

Corollary 3.3.25. For any 2-multigraph G, the free biclone on G is biequivalent to the free

strict biclone on G. O

We can use Lemma [3.1.23] to parlay the preceding corollary into a normalisation result
for Agisd. Since we have no control over the behaviour of constant rewrites, we restrict to

2-multigraphs with no surfaces.

Theorem 3.3.26. Let G be a 2-multigraph such that for any nodes Ay, ... ,A,, B € Gy
and edges f,g: Ay, ..., A, — B the set G(A.; B)(f,g) of surfaces f = g is empty. Then
A};i;l(g) is locally coherent.

Proof. The approach is standard (c.f. [Lei04, p. 16]). Suppose given a pair of rewrites in
A};i;l(g) typed by ' -7:t =1t :Band ' o :t =t : B. Since there are no constant
rewrites, the definition of (=) entails that 7 = id; = 7 in H(G). By Lemma [3.1.23| the

pseudofunctor (—) is locally faithful, so 7 = o, as required. O

Loosely speaking, any diagram of rewrites in Agisd formed from assoc, ¢, 0¥ and id using
the operations of vertical composition and explicit substitution must commute. We shall
freely make use of this property from now on.

Adapting the preceding argument to apply to bicategories—and hence recover a version
of the classic result of [MP85]—is a minor adjustment. Fix a 2-graph G. Restricting the
construction of H(—) to unary contexts and a fixed variable name (c.f. Construction
yields a 2-category; this is free on G by Lemma [3.1.18 Similarly, the biequivalence of
biclones (—) : H(G) < Syn(G) : (—) restricts to a biequivalence of bicategories. One

therefore obtains the following.

Corollary 3.3.27. For any 2-graph G, the free bicategory on G is biequivalent to the free
2-category on G. O

Alternatively, one may observe that since the internal language for bicategories Agiscat is
constructed by restricting the internal language Agisd for biclones to unary contexts, any
composite of the rewrites assoc,: and ¢ in Agécat must exist in Agisd. Hence the local

coherence of Agisd entails the local coherence of Agiscat.

Corollary 3.3.28. Let G be a 2-graph such that for any nodes A, B € Gy and edges
f,g: A— B the set G(A, B)(f,g) of surfaces f = ¢ is empty. Then Agi;at(g) is locally

coherent. 0



Chapter 4

A type theory for fp-bicategories

In this chapter we extend the type theory Agisd with finite products. We develop a theory
of product structures in biclones, and use this to synthesise our type theory Aj,. Along
the way we pursue a connection with the representable multicategories of Hermida [Her00].
Hermida’s work can be seen as bridging multicategories and monoidal categories; we show
that similar connections hold between clones and cartesian categories, and also between
biclones and bicategories with finite products. The resulting translation mediates between
products presented by biuniversal arrows (in the style of Hermida’s representability) and
the presentation in terms of natural isomorphisms or pseudonatural equivalences.

With this abstract framework in place, we examine its implications for the construction
of an internal language for biclones with finite products and—by extension—for bicategories
with finite products. The resulting type theory provides a calculus for the kind of universal-
property reasoning commonly employed when dealing with (bi)limits, and contrasts with
previous work on type-theoretic descriptions of 2-dimensional cartesian (closed) structure,
in which products are defined by an invertible unit and counit satisfying the triangle laws

of an adjunction (e.g. [See87, Hil96l Hirl3]).

4.1 fp-Bicategories

Let us begin by recalling the notions of bicategory with finite products and product-
preserving pseudofunctor. It will be convenient to directly consider all finite products, so
that the bicategory is equipped with n-ary products for each n € N. This reduces the
need to deal with the equivalent objects given by re-bracketing binary products. To avoid
confusion with the ‘cartesian bicategories’ of Carboni and Walters [CW8T, [CKWWO0S], we
call a bicategory with all finite products an fp-bicategory. (We will, however, freely make use
of the term ‘cartesian’ when defining finite products in (bi)clones and (bi)multicategories.)

We define n-ary products in a bicategory as a bilimit over a discrete bicategory (set)
with n objects. As we saw in Remark this can be expressed equivalently as a
right biadjoint. For bicategories By, ... , By the product bicategory [[_, B; has objects
(Bi, ... ,By) € [[i, ob(B;) and structure given pointwise. An fp-bicategory is a bicategory

73
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B equipped with a right biadjoint to the diagonal pseudofunctor A" : B — B*" : B
(B, ...,B) for every n € N. Applying Definition in this context, one may equivalently
ask for a biuniversal arrow (w1, ..., m,) : A™([],(A1, ..., Ay)) = (A1, ..., Ay) for every
Ay, ..., A, €B (neN).

Definition 4.1.1. An fp-bicategory (B,11,,(—)) is a bicategory B equipped with the following
data for every Ay, ... A, €B (neN):
1. A chosen object [ [,, (41, ..., Apn),

2. Chosen arrows 7 : [ [, (A1, ..., An) = Ar (k=1,...,n), referred to as projections,

3. For every X € B an adjoint equivalence

B(X,[1,(A1, ..., An)) 1~ T, B(X,4;) (4.1)
defined by choosing a family of universal arrows we denote w = (@), ... @®).
We call the right adjoint (—, ..., =) the n-ary tupling. <

Remark 4.1.2. The preceding definition admits two degrees of strictness. Requiring the
equivalence to be an isomorphism, and B to be a 2-category, yields the definition of
2-categorical (Cat-enriched) products. These products are not strict in the 1-categorical sense,
however: as the example of (Cat, x, 1) shows, it may not be the case that (A x B) x C' =
A x (B x C). In this thesis, we shall generally write strict to mean only that is an

isomorphism, and specify explicitly when we mean the stronger sense. “

Explicitly, the universal arrows of (4.1) may be specified as follows. For any finite family
of 1-cells (¢t; : X — A;)i=1,... m, one requires a 1-cell (t1, ... ,t,): X — ][, (41, ..., A,) and

(k) o T 0 te) = tg)k=1,.. n- These 2-cells are universal

a family of invertible 2-cells (coy,” ;.

in the sense that, for any family of 2-cells (a; : mou = t; : I' = A;)i—1, .. n, there exists a
2-cell pl(ay, ... ,apn) tu={t1, ... ,tp): T — [T, Ai, unique such that

k
wt(l,)...,tn o (mpopl(ar, ... an)) = ap i mpou =t (4.2)
for k = 1,...,n. One thereby obtains a functor (—, ... ,=) and an adjoint equival-
ence as in (4.1) with counit w = (@, ... @™) and unit pi(ids,or, ... ,idr,or) : t =
{myot,...,m oty. This defines a lax n-ary product structure: one merely obtains an ad-
junction in (4.1]). One turns this into a bicategorical (pseudo) product by further requiring

the unit and counit to be invertible. The terminal object 1 arises as [ [,().

Remark 4.1.3. Throughout we shall assume that the chosen unary product structure on an
fp-bicategory is trivial, in the sense that [ [;(A) = A, {t) =t and wg) =ly:Idot =1t «
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Notation 4.1.4.
1. We denote the unit pT(Idmot, ooy Idg o) st ={(mot, ... ,myot) by . (We reserve

n and ¢ for the unit and counit of exponential structure.)

2. We write Ay x -+ x A, or [ [}, A; for ], (A1, ..., An),

3. We write {fi),_; __, or simply (f.) for the n-ary tupling (f1, ..., fn)

4. Following the 1-categorical notation, for any family of 1-cells f; : A; —> Al (i =1,...,n)
we write [[,(f1, ..., fn) or [[;, fi for the n-ary tupling (fiom, ..., fpomy) :
[T, A — T1i, A}, and likewise on 2-cells. <

One must take treat the [ [; fi notation with some care. In a 1-category, the morphism
fx A= fxidy is equal to the pairing {f o w1, m2). In an fp-bicategory, this may not be
the case: fx A= f x1Idy = {fom,Idy ome).

Remark 4.1.5. Like any biuniversal arrow, products are unique up to equivalence (c.f. Lemma/|2.2.7)).
Explicitly, given adjoint equivalences (¢ : C < [[[_,B;: h) and (e; : B; S Ai : fi)i=1,.. n

in a bicategory B, the composite

(m10—, ..., Tpo—)
n - 2 n
go— B(X7 Hz—l Bi) 1~ Hz‘=1 B(X’ Bl) 7, (es0-)
e
J_: <77"'7:> J_Z
B(X,0) ho= M (fio=) [Tis) B(X, A))

yields an adjoint equivalence
(((erom1)og)o—,...,((enomn)og)o—)

/_\
B(X,C) 1~ JIh, B(X,A)

~_
h0<f1077.,.7fn():>
presenting C as the product of Ay,..., A,. <

One may generally think of bicategorical product structure as an intensional version
of the familiar categorical structure, except the usual equations (e.g. [Gib97]) are now
witnessed by natural families of invertible 2-cells. It will be useful to have explicit names

for these 2-cells.

Construction 4.1.6. Let (B,11,(—)) be an fp-bicategory. We define the following families

of invertible 2-cells:
1. For (h; : Y — A;j)i=1,.n and g : X — Y, we define
post(he;g) : (ha, ... s hnpog=<Chi1og,....hnog)
as pi(ay, ..., ), where ay is the composite

wk)og

mho ((ha, .o shndog) = (mpolh, ...  hy)) o g ——= hyog

fork=1,...,n.
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2. For (hl : Az - Bi)izl,...,n and (gi X - Ai)izl’...7n, we define

fuse(he;ge) : ([T7=1hi) 091, -, gn) =<h10g1, ... ,hnogn)

as pl(B1, ..., Bn), where B is defined by the diagram

w0 (TTiah) 0 (g1, - a) . > hi o g
;J’ Thkow(k)
(m o [Tizyhi) 091, - s gn) — (i omk) o g1, -, gn) —= b o (T o (g1, - gn))

wFolgr, ... ,gn)

fork=1,...,n
3. For (h; : Ai = By)i=1,..n and (g; : X; = Aj)j=1,..n we define

Py 9ot (21 hi) o (TTi190) = [Tz (Rigi)

to be the composite ¢ a}:nl g2 @ fuse(he;gromy, ..., gn o my). This 2-cell

ahlglm,...,
witnesses the pseudofunctoriality of [ [, (—, ... ,=). <

Informally, one can use the preceding construction to translate a sequence of equalities
relating the product structure of a cartesian category into a composite of invertible 2-cells—
the difficulty, as outlined in the introduction to this thesis, is verifying such a composite
satisfies the required coherence laws. As a further step to simplifying this effort, we observe
that each of the 2-cells just constructed is natural and satisfies the expected equations. The
many isomorphisms required to state these lemmas in their full bicategorical generality tend
to obscure the ‘self-evident’ nature of these results, so we state them for 2-categories with

pseudo (bicategorical) products.

Lemma 4.1.7. Let B be a 2-category with finite pseudo-products. Then for all families of
suitable 1-cells f, g, h, fi,gi,hi (i =1, ... ,n), the following diagrams commute whenever

they are well-typed:

iy eeesfuy = (fis v fadold i le(H i [T0, f) o (rn oo )
\ l‘”“ \ lfuse
(fiold,..., fnold) (fom, ..., fnom)
(4.3) (4.4)

In Lemma we shall see that these laws hold equally within the syntax of the type
theory Aps~ for fp-bicategories.
The restriction to a base 2-category, rather than a bicategory, turns out to be of no

great consequence. Indeed, Power’s coherence result restricts as follows to fp-bicategories.
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Sfeg
fog—\wafnomg (yogon 22 (fogp o
gg pOSt PDOS 4.6
f (miofog,...,mofog) m L t (4.6)
T ) (foogoh)

<I>f-,9- O<h17 7hn>

(H?:l fi) © (H?:1 Qi) olha, oo shyy ——— [T (fiogi) olha, oo s hy)

(I'l; fl-)ofusel ifuse (47)
(ITZ1 fi) o<grohas oo s gno by ——— {frogiohy, ..., fuognohn)
(T'1; fi)opost

(H?:lfz) 0{g1y .. ygnyoh —— (H?:lfl) olgioh,...,gnoh)
fuseohl J/fuse (4'8)

<f1091,...,fn0gn>0h <flogloh7"‘7fnognoh>

post

O

Proposition 4.1.8 ([Pow89b, Theorem 4.1]). Every fp-bicategory is biequivalent to a

2-category with strict (2-categorical) products.

Proof. We present Power’s proof, adapted to the special case of products. Let (B,11,(—))
be an fp-bicategory. By the Mac Lane-Paré coherence theorem, B is biequivalent to a
2-category; by Lemma this is a 2-category with bicategorical products. We may
therefore assume without loss of generality that (B,I1,(—)) is a 2-category with bicategorical
products. Now let Y : B — Hom(B°P, Cat) be the Yoneda embedding and B be the closure
of 0ob(YB) in Hom(B°P, Cat) under equivalences. The Yoneda embedding factors as a
composite B LB Hom(B°P, Cat). Since Y is locally an equivalence, the inclusion
i : B — B is a biequivalence. Choose a pseudoinverse k : B — B.

Now, for any P, ..., P, € B (n € N) a 2-categorical product [[,(jP1, ... ,jP,) exists
(pointwise) in the 2-category Hom(B°P, Cat): one can show this by a direct calculation
or by applying general theory as in [Pow89b, Proposition 3.6] (see also Chapter [f]). We
show this product also lies in B. Since an isomorphism of hom-categories is certainly an
equivalence of hom-categories, [ [, (jP1, ... ,jPy) is (up to equivalence) the bicategorical
product of jP, ... ,jP, in Hom(B°, Cat). Moreover, since i and k form a biequivalence,
Yok = (joi)ok=~joidg=j. So, applying the uniqueness of products up to equivalence
and the fact that Y preserves products (Lemma [2.3.4]):

[L.GPL ... jP) ~ L, ((YK)PL, ..., (YK)P,) ~ Y(IL,(kPy, ... . kP,))

Since Y([],,(kPx, ... ,kP,)) certainly lies in B, it follows that [[,(jP1, ... ,jP,) also lies

in B, as claimed. O
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This result obviates the need to deal with the various 2-cells of Construction £.1.6l The
reader may therefore simplify some of the longer 2-cells we shall construct (for example, in

Chapter @ However, we shall not rely on it in what follows.

4.1.1 Preservation of products

fp-Pseudofunctors. Defining preservation of products is straightforward: it is just an
instance of preservation of bilimits. We ask that for each n € N the biuniversal arrow
defining the n-ary product is preserved. Strict preservation of these biuniversal arrows
amounts to requiring that the chosen product structure in the domain is taken to exactly

the chosen product structure in the target.

Definition 4.1.9. An fp-pseudofunctor (F,q*) between fp-bicategories (B,1I,(—)) and
(C,II,(—)) is a pseudofunctor F': B — C equipped with specified adjoint equivalences

By, oo Frpy s (T2 A) S TS (FA)

for every Ay, ..., A, € B (neN). We denote the 2-cells witnessing these equivalences as
follows:

LI;;. : Id(l—[Z FA;) = <F7T1, oo ,F7Tn> o qz.

ch, sy, olFmy, ..., Frpy = Id(pr, a,)

We call (F,q*) strict if F' is strict and satisfies

F(I1,(A1, ..., An) = [1,(FAL, ..., FA,)

F(ﬂ_?l,...,An) _ 7T,L-FA1’M’FAH

Flty,.. ty) ={(Ft,..., Fty)
o (i)

t1yeestn — PEt,...,Ftn

>< J—
a4, =i, (Fa,,.. Fa,)

with adjoint equivalences canonically induced by the 2-cells p’(ry,, ...y, ) : Id = (Ty ey T
<
By Lemma [2.2.17] a strict fp-pseudofunctor commutes with the pT(—, ..., =) operation

on 2-cells: F(p'(ai,...,an)) =pl(Faq,..., Fay).

Remark 4.1.10. The fact that products are unique up to equivalence has the following
consequence for fp-pseudofunctors. If B is a bicategory equipped with two product structures,
say (B,1I,(—)) and (B,Prod,(—)), then for any fp-pseudofunctor (F,q*) : (B,II,(—)) —
(C, 11, (—)) there exists an (equivalent) fp-pseudofunctor (B, Prod,(—)) — (C,II,(—)) with
witnessing equivalence

X
da,

F(Prodn (A1, ..., An) ~ F(IL, (A1, ..., An)) 25 [L.(FAy, ..., FA,)

arising from the tupling map (71, ... ,m,) : Prod, (A1, ..., 4n) = [[,,(A1, ..., An). <
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We saw in Lemma[2.4.4] that, when a biadjunction is preserved, one obtains an equivalence
of pseudofunctors relating the two biadjunctions. We shall make use of the following concrete

instance of this fact.

Lemma 4.1.11. For any fp-pseudofunctor (F,q*) : (B,II,(—)) — (C,II,(—)) the family
of 1-cells oy, : [ i, FA; — F(I];-, As) are the components of a pseudonatural trans-
formation [ [}, (F(—=), ... ,F(=)) = (Fo][;,)(—, ... ,=), and hence an equivalence in
Hom([ [}, B,C).

Proof. The witnessing 2-cells naty, filling

I Ffi
[[ie FA: ——— [[iL, FA]

a X

P A) s FATL 4D

are defined as the following composite:

n natr, n
(LX4/. o[[iLi Ffi ! » F([Tiz1 fi) o qxxél.
(@4, o (TTiZy Ffi)) o Id(y, pay) Idpy, A © (F(H:'Lzlfi) o qix.)
qﬁ,.o(]_[?:l Ffi)ou;;' c:\,. oF(T1; fi)oqﬁ.

(ay, © T F(f:)) o ((F(ma)) o) (a4, o Froy) o (F(ITL /) 0 af,)

@, o (T Fo( f) o (F(ma))) o qy,) @y, © (((Frey o F(TTZ1 £2) 0 dly,)
. ofuseod, AqXA ,ofuse™Lod’y,
@5, o (P o Fm)y oy, @y, o (Fm) o PAT fi) o @)
5, o(f, o i Sy, o{@F, 1, 7)™ odi,
@y, o (Flfeomoay,) > @iy o (Pl o T fi) o dl, )

dy o(F(w(TD), o F(w (™M) hody
O

In a cartesian category it is is often useful to ‘unpack’ an n-ary tupling from inside a

cartesian functor in the following manner:

(Fry, ... \Frpyo F{f1, ... ,fo)y ={(F(me) o F{f1, ..., fn))
=(F(me o {f1, ..o, f)))
={(Ffi,...,Ffn)

In an fp-bicategory, one obtains a natural family of 2-cells we call unpack.
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Construction 4.1.12. For any fp-pseudofunctor F': (B,11,,(—)) — (C,II,(—)) the invert-
ible 2-cell unpacky, : (F'r1, ..., Fmp)oF{f1, ..., fo) = (Ff1, ... ., Ffo): FX > [[}L, FB;

is defined to be p(7y, ... ,7,), where 7, (k =1, ... ,n) is given by the following diagram:
7Tko(<F7T1, aFﬂ—n>OF<f17 7fn>) * ka
(ﬂ-ko<F7r1a"'aFWn>)OF<f1a"'afn> Fw®)
S OOF 1, o sf) |
F(ﬂ'k)OF<f17 7f7’b> (bF—> F(ﬂ-’io<f17 7fn>)
7Tka<fb>

<

As with the 2-cells of Construction it is useful to have certain coherence properties

ready-made. For unpack one has the following.

Lemma 4.1.13. For any fp-pseudofunctor (F,q*) : (B,II,(—)) — (C,II,,(—)) and family
of 1-cells (f; : X; = Yi)i=1,... »n in B, the following diagram commutes:

X
unpackoqy,

((Fry, .o Frny o F(TTZ, i) © dk, (F(fiem), ..., F(fnom))odk,

% (OF el Vo,
(Fri, ..., Frn)o (F(H?:l i) o q§(_) (FfioFm, ... ,Ffy0Fm)odk,
(Fm1,... ,F7Tn>onatf.l fuseoqﬁ(.
Py, Prayo (ay, o (T Ffi) (10 Ffi) o{Fmy, ... ,Fmy)) o d,
(<F7r1, oo Fmp)o q?) o(ITie, F'fi) (IT, Ffi)o <<F7T1, ... Fmyyo qé(.)
(05,0 (L P | [ rrpeus,
Id(1, ryv;y © ([ T2y F'1i) ~ (I Ty Ffi) o 1d(, rx)
0

Morphisms of fp-pseudofunctors. The tricategorical nature of Bicat leads naturally to
a consideration of 2- and 3-cells relating fp-pseudofunctors. Experience from the 1-categorical
setting, however, suggests that new definitions are not needed. For cartesian functors
F,G: (C,II,(—)) — (D,II,(—)) it is elementary to check that every natural transformation

o ' = G satisfies

n Fry, ... ,Fmp n
F(Hi=l Ai) % Hi=1 F(4;)

Q(y, A.)l l]_[?zl aa, (49)

G(IT, A) Gy [T G(4)
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The corresponding bicategorical fact is the following: every pseudonatural transformation
extends canonically to an fp-transformation (c.f. the monoidal pseudonatural transformations
of [HouO7, Chapter 3]).

Definition 4.1.14. Let (F,q*) and (G, u*) be fp-pseudofunctors (B,11,,(—)) — (C,IL,(—)).
An fp-transformation (a, @, o) is a pseudonatural transformation (o, @) : F' = G equipped

with a 2-cell aﬁl .4, as in the following diagram for every Ay, ..., A, € B (n € N):

(Fr1,...,Fmp)

F(ITy Ai) =5 [T F(4)

AT, A.)l O‘ixl, o Ap iHLl @A
«—

G(IT, A) ey [T2 G(4)
These 2-cells are required to satisfy

X
TEOX A, ... A

ko (17 aa,) o(Fmi, ..., Fmy))

n s ), O (<G7r1, oo ,Gmyyo T, A.))

(mr o [ Timy cva,) o(Fm,y .o, Frig) (e 0{GmL, .., GTn)) © ([, AL
wFo(Fre)
(oa, omg) o (Fmy, ..., Fmp) @®oay, a4
aq,, o (mg o (Fmy, ..., F'my)) or o YA o Fmy =, Gk 0 (T, AL

Lemma 4.1.15. Let (F,q*) and (G,u*) be fp-pseudofunctors (B,11,(—)) — (C,IL,(—))
and (o, @) : F = G a pseudonatural transformation. Then, where 0421 .4, s defined to

be the composite

X

XAy, ... An
(ITZ, @a,) o(Fe, ..., Frp) — " 5 (G, e, GTR) 0 QA XX A,
fusel TPOSt_l
<OzA1 OF7I‘1, o0, OF7Tn> < <G7T1 Oa(HnA-)’ .. .,Gﬂ'n ©) O‘(HnA-)>
a‘rr17~~7a‘irn

the triple (o, @, o) is an fp-transformation.

Proof. A straightforward diagram chase unwinding the definitions of fuse and post. O

In a similar vein, one might define an fp-biequivalence of fp-bicategories to consist of
a pair of fp-pseudofunctors (F,q*) and (G,u”), with fp-transformations FG & id and
GF < id and invertible modifications forming equivalences F'G ~ id and GF ~ id. The

composition of fp-transformations is the usual composition of pseudonatural transformations,
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with the composite witnessing 2-cell for (4.9) given by the evident pasting diagram. However,
this apparently more-structured notion of biequivalence may always be constructed from a

biequivalence of the underlying bicategories.

Lemma 4.1.16. For any fp-bicategories (B, II,,(—)) and (C, II,,(—)), there exists an fp-biequivalence
(B,11,(—)) ~ (C,II,(—)) if and only if there exists a biequivalence of the underlying bicat-

egories.

Proof. The reverse direction is immediate. The forward direction follows from Lemma[2.2.13

and Lemma [£.1.15] O

In this thesis we will only ever be concerned with the existence of a biequivalence
between fp-bicategories, not its particular structure. It will therefore suffice to work with

biequivalences throughout.

4.2 Product structure from representability

In Chapter [3] we saw that a type theory for biclones—and, by restriction to unary contexts,
bicategories—could be extracted directly from the construction of the free biclone on a
signature. In order to take a similar approach in the case of fp-bicategories, we develop the
theory of product structures in biclones.

What does it mean to define products in a biclone? As usual, the categorical case is
informative. Thinking of (sorted) clones as cartesian versions of multicategories suggests
that products in a clone ought to arise in a way paralleling tensor products in a multicategory.
Translating the work of Hermida [Her00| to clones in the most naive way possible, one might
require a family of arrows px, : X1, ..., X, — [[, (X1, ...,X,) in a clone C inducing
isomorphisms C(X71, ..., Xpn; A) = C([ [,,(X1, ..., Xy); A) by precomposition. On the other
hand, Lambek [Lam89| defines products in a multicategory L by requiring isomorphisms
of the form L(T; [, (X1, ..., Xn)) =[], L(I'; A;). Connecting these two approaches to
product structure will be the focus of the next section.

Taking multicategories as our starting point, we shall study two forms of universal
property, corresponding to Hermida’s and Lambek’s definitions, respectively. We shall show
how these notions may be applied to clones and, moreover, demonstrate that for clones they
actually coincide (Theorem [4.2.20).

Thereafter, in Section we shall see how one can extract the usual product structure
of the simply-typed lambda calculus from the theory of such cartesian clones. This will
provide the template for lifting this work to the bicategorical setting, and hence for the
product structure of the type theory AJ.

4.2.1 Cartesian clones and representability

We start by recalling a little of the theory of (representable) multicategories and their

relationship to monoidal categories. Extensive overviews are available in [Lei04] [Yaul6].
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Representable multicategories. The notion of multicategory is a crucial part of Lam-
bek’s extended study of deductive systems [Lam69, [Lam80, Lam86l Lam89)]. The motivating
example takes objects to be types in some sequent calculus and multimaps Xy, ... , X, Y
to be derivable sequents; composition is given by a cut rule. Lambek defines tensor products
and (left and right) internal homs in a multicategory by the existence of certain natural
isomorphisms. More recent work by Hermida [Her00] connects these ideas to the categorical
setting by making precise the correspondence between monoidal categories and so-called

representable multicategories.

Definition 4.2.1 ([Lam69, Lam89]). A multicategory L consists of the following data:
e A set ob(L) of objects,

e For every sequence X1, ..., X, (n € N) of objects and object Y a hom-set L(X1, ... , X,;Y)
consisting of multimaps or arrows f : X1, ..., X, — Y (here n may be zero). As
with (bi)clones, we sometimes denote sequences X1, ..., X, by Greek letters I', A, ...

to emphasise the connection with contexts,
e For every X € ob(L) an identity multimap idx : X — X,

e For every set of sequences I'y, ... ,I',, and objects Y7, ... ,Y,, Z, a composition oper-

ation
orevez :L(Y1, .. Y Z) x [ [, L(T;; Y;) —» L(Ty, ..., T Z)

we denote by Or.;y.;z(f, (g1, --- ,gn)) = fodgl, ..., gn)-

This is subject to three axioms requiring that composition is associative and unital. We call

multimaps of the form X — Y linear. <
Notation 4.2.2. Note that we write composition in a multicategory as f o (g1, ... ,gn)
and substitution in a clone as f[g1, ... , gn]- <

Multicategories are also known as coloured (planar) operads (e.g. [Yaul6]). Multicat-
egories form a category MultiCat of multicategories and their functors, and also a 2-category

of multicategories, multicategory functors, and transformations (e.g. [Lei04, Chapter 2]).

Definition 4.2.3.
1. A functor F : L — M between multicategories L and M consists of:
e A mapping F : ob(L) — 0b(M) on objects,
e For every Xy, ...,X,,,Y €L (neN) amapping on hom-sets

Fx,v:L(X1, ..., XpY) > MEFXy, ... ,FX,; FY)
such that composition and the identity are preserved.

2. A transformation o : F' = G between multicategory functors F,G : L — M is a family
of multimaps (ax : FX — GX)xenL) such that for every f: Xy, ..., X, —» Y the
equation F'f o (ax,, ... ,ax,) = ay o (Gf) holds. “«
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From the perspective of deductive systems, moving from multicategories to clones
amounts to changing the composition operation from a cut rule to a substitution operation.

The composition operation of a multicategory is linear: given maps (h; : I' = Y;)i—1, .. m

and f : Y7, ...,Y, — Z in a multicategory, the composite f o (hy, ..., hy) has type
I',...,I' > Z. By contrast, the substitution operation in a clone is cartesian: given maps
h; and f as above, the substitution f[hi, ..., hy] has type I' — Z.

Every multicategory L defines a category L by restricting to linear morphisms. Conversely,
every monoidal category (C,®, I) canonically defines a multicategory with objects those of
C and multimaps X1, ..., X,, = Y given by morphisms X; ®---® X,, — Y (for a specified
bracketing of the n-ary tensor product). A natural question is therefore the following: under
what conditions is the category L corresponding to a multicategory monoidal? Hermida
answers this by showing that there exists a 2-equivalence between the 2-category MonCat

of monoidal categories and the 2-category of representable multicategories.

Definition 4.2.4. A representable multicategory L is a multicategory equipped with a
chosen object T\, (X1, ...,X,) € L and a chosen multimap px, . x, : Xi,...,X, —
Tn(X1, ..., X,) for every Xy, ..., X, €L (neN) such that

1. Each chosen px,, ... x, is representable: for every Y € L, precomposition with px,, .. x

n

induces an isomorphism L(X1, ..., X,;Y) = L(T,,(Xq, ..., Xp),Y) of hom-sets, and

2. The representable arrows are closed under composition. <
Thus, a multimap px, is representable if and only if for every h : X1, ..., X;, = Y
there exists a unique multimap Af : [1,(X1,...,X,) = Y such that hto PX1, .. Xy = .

Remark 4.2.5. It is common to refer to the arrows px, of the preceding definition as
universal; we change the terminology slightly because we will imminently define a mul-
ticategorical version of universal arrows in the sense of Chapter The two concepts
are related: the representability condition above is equivalent to requiring that each
L(Xy, ... ,Xpn;—) : L — Set is representable, which is in turn equivalent to specifying a

universal arrow from the terminal set to this functor (c.f. [Mac98, Chapter III]). “«
We briefly recapitulate Hermida’s construction.

Lemma 4.2.6 ([Her00, Definition 9.6]). For every representable multicategory L, the

associated category L is monoidal.

Proof. The tensor product X ®Y is To(X,Y") and the unit I arises from the empty sequence,
as To(). The map f® g is defined by the universal property, as the unique linear map filling

the following diagram:

Ty(X,Y) -85 Ty(X",v7)

PX,YT TPX’,Y’

XY — 3 XY
(f.9)
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The second condition is necessary: it allows one to use the universal property to
check the axioms of a monoidal category involving iterated tensors (A® B) ® C (c.f. the
preservation conditions for lifting monoidal structure to a category of algebras [Seald], in
particular the left-linear classifiers of [ES18]).

Cartesian multicategories. Representability is a universal property that allows us to
construct monoidal structure. To construct cartesian structure, however, one requires more.
In particular, one ought to obtain Lambek’s definition of cartesian multicategory [Lam89,
§4], requiring multimaps m; : [[, (41, ...,4,) — A; (i = 1,...,n) inducing natural
isomorphisms L(I; [ [, (X1, ..., X)) = [ [, L(I'; A;). Next we shall see how to obtain a
definition equivalent to Lambek’s, but phrased in terms of universal arrows. This will be

the starting point for our comparison between product structure and representability.

Definition 4.2.7. Let F': L — M be a functor of multicategories and X € M. A universal
arrow from F to X is a pair (R,u : FR — X) such that for every h: FAy, ... ,FA, > X
there exists a unique multimap h': Ay, ..., A, — R such that uo (Fh') = h. <

Remark 4.2.8. One could define universal arrows slightly more generally, by taking a

universal arrow from F to X to be a sequence of objects Ry, ..., R, with a universal
multimap F'Ry, ..., FR, — X. The definition given seems sufficient for our purposes, so
we do not seek this extra generality. <

As in the categorical case, we can rephrase the definition of universal arrow as a natural

isomorphism.

Lemma 4.2.9. Let F': L — M be a functor of multicategories and X € M. The following

are equivalent:

1. A specified universal arrow (R, u) from F' to X,

2. A choice of object R € L and an isomorphism L(Ay, ..., Ay R) @ M(F Ay, ... ,FA,; X),

multinatural in the sense that for any f : Ay, ... ,A, — B the following diagram
commutes:
L(B; R) = M(FB; X)
() |

L(A1, ..., Ap;R) —=— M(FA;, ..., FA; X)

Proof. The direction (1)=(2) is clear. For the reverse, denote the isomorphism by ¢4, :
L(Ay, ... ,Ap;R) —> M(FAy,...,FA,; X) and its inverse by 14,. We show that u :=
or(idR) : FR — X is a universal arrow by showing that that ¢4, (—) is inverse to ¢r(idg) o
(P(-).

First, for any h : FAy, ... ,FA, — X, naturality of ¢ with respect to the multimap
Ya,(h) : A1, ..., A, — R gives the equation ¢r(idr) o (Fa,(h)) = ¢a.1pa,(h) = h.
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Second, let g : Ay, ..., A, — R. The naturality of 1) with respect to ¢ entails that
Ya,(Or(idR) o (F¢)) = Yror(idr) o (g) = g, as required. O

The category of multicategories MultiCat has products given as follows. For mul-
ticategories L and M the product L x M has objects pairs (M, N) € ob(L) x ob(M) and

hom-sets
(L X M)((A17B1)7 s 7(AnaBn)7 (X> Y)) = L(Ala" : 7ATL7X) X M(Blv 7Bn7Y)

Composition is defined pointwise:

OLxM

L(Au: X) x M(Ba; Y) x [T0, (L(Ts, A)) x M(A, By)) L(Te; X) x M(A,;Y)

— . (4.10)

(L(Ae; X) x [[Ly (LT3, 4) x (M(Bas Y) x T2, M(A;, B;))

The product structure is then almost identical to that in Cat. Then for every multicategory
L and n € N there exists a diagonal functor A” : L — L*" : X — (X, ...,X), and
Definition provides a natural notion of multicategory with finite products.

Definition 4.2.10. A cartesian multicategory is a multicategory L equipped with a choice
of universal arrow A"[[, (X1, ..., Xy) = (X1, ..., X,) from A™ to (Xy,...,X,) for every
X1, ..., XnelL (neN). <

Applying Lemma asking for a multicategory to have finite products is equivalent
to asking for a chosen sequence of linear multimaps (m; : [ [,,(X1, ... , Xn) = Xi)i=1, .. n,

inducing a multinatural family of isomorphisms
LT (X - X)) = (@ T (X -, X)) = TS LT XG) (4.11)

for every Xi, ..., X, €L (ne€N). One thereby recovers Lambek’s definition of cartesian

products in a multicategory [Lam89) §4].

Cartesian clones. We wish to extend the two definitions we have just seen from multicat-
egories to clones. Thinking of (sorted) clones as cartesian versions of multicategories suggests
the following construction, in which we re-use the notation of Notation (3.1.19| (p. .

Construction 4.2.11. Every clone (5, C) canonically defines a multicategory MC with

e 0b(MC) := 5,

o (MC)(Xy, ..., Xn;Y) :=C(Xyq, ..., X;Y)
Composition is defined as follows. For every family of multimaps ¢g; : I'; = Y; (i =1, ... ,n)
and multimap f: Y3, ... ,Y, — Z we define the composite fo{gi, ..., gn) in MC to be the

substitution f[g1 X - - X gn] in C. The identity idx x € (MC)(X; X) is the unary projection
p() € C(X, X), and the axioms follow directly from the three laws of a clone. “
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Notation 4.2.12. Motivated by the preceding construction, we shall sometimes write id 4

for the projection pgl) : A — A in a clone, and refer to it as the identity on A. <

It is clear that this construction extends to a faithful functor M(—) : Clone — MultiCat,

yielding a commutative diagram

Clone s MultiCat

% A (4.12)

in which the downward arrows restrict to unary/linear arrows. We define representability

and products in Clone by applying the definition to the image of M(—).

Definition 4.2.13.

1. A representable clone is a clone (S, C) equipped with a choice of representable structure
on MC.

2. A cartesian clone is a clone (S, C) equipped with a choice of cartesian structure on
MC. <

Example 4.2.14. Every category with finite products (C,II,(—)) defines a clone Cl(C)
(recall Example on page [36). This clone is cartesian, with product structure exactly

as in C. «

A clone may therefore be equipped with two kinds of tensor. In the representability
case, one asks for representable arrows X1, ..., X,, —» T,,(Xq, ..., X,). In the cartesian
case, one asks for universal arrows [ [, (X1, ... ,X,) — X; for i = 1, ... ,n. In terms of the
internal language, these may be thought of as tupling and projection operations, respectively.
Identifying representable arrows with a tupling operation (an identification we shall make
precise in Corollary , the question then becomes: how does one construct a tupling
operation given only projections, and how does one construct projections given only a
tupling operation?

In the light of Lemma[4.2.9] we can already construct a tupling operation from projections,
and so from cartesian structure. If MC has finite products witnessed by a universal arrow
7= (m,...,m)  [[,(X1, ..., X)) = (X1, ..., X,) for each Xy, ..., X, €S8 (neN),
then for every sequence of objects I' one obtains a mapping ¢r : [[i;(MC)(I'; X;) —
(MC)(T; [ T,,(X1, ..., Xn)) such that the following equations hold for every multimap
h:T —]][,(Xi1,...,Xy) and sequence of multimaps (f; : I' = X;)i=1, .. n:

wr(ﬂl[h], ,Wn[h]) =h and Wi[wr(fl, ,fn)] = fz (7, = 1, ,n) (413)

Thus, ¥p(—,...,=) provides a ‘tupling’ operation. This is substantiated by the next lemma.
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Definition 4.2.15. Let (S,C) be a clone. A multimap f : Xy,...,X, — Y in C is

invertible or an iso if there exists a family of unary multimaps (g; : ¥ — X;)i=1, .. » in

C such that f[g1, ... ,9n] = idy and g;[f] = pg?. for i = 1,...,n. If there exists an
invertible multimap f : Xy, ..., X, = Y we say X1, ..., X,, and Y are isomorphic, and
write X1, ..., X, =Y. <

A small adaptation of the usual categorical proof shows that inverses in a clone are
unique, in the sense that if f has inverses (g1,...,9,) and (¢},...,q)) then g; = g} for

1=1,...,n.

Lemma 4.2.16. Let (S,C) be a cartesian clone. Then, where the n-ary product of
Xi,...,X, € S(n e N) is witnessed by the universal arrow (71,...,m,) : [ [,,(X1,...,Xn) —
(X1,...,X5),

1 n .

¢X.(Pg(3a ,pg(.))[m, ey TR = [T (x1,X0)
Hence Xi,..., X, = [[,(X1,..., Xn).
Proof. For the first part one uses the two equations of (4.13)):
ox %) PN ol = 0, ) (e[ 0K DTl |) by (ET3)
1
= U1, x.) Wo[?ﬂx.(Pg() . 7|3g?))] [71, ... 77Tn]>

o .

(
= U1, X.) (pggz [71, ... ,Wn]) by
(

= id(1. x.) by (@E13)
Then (m; : [[,(X1,...,Xn) — Xi)i=1,..n and 1/1X,(|:)§2,...,pg?.)) form the claimed iso-
morphism. O

We now turn to examinining how representability (thought of as ‘tupling’) gives rise to

3

projections’. The next lemma is the key construction.

Lemma 4.2.17. For any representable clone (S,C) and X, ..., X, € .S (n € N) there exist
multimaps 7; : Tp,(X1, ..., X,) = X; (i =1, ... ,n) such that
T 0 px, = pg?. and  px, [71, ..., 7] = idHX.

where px, is the representable arrow.

Proof. By representability, we may define m; := (pg?.)ﬁ. The first claim then holds by
assumption. For the second, observing that (pX,)ti = id[ x,, it suffices to show that

px. 71, - ] [px.] = px,. But this is straightforward:

px.m, - ] [px.] = px.me[px.]] = px. [P(l), ,P(")] = pX.
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Another important consequence of Lemma, is that, in the case of clones, repres-

entable arrows are always closed under composition.

Lemma 4.2.18. For any clone (S, C), the multicategory MC is representable if and only
if for every Xy, ..., X, € S (n € N) there exists a chosen object T, (X1, ... ,X,) and a
representable multimap px, : X1, ..., X, — Tp(X1, ..., X,).

Proof. Tt suffices to show that, for any clone (5, C), the representable multimaps in MC are

closed under composition. Suppose given representable multimaps

PX. 3D, ST, €} _’Tn(Xh 7Xn)
Py, Y1, o Y o Tm(Yla 7Ym)
P(TX,,TY,) * T, X., TpYe — TQ(TnXoa TmY;)

We want to show that the composite p(rx, Tv,) © {px.,py., in MC, which is the compos-
ite perx. va)lpx. B pv.] = perx. v [px. [PY, o ™ oy [p™ Y, L p( ™ ] in C s
representable.

By Lemma we may define multimaps

T Ta(Xy, ., X)) — Xy fori=1,...,n
773-/' m(Y1, ..., Yp) =Y forj=1,...,m
TQ(T Xo, T1pYe) - T, X
TQ(T X., T Y,) - T,,Y,
Then, setting
X; fori=1,...,n
Ziiz
Yin fori=n+1,...,n4+m

we define 7; : To(T), X,, T),Ys) — Z; by iterated applications of m;:

WX[Wf(Y] forl1<i<n
= oy (4.14)
ﬂiY_n[@ ] forn+1<i<n+m
The rest of the proof revolves around proving the following two equalities in C:
p()
X, ..., X, Y1, ... Yy, —mMm— 7,
[Px.py.]l %i (4.15)
TpXe, TrYo ——— To(T, X,, T, Ys)
P(TXe,TYe)
T2(TnXoa TmK) _— TQ(TnXu Tm)/o)
[71, ... ,ﬁ,ﬁm]l TP(TX.,TY.) (4'16)

X, ..., Xy, .Y, —— T, X,,T,Y,
[PxoXpy, ]
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Indeed, if these two diagrams commute, then for any ¢ : Xy, ... ,X,, Y1, ... ,Y,, > A one
may define g* : To(T, X, T,,Ys) — A to be the composite g[71, ... ,Tpim]. It then follows
that that (—)ﬁ is the inverse to precomposing with p := p(rx, 1v,)[px. X pv.]:

_ _ _ o _ _, @&15) ntm
9171, - T [7) = g1 [7), - Foelpl] S g[p0, . p )] = g
while, for any h : To(T, X., T, Ye) — A,

= — (4.16) 1
mpl [, - Fwem) B2 A, | =
as required.

It therefore remains to establish the commutativity of the two diagrams above. We
compute (4.15)) directly. For example, for 1 < i < n, unfolding the universal property of
each of the projections gives

Tilprx. v | [ox, Ry, ] = mF :Wf(’y] [orx. mva) [px. B pv.]

= _Wf(’Y [P(TX.,TY.)]] [px. & py.]
= pElT)X.,TY.)] [px, <] py, ]

i‘X pE'lr)XhTy,) [PX. pY.]]

=X ipX. [p(l), ,p(”)]]
= Wf([px.][p(”’ ’p(”)]
— p® [pu), . 7p<n>]

0

as required. For (4.16)), Lemma entails that
el = o [ [ ] = o ] =

and hence that

peexarya | px [P | v [P || (7] = pex v lox. 7). pre 7]

. XY _X)Y
= P(TX.,TY.)|T™1 579

= id(Tx,,TV))
as required. O

We now make precise the sense in which the inverse to precomposing with a representable
arrow provides a tupling operation. The product structure on a representable clone is, as

expected, given by the 1-cells constructed in Lemma [£.2.17]
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Lemma 4.2.19. For any clone (S, C), the following are equivalent:
1. (S,C) is representable,

2. (5,C) is cartesian.

Proof. We prove the forward direction first. Suppose px, : X1, ..., X, » Tp(X1, ..., Xp)
is representable; we claim the required universal arrow is given by the sequence of multimaps
(71, oo y7n) : AT (X, ..., X)) — (X1, ..., X,) defined in Lemma To this end,
let (fi : T — Xj)i=1,..nin C. We set Yr(fi,...,fn) : I = Tp(X1, ..., X,) to be the
composite px,[f1, .- fu]-

By Lemma [4.2.17],
70 (Wr(fis s fa)) = milpxa [ Fall = P - f] = o

for i = 1,...,n, so it remains to show that ¢p(m[h], ... ,m[h]) = h for every h :
I' > T,(X1, ...,Xn). Applying the lemma again,

"Lﬁp(?‘d’l[h], ,ﬂ'n[h]) = px.[ﬂ'l[h], ,ﬂ'n[h]] = px.[ﬂl, ‘e ,ﬂ’n] [h] =h

as required.
We claim that pyx, := wX.(P;z, ,pg?.)) (X, X = [ (X, -, X)) s repres-
entable.

To this end, suppose h : X1, ..., X, — A. We define h' : [1,(X1,...,X,) > Atobe

the composite h[my, ... ,m,]. Then

W lpx.]

hlmy, ... ] [1/1F(I3§2’ ’Pg?.))]
e, )]

[ p¢]

h
h
h

so the existence part of the claim holds. It remains to check the equality (f[p X.])Jr = f for
an arbitrary f:[[,(X1, ..., X,) — A. Examining the equality

(o) = floxdlm, -smal = £ KL - DL, ol

it suffices to show that ¥ x, (pg%z, cee pg?.))[m, ... ,Ty] is the identity. This is Lemma|4.2.16
O

We summarise the last two results in the following theorem. The final case is Lemma[£.2.9]
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Theorem 4.2.20. For any clone (S, C), the following are equivalent:
1. (S,C) is representable,

2. For every X, ..., X,, € S (ne N) there exists a choice of object [ [ (X1, ...,X,) €S
together with a representable multimap px, : X1, ..., X,y = [ [, (X1, ..., X»),

3. (5,C) is cartesian,

4. For any X1, ...,X, €S (ne N) there exists a chosen object [ [, (X1, ... ,X,)€e S
and an isomorphism (MC)(T;[],(X1, ..., Xy)) = [T, (MC)(T; X;), multinatural in

the sense that for any f : I' — A the following diagram commutes:
(MC) (F; Hn(X17 s 7X7‘L)) é H?:l(MC)(F; XZ)

(1o R
(MC)(A; T, (X1, -+ X)) —=— [Ti, (MC)(4; X;)

O

In the case of clones, therefore, the two approaches to defining product structure—
Hermida’s representability or Lambek’s natural isomorphisms—actually coincide. We
tie this back to Hermida’s equivalence between monoidal categories and representable

multicategories with the following observation.

Corollary 4.2.21. For any representable clone (S,C), the monoidal structure on the

category MC associated to MC is cartesian.

Proof. The required natural isomorphism follows by restricting the isomorphism (4.11)) to

linear multimaps. Explicitly, the n-ary product of Xy, ..., X, is [ [,,(X1, ..., X,), and the
projections are 7; : [ [, (X1, ..., X,) — X;. The n-ary tupling of maps (f; : A — X;)i=1, .. n
is given via the representable arrow px, for X1, ..., Xy, as px.[f1, --- , [n]- O

It is reasonable to suggest that one could refine Hermida’s 2-equivalence between
monoidal categories and representable multicategories to a 2-equivalence between cartesian
categories and representable clones; the calculations required would take us beyond the
theory we shall actually need, so we do not pursue the point here. Instead we turn to the

syntactic implications of the theory just developed.

4.2.2 From cartesian clones to type theory

From cartesian clones to cartesian categories. In Chapter 3| we saw that the free
category on a graph could be constructed by restricting the free clone on that graph to its
unary operations. This fact extends to cartesian clones and cartesian categories. To show
this, we need to enrich our notion of signature to include product structure. The definition
was already hinted at in Example
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Definition 4.2.22. A A*-signature S = (B, G) consists of
1. A set of base types B,

2. A multigraph G with nodes generated by the grammar

A, .. Ay =B |]],(A1, ..., Ay) (Be®B,neN) (4.17)

If the graph G is a 2-graph we call the signature unary. A homomorphism of A*-signatures
h:S8 — &' is a multigraph homomorphism h : G — G’ which respects the product structure
in the sense that A([ [, (A1, ... ,4,)) = [, (A1, ... ,hA,). We denote the category
of A*-signatures and their homomorphisms by A*-sig, and the full subcategory of unary

A*-signatures by Ax—sigf 1 <

Notation 4.2.23. For any A*-signature S = (B, G) we write B for the set generated from
B by the grammar (4.17) (equivalently, the set Gy of nodes in G). In particular, when the
signature is just a set (i.e. the graph G has no edges) we denote the signature S = (8, S)

~

simply by 5. <
The following lemma mirrors the situation for graphs and 2-multigraphs.

Lemma 4.2.24. The embedding ¢ : AX—Sig|1 — A*-sig has a right adjoint.

Proof. Define the functor L: N-sig — Ax—sig|1 to be the restriction of the corresponding
functor £ : MGrph — Grph. Thus, L restricts a signature (B, G) to the signature with base
types B and multigraph £G containing only edges of the form X — Y. This is a right adjoint
to the given inclusion because L is right adjoint to the inclusion Grph < MGrph. OJ

Every cartesian category (C,II,(—)) has an underlying unary A*-signature with edges
X — Y given by morphisms X — Y in C (c.f. [Cro94, Theorem 4.9.2]). Similarly, every
cartesian clone (5, C,II,,(—)) has an underlying A*-signature with the edges given by mul-
timaps. We wish to construct the free cartesian clone over such a signature. Theorem 4.2.20
guarantees that it is sufficient to add a representable arrow Ay, ... , A, =[], (41, ..., Ay)
for every sequence of types Ay, ..., A, (n € N). For the construction we follow the forward
direction of the proof of Lemma [4.2.19
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Construction 4.2.25. For any A*-signature S = (8, G), define a clone (Gp, FC1*(S)) with

sorts generated from B by the rules
Ay, ... Ay =B [[,(41, ..., Ap) (Be®B,neN)
as the following deductive system:

ceG(Ay, ..., Ay B)
ce FCIX(S)(Ay, ..., Ay B)

o PO )

feFCIXS) (A1, ..., Au; B) (g1 € FCIX(S)(Xu; 4)))
flgrs -+, gn] € FCIX(S)(X.; B)

i=1,...n

tup,, € FCIX(S) (A1, ..., A [ [, (A1, ... L Ay))

@ (I1<i<n)
(7
proj,. € FCIX(S) (T [,,(A1, ..., An); 4i)
subject to an equational theory requiring
e The clone laws hold with projection pg). and substitution f[g1, ..., 9gn],
° projg). [tupA.] = pfﬁ fori=1,...,n,
o tup,, [projff.), ,projgl.)] = Pglr)[ A <
The clone FC1*(S) is cartesian because it is representable. Indeed, for any A;, ..., A,, B €
Go, the equational laws ensure that the map (—)otup 4, has inverse (—) [projz(ﬁ), cee projff.)],

giving rise to the required natural isomorphism FCI*(S)([ [,,(A1, ... , 4n); B) = FCI*(S)(44, ...

In order to state that this construction yields the free cartesian clone, we need to define
a notion of product-preserving clone homomorphism. This is the clone-theoretic translation
of Definition [2.2.11] requiring that the universal arrow is preserved.

Definition 4.2.26. A cartesian clone homomorphism h : (S,C,II,(—-)) — (T,D,II,(—)) is a

clone homomorphism A : (S, C) — (7', D) such that the canonical map ¢y 4, (71, ... , hmy) :

h(I1, (A1, ..., An)) = I, (RA1, ..., Ay) is invertible for every Ay, ... , A, €S (neN).
We call h strict if

W1, (A1, ... Aw) =1, (hA1, ... hA,)
h(nfe) = (]_[n(hAl, C L hAY) T h(Ai)) (i=1,....n)
for every Ay, ..., A, €S (neN). <

Lemma 4.2.27. For any cartesian clone (T,D,II,,(—)), A*signature S and A*-signature
homomorphism i : § — D, there exists a unique strict cartesian clone homomorphism
h? : FC1*(S) — D such that h# ot = h, for ¢ : S < FCI*(S) the inclusion.

7An;B>-
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Proof. We define h# by induction. The requirement that h# o . = h completely determines
the action of A on objects, and also entails that 27 (c) = h(c) on constants. On multimaps,

the clone homomorphism axioms require that we set

h# (PX) ) 1= |3§L;)#A

W (flgss - gal) = (R 7 (00), - 0% (90)]

The definition on proj(i) is determined by the hypothesis. Finally, on tup we set h# (tu p A_) =
Ph#(A,), SO that h# sends tup 4. to the representable arrow on Ay, ..., A, (which exists
by Lemma . For uniqueness, it remains to show that the action of h# on tup is
determined by the hypotheses. For this, consider

P(h#As) = P(h# As) PS;;( A aIJ,(ﬁe)(A.)]
B LU %]
= piwan) |1 (roflpa)), - .1 (prof®™[p..]) | by Lemma 217
— piwt )| P (pro) [ (pa) | - 1# (proj™) [ ¥ (pa.) |
= p(n# A.) 771[ ] [h# PA. )H by cartesian
= P(h#A.) [71, ... [h# ] by Lemma
=p{] a [h#w.)]
= h*(pa.)

Hence, the action of any clone homomorphism satisfying the two hypotheses is completely

determined, and h# is unique. O

The term calculus corresponding to the deductive system of Construction is
specified by the following rules:

1. For every sequence of types Ay, ..., A, (n € N), there exists a type [ [,,(A1, ..., An),

2. For every context xq : Aj, ... ,x, : A, there exists a multimap with components
A, oo Ay = [, (Al ... Ay); that is, a rule

4.18
;U1:A1,...,Qj‘n:Anl—<.’B1,...,1‘n>2]_—[n(A1,...,An) ( )

3. An inverse to precomposing with {(z1, ... ,zy); following the proof of the forward

direction of Lemma [£.2.19] we require multimaps

(1<i<n)

P, (A1, ..., An) - mi(p) - A
such that the equations of Lemma |4.2.17 hold, i.e. that the equations

mi({x1, . xpy)=x; (i=1,...,n) and p={r(p), ..., m(p))

obtained by substitution both hold for any z1 : A1, ... ,2n : Ayandp: [ [, (A1, ..., 4yn).
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Thus, we recover the laws for products in the simply-typed lambda calculus, restricted to
variables, from purely clone-theoretic reasoning. The usual rules, defined on all terms, also

arise from our abstract considerations. Inspecting the proof of Lemma one sees that

for every (t; : I' — X;)i=1, .. »n the corresponding multimap I' — [ [, (X1, ... , X},) is given
by the composite px,[t1, ... ,ty]. Translating this into the syntax and using the standard
equality (x1, ... ,xn)[ti/zi] = {t1, ..., t,) defining the meta-operation of substitution, one

arrives at the rule
(Ot Ai)i=1,..m
'+ <t1, ,tn> : Hn(A1> ,An)
which, in the presence of substitution, is equivalent modulo admissibility to (4.18)). This is
subject to the two equations 7; ({t1, ... ,tny) =t; (i =1, ... ,n) and t = (w1 (t), ... , 7 (t)).

We therefore recover a presentation of products—modulo Sn—in the simply-typed

lambda calculus. More precisely, it is straightforward to see that for any A*-signature S
the clone FC1*(S) of Construction is canonically isomorphic to the syntactic clone
Cax(s)y of the simply-typed lambda calculus with products but not exponentials (recall
Example on page [37)). Lemma then implies that A*(S) is the internal language
of the free cartesian clone on S.

We are ultimately interested in the internal language of the free cartesian category on a
(unary) signature. For this we need to show that the cartesian category T(S)’ obtained
by restricting Cyx(s) to unary morphisms, is the free cartesian category on S. This is the
content of the next lemma, in which we call a cartesian functor strict if it strictly preserves
the product-forming operation and each projection. We write CartClone and CartCat for
the categories of cartesian clones and cartesian categories with their strict morphisms.

As a technical convenience—in order to obtain a strict universal property—we shall
assume that all the cartesian categories (resp. cartesian clones) under consideration have
unary products given in the canonical way: for every object A the unary product [ [,(A) is
exactly A (recall from Remark that this is a standing assumption for fp-bicategories).

Lemma 4.2.28. The functor (—) : CartClone — CartCat restricting a cartesian clone to

its nucleus has a left adjoint.

Proof. We show that for any cartesian category (C,II,(—)), cartesian clone (T',D,II,,(—))
and strict cartesian functor F : C — D there exists a cartesian clone PC and a strict
cartesian clone homomorphism F# : PC — D, unique such that F#=F.

Define PC as follows. The sorts are the objects of C and for hom-sets we take
(PC) (X1, ..., X;Y):=C(Xy x--- x X;,;Y)

The substitution t[ug, ... ,uy] is defined to be the composite ¢ o {uy, ... ,u,) and the
projections pg?. are the projections m; : [ [, (X1, ... ,X,) — X; fori =1, ... ,n. Since we
assume the unary product structure on C is the identity, its cartesian structure immediately
defines a cartesian structure on PC. Note in particular that PC has the property that

(PC)(X1, ..., X Y) = (PCO)(I[,,(X1, ..., Xn);Y).
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Now, PC is the cartesian category with objects those of C and hom-sets of form
C(JT;(X),Y). So PC = C. We therefore take the unit to be nc := idc.

Next suppose that F': C — D is a strict cartesian functor. The functor F# is exactly F
on objects, while for a multimap t: X1, ..., X,, > Y in PC we define

w .( (1)’-“1 (n)) F
F#(t) == (FXy, ..., FX, 222 2% L FX; = F(TT, Xi) —5 FY)

By the assumption that unary products are the identity, F#(u) = F(u) for every unary
morphism u : X — Y. In particular, this holds for the projections 7;, so F# is a strict

cartesian clone homomorphism.

Finally, suppose that G : PC — D is any strict cartesian clone homomorphism satisfying
G = F. Since 0bPC = 0bC we must have FX = GX on objects. On arrows, note first that

G preserves the tupling operation:

G(¢X.(p(1), ey p(”)))
=1d[] ex [Gux. (pY, ..., p™))]
= vox. (pW, ..., p™) w1, ..., 7] [G(ibx.(p(l), o p(n)))] by Lemma

— ax.(pV, ... p™)[Gry, ..., Gy [G(qu. W, ..., p(”)))] by strict preservation
= tax,(pW, .. p™)| Gl v, (07, p)))|

= vax.(pM, ..., p™) [G(p(l)), e ,G(p("))] by equation (4.13))
= Yax.(p%, ..., p™)

It follows that, for any ¢ : X1,..., X, — Y in PC,

F#(t) = (F)[vrx.(pV, ..., p™)]
= (Gt)[ax. (P, ..., pM™)]
= (Gt)[Yax, (W, ..., pM™)]
= G(tlyx. (P, ™))
=G(tolmy,...,m))

— Gt

where the penultimate equality uses the fact that the cartesian structure of the clone PC is

inherited from that of the category C. Hence G = F7, as required. OJ

With this lemma in hand, one obtains a diagram restricting (3.1]) (p. to the cartesian

setting; the construction of the free cartesian category FCat™ (S) on a unary A -signature S
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is standard (c.f. the construction of the free cartesian closed category in [Cro94, Chapter 4]):

CartClone

\V )

T K

sig Fere) Foat () CartCat (4.19)
\ /

Ax—sig‘ 1

A

Moreover, the outer diagram commutes and, as we observed in the proof of the preceding

lemma, (T) o P = idcartcat- One thereby obtains the following chain of natural isomorph-

isms (c.f. equation (3.2)):
CartCat(FCat* (S), C) = CartCat (P(FCatX(S)),C) ~ CartCat(FClX(LS)),C) (4.20)

Hence, just as it was sufficient to construct an internal language for (bi)clones to describe
(bi)categories, so it is sufficient to construct an internal language for cartesian clones—namely
the simply-typed lambda calculus with just products—to describe cartesian categories.
Our aim in the next section is to reverse this process: we shall lift the theory just
presented to the bicategorical setting, and use it to extract a principled construction of the

type theory Aj; with finite products.

4.2.3 Cartesian biclones and representability

Representable bi-multicategories. Our first step is to bicategorify the definition of
multicategory. Multicategories can be defined in any monoidal category (e.g. [YaulG,
Definition 11.2.1]); taking the definition in Cat with the product monoidal structure and
weakening the equalities to isomorphisms suggests the following definition (c.f. also the

definition of cartesian 2-multicategory [LSR1T]).

Definition 4.2.29. A bi-multicategory M consists of the following data:
o A class 0b(M) of objects,

e For every Xy, ..., X,,Y € ob(M) (n € N) a hom-category (M(Xq, ..., X,;Y),e.id)
consisting of multimaps or 1-cells f : X1, ..., X, — Y and 2-cells 7 : f = f/, subject

to a wertical composition operation,
e For every X € ob(M) an identity functor Idx : 1 - M(X; X),

e For every family of sequences I'1, ... ,T',, and objects Y1, ... ,Y,,, Z(n € N) a horizontal

composition functor:
orvez : MY, oo Yo Z) x [T M(D3Ys) > M(Tq, - T Z)

We denote the composition or,.y,.7 (f, (g1, .- ,gn)) by folgi, ..., gn),
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e Natural families of invertible 2-cells

afgehe t (Folge)) o B, n® B RIS o Fodgro (Y, L g o (RSN
re: f:> fo<1dy1, ,Idyn>
ly:Idzo(f)=f

forall f: Y3, ..., Yo — Z, (9 : X\, o X0, = Yi)icy, . wand (B2 AP > XDy,
1=1,...,n

This data is subject to a triangle law and a pentagon law:

r#0{g1y e \gny
folgr, - y9n) = (fodld, ... ,Id)) o<g1, .- , gn)
H J/a(f;ldy.;g-)
fO<gl,...,gn>(mfo<1do<g1’...,gn>,...,Id0<gl7...,gn>>

((f . <g,>) . <h,>) . <z,> A(fodgeiheiie) y (f o <g.>) o <h. o <z.>>
a(f;g-;i.)°<i'>l la(f;g-;h-0<i.>)
(f 0<ge o Cha))) o Gio) fol(geolhe))oia)) ———— fo(geo(heois)))

figeolhe)iie)
fo<a(91§h-;i-)’ ’a(gn;ho;io)>

A multimap (resp. 2-cell) of form f: X — Y (resp. 7: f = f': X > Y) is called linear. «

Notation 4.2.30. Note that, just as for clones and multicategories, we use square brackets
to denote biclone substitution and angle brackets to denote bi-multicategory composi-
tion (c.f. Notation 4.2.2)). <

Remark 4.2.31. It is natural to conjecture that a construction similar to Construc-
tion [3.1.16| would enable one to construct the free bi-multicategory on a 2-multigraph
and hence a linear version of Agisd. Then the argument of Section should readily extend

to a coherence theorem for bi-multicategories. <

Examples of bi-multicategories arise naturally, mirroring the 1-categorical situation.
Every bi-multicategory M gives rise to a bicategory M by restricting to the linear multimaps
and their 2-cells (c. f. Example ), and—by the following lemma—every monoidal
bicategory gives rise to a bi-multicategory (c.f. [Her00, Definition 9.2]).

Lemma 4.2.32. Every monoidal bicategory (B,®, ) induces a bi-multicategory.

Proof. By the coherence theorem for tricategories [GPS95], we may assume without loss of
generality that the monoidal bicategory is a Gray monoid, i.e. a monoid in the monoidal
category Gray (see e.g. [Gurl3l Chapter 3] and [HouO7, Definition 3.8]). Since Gray
monoids also satisfy a coherence theorem, we may assume that the underlying bicategory
B is a 2-category, and that any pair of composites of the structural equivalences a4 g c :
(ARB)®C > A®(BRC),la: I®A—> Aandrg: A®I — A are related by a unique
isomorphism (see [Gur06, Theorem 10.4] and [Hou07, Theorem 4.1}).
The bi-multicategory { B has objects those of B and hom-categories ({ B) (X1, ..., X,,;Y) :=

B(X1®---®X,,Y), where we specify the left-most bracketing (((X1®X2)®X3)®- . ~)®Xn.
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For sequences of objects T'; (A(Z))J 1,...m; (1 =1, ..., n)and multimaps (g; : I'; = X;)i=1,

and f: X1 ®---® X, = Y, the composite fo{g1, ... ,gn) is defined to be
Ai”@...®A¥)®...®A%®...®Ag)® ®A(" i@ @190 X,® X, Ly

where the equivalence is the canonical such. By the coherence theorem for Gray monoids,
there is a unique choice of isomorphism for each of the structural 2-cells, and these must

satisfy the triangle and pentagon laws. O

For morphisms of bi-multicategories we borrow the terminology from Bicat. Thus,

bi-multicategories are related by pseudofunctors, transformations and modifications.

Definition 4.2.33.
1. A pseudofunctor F : M — M’ of bi-multicategories consists of:

a) A map F : ob(M) — ob(M') on objects,

b) A functor Fyx,.y : M(Xy, ..., Xp;Y) > M/(FXy, ... ,FX,; FY) for every
sequence of objects X1, ..., X,,Y € 0b(M) (neN),

¢) An invertible 2-cell ¢¥x : Idpx = Fldx for every X € ob(M),

d) An invertible 2-cell ¢y, @ F(f) o (Fg1, ... ,Fgn) = F(fo{g1,...,gn)) for
every f: Xy, ..., X, =Y (neN)and (g; : I'y = Xj)i=1,... n in M, natural in
the sense of Definition [1.2.3|([2).

This data is subject to the following three coherence laws:

Idpy o (Ffy —5 4 Fy

sancer)| o
F(Idz) o (Ff) — F(IdZ o <f>)
Paz:r)

Ff— ™ P (foldy, ..., 1dy.))

I’Ffl Td’(f:ldFY.)

F(f) o <IdFy17 . ,IdFyn> — F(f) o <FIdy1, ey FIdy">
F(f)olyy ;- sy, )

(Ff o (FPg)) o (Fhay — 52250y P(f)o (Fayo (FRY), ... Fagyo (L") )

D (f1g0)0(Fhe) lF(f)o@(gl;h.), s Blgnine)
F(fodge)o(Fhe) Ffo{F(goh™h), ... Fgno ™))
Pgetourhe i¢(f;g.o<h£.)>)

F((f2(ge) 0 (he))

Facraeme) F (f o <g1 o <h£1)>, cetyGn © <h£n)>>>



4.2. PRODUCT STRUCTURE FROM REPRESENTABILITY 101

2. A transformation (a,@) : F = F’ between pseudofunctors F,F' : M — M of

bi-multicategories consists of

a) A linear multimap ax : FX — F'X for every X € M,
b) A 2-cell @ : az o (Ff) = Gfolay, ..., ,ay,) forevery f:Yi,...,Y, > Zin
M, natural in f in the sense of Definition [4.2.3|{2).

This data is subject to the following associativity and unit laws for every f :
Yl, . ,Yn — Z and (gi : Fi — Y;)i=1,...,n in M:

Yy olay)

IdGY o <ay> GIdy o <ay>

layl Taldy

ay ——— ay o{ldpy) —— ay o (Fldy)
Fay ayo(y)

ay P (f94))
ay o{(F(f) o(Fgs))) — ay o(F (f o {gs)))

Aay;;FfiFge)

(ay o(Ff)) o{Fgs)
EfO(Fg.>J/
(G(f) olay,, ... ;ay,)) o(Fgs)
a(Gf;ay.:Fgo)l
G(f) olay, o(Fgr), ... ,ay, o{Fgn)) Tfolged
GOy )|
G(f)o{Gg o{ar,), ... ,Ggnolar,))

-1
a(Gf;Ggo;ao)J/

(G(f) (G, ... ,Ggn)) o (o) — G(f o (g)) o (an)
Note that, where I'; := Agi), e ,A%)i, we write ar, for the sequence CNCIRRRRCNOR
1 my

3. A modification = : (o, @) — (B, ) between transformations (a, @), (3,8) : F = F' is
a family of 2-cells Zx : ax = Bx such that the following diagram commutes for every
fy, ...V, -2

az o(Ff) Sl Bz o(Ff)
afl lﬁf
G(f)O<OCY17'~-705Yn> >G(f)O<BY17"'7/8Yn>

G(f)oByy s - Byp)

One would expect that bi-multicategories, pseudofunctors, transformations and modific-
ations organise themselves into a tricategory; we do not pursue such considerations here.
Instead, we lift Hermida’s notion of representability to bi-multicategories. As usual, it is

convenient to require as much as possible of the definition to be data.
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Definition 4.2.34. A representable bi-multicategory (M, T,,) consists of the following data:
1. For every Xi,...,X,, € M (n € N), a chosen object T, (X1, ... ,X,) € M and
chosen birepresentable multimap px, : X1, ..., X, — Tp(X1, ..., X},), such that the

birepresentable multimaps are closed under composition,

2. For every A, X1,...,X,, € M (n e N), an adjoint equivalence

(5)olpxer
/—\
M(Tn(Xb 7Xn)’A) L= M(Xla aXnaA)
\_/

X,
specified by a choice of universal arrow ex, . <
The birepresentability of px, entails the following. For every f: Xy, ..., X, — A we
require a choice of multimap ¢x, (f) : Tn(X1, ..., Xn) — A and 2-cell ex,.r : ¥x,(f) ©
{px.,> = f. This 2-cell is universal in the sense that for any g : T,,(X1, ..., X,) —> A and

o:go{px,) = f there exists a unique 2-cell 0¥ : g = ¥x, (f) such that

golpxsy — 250 s e (F) o dpx

\ % (4.21)

f

Remark 4.2.35. Hermida’s construction suggests that every representable bi-multicategory
ought to induce a monoidal bicategory, and indeed that there exists a triequivalence between
representable bi-multicategories and monoidal bicategories. Here we shall restrict ourselves
to proving that every representable biclone induces an fp-bicategory: a considerably easier

task, as one only needs to check a universal property, rather than many coherence axioms. <«

Following the 1-categorical template of Section we next examine the construction
of finite products in a bi-multicategory. To avoid the double prefix in ‘fp-bi-multicategories’

we refer to such objects as ‘cartesian bi-multicategories’.

Cartesian bi-multicategories. Once again, we translate between the categorical and

bicategorical settings by replacing universal arrows with biuniversal arrows.

Definition 4.2.36. Let F' : M — M’ be a pseudofunctor of bi-multicategories and X € M’.

A biuniversal arrow (R,u) from F to X consists of

1. An object Re M,
2. A linear multimap u : FR — X,

3. For every A € M, a chosen adjoint equivalence
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uo(F(=))
/\
M(Al, ,An;R) 1~ M,(FAl, ,FAn;X)

\¢/

specified by a choice of universal arrow e, : wo(F1a,(h)) = h: FA;, ... ,FA, > X
(c.f. Definition [2.2.2)). “«

We translate this into a ‘global’ definition in the by-now-familiar way.

Lemma 4.2.37. For any pseudofunctor of bi-multicategories F' : M — M’ and X € M’,

the following are equivalent:

1. A choice of biuniversal arrow from F to X,

2. Chosen adjoint equivalences k4, : M(A1, ... ,Ap;R) S M/(FAy, ... ,FA; X) : 04,

for Ay, ..., A, € M(n € N), specified by a choice of universal arrow and pseudonatural
in the sense that for every f : Ay, ..., A, — R and (g; : I'i = A;)i=1, .. n there
exists an invertible 2-cell vy.g, : ka,(f) 0 (Fg1, ..., Fgn) = ka, (fo{g1, ... ,9n)),
multinatural in f, g1, ... , g, and satisfying

pau(f) —2 9 (FodIda,)

T, (f)l T(Vf;IdA. )

ka,(f)odda,y — ka,(f) o(Flda,) (4.22)
KA (F)oCbe)

Ak Ay (£)iFge;Fhe)

(k. (f) 0 CFga)) o (Fhay —— ka,(f) o (Fgro (PR, ... Fgy o (FR{))
Vigssayo(Fhe) lm. (D)o grihe)s - Domihe))
ke, (f ©{ge)) o (Fha) ka.(f) o <F(91 o(hMY), ... Flgno <h£">>)>
V(folge)ih) l”( Franothe)

wau((F o) o) s ma (Fo(mo ). o gao ™))
(4.23)

for I'; := Xfi), ,Xﬁz and (hg-i) : A;i) — X](i))j;l .

Proof. | (1)=(2)| By biuniversality, u o (F(—)) is part of an adjoint equivalence for every

A, ..., A, € M (n € N), so it remains to check pseudonaturality. Taking k4, to be
uo(F'(—)), we are required to provide 2-cells vy,q, of type (uo(Ff))o(Fgy, ... ,Fgn) = uo
(F(folg1, - - gny)), for which we take (uo(¢y.q,)) ® u;F f;rg, - The naturality condition and

two axioms (4.22)) and (4.23) then follow directly from the coherence laws of a pseudofunctor.
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(2)=(1) | This direction is a little more delicate, but we can follow the template provided

by Lemma Let us first make explicit the content of the adjoint equivalence

Ka, : M(Aq, ... Ay R) S M/(FAy, ... \FA,; X) 164,

Choosing a universal arrow entails that for every f : FAy, ... ,FA, — X there exists
a multimap &4, (f) : A1, ..., 4, — R and a 2-cell 67 : k4,04,(f) = f, universal in the
sense that for any g : Ay, ..., A, > R and o : k4,(g9) = [ there exists a unique 2-cell

of 1 g = 64,(f) such that

%,{A 5a.(f)

RN

We claim that v := kr(Idgr) : FR — X is biuniversal. Thus, for every f : FA;, ... ,FA, —

X we need to provide an arrow f : Ay,... A, — R and a universal 2-cell e 4,.7 : uo{(F f) = f

For the arrow we take f := 4, (f). For the 2-cell we make use of the naturality condition

to define € 4,7 as the invertible composite

wo (Foa.(f)) e » f
| [7
rwr(ldr) o (FoA(f)) 57 fa. (ldroQ0a.(f))) — rAOA,(f)
Ri%A, (. waels,, (n)
To establish universality, let g : Ay, ..., A, — R be a multimap and v : uo{(Fg) = f be

any 2-cell. We need to show there exists a unique 2-cell 7 : ¢ = f such that

oyt

uo(Fg) uo(Ff)
x f %f (4.25)

By the universal property (4.24)), to define v : g = f = 6.4, (f) it suffices to define a 2-cell
ka.(g) = f, for which we take

ks (l5") Mg

Oy 19 = KA. (9) == ra,(ldg 0 (g)) =5 k4, (Id) o (Fg) = f
We define 41 := (0, f’g)ﬁ. That this fills 1) is an easy check using the definition and
naturality of . For uniqueness, suppose ¢ : g = f = d4,(f) also fills (4.25). By the
universal property defining 7' it suffices to show that o is the unique 2-cell corresponding

to a. f4 via (4.24). This follows from the naturality of v and | and the definition of a, 4.

This completes the construction of an adjunction M(A1, ..., Ap; R) S M/(FAy, ... ,FA,; X);

to show this is an adjoint equivalence, we need to show the unit is also invertible. But

the unit is given by applying the (—)Jr operation to the identity, i.e. by applying the (—)jj

operation to an invertible 2-cell. This is invertible by Lemma [2.2.8 O
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The definition of product of multicategories lifts straightforwardly to bi-multicategories.
For bi-multicategories M and M’, the bi-multicategory M x M’ has objects pairs (X, X') €
ob(M) x ob(M’) and composition as in on page The structural isomorphisms are
given pointwise. Then there exists a canonical diagonal pseudofunctor A™ : M — M*" for

every bi-multicategory M and n € N. This suggests the following definition.

Definition 4.2.38. A cartesian bi-multicategory (M, 11,(—)) consists of a bi-multicategory
M equipped with the following data for every Xy, ..., X,, e M (neN):

1. A chosen object [ [, (X1, ..., X5),

2. A choice of biuniversal arrow 7 = (71, ... ,m,) : A™([ [, (X1, ..., Xpn)) = (X1, ..., Xy)
from A™ to (X1, ..., X,) e M*™. <

By the preceding lemma, a bi-multicategory is cartesian if and only if there exists a

pseudonatural family of adjoint equivalences
M T (X, -, X)) =~ MXY(A™MD); (X, ..., X)) = [T M(T5 X5)

The universal property therefore manifests itself as follows. For every sequence of multimaps

(ti : T' — X;)i=1, .. n there exists a multimap tup(t1, ... ,t,) : I' =[] (X1, ..., X,) and
a 2-cell w with components wg) smpotup(ty, oo, ty)y =t; fori =1, ... ,n. This 2-cell
is universal in the sense that, if u : I' — [[, (X1, ...,X,) and o; : m 0 (uy = t; for
i=1,...,n, then there exists a unique 2-cell pf(ay, ..., an) : u = tup(ty, ... ,t,) filling
the following diagram for i =1, ... ,n:
o duy — X0 o tup(t, )
\ (4.26)
wtl)

Finally, the unit 7, := pT(idmO<u>, ey idg o) T u = tup(m o (uy, ..., T 0 (uy) is required

to be invertible for every u : T' — [ [, (X1,... Xp).
Our next task is to extend the theory of representable and cartesian bi-multicategories

to biclones.
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Cartesian biclones. As we did for clones, we define products in a biclone by first defining
a bi-multicategory structure on each biclone (c.f. Construction 4.2.11)).

Construction 4.2.39. Every biclone (5,C) canonically defines a bi-multicategory MC as

follows:

ob(MC) := S,
(MC)(X1, ..., X} Y):=C(Xy, ..., X;Y),
Idy = p{" 1 1 - (MC)(X; X),

The composition functor (MC) (Y1, ..., Yn; Z)x[ [;=; (MC)(T;;Y;) — (MC)(T'y, ... ,Ty; Z)

is defined by
fo<g1, 7gn>:: f[glgn]

using the notation of Notation [3.1.19

The unitor structural isomorphisms are defined as follows, for f: Xy, ... , X, —» Y:
1 floh, 0] IIRE 1

o= [ ]| 2 [ ,pﬁ?] - 1

The associativity structural isomorphism is a little complex. Suppose given sequences

of objects I'; := B{i), ,Bg)i (i =1,...,n) and multimaps (g; : I'; = Yi)i=1,..n
and f:Y1,...,Y, > Z. Moreover suppose that Ag-z) = Agm), ,AIEZ(Z)].), and that
h;i):Ag) J(Z)for]—l ..,mjandi=1, ..., n.

Now, writing p(R) for the projection picking out the element R in the codomain, there

exists a map

hgi)[ﬁ(Agi’j)),...,E(A(i’:")‘))]:Agl),...,A(l) LA AW S BY (a7)

k(i my e
for every ¢ = 1,...,nand j = 1,...,m;. On the other hand, one may first
project out from the full sequence Agl), ,A%{, e ,Agn), ,A%LT)L to the sub-
sequence Agz), Aq(fl)l and then project again before applying h(z) Abusively writ-

ing [E(Agi)), ,p(A( ))] for the sequence [p(Agi’l)), ,p(A(l(ml)))] one thereby

obtains

Bt [p(A( N, ,E(A,ii(’i)j))] [mgﬂ), L PAD )] (4.28)

The pair of parallel multimaps (4.27)) and (4.28)) are related by a canonical composite

of structural isomorphisms:

n (A, - pall)] [Pt pag))|

J k(3,5
=~ . BAD), D), (4.29)
= hPp(Af), .. pal?))]

Making use of the same notation, (fo{g1, ... ,gn)) o<h§1)7 R h%i, ... ,hg"), ce h%{}

is
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f|-alpB) B ]| [P [l e
and fo<91 o<h§1),...,h£2>, ,gno<h§n), ,h523>> is

f[. .. ,gi[. s [p(AW), ,|3<A,gi(vg;)>], .. ] [ﬁ(Ag")), ,p(Agz{)], .. ]
SO @f.4,:he 1S the composite

Mo 8 @) [ 5 @A @ @b ]

ff;.qo;h.l

P =R = L A 3 L= B P |

El4.29

f[. N ,g,;[. D :.s(Agw ,E(A,f(vjj.))] [p(Ag“), ,|3(A$f;1)],...],...]

|

A n P [pat), Al ] [P eai)]

where the final isomorphism is the evident composite of structural isomorphisms in

(S,C) and fy,g,.p, is defined after Notation [3.1.19| (page .

The two coherence laws hold by the coherence of biclones. <

We now see where the awkwardness in the definition of pseudofunctors and transforma-

tions of biclones arises (Definitions|3.1.14] and [3.1.20)): the more natural definitions are for

bi-multicategories, and the versions for biclones arise via Construction 4.2.39

Notation 4.2.40. Following the preceding construction, we sometimes write Id4 for the
(1)

projection p;,” in a biclone, and refer to it as the identity on A. “«
Remark 4.2.41. For a biclone (S,C), the bicategory C obtained by restricting to unary
hom-categories is biequivalent to the restriction MC of the corresponding bi-multicategory
to linear hom-categories (c. f. ) Indeed, the objects and hom-categories are equal: the
only difference is that for f: X - Y and g: Y — Z in (5,C) the corresponding composite
in C is f[g] while in MC it is f[g[pg,l)]]. “

The definitions of representable and cartesian biclones are now induced from their
bi-multicategorical counterparts (c.f. Definition |4.2.13)).

Definition 4.2.42.

1. A representable biclone is a biclone (S,C) equipped with a choice of representable
structure T, (—) on MC.

2. A cartesian biclone is a biclone (S,C) equipped with a choice of cartesian structure

[1,,(—) on MC. «
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Remark 4.2.43. As for fp-bicategories, we stipulate that the unary product structure in a

cartesian biclone is the identity (c.f. Remark {4.1.3)). “«
For a clone (S, C), the mapping (—)[h] composing with a single multimap b : Xy, ..., X,, > R

is equal to the mapping (—) o (h) performing the same composition in MC, since for any
g: R — Aonehas go(hy = def g[h[pgg, ,pg?.)]] = g[h]. In the world of biclones,
however, the functors (—)[h] and (—) o (h) are related by a structural isomorphism (c.f. Re-
mark . Since (MC)(T'; A) = C(T'; A) for every I" and A, a choice of adjoint equivalence
Yx, : (MC)(Xq, ..., Xn;A) S (MC)(R; A) : (—) o<h) is equivalently a choice of adjoint
equivalence ¢’y : C(X1, ..., Xn; A) S C(R; A) : (=)[h]. (To see this, apply the fact that
for any morphisms f: X - Y and g,¢ : Y — X in a 2-category, if g =~ ¢’ then f and g
are the 1-cells of an equivalence X ~ Y if and only if f and ¢’ are the 1-cells of such an
equivalence.)

It follows that a representable biclone (S,C, T,,) is equivalently a biclone (S,C) equipped
with a choice of object T\, (X1, ..., X;,) and multimap px, : X1, ... , Xn = Tp(Xq, ..., Xp)

for every X1, ..., X, €S (neN), together with a choice of adjoint equivalence
C(X1, ..., X A) ~C(Tp (X1, ..., Xpn); A)

induced by pre-composing with px, for every A € S. Explicitly, this entails that for every
t: Xy, ...,X, — A there exists a chosen multimap vx, (¢) : Tp(X1, ... ,X,) »> A and a
2-cell ex,.r : ¥x.(f)[px.] = f, universal in the sense that for any g : T,,(X1, ..., X,) — A
and o : g[px.] = f there exists a unique 2-cell 0¥ : g = v¥x, (f) such that

glpx.] % Ux. (f)lpx.]
\ / (4.30)

A similar story holds for cartesian biclones. For a sequence of multimaps (m; : R — X;)i=1,.n
and u : I' - A; in the bi-multicategory MC associated to a cartesian biclone (5,C,II,,(-)),

there exists the following composite of structural isomorphisms:

mio{uy = m[ [pfﬂ), ,pgm)ﬂ >~ [u] [|31(“1)7 ,plqm)] ~ 7;[u]

It follows that the functor (m o{(—),... ,m,0{(=)) : (MC)(I;R) — [[;=,(MC)(T;X;)
is naturally isomorphic to the functor (mi[—], ... ,m[—]) : C(I}R) — [[,C(T;X;).
A cartesian biclone (S,C,II,(—)) is therefore equivalently a biclone equipped with a
choice of object [ [, (X1, ..., Xn) and multimaps (m; : [ [,,(X1, ..., Xn) = Xi),_,
every sequence Xi, ..., X, €S (neN), together with a choice of adjoint equlvalence
C(I;1L,(X1,...,Xpn)) ~ [[i-,C(I'; X;). The counit of this adjoint equivalence is then
characterised by the following universal property. For every sequence of multimaps
(ti : ' = Xj)i=1,... n there exists a multimap tup(ty, ... ,t,) : I' = [[, (X1, ..., X,) and

a 2-cell w with components wgf) smftup(ty, ...y tn)] =t for i = 1, ... n. This 2-cell is

for
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universal in the sense that, if u: I' — [, (X1, ..., Xy) and a; : mi[u] = t; for i =1, ... | n,
then there exists a unique 2-cell pi(ay, ... ,an) : u = tup(t1, ... ,t,) filling the following
diagram for i =1, ... ,n:

mi[u] —> mi[tup(ty, ... tn)]

\ % (4.31)

Rather than translating between compositions fo{gs) and f[ge] throughout, in what follows

we employ the biclone version of the universal property.

Remark 4.2.44. We have just shown that a biuniversal arrow in a biclone—defined
exactly as in Definition exists if and only if there exists a biuniversal arrow in the

corresponding bi-multicategory. <

Example 4.2.45. Every fp-bicategory (B, II,,(—)) defines a biclone Bicl(B) with sorts ob(B)
and hom-categories Bicl(B)(X1,...,Xn;Y) := B(][,,(X1,...,X5),Y) (c.f. Example
on page |87). The substitution f[g1,...,9n] is fo{g1,...,gny. This biclone is cartesian: for
the adjoint equivalence one takes the adjoint equivalence defining finite products in
5. <

The equivalence between representability and cartesian structure. Our aim now
is to prove a version of Theorem for biclones, establishing that a biclone admits a
representable structure (embodied by ) if and only if it admits a cartesian structure
(embodied by ) In the 1-categorical case the key to this equivalence is the construction

of a sequence of multimaps m; : T,,(X1, ..., X,) — X, satisfying two equations for i =
1, ... ,n. The corresponding bicategorical construction is up-to-isomorphism.
Lemma 4.2.46. For any representable biclone (S,C,T,,) and X1, ..., X,, € S (n € N) there
exist multimaps m; : Tp,(Xy, ..., X,,) — X; and invertible 2-cells ,ug?. cmilpx.] = pg?. and
Sx, s ldr, (xy,x0) = px T, -] (for i =1, ... n), as in the diagrams below:
W(X1, ., X
/ e \
Xy, ..
1 o0
Xla . 7Xn
[m1 ] PXe
fox
Tn(le 7Xn) Tn(X17 7Xn)

Id

Proof. Define m; := 9x, (pg?. ). For ug?., we may immediately take the universal 2-cell €y,

of (4.30). For ¢x, we apply the universal property (4.30) to the structural isomorphism

T
QEIT)n x.) to obtain an invertible 2-cell (Q%Z) s (1, x,) = ¥x.(px.). We complete the
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construction by defining a 2-cell px,[m1, ... ,m™] = ¥x,.(px.). Define ax, to be the
composite
(®)
> e [”X-] 1 o
px. 71, -] [px.] = px.mepx.]] =——— px. [p&f, m&?}] = pX,

Since this composite is invertible, by the universal property (4.30) there exists an invertible

2-cell (aX.)T cpx T, oo ] = ¥x, (px,). We therefore define gx, to be the composite
(1)T (O‘X ) 1
Id(rx,) == ¥x, (px.) == px.[71, ... , 7]
[

To bicategorify Lemma [4.2.19] we shall also employ a kind of ‘mirror image’ of the
preceding lemma, capturing the crucial construction available in the presence of cartesian
structure; this should be compared to the discussion preceding Definition (page .
Just as we had to generalise the notion of isomorphism for the clone case, so we need to

generalise the notion of (adjoint) equivalence for the biclone case.

Definition 4.2.47. Let (S,C) be a biclone.
1. An adjunction X ...,X, S Y in (S,C) consists of 1-cells e: X1, ..., X,, » Y and
fi:Y - X; (i=1,...,n) with 2-cells

|3§,):>e[f1,... fn] Y 5 Y

i filel=pY X Xa o X (i=1,...,n)

such that the following diagrams commute for i = 1, ... ,n:
n assocg o ]
oVl T el flle) =S el el g T AP L el Al
gg)l l@[i’fl, e sEn] ‘ Jassocfil;e%f-
1) (n) (i) ‘
€ Le pX""’pX. f’b (z) [fh"’?f’fl] Hfz[e][fl,-..,fn]
Ofe gilfi, . fnl
(4.32) (4.33)
2. An equivalence in (S,C) consists of 1-cellse: X1, ... , X, > Y and f;: Y - X; (i =
1, ... ,n) with invertible 2-cells
n: ; [fla"'afn]:Y_)Y
fl[ 15pY i Xp, o Xa = X (i=1,...,n)

3. A adjoint equivalence in (S,C) is an adjunction for which n and ¢; are invertible for

1=1,...,n. <

In particular, a unary (adjoint) equivalence X ~ Y is just an (adjoint) equivalence in

the usual, bicategorical sense.
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Lemma 4.2.48. For any sequence of objects X1, ..., X, (n € N) in a cartesian biclone
(S,C,II,(—)), there exists an adjoint equivalence between X, ... , X,, ~ [ [, (X1, ..., Xy).
Proof. We employ the notation of (4.31]) for cartesian structure. For the 2-cell
) :
7rz-[tup(pg(2, ,pg?.))] = pg?.

(@)

we can immediately take wy . The real work is in providing a 2-cell v : Idqyx,) =

tup(p, ..., p™)[ry, ..., m,]. By the universality of the counit w = (@™, ... ,@w™) it
suffices to define a family of invertible 2-cells (; : m; [tup(p(l), o p™) [, - ]| = mi
fori =1, ... ,n. We may then define v to be the composite

(1] Xe) tup(e !, h) (P11, e ) !

Id (17 x,) =—— tup(me [Id([] x.)]) =—— tup(m,) ————— tup(p*))[.]

where ¢ is the unit of the adjoint equivalence witnessing (71, ..., 7, ) as a biuniversal arrow.
The 2-cells (; are defined as follows:

A 1 o@D [r] . ()
T [tup(p(l), cee |3("))[7r.]] = T [tup(p( ). ,p(”))] [1re] =—— p[r.] o

Since each ¢; is invertible, pf(¢y, ..., () is also invertible. Checking that diagram (4.33)
commutes is straightforward; for (4.32]) one must use the universal property, checking that

both routes around the diagram are the unique 2-cell corresponding to the composite

T [tup(p(l), ™) [ [tup(p, .. ,p(”))]] mlf] T [tup(p(l), ,p(”))] 2 p®
where ; is defined to be

tup(p'®))[7.] [tup(p(‘))] == tup(p(‘))[w. [tup(p(‘))]] L)[WX'L tu|:)(p('))[p(’)] ; tup(p®)

fori=1,...,n. O

As for clones, the extra structure of a biclone entails that birepresentable arrows are

closed under composition. The strategy for the proof is familiar from Lemma [£.2.18]

Lemma 4.2.49. A biclone (S,C) admits a representable structure if and only if for every
X1, ..., X, € M (neN) there exists a chosen object Ty, (X1, ... ,X,) € M and a birep-
resentable multimap px, : X1, ... , X, = Tp(Xyq, ..., Xpn).

Proof. Tt suffices to show that birepresentable multimaps are closed under composition.

Mirroring the proof of Lemma suppose given birepresentable multimaps

PX, IXl, ,Xn—>Tn(X1, ,Xn)
Py, :}/17 7Ym _’Tm(Ylv 7Ym)
PIIxo[1Ys)  TnXe, TinYe — To(Tn X, Ty Ya)
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We want to show that the composite p(x, [[v.) © (Px.,py.) in MC, which is the com-

posite p := p(HX-,l_[Y-)[pXo [p(l), ,p(”)],py, [p("H), ,|)("+m)]] in C, is birepresent-

able. Define projections 7Tl-X s To(Xy, ..o, X)) — X, 71';/ TV, .o Ym) = Y
and 7%Y as in the proof of Lemma and likewise define a family of multimaps
i : To(TpXe, TYs) > Z; fori =1, ... ,n+m (where Z; is X; for 1 <i < nand Y,
forn+1<4i<n+m)asin ({@.14). Finally, for 1 < i < n define an invertible 2-cell

B . px. 71, - Tn] = ﬂ'f(’y : To(TrXe, TrnXe) — Ty Xe by

_ _ eI XY
px[1, - 7] ) X
x| XY x| XY
e S |
assoc,jj(. e ;ﬁll
X X XY XY
px. [t Ty ] [771 ] W Id(rx, [7?1 )]
Xe 1

We define 82 : oy s, oo Tnam] = W?’Y : To(TpXe, T Xe) — T, Y, similarly.

We are now in a position to define the pseudo-inverse to (—)o(p) : M(T2(TpXs, T Ya); A) —
M(X1, . o, X0, Y1, oo Yo A). For h: Xq, ..., X, Y1, ..., Yy, — A we define 1(h) to be
the composite

To(TpXe, TrYa) Ll e o X Vi, oo Y s A

in C; this mapping is clearly functorial. It therefore suffices to construct natural isomorphisms

idp(r(rx. v = (=) o p)) and idp(x,,... X, v, .. Vi) = ($(=)) 0(p); this lifts to an
adjoint equivalence between the same 1-cells by the usual well-known argument (e.g. [Mac98|
IV.3]).

To this end, let us define invertible 2-cells 7 and o; (i = 1, ... ,n + m) that will make
up the bulk of the required isomorphisms. The 2-cell 7 is defined as follows:

p(TX"TY') [pX‘ [p(l)’ ctty p(’ﬂ)]’ pYo [p(n+1)7 ceey b(n+m)]] [fla . e 7ﬁn+m] % IdT(TXhTY.)
P(TX.,TY.) [PX, [P(.) [ﬁO]] y PY, [P(.) [f.]]] C(_Tlx.,TY.)
perxa v [px.[o Lo, [mﬂ
T T 7 T XYy XY
p(TX.,TY.)[pX.[le-~~77rn]7pY.[7rn+17 o Tpgm]] ——— P(TX.,TY.)[Wl Uy ]

P(TXe,TYe) [5(1)1:6(2)]

The 2-cells o1, ... ,0,, on the other hand, are defined by the following diagram; the
definitions of o1, ... ,0n+m are the same, modulo the obvious adjustments.
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i perx. mv [px. [P, - p™] oy, [P, L pitm]]] —F— IJ%)l,A..,XmYl,...,Ym
e [ﬂf(yy][p(TXhTY.)[pX. [pD, ... p™], py. [p™ D, ... ptr ]
X 7 oerx. ool [ox. [PD), - p™ ], oy, [p™ Y, L p(mtm)]] o
[“(Tl))( TY.][pX. [P*].rv. [pm]u
[pg()] [ox.[p®, .. p™ ], py, [p D, . pltm)]]
¥ lox [P, ... p™] p@[p™M, ..., p™)]

}L();). [p(l), 7p(")]

The required natural isomorphisms are then defined to be the composites
— _ _ _ . a - gloe] ntm 1
Blg) o @) = glm1, - Fusml [1] 225 glralpl] £ g[pD,.. | = g
assoc h[7] Dt

J(h o(py) = h[p] [T1, ..., Tntm] == h[p[T1, ..., Tnim]] = h[IdT(TX.,TY.)] = h

for g : To(TyXe, T,Ye) > Aand h: Xy,..., X, Y1, ..., Y, — A a
We now prove the central result of this section.

Lemma 4.2.50. A biclone (5,C) admits a choice of representable structure if and only if it

admits a choice of cartesian structure.

Proof. Let px, : X1, ..., X, —» Tp(Xy, ..., X,,) be a birepresentable multimap. We

claim the sequence of multimaps (m; : Ty, (X1,..., Xy) — Xj)i=1,... n defined in Lemma

form a biuniversal multimap. We are therefore required to provide a mapping tup :

[T, M(T;X;) > M(I; Ty (X1, ..., Xy)) and a universal 2-cell with components wg?' :

m[tup(fl,(.').. s fn)] = fifori =1,...,n. We define tup(fi, ..., fn) := px.[f1, - - fnl
i

and set @y to be the composite

assoc™ ! MX),[ ] Q(i)

milox. [fis - fll == milox ] [f1 - Sl ==V [f1, . fa] = fi

For universality, suppose g : I' — Tp, (X1, ..., X,) and o; : mi[g] = fi fori=1,...,n. We
define 2-cell pf(aq, ... ,an) : g = tup(fi, ..., fu) by the commutativity of the following

diagram:

pias,...,an)

g >PX.[f17---7fn]
ngl)l TPX. [ce]
Id(rx,)[9] AT pxlm Tl 9] —sssoe, e pxImildls - maldl]

(4.34)
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where we employ the 2-cell ¢x, defined in Lemma For the existence part of the claim,

we need to check that the composite

IR 0
is equal to o for i = 1, ... ,n. Most of the calculation is straightforward; the key lemma is
that the following diagram commutes for i = 1,...,n:
e T
tr;
mi[ld(rx.,)]
7l'i[§X.] Q’<KZ-
milpx 71, - ]
assoc;il;px.m.
milpx.] 71, - ) — pO[my, ..., mp]
Hxo [7e]
For uniqueness, let g : I' — T, (X1, ..., X,) be any multimap and suppose that o : g =
tup(fi, ..., fn) satisfies wg?. em;[o] = aj fori =1,...,n. Substituting this equation into the
definition of pf(aq, ... ,a,) and using the above diagram, one sees that o = pi(ay, ... , o)

as required.
Finally, it remains to check that the unit and counit of the adjunction we have just

constructed are invertible. The counit is the universal 2-cell, which is certainly invertible.

The unit is constructed by applying pf(—, ..., =) to the identity, which is invertible since it
is a composite of invertible 2-cells.
For the converse, we claim that px, := tup(p%}, ... ,pg?.)) Xy X - LXK X))
is birepresentable. We therefore need to supply a mapping ¥x, : (MC)(X1, ..., Xp; A) —
(MC)([T,(X1, ..., Xn); A) and a universal 2-cell e44 : ¥x,(g9)[px.] = g. We define
Yx,(9) := g[m1, ... ,mp] and set €44 to be the invertible composite

glmi, oo ] [tup(pgz, ,pg?.))] A g

assoc ! L;l
gimestup(p(®))

g[w.[tup(pgpgﬁ))“ S >g[|a§3,...,|3§?3]
“Xe

For universality, let f : [[,,(X1, ..., X,) — A by any multimap and ¢ : f[tup(p(l), e p(”))] =
g be any 2-cell. We define §' as the following invertible composite, using the 2-cell v from
the adjoint equivalence of Lemma

f = f[pgll_)[X.)] LA]» f[tup(p&?f)[wb ,ﬂn]] Lfi f[tup(pg;z)] [7e] 6—[—71]> glme]

The rest of the proof is a diagram chase. To check the existence part of the universal
property one uses law (4.32)) of an adjoint equivalence; for uniqueness one uses (4.33)). Since
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8T is invertible whenever § is, the unit is invertible and one obtains the required adjoint

equivalence. O

We collect these results together to obtain a bicategorical version of Theorem
The final case is Lemma [4.2.37]

Theorem 4.2.51. Let (S,C) be a biclone. Then the following are equivalent:

1. (S,C) admits a representable structure,

2. For every Xy, ... ,X, € S (n e N) there exists a choice of object [],, (X1, ..., Xy)
and a birepresentable multimap px, : X1, ..., Xy — [[,,(X1, ..., Xy),

3. (5,C) admits a cartesian structure,

4. For every X1, ..., X, €S (n € N) there exists a choice of object [ [, (X1, ..., Xy)
together with a chosen family of adjoint equivalences (MC)(T; [, (X1, ..., Xn)) ~
[T, (MC)(T; X;), pseudonatural in the sense of Lemma [4.2.37((2). O

Restricting to unary hom-categories, case of the theorem entails the following.

Corollary 4.2.52. For any representable biclone (S, C, T,,), the nucleus C is an fp-bicategory

with product structure defined as in C. Ul

4.2.4 Synthesising a type theory for fp-bicategories

fp-Bicategories from cartesian biclones. On page we used diagram and
the isomorphisms following to argue that, in order to construct a type theory describing
cartesian categories, it is sufficient to construct a type theory for cartesian clones. Moreover,
we showed how such a type theory could be synthesised from the construction of the free
cartesian clone on a A*-signature.

We repeat this process to synthesise the type theory Aj . The starting point is an
appropriate notion of signature. To extend from clones to biclones we extended from
multigraphs to 2-multigraphs; to extend from cartesian clones to cartesian biclones we

extend A*-signatures in the same way.

Definition 4.2.53. A Aj -signature S = (B, G) consists of
1. A set of base types B,

2. A 2-multigraph G for which the set of nodes Gy is generated by the grammar

Al, ,An ZZIB’Hn(Al, ,An) (BESB,’)’LGN) (435)

A homomorphism h: S — &’ of Ajs-signatures is a 2-multigraph homomorphism A : G — g
that respects products, in the sense that ho(] [,,(A1, .., 4n)) =11, (hoA1, ..., hoA,) for
all Ay, ..., A4, € Gy (neN).

We denote the category of Aj -signatures by Aj.-sig and the full sub-category of unary

AJs-signatures—in which the 2-multigraph G is a 2-graph—by A;S—sig‘l. “
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Every cartesian bi-multicategory (resp. cartesian biclone) determines an Ajs-signature,

and every fp-bicategory determines a unary A, -signature.

Notation 4.2.54 (c.f. Notation [4.2.23). For any Aj-signature S = (B,G) we write B for
the set generated from B by the grammar (4.35). In particular, when the signature is just

~

a set (i.e. the graph G has no edges) we denote the signature S = (8,S) simply by B. «
The following result is proven in exactly the same way as Lemma
Lemma 4.2.55. The inclusion ¢ : A;S—sig}l — A[;-sig has a right adjoint. O

The construction of the free cartesian clone on a cartesian category (Lemma relies
crucially on the identity (w1, ... ,m,) = idqy_ x,) in a cartesian category so we cannot
directly import this into the bicategorical setting. In place of diagram , therefore, one
obtains a slightly restricted result. We will construct the following diagram of adjunctions,
in which CartBiclone denotes the category of cartesian biclones and strict pseudofunctors
strictly preserving the product structure, and fp-Bicat denotes the category of fp-bicategories

and strict fp-pseudofunctors:

CartBiclone

_
Aj-sig fp-Bicat (4.36)
\R //)

A;S—sig| 1

We shall then show that the free fp-bicategory on a unary Aj -signature S is obtained by
restricting the construction of the free cartesian biclone on S to unary multimaps. Thus,
the internal language of the free fp-bicategory on § is the internal language of the free
cartesian biclone on &, in which every rule is restricted to unary multimaps. Here some care
is required: as we shall see, this is not the same as taking the nucleus of the free cartesian
biclone.

Let us begin by making precise the notion of a (strict) morphism of cartesian biclones.
The notion of biuniversal arrow for biclones is defined exactly as for bi-multicategories
(Definition ; the corresponding notion of preservation extends that for bicategories

(Definition [2.2.15)).
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Definition 4.2.56. Let F': (S,C) — (T,D) and F': (S’,C") — (T’,D’) be pseudofunctors
of biclones and suppose (R,u) and (R’,u) are biuniversal arrows from F to C' € T' and
from F’ to C' € T', respectively. A pair of pseudofunctors (K : D - D' L:C — (') is a

strict morphism of biuniversal arrows from (R,u) to (R',u) if

1. K and L are strict pseudofunctors satisfying KF = F'L,
2. LR=R,KC=C"and Ku =/,

3. The mappings ¢p : D(F'B,C) — C(B,R) and ¢, : D'(F'B',C") — C'(B', R') are
preserved, so that Ly g(f) = ¢} gK(f) for every f: FB — C,

4. For every B € S and equivalence u[F(—)] : B(B,R) < C(FB,C) : g the universal
arrow epgp, : u[Fp(h)] = h is strictly preserved, in the sense that Krp c(epn) =

€LB,Kh- <
We instantiate this in the case of cartesian biclones using the notation of (4.31)) (page[109).

Definition 4.2.57. A cartesian pseudofunctor (F,q*) : (S,C,II,(=)) — (5,C",II,(—))
of cartesian biclones is a pseudofunctor F' : C — C’ equipped with a choice of equi-
valences tup(F'my, ..., Fm,) @ F([[,(A1,...4n)) S 11, (FA1, ..., FAy) « g, for each
Ar, ..., A, €S (neN).

We call (F,q*) strict if F' is a strict pseudofunctor and satisfies

F(IT,(A1, ..., An) = [1,(FAi, ... FA,)

F(T(_;;AI:-MATL) _ 7TIFA1""’FA”

F(tup(ty,...,tn)) = tup(Fty,..., Fty)

() _ @
Fwtl,m,tn - wFt1,...,Ftn

Y44, A, = ldy,, (ra,y,..FaA,)

and the equivalences are canonically induced by the 2-cells Id = tup(m [Id], ... ,mp[Id]) =

tup(m1, ... ). <

If (F,q°) : (S,C,1I,(—)) — (5,C",II,,(—)) is a cartesian pseudofunctor of biclones,
one obtains an fp-pseudofunctor between the associated fp-bicategories by restriction. To
complete our diagram of adjunctions it remains to construct free cartesian biclones
and free fp-bicategories. We begin with the former.

Theorem presents us with a choice. We can encode either representability (via the
universal property ) or cartesian structure (via the universal property ) In type-
theoretic terms, this amounts to defining the universal property with respect to a pairing op-
eration x1 : X1, ... ,xn : X {21, ...,z [[,,(X1, ..., Xy) or, alternatively, to defining
the universal property with respect to projections (p : [ [,,(X1, ..., Xpn) - mi(p) : Xi)ict, e
We choose the latter because it more closely matches our definition of fp-bicategory.
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Construction 4.2.58. For any AJ-signature S, define a cartesian biclone FCI*(S) with
sorts
A, ... Ay =B [[,(41, ..., Ap) (Be®B,neN)

by extending the construction of the free biclone (Construction |3.1.16)) with the following

rules:

mie e FCIX(S) (I1, (A1, .., An); A))

(ti € FCI(S)(T; Ai))i:l,...,n
tup(ti, ... ,tn) € FCIX(S) (I [, (A1, ..., Ap))

(t; € FCIX(S)(T Ai))i:l,...,n
o\ e FCIX(S) (T; Ai) (tup(ty, - - tn), t:)

(ai e FCIX(S)(T; Ag) (i [u], ti)) |

i=1,...,n

pilar, ... an) € FCIX(S) (T;T1,,(A1, -, An)) (u, tup(ty, ... ,t,))

Moreover, extend the equational theory = of Construction with the following rules
encoding the universal property (4.31)):
elfo, :u=1t¢:T > A, fori=1,...,n, then o = wg)qﬂ(al,...,an) for ¢ =

1, ... ,n,

o Ify:u=tup(ts, ... . tn) :I' =[], (A1, ..., Ay), theny = pT(wﬁ) old: [7],--. ,wg?) oId., [7]),

o If o = o for a;, o 2-cells of type 7TiA° [u] = tifori=1,...,n, then pi(a, ..., an) =
pllad, ... o).
Finally, we require that every wg) and ¢ := pT(Idm [t]> - - - » Idg,¢]) is invertible. <

Lemma 4.2.59. For any A -signature S and any finite family of 2-cells (a; : mi{u} = ¢;
I' > Aj)iz1,..n in FCIX(S), then pf(aq, ..., ay) is the unique 2-cell v (modulo =) such

that «; Ewlgf)o'y fori=1,...,n.

Proof. The existence part of the claim is immediate. For uniqueness, if v satisfies the given

equation then vy = pT(wt(.l) old. [7],--. ,wgl) eld,, [v]) =pl(au, ... ,an), as claimed. [

It follows that FCI*(S) is cartesian. The associated free property is then straightforward.

Lemma 4.2.60. For any Aj-signature S, cartesian biclone (7', D, I1,(—)) and Aj -signature

homomorphism % : § — D from S to the Aj-signature underlying (7', D,I1,(—)) there
exists a strict cartesian pseudofunctor h# : FC [*(S) — D, unique such that h# o1 = h, for
t: S — FCI*(S) the inclusion.

Proof. We extend the pseudofunctor h# defined in Lemma [3.1.17| by setting

([ 1, (A1, oo, An)) == T1,(W# (A1), ..., h#*(4,))
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B () el A

R (tup(ty, ... ,tn)) = tup(h¥(t1), ..., h¥ (tn))
(@) == D)
h#(pT(al, ,an)) = pT(h#(al), ,h#(an))

It is clear this defines a strict cartesian pseudofunctor. For uniqueness, all the cases apart
from pf(as, ..., a,) are determined by the definition of strict cartesian pseudofunctor. To
complete the proof, we adapt the argument of Lemma For any strict cartesian
pseudofunctor F : FCI*(S) — D and 2-cells (q; : 7 [u] = t; : T — Ay)ic1, .. n,

@i, e F(pllon, ... an) = F(wf)) s F(pl(en, ... o))
= F(wgi. epila, ... ,an)>

= Foy
for i =1, ... ,n. Hence, by the universal property of a cartesian biclone,
F(pT(oq, ) = pl(Fay, ..., Foy)
as required. O

Remark 4.2.61. The preceding proof should be compared to that for the free cartesian
clone on a A*-signature (Lemma [4.2.28). The argument for uniqueness lifts to 2-cells by

virtue of the fact that pseudofunctors strictly preserve vertical composition. <

It remains to construct the free fp-bicategory on a unary A*-signature and relate it
to the free cartesian biclone over the same signature. The proof is straightforward: one
restricts Lemma to unary multimaps and observes the same universal property holds.
Example shows that it is important to restrict every rule to unary multimaps—
i.e. require that |I'| = 1 for every rule in Construction rather than simply taking
the nucleus of FCI*(S).

Lemma 4.2.62. For any unary Aj-signature S, let FBct*(S) denote the fp-bicategory
obtained by restricting every rule of Construction to unary multimaps and 2-cells
between them, and let h : § — C be a Aj-signature homomorphism from S to the Aj-
signature underlying an fp-bicategory (C,II,,(—)). Then there exists a strict fp-pseudofunctor
h?* : FBct*(S) — C, unique such that h” ot = h, for ¢ : S < FBct*(S) the inclusion. [

Example 4.2.63. Fix a AJ-signature S = (B, G). Then the nucleus FCI*(S) of FCI*(S)
is not isomorphic to FBct*(S). Roughly speaking, the composite pfi)B [m1,m2]: Ax B — A
exists in the free cartesian biclone on a signature S, but not in the free fp-bicategory on S.
Let us make this precise.

Since the freeness universal property of FBct*(S) is strict we may exploit the following

principle, which restates the fact that free objects are unique up to canonical isomorphism:
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if B and B’ are both the free fp-bicategory on S, then the canonical map B — B’ extending
the unit is an isomorphism. We claim that the canonical map (# : FBct*(S) — FCIX(S)
extending the inclusion ¢ : § — m is not an isomorphism. Since an isomorphism is
necessarily a bijection on hom-sets, it suffices to find a morphism in m that is not in
the image of :#. We claim that, where X,Y e ‘%, then P%)y [71,m2] : X x Y — X is not in
the image of :#. To see this is the case, observe that a morphism A is in the image of ¥ if

and only if it falls into one of the following (disjoint) sets:

1. The basic maps m;,eval and Id,

2. Maps in the image of an operator: \f or {fi,..., fn) for f, f1,..., fn in the image of
#
L

)

3. The composites f o g where f and g are both in the image of /7.
It is clear that pgpy [1, 2] is not of any of these types, and so is not in the image of /7. It
follows that ¢# is not an isomorphism, and hence that FCI*(S) is not the free fp-bicategory

on S. <

Lemma {4.2.62| guarantees that the free fp-bicategory on a Aj -signature S arises by
restricting every rule of the type theory for cartesian biclones to unary contexts and
constructing the syntactic model. Hence, it suffices to construct a type theory for cartesian

biclones. We do this by extending the type theory Agisd for biclones with rules corresponding
to those of Construction [£.2.58

4.3 The type theory AJ

For a AJ-signature S = (B,G) we denote the associated type theory by AJ(S). The
types of A} (S) are the nodes of G. The rules are all those of Agisd together with those of
Figures [I.IH4.4] Note that we specify the invertibility of the unit and counit by introducing
explicit inverses for these rewrites (Figure [4.4).

The tupling operation is functorial with respect to vertical composition and the unit

of the adjunction is obtained by applying the universal property to the identity (see also

Lemma |4.3.12)).

Definition 4.3.1.

1. For any family of derivable rewrites (I' - 7; : ¢; = t : A;)i—1,..n we define tup(7y, ... ,7,) :

(1) (n) )

tup(ty, ... ,tn) = tup(t], ... ,t},) to be the rewrite pi(ry 0, ” ..., Tewm”

in context I'.

2. For any derivable term I' — ¢ : [[,(A1, ... ,A4,) we define the unit ¢ : ¢t =
tup(mi{t}, ... ,m{t}) to be the rewrite pT(idm{t}, -vyidg, () in context T, “«

The rules of A provide a relatively compact way to construct the structure required

for cartesian clones. In particular, the focus on (global) biuniversal arrows and (local)

universal arrows—and the corresponding fact that one does not need to specify a triangle
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law relating the unit and counit—contrasts with all previous work on type theories for
cartesian closed 2-categories [See87, [Hil96], [Tab11) Hir13|], which encode the pairing and
projection operations on rewrites directly. Reproducing the triangle-law approach in the

context of fp-bicategories would require:
1. For every sequence of types Ay, ..., A, a product type [ [, (A1, ..., 4n),

2. Projection and tupling operations on terms as in the usual simply-typed lambda

calculus,
3. Tupling and projection operations on rewrites,

4. An invertible unit ¢, : u = {(m(u), ... ,m(u)) in context I for every I' - u :
[1,(A1, ..., A,) and an invertible counit wt(f) sty .ty =4 (i=1,...,n)
in context I' for every (I' - ¢; : A;)i=1, ... n-

(4)

te ?
the two triangle laws, functorality of the tupling and projection operations on rewrites,

This data must be subject to an equational theory requiring naturality of each ¢, and w

and that the equational theory is a congruence with respect to these operations. Such
an approach, therefore, requires many more rules. Moreover, the calculus of (bi)universal
arrows provided by A[¢ captures a categorical style of reasoning, because the syntax allows

one to manipulate the universal property through primitives in the type theory.

a-equivalence and free variables. The well-formedness properties of Agisd extend to
A;S; we briefly note them here. As we have not introduced any binding constructs, the
definition of a-equivalence extends straightforwardly from that for Agisd.

Definition 4.3.2. For any Aj-signature S we extend Definition to define the a-
equivalence relation =, for Aj(S). For terms we take the same set of rules; the substitution

operation t[u;/x;] is extended by the rules

mr(p)[u/p] := mp{u} and  tup(ti, ... tn)[ui/ai] == tup(tafui/@a), .. talui/ai])
For rewrites, we add the rules

ti = )iz 01 =q 0 ... 0,=qy0

((k)z L 1,(.1;),71 (1<k<n) LG n_an
_ / /

Wy eistn — Dyt pT(Ula c 5 0n) =a pT(Ul? ey 0p)

10 otn

where the meta-operation of capture-avoiding substitution is extended by the rules

o) luifz] = wi ey and pla)[ui/z] = pl(ae[ui/zi))

Finally, we define fv(oc~1) := fv(o). <
As for Agiscat, we work up to a-equivalence of terms and rewrites, silently identifying

terms and rewrites with their a-equivalence classes.

Extending the definition of free variables is similarly straightforward.
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k-proj (1 <k <mn)
p:], (A, .. A Fe(p) « Ak

FFtliAl FlfthAn
' tup(te, ... tn) : 1], (A1, .., Ay)

Figure 4.1: Terms for product structure

n-tuple

FFtliAl FFtnAn
'+ wii)___,tn srp{tup(ty, ..o, tn)} =t 2 Ag

wF)intro (1 < k < n)

F'uw:[[, (A1, ..., An) Cra;mfu} =t Ai)ic1,.. n
D pllar, ..o an) tu=tup(te, ... t,) : [, (A1,..., Ay)

pT(og7 ..., 0 )-intro

Figure 4.2: Rewrites for product structure

F'ap:mi{u=t1:4 ... Thra,:m{u}=1t,:A4,

o= wt(f,).“,tn o mp{pian, ... an)} t me{u} =ty Ay

Ul (1<k<n)

F'Ey:u=tup(ty,....tn) - [[,,(A1,..., Ay)

U2
Iy =ply,) emifr) o emafy)) s w = tup(ta, o t) s T (Aue o An)
(F Foai=ajmi{u) =t Ai)z’:l,...,n
cong

I'Fpllag,...,an) =pi(ad,...,a)) cu=tup(ty,... t,): Ay, .. A,
[ [ 1 n n

Figure 4.3: Universal property and congruence laws for pf(aq, ..., a,)

Fl—tlAl Fl—tnAn
T wgfk)t Dt = me{tup(ty, ... te)} s Ak

w(~*)-intro (1 < k < n)

Pt:]],(A1,...,4,)
Tt rtup(m{th,. ., maft)) = t: 1, (A1, ..., Ay)

Fl—tliAl F}—ann

< Lintro

' wt(l_,.k.‘?,tn .wt(f,)..‘,tn = idwk{tup(tl,...,tn)} : ﬂ—k{tup(tlv cee atn)} = 7Tk{tLI|3(t1, cee 7tn)} : Ak

F'—tllAl F}—tnAn

o, =idg, 1t =t 0 Ap

vvvvvv

Fl_tinn(Al,...,An)
T leg=id:t=t:]] (Ar,...,A,)

r l—tHn(Al,,An)
'~ .§t_1 = idtup(ﬂ'l{t},...,ﬂ'n,{t}) : tLIp(’]T.{t}) = tLIp(’ﬂ'.{t}) : Hn(Al? R An)

.....

Figure 4.4: Inverses for the unit and counit

Rules for AJ(G).
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Definition 4.3.3. Fix a AJ-signature S. We define the free variables in a term t in Aj(S)
by extending Definition [3.2.9] as follows:

fv(tup(te, ... ,tn)) == Ui v(t;) and  fv(mi(p)) == {p}
Define the free variables in a rewrite T in A (S) by extending Definition as follows:
(@) )i=tv(ty)  and  fv(plar, ... an)) == UL, (o)

We define the free variables of a specified inverse 0! to be exactly the free variables of o.

An occurrence of a variable in a term (resp. rewrite) is bound if it is not free. <

The next two lemmas—both of which are proven by structural induction—show that

the preceding definitions behave in the way one would expect.

Lemma 4.3.4. Let S be a AJ-signature. Then in A (S):
1. f'~t:Bandt=,t then '+t : B,
2. IfT+—7:t=t:Band =47 thenT' 7 :t=1t:DB,
3. If 7y = 7/ for i =1, ... ,n, then tup(ry, ... ,7) =a tup(rq, ..., 7)),

4. If u =, v then ¢, =4 Gy d

Lemma 4.3.5. Let § be a Aj-signature. For any derivable judgements I' - u : B and
L71:t=1t":Bin AL(S),

1. fv(u) < dom(T"),

2. fv(r) < dom(T'),

3. The judgements I' — ¢ : B and I"  t' : B are both derivable.
Moreover, whenever (A - w; : A;)i—1, .. n and T' := (x; : A;)i=1,... n, then

1. T t: B, then A - t[u;/z;] : B,

2. UT +7:t=1t: B, then A\ 7[u;/x;] : t[u;/x;] = t'[u;/x;] : B. O

4.3.1 The syntactic model for Aj

Lemma [£.2.62] guarantees that, in order to construct a type theory for fp-bicategories, it
suffices to construct a type theory for cartesian biclones. To verify that AJ, is such a type
theory, furthermore, it suffices to show that its syntactic model is canonically isomorphic to
the free cartesian biclone FCI*(S) over the same signature in the category CartBiclone.

The syntactic model is constructed by extending Construction [3.2.11

Construction 4.3.6. For any Aj-signature S define the syntactic model Syn*(S) of
A}(S) as follows. The sorts are nodes A, B,... of G. For Ay, ... ,A,,B € B (n e
N) the hom-category Syn*(S)(Ai, ..., A,; B) has objects a-equivalence classes of terms

(x1: A1, ... ,zn: Ay - t: B) derivable in A;S(S). We assume a fixed enumeration x1, o, . . .
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of variables, and that the variable name in the ith position is determined by this enu-
meration. Morphisms in Syn*(S)(A41, ..., A,; B) are a=-equivalence classes of rewrites
(x1: Ay, ... ,2n: Ay B 7:t =1t : B). Composition is vertical composition with identity
ids; the substitution operation is explicit substitution and the structural rewrites are assoc, ¢

and o(®). <

Inspecting each rule in turn, one sees that Syn™(S) is merely FCI*(S), presented with
the notation z1 : X1, ... ,z, : X;, = ¢: Binstead of t : X1, ..., X,, — B. We make this
statement precise by establishing it satisfies the same universal property.

Lemma [4.2.59] restated in type-theoretic notation, becomes the following.

Lemma 4.3.7. For any A} -signature S, if the judgements (I' - a; : mi{u} = t; 1 Aj)i=1, . n

are derivable in A (S) then pf(a, ..., ay) is the unique rewrite v (modulo a=) such that
the equality

'+ wgﬁ)m’tn o {7y} = ap : m{u} =ty Ay (4.37)
is derivable for k=1, ... ,n.

Proof. By U1 (Figure the rewrite pf(aq, ... ,a,) certainly satisfies (4.37). For any
other ~ satisfying the equation, =y Z pT(wE) e {7}, ... ,wﬁl) e {7}) ‘=8 pllar, ..., an),

as claimed. 0
Remark 4.3.8. In the light of the preceding lemma, for any AJ-signature S the mappings

(a1, ... yap) — pT(al, cee Q)
€] (n)

(w;, @mi{T}, ...y, emp{T}) — T

define the following bijective correspondence of rewrites, derivable in A (S):

me{u} =t (k=1,...,n)

u = tup(ty, ... ,tn)

It is natural to conjecture that a calculus for fp-tricategories (resp. fp-oo-categories) would
have three (resp. a countably infinite tower of) such correspondences. Similar considerations

will apply to exponentials. <

It also follows from the preceding lemma that Syn*(S) is cartesian: the adjoint equival-

ence is exactly

SynX(S)(F,Hn(Al, ,An)) = [T Sy (S)(T; 4;)
(F = Hn(A17 ca ,An)) — (F = Wz{u} : Ai)i=1,...,n

where the pseudoinverse [}, Syn*(S)(T'; 4;) — Syn*(S)(T, [ ], (A1, ... ,Ay)) is the tup
operation. The universal property of Syn*(S) interprets each term as its corresponding

construct.
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Proposition 4.3.9. For any Aj-signature S = (8, §), cartesian biclone (7, D, I, (—)) and
Ajs-signature homomorphism h : § — C, there exists a unique strict cartesian pseudofunctor
h[—] : Syn*(S) — C such that h[—] ot = h, for ¢ : S < Syn*(S) the inclusion.

Proof. The pseudofunctor is constructed by induction on the syntax of AJ(S) as follows:

h[B] := h(B) on base types
R 1,,(B1, ..., Bw)l :=11,, (R[Bil, --. ,h[Bn])

RII -z« As] = |32]EZ41]]’_”J1[[A”H
R - c(z1, ... ,zy) : B] := h(c) for ce G(A.; B)
AA & t{z; — w;} : B] := (R[T -t : B])[R[A - ue : AJ]]
RIT - tup(ts, ... ,tm) : [,,,(B1, .. s Bm)] == tup(h[T' - t1 : B1], ... ,h[T - tp, : Bp])
Wp: [Lna(Bi, .- Bn) F mi(p) : By = mptoib o hlBnl

h[I' - 1id; : t =t : B] := idp[ris 5]
AT = k(xe) : c(xe) = (w4) : B] := h(k) for k € G(A., B)(c, )
h[T + wt(f,)...,tm cmE{tup(te, ooy tm)} = tg : Bi] = wi(ﬁ[v)h]],...,h[[tm]]
AL pllad, ... o) s u = tup(ts) : [1,,Be] := pI(h[T - e : mefu} =t : B.])
AL 7er:t=1t":B]:=h[l+7:¢=1t":Bleh[[+71:t=1:B]
hA = {03} : t{u;} = t'{uj} : B] := (h[[ 7 :t =t : B])[h[o1], ... , hlon]]

where I' := (x; : 4;)i—1,..n and we abbreviate h[A - o0 : u; = u} : A;] by hlo;] in the final

rule. It is clear that this defines a strict pseudofunctor; the pT(al, ..., Quy) case is required
by the strict preservation of universal and biuniversal arrows (c.f. Lemma [4.2.60)). O

Lemma [4.2.62] together with the preceding proposition, entail that the free fp-bicategory
on a unary AJ.-signature is obtained as follows. First, one restricts Aj; to unary contexts.
Then one constructs the syntactic model in the same manner as Construction except
morphisms and 2-cells are equivalence classes of terms and rewrites in this restricted type

theory. Thus, define A% |, to be the type theory obtained by restricting A%, to contexts

psi1 ps

of the form z : A (defined by Figure on page . The resulting free property is the

following.

Theorem 4.3.10. For any unary Aj-signature S, the bicategory Syn*(S )|1 constructed by
restricting Construction M to the type theory AJ
sense of Lemma [£.2.62

‘1 is the free fp-bicategory on S, in the

Proof. For any fp-bicategory (C,11,(—)) and Aj-signature homomorphism h : S — C the

extension fp-pseudofunctor A : Syn*(S )| — ( is defined inductively as in Proposition m

1
with the following adjustments:
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hlz: Al x: A = Idypu
hlz: Z+t{x—u}:Bl:=hlz: A-t:B]ohfz: Z F u:A]
hlz : A tup(te) : [1,,(B1, ... s Bm)] :==<h[z: A+ t1: Bi], ... ,hlz : A+ ty : Byl
hlz: Z+1{o} : {u} = t'{u'} : Bl :=h[z: A-1:t =1t :Bloh[z: Z+0o:u=u:A]
O

Remark 4.3.11. As with the construction of FBct*(S), it is important that we first restrict
AJs to unary contexts, then construct the syntactic model (recall Example [4.2.63)). <

S

In the semantics of the simply-typed lambda calculus it is common to restrict the syntactic
model to unary contexts in order to achieve the desired universal property (see e.g. [Cro94

Chapter 4]). Hence, we are still justified in calling AJ the internal language of fp-bicategories.

4.3.2 Reasoning within Aj

In later chapters we shall reason within Aj—and its extension Aps™ for cartesian closed
bicategories—to prove various properties of the syntactic models and their semantic inter-
pretation. We collect together some results to simplify such calculations.

All the rules of the triangle-law approach to defining products are derivable. For example,
from Lemma one recovers the functoriality of the tupling operation and the unit-counit
presentation of products (see Figure 4.5)). These derived rules should be compared to the
primitive rules of [See87, [Hil96].

Lemma 4.3.12. For any A-signature S, the rules of Figure {4.5(are all admissible.

Proof. The proofs are all similar; we prove naturality of ¢ as an example of equational
reasoning in A (S). One can either use the universal property (Lemma or reason
directly using both the equational rules Ul and U2. We opt for the former. Let I' -0 : u =
u :[],(A1, ..., A,) be any rewrite. Then for k =1,...,n:

(k) (k)

o w .Wk{gu/ OO‘} = ww.u,.ﬂ'k{§u/}.ﬂ'k{0'}

UEi 1d7‘rk{u} b Fk{o-}

= mi{o}
o emftup(mi{o), ..., mafo}) e} = @), emftup(m{o}, ... mfo})} e micu}
Emifot e, e milsu)
= mi{o}
Applying the universal property of pi(ri{c}, ... ,m.{c}), one sees that
G oo =tup(mic}, ... ,m{c})

as required. ]
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(F l— ldt1 . ti = ti . Ai)i:l ’’’’’ n
[ = tup(idy,, ..., ids, ) = idwp(ey,..t,) 2 tUP(EL, - o5 tn) = tup(te, ..o tn) T, (AL, 05 AR)

Cr7ti=t!:A)izc1,..m Crkmiti=t:A)i1,.n
' tup(rq,...,7) etup(7i,...,7n) = tup(7{ ®T1,..., 7, Ty) : tup(ts) = tup(ty) : [ [,,(A4.)

r'n

'co:u=u:[[,(A1,...,A)
I'-qreo=tup(mifo},...,m{o})ec, :u= tup(me{u'}) : [[,(A1,..., An)

¢-nat

Thkmiti=tA)iz1,.m
(k . cmpf{tup(te)} = tr ¢ Ag

t1,..,tn

w(F)nat (1 <k <n)

'+ o)

toth, .Wk{tup(ﬁ’ e 7Tn)} =TpowW

' tup(te, ..., tn) : [, (A1, ..., Ay)

(n)

T+ tup(wt(.l), co, Ty, ) e Stup(te) = 1diup(ta) : tup(te) = tup(ts) : [ [,,(As)

triangle-law-1

'+ mp{u} : Ay

® triangle-law-2 (1 < k < n)
Doy g e medu) = ida quy 2 me{u} = me{u} : Ag

Figure 4.5: Admissible rules for AJ(G)

We also give the syntactic constructions of the 2-cells post and fuse (recall Construc-
tion on page[75). Intuitively, the rewrite post witnesses the identity (1, ... , &) [ui/2;] =
(tyui/zi], - .. tplui/zi]) for capture-avoiding substitution in the simply-typed lambda cal-

culus.

Construction 4.3.13. Let S be a Aj-signature. Define a 2-cell post in A (S) with typing

1 Al oz o tup(ty, o te) [ Lu(Br, oo, B) (A A)ict,.m
A | post(te;we) = tup(ts, ..., tm){ui} = tup(ti{us}, ..., tm{w}) : [1,,,(Bi, ..., Bm)

by setting post(te;us) := p'(a1, ..., ) where

a -1 w®) U
ag = mp{tup(te, ... tm){ui}} == me{tup(ts, ... tm) Hust ;—}; tr{ui}

Also define a 2-cell fuse with signature

(it Ai =t t Ai)iz1, om (A Azt m
A | fuse(te; us) : tup(te{me(p)}){tup(us, ... ,un)} = tup(ti{us}, ... ;tofun}) : 11,,(B1,...,Byp)

by setting fuse(te;us) := pi(B1, ..., Bn) for B the composite
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B

me{tup(te{me () {tup(us, ... ,un)}} ———= tp{us}
Tre{tup(te{me(p)}) Htup(u1, ... ,un)} tr{@®}
w(k){tup(ul,...,un)}ﬂ
t{me(p) Htup(ui, ... un)} === te{m{tup(us, ... ,un)}}

Since they are defined by applying the universal property to rewrites that are both
natural and invertible, it follows that post and fuse are also invertible, as well as being

natural in the sense that the following rules are admissible:

(1'1 : Al, R A, - Tt tj = t;- : Bj)jzl,...,m (A o u; = u; : Ai)izl’m,n

A+ post(t,;u,) e tup(7e){oi} = tup(re{o;}) ® post(te; us) : tup(te){u;} = tup(t,{u;}) : [ [B.

(51;1' ATt = t; : Ai)izl,...,n (A =0 u; = u; : Ai)izl,m’n

A+ fuse(t,;u)) o tup(Te{me(p)}){tup(ce)} = tup(7e{ce}) @ fuse(ts; us) :
stup(te{me (p) ) {tup(ur, ... ,un)} = tup(ti{uy}, ...t {u,}) : 1, Be

Moreover, the proofs of Lemma translate readily to the type theory.

Lemma 4.3.14. Let I' := (x; : A;)i=1,..n and A := (y; : By)i=1,... i be contexts and suppose
(A o u; = u; : Ai)izl,...,n- Then

1. (Naturality). If (I' =7 : t; = ¢} : Bj)j=1,.,m, then

tup(te, - s t) e} = tup(ti{ue), ... s tm{ue})
tup(Ti, - ,7m ) {0e }ﬂ ﬂtup(ﬁ{a.}7 ooy Tm{ce})

Wp(t], . )} == tup(th{ud). .. Eful})
2. (Compatibility with ¢). If (I' -t : Bi)j=1,...,m then

tup(tl’ . ’tm) :L> tl_lp(tl, e ,tm){x.}

ﬂpost

tup(ti{ze}, ..., tm{ze})
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3. (Compatibility with assoc). For terms (I' - t,, : Cip)j=1,...m and (X vy : By)i—1,..

then
tup(ty, . )l Hve) =22 tip (b fua), ot e} {ve)
ﬂpost
assoc tLIp(tl{U.}{’U.}, e ,tm{uo}{vo})
ﬂtup(assoc, ... ,ass0C)
tup(ti, ..y tm){ue{ve}} BT tup(t1{ue{ve}}, ..., tm{ue{ve}})

4. (Compatibility with ¢). If I' = ¢ : [ [,,,(B1, ..., Bp) then

Hua) <t} tup(mi{t), ... Tt} {ue)
Cﬂ ﬂpost
tup(mi{t{ue}}, ... ,Wm{t{u.}}() — tup)(m{t}{u.}, ooy T {tHue})
tup(assoc, ... ,assoc

Proof. The proofs are straightforward calculations using the universal property of Lemma

For example, for naturality we simply observe that

Tty oy @ TP o T{ou}) @ post(ta; )}
= iy * TR, - T{o )} e mufpostitec))
= mi{oe o))y, o milpost(te; u)}
= Ti{oe} owgf) o AU} oassocﬂkl( Vtup(tr, o st )it

and that

wi{f{)u,.}w7t;n{u,.} o mr{post(ty;uy) e tup(ri, ..., Tm){ow}}

= wg,k{)u/} ) o mp{post(ty; uy)} e mp{tup(r1, ..., 7m){oe}}
Wy ,t, {u,} eassoc_ ( JAUD(EL o 1 )i o mp{tup(71, ..., Tm){0e}}

= wt('f,...,tgn{%} o i {tup(Ty, ... ) Howb eassoc
= Tk{0e} 'ng,)...,tm{m} * assocﬂk(p) tup(te, ... bm)itie

Hence, by the universal property of Lemma the required equality holds. The other

cases are similar. O

4.3.3 Products from context extension

We end this chapter by noting a ‘degenerate’ or ‘implicit’ way for a deductive system
to exhibit product structure. The construction gives rise to a syntactic model that is
an fp-bicategory, but does not arise via a cartesian biclone or provide a type-theoretic

description of bicategorical products. While this structure is not in the vein of those we
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have discussed above, it will play an important role: exponentials in the simply-typed
lambda calculus are defined with respect to these products. The product structure is given

by context concatenation.

Construction 4.3.15. For any Aj -signature S, define a bicategory 7})@3“(8) as follows.
Fix an enumeration of variables x1, ... ,Z,,.... The objects are then contexts I, A, ... in
which the ith entry has variable name x;. The 1-cells I' — (yj : Bj)j=1,.. m are m-tuples
of a-equivalence classes of terms (I' - t; : Bj)j—1,.. m derivable in Ags (S); the 2-cells are
m-tuples of a=-equivalence classes of rewrites (I' -7 : t; = t;. : Bj)j=1, ... m-

Vertical composition is given pointwise by the e operation, and horizontal composition

by explicit substitution:

(tl, ,tl),(ul, ,um) — (tl{x,; — ’U,Z}, .,tm{xi — ’U,Z})

(T4, - ym), (01, oo yom) — ({xs — 03}, oo Tf{xs — 04})

The identity on A = (y; : Bj)j=1,...m is the var rule (A y;: Bj)j=1,..,m, and the

structural isomorphisms L, r and a are given pointwise by o, ¢~ and assoc, respectively. «

X

Since A comes equipped with a product structure, this bicategory has two product

structures: one given by the product structure in the type theory, and the other by context
extension. We emphasise this with the notation.

The type-theoretic product structure is induced from that on the full sub-bicategory of
unary contexts via the following lemma, which can be seen as the type-theoretic translation
of Lemma on page|[l11

Lemma 4.3.16. For any A); -signature S and context I' = (z; : A;)i—1, .. n, there exists
an adjoint equivalence I' 5 (p: [, (A1, ..., 4n)) in Tps *(S).

Proof. Take the 1-cells
(= tup(zy, oo san) LA oo AR) T = (0 T, (A1, -0, AR))
(P IT(Ar o An) Emi(p) s Ai)iy s (P (AL, oo AR)) = T
For the unit and counit of the required adjoint equivalence we take

(F - w:(c’;)m{tup(ml, ce )} = T Ai)

i=1,...,n

and the composite

tup(z1,...,2n){m(p)}

p
cpl Ttup(xl, ,xn){

tup(mi{p}, ..., muip}) — tup(zi{me{p}}, ..., on{me{p}}) —— tup(zy, ... zn){me{p}}
tup(o(=1), ... ,0(=™)) post(we;me{p})~*

1
“re(p)

}
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The proof then amounts to making use of naturality to the point where one can apply the
triangle laws of Figure O

Remark 4.3.17. The preceding lemma, together with Lemma [3.2.18| on page in fact

entails that %?’X(S ) ~ Sme(S)|1 for every unary Aj -signature S. <
We define the product (:vgl) : Agl))izl’,_,Jm X oo x (x En) : AE ))l 1,...mn of arbitrary
contexts to be the product (p; : H?illAEl)) X e ol A ") ) of the corresponding

unary contexts. The ith projection is the |F(i)|—tuple

(p: T (M A7 Tl A7) b i)} = A7) (4.38)

:177|F(2)|

and the tupling of n maps (A — F(i))izl,m,n, that is, of |F(i) |-tuples (A tg-i) : Agi)) |F(Z)|,
is .
A+ tup (tup(tsl)), e tup(tsn))> 11, (H|F<1)‘A. ). H|F(n)|A ))

The counit @® is the composite indicated by the pasting diagram

(7‘('1 (p)""ﬂrlr(i)‘(p)) ]__‘(Z)

mi(p) i

[T, (T A8, o T e ASY) - [Tjrc AL
w®

tup(tup(tsl)),...,tup(tEn)))W =

A tup(tg))

(%) (%)
17t o,

That is, the |T®|-tuple with jth component the composite rewrite

ﬂj{m(p)}{tup <tup(t£1)), . ,tup(tsn))>} N t;@)

~ Twm

wj{m{tup (tup(t(.l)), . ,tup(t(.")))}} {—(2)}> 7rj{tulj(t(f)v - t|(r)(@)|)}
mi{w

The next lemma encapsulates the required universal property.
Lemma 4.3.18. For any unary AJ -signature S, the 1-cell
n) . A0)
( L (e A, - T A8 midmi(o) ) - AS )jzl T

of 1' is a biuniversal arrow defining an fp-structure on ’7;?“(8).
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Proof. Taking the structure described above, it remains to check the universal property
of the counit. Suppose that A + u : (H\F(1>|A° - H\r(n)\A )) and that (A ty) :

A§i))j:1,.,.,|r<i)\ for i = 1,...,n, and consider a family of rewrites

(A ol mym@uy = 67 AP)

A 1, LN
R ol
One thereby obtains composites a = mi{m{u}} = mi{mp)Hu} = t() for j =
LIP@ and i = 1,...,n. Applymg the universal property of w (Lemma 4.3.7) for
each i, one obtains p (ag ), . |(1i)<l)|) mp{u} = tup(t g), e ’tl(ll“)(”l) for i =1,...,n. Finally
applying the universal property to this family of rewrites, one obtains

pT<p (a § . N‘(llzl)‘) Lpl@ ("), . ,&‘(;()n)l)> Cu = tup(tup(tsl)), . ,tup(t@))

To see that this 2-cell satisfies the required universal property, apply the corresponding
property from Lemma twice. O

We now turn to the second, strict, product structure. This arises from context extension.
Constructing products in this way is a standard method in the categorical setting (e.g. [Pit00])
and is also employed by Hilken [Hil96] in the 2-categorical case to obtain a strict product.
Taken on its own, however, it does not enable one to reason about products within the type

theory.

Lemma 4.3.19. For any A-signature S the syntactic model 7;,%“(5) of AJ(S) is an

fp-bicategory with product structure given by context extension.

Proof. We claim first that every context I := (z; : A;)i—1,... » is the n-ary product [ [/, (z; :
A;) of unary contexts (x1 : Ai),...,(x, : Ay). Define projections 7y : I' — Ay for
k=1,...,nby '+ xp: Ax. Then, given 1-cells A + ¢; : A; for i = 1, ... ,n, define the
n-ary tupling to be the n-tuple (A ¢; : A;)i=1, .. n. The unit and counit are the 2-cells
with components o(=" and o, respectively.

We extend this to all contexts in the obvious way. For contexts I'; (i = 1, ,m) such
that T'; := (z; : Af))jzl,...,m the product [ [;_; I; is the concatenated context Fl, RO
(the enumeration of variables ensures no variable names are duplicated). The kth projection

is the |[g|-tuple (I'y, ... , I’y - o : A§k))1+2  and the n-ary tupling

LT < e [+ 50 T
of 1-cells (t; : A — I';)i1,.. n with ¢ :== (A t() A(-Z)) —1,..,r;| i just the unfolded

J
D |Ts|-tuple (A tg- 0, A( )) i= . The unit and counit are as in the unary case. [J

<N

1 Tl



Chapter 5

A type theory for cartesian closed

bicategories

X
ps?

for cartesian closed bicategories. First we extend the theory of clones with finite products

We now build on the preceding chapters, and the type theory AX., to construct a type theory
to include exponentials via a version of Lambek’s internal hom of a multicategory |[Lam89].
Next we extend this to (cartesian) biclones and use it to extract a type theory Ay~ for which
the syntactic model is free among cartesian closed biclones. The proof of the corresponding
bicategorical free property, however, throws up a subtlety: exponentials in the Lambek
style are defined as a right (bi)adjoint to context extension rather than the type-theoretic
product. In terms of the syntactic models of the preceding chapter, exponentials appear
with respect to the context extension product structure, rather than the type-theoretic
product structure (recall Section . As we shall see, it follows that the restriction of
A}$™ to unary contexts cannot satisfy a strict free property mirroring that of Agécat and
AJ. We address this by showing that the syntactic model of Aps™ is biequivalent to the
cartesian closed bicategory enjoying such a strict free property. (Table on page |288
provides an index of the various free constructions and syntactic models we employ.) We
end the chapter by making precise the claim that Ay~ is the simply-typed lambda calculus

up to isomorphism.

133
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5.1 Cartesian closed bicategories

Let us start by recapitulating the definition of cartesian closed bicategory. To give a
cartesian closed structure on an fp-bicategory (B,II,(—)) is to specify a biadjunction
(=) x A+ (A=>—) for every A € B. Following Definition this amounts to choosing
an object (A =>B) and a biuniversal arrow evaly g : (A=>B) x A — B for every A, B € B.
We unfold the definition as follows.

Definition 5.1.1. A cartesian closed bicategory or cc-bicategory is an fp-bicategory (B, IL,(—))
equipped with the following data for every A, B € B:

1. A chosen object (A== B),
2. A specified 1-cell evaly p : (A=>B) x A — B,
3. For every X € B, an adjoint equivalence

evaly po(—xA)
—
B(X,A=>B) 1~ B(X x A,B) (5.1)

T
A

specified by a family of universal arrows e : evaly g o (Af x A) = f.

We call the functor A\(—) currying and refer to Af as the currying of f. <

Remark 5.1.2. As for products, we shall call an exponential structure strict if the equival-
ences (p.1)) are isomorphisms. When the underlying bicategory B is a 2-category, this yields
the definition of cartesian closure in the Cat-enriched sense (c.f. Remark 4.1.2]). <

Explicitly, the equivalences are given by the following universal property. For
every l-cell t : X x A — B we require a 1-cell \t : X — (A=>B) and an invertible 2-cell
¢ evaly po (At x A) = ¢, universal in the sense that for any 2-cell o : evaly po(ux A) = ¢
there exists a unique 2-cell ef(a) : u = At such that ;e (evala g o (ef(a) x A)) = «.

Moreover, we require that the unit 7; := ef(idaya A po(txA)) 1s also invertible.

Notation 5.1.3. Following the categorical notation, for 1-cells f: A’ - Aand g: B — B’
we write (f =>g¢) : (A=>B) — (A’ => B’) for the exponential transpose of the composite

(goevalyp)o (Ida—p x f), thus:

(A=>B)xf evaly B
— —

(f=9):=A(A=DB) x A (A= B) x A B4 B

and likewise on 2-cells. <

As for products, 1-category theoretic notation can be misleading when the identity is

referred to explicitly. Consider the identities

(f=>Idp) = M(Idp oevalg g) o (f x 1da))
(Ida=>9g) = M(goevaly ) o (Ida—p x Ida))
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In a 2-category with pseudo-products and pseudo-exponentials, one may safely write
(f =>1dp) as simply A(evaly g o (f x A)), but cannot simplify (Id4 =>¢) in a similar way
to A(g oevaly g). Note, however, that this simplification is possible in the presence of strict

products, when the unit is an identity.

Remark 5.1.4. The uniqueness of exponentials up to equivalence manifests itself in the same
way as for products. For instance, given an adjoint equivalence e : E ~ (A=>B) : f, the

object E inherits an exponential structure by composition with e and f (c.f. Remark 4.1.5)).

<

In Construction we saw that standard properties of cartesian categories are
witnessed by natural families of 2-cells in an fp-bicategory. The same principle holds for

cc-bicategories.

Construction 5.1.5. Let (B,II,(—),=>) be a cc-bicategory. For g : X — Y and f :
Y x A — B we define push(f, g) : A(f) o g = A(f o (g x A)) as ef(), for T the composite

evalga po ((Afog) x A) T > fol(gxA)
evalo(CDf’g)*ll Tefo(ng)
evaly po (Af x A)o (g x A)) —=— (evalypo (Af x A))o (g x A)

where @7, : (f x A)o (9 x A) = (fg x A) witnesses | [,(—, =) as a pseudofunctor (re-
call Construction [4.1.6/(3))).

<

This family of 2-cells is natural in each of its arguments and satisfies the expected
equations, some of which are collected in the following lemma. As for Lemma (4.1.7, we

assume the underlying bicategory is strict for the sake of clarity.

Lemma 5.1.6. Let (B,II,(—), =>) be a 2-category with finite pseudo-products and pseudo-
exponentials. Then for all 1-cells f,g and h, the following diagrams commute whenever
they are well-typed:

(Af) oId 22 \(f o (1d x A))

O o
A ey M o(m,m))
fog eg > )\(evalo(fng))
"Ifofli T/\(evab@f’g;ld) (5.3)

Aevalo (f x A))og o Aevalo (f x A)o (g x A))

push

(f=>g)old ——= A(goevalo ((A=>B) x f)o(Id x B))
H i)\(goevalofbld;f’ld) (54)

(f = g) =————— A(goevalo (A= B) x f))
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pushoh push

Mf)ogoh AMfol(gxA)oh A fol(gxA)o(hxA)
pushl l)\(fo@g,h;ld) (5‘5)
/\(fo((goh)xA)) /\(fo(ghXA))

O]

A pseudofunctor between cartesian closed bicategories is cartesian closed if it pre-
serves both the biuniversal arrows defining products and the biuniversal arrows defining

exponentials.

Definition 5.1.7. A cartesian closed pseudofunctor or cc-pseudofunctor between cc-bicategories
(B,11,,(—),=>) and (C,II,,(—),=>) is an fp-pseudofunctor (F,q*) equipped with specified
adjoint equivalences

mpp: F(A=B) S (FA=FB):q;p

for every A, B € B, where my p : F(A=>B) — (FA=>FB) is the exponential transpose
of F(evalap)oqy_.p 4- We denote the 2-cells witnessing that q75 and my g form an
equivalence by

uxp:Id(pasrp) = maBoqyp

=> =>
CA,B : quB omy B = IdF(A:DB)

A ce-pseudofunctor (F,q*,q™) is strict if (F,q*) is a strict fp-pseudofunctor such that

F(A=>B) = (FA=FB)
F(evaly p) = evalpa i
F(At) = A(Ft)
)

F(e

=
dap =ldra=rB

with equivalences canonically induced by the 2-cells

eT(evalFAFB o H) : Id(FA:DFB) :;> A(evalFA’FB ¢} Id(FA:DFB)xFA)

for  is the canonical isomorphism Idpg —rp X FA = Id(pg —FB)xFa- <

Remark 5.1.8 (c.f. Remark [4.1.10)). If B is a bicategory equipped with two cartesian closed
structures, say (B,II,(—),=>) and (B,Prod,(—),[—,—]), then for any cc-pseudofunctor
(F,q*,q7) : (B, 1, (—),=>) — (C,II,,(—), =>) there exists an (equivalent) cc-pseudofunctor

(87 PrOdn(_)7 [_7 _]) - (C7 Hn(_)7 :D)

with witnessing equivalences arising from the uniqueness of products and exponentials up

to equivalence. <



5.1. CARTESIAN CLOSED BICATEGORIES 137

cc-Biequivalences from biequivalences. In the preceding chapter (page |81)) we saw
that, so far as we are concerned, it is unnecessary to distinguish between pseudonatural
transformations and their product-respecting counterparts. A similar situation holds in
the cartesian closed case. For cartesian closed pseudofunctors (F,q*,q™), (G,u*,u™) :
(B,II,(—),=>) — (C,II,(—),=>), a cc-transformation F = G is an fp-transformation
(@, o, ) : (F,q*) = (G,u*) (recall Deﬁnition equipped with a 2-cell ;"5 (A, B € B)
as in the diagram below

evalpg FB © (mi g X FA)

( mi pxFA evalpa FB 1
F(A=B)x FA ———— (FA=FB)x FA ———— FB
QA =B X CYA\L aj?B laB
<~
G(A=>B) xGA ————— (GA=GB) x GA ———— GB
L m§ pxGA evalga,GB j\
evalga,gB © (mCA"’B x GA)
such that the following pasting diagram is equal to Qeval, 5
Fevaly B
Idp((a = B)xA) (A=>B)
q(A =B,4) e W
Fri . Fr al o(m xFA
F((A=B) x A) L0 pg— B) x FA b FB
| |
(A =>B)xA aifx:DBA QA =—>BXOA O‘ZDB OéB
1 = ! bl
G((A => B) x A) —><G7r1,G’Tr2> G(A=>B) x GA cvaloncno(md yeGA)
=>
ldg((a ==B)xA) A => B)

Gevalg B

We call the transformation strong if every ay, O‘,Xaxl ..., and a3 g is invertible.

In a cc-bicategory, every fp-transformation—and hence every pseudonatural transformation—

lifts canonically to a cc-transformation: one simply inverts the coherence law to obtain a
definition of ajfB. Moreover, by Lemma every biequivalence extends canonically to a
cc-pseudofunctor. Thus, in order to construct a cc-biequivalence between cc-bicategories—
namely a biequivalence of the underlying bicategories in which the pseudofunctors are
cc-pseudofunctors and the pseudonatural transformations are cc-transformations—it suffices
to construct a biequivalence of the underlying bicategories (c.f. Lemma .
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Lemma 5.1.9. Let (B,11,,(—),=>) and (C, I, (—), =>) be cc-bicategories. Then there exists
a biequivalence B ~ C if and only if there exists a cc-biequivalence (B,II,(—),=>) ~

5.1.1 Coherence via the Yoneda embedding.

It turns out that one may refine the Yoneda-style proof of coherence for fp-bicategories
given on page [77| (Proposition to encompass exponentials[] The proof does not go
through verbatim, because the exponentials in Hom(B, Cat) are not generally strict. The
solution is to first strictify the bicategory B to a 2-category C, then pass to the 2-category
[C, Cat] of 2-functors, 2-natural transformations, and modifications. This is cartesian closed
as a 2-category—and hence as a bicategory—by general enriched category theory [Day70]

Example 5.2].

Proposition 5.1.10. For any cc-bicategory (B,1II,,(—),=>) there exists a strictly cartesian
closed 2-category (C,II,(—), =) such that B ~ C.

Proof. By Proposition we may assume without loss of generality that B is a 2-category
with 2-categorical products and pseudo-exponentials. It therefore admits a 2-categorical
Yoneda embedding Y : B — [B°?,Cat]. Let B denote the closure of Y (ob(B)) under
equivalences and factor the Yoneda embedding as B LBL [B°P, Cat]. By the 2-categorical
Yoneda lemma, 7 is a biequivalence.

The rest of the argument runs as for Proposition For any P, € B the strict
exponential (jP = jQ) exists in [B°?, Cat]. But then

(jP=-jQ) = (YiHhP=(Yi Q) ~Y(i 'P=-i"'Q)
so the exponential (jP =>jQ) € B, as required. O

In a sense, of course, this proposition solves the problem we set ourselves in the
introduction to this thesis: cc-bicategories are coherent. However, the normalisation-by-
evaluation proof is valuable in itself. First, it is a new approach to higher-categorical
coherence; second, the speculation that it may be refinable to a normalisation algorithm
on 2-cells; and third, it makes use of machinery that will play an important role in other,
further developments. We therefore keep this result in mind, but do not let it deter us from

our work in the rest of this thesis.

5.2 Cartesian closed (bi)clones

We shall follow the procedure of the previous two chapters, synthesising our type theory
from the construction of a free biclone. The 1-categorical setting remains an enlightening

starting point: in this setting, the type theory we synthesise ought to be the familiar

1T am grateful to André Joyal for suggesting this is possible, especially so because at the time I thought
it was not.
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simply-typed lambda calculus. To show this is indeed the case, we shall extend the diagram
of adjunctions (4.19) on page [98| to the cartesian closed setting. The ideas involved are not
especially novel; however, to the best of my knowledge they have not been presented in this

style elsewhere (although Jacobs’ [Jac92] shares many of the same basic insights).

5.2.1 Cartesian closed clones

Lambek [Lam89| defines a (right) internal hom in a multicategory L to be a choice of object
A => B for every A, B € L, together with a family of multimaps evaly g : (A=>B),A - B

inducing isomorphisms

L(I'; A= B) = L(I', A; B)

evaly poch,ida)
- 7

(h:T - A==B)— (I'A B)

for every I, A and B. This suggests the following definition for clones (c.f. Definition |4.2.13)).

Definition 5.2.1. A clone (S,C) has a (right) internal hom if the corresponding mul-
ticategory MC has a right internal hom. If C is also cartesian, we say C is cartesian

closed. <

Example 5.2.2. The cartesian clone CI(C) constructed from a cartesian closed category
(C,II,,(—),=>) (recall Example 4.2.14] on page is cartesian closed. The exponential of
A, B e Cis A=> B, the evaluation multimap is the evaluation map of C, and the currying

of f:]],11(A1,...,An, X) — Y is the exponential transpose of

~

[T (AL 40). X) S [Ty (Ar o Ay X) Dy

Since every cartesian clone is representable, for any cartesian closed clone (.S, C, IL,,(—), =)

one obtains the following chain of natural isomorphisms for every Ay, ..., A,,B,C € S (n€
N):
C(Hn+1(A1, vy Ap, B); C’) ~ C(Ay, ..., A, B;C) by representability

~ C(Ay, ..., Ay; B=0C) by cartesian closure (5.6)

~ C([[,(A1, ..., An); B=>C) Dby representability
Thus, for any multimap ¢ : Ay,..., A,, B — C in a cartesian closed clone (S, C,II,,(—), =>)
there exists a multimap A\t : Ay, ..., A, — (B=>C) (called the currying of t), which is the
unique g : Ay, ..., A, — (B=>C) satisfying

t =evala [g[pg.);B, ,pff.);B], pffjé)]

Observe in particular how the requirement that the isomorphisms are defined on MC—rather
than on C—abstractly enforces the use of the weakening operation taking h : X1, ... , X, —
Z to the multimap h[pgz vy oo ,pg?.) Y] X, ., X, Y o 2.
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Remark 5.2.3. For any cartesian closed clone (S, C,II,,(—),=>) the isomorphisms (|5.6))
entail that the nucleus C is also cartesian closed. Thus products are given as in (S, C), and

exponentials are given by the composite natural isomorphism
C(X x A,B)=C(X x A,B) ~C(X,A;B) ~C(X,A=>B) = C(X,A=>B) (5.7)

However, the evaluation map evaly g : (A =>B), A — B witnessing exponentials in C is not
a morphism in C. Chasing through the isomorphism ([5.7)), one sees that the evaluation
map (A=> B) x A — B in C is evaly p[m1, m2] and the currying of f : X x A — B is the

tup(pg?A,pg??A)
———

1-cell )\(X JA X xA ER B). To see this is the case, observe first that for any

u: X — (A=>B) one has:

evalg B [u[pg;)A], |J§??A] [m1,m2] = evala p [u[p%}A] [m1, 2], pg?A[m, wz]]

=evaly p [u[m1], m2]

Next recall that for any v : X — Y in C the corresponding morphism ux A: X xA - Y x A

is tup(u[m], m2). Putting these components together, one sees that for any f: X x A — B,

evalg g[my, m2] [tup ()\ (f[tL||J(|3§?A, pg??A)]) [m1], 7r2) ]
=evaly p [)\ (f[tup(p%?m |J§??A)]) [m1], 772] cartesian structure of C

= evala | A(Ttup(pS 4 PSS a] P4 | 1, 2]

= f[tUP(P%)A’ I3g?7),4)][7r1, 2] exponentials in C

=/
The final line follows by Lemma |4.2.17, On the other hand, for any v : X — (A= B),
)\(evalAB[m,7r2][tup(u[771],7r2)][tup(pg?A, p&?l@]) = A(evalA’B[u[m],Trg] [tup(pg&p pg??A)])

=\ <evalA,B [U[pg,)A]’ pg?l“] )

U

where the final line follows again from the cartesian closed structure in (5,C). It follows
that evalq g[m1,m2] is the universal arrow defining exponentials, as claimed.

This structure is not surprising: it corresponds to the cartesian closed structure
on the syntactic model of the simply-typed lambda calculus, restricted to unary con-
texts (e.g. [Cro94, Theorem 4.8.4]). “«

The following two definitions follow the schema of Chapters [3] and [4]

Definition 5.2.4. A A7 -signature S = (B, G) consists of
1. A set of base types B,

2. A multigraph G with nodes generated by the grammar

Al .. An,C D =B I|[L(A,....,A4) |C=D (Be®BneN) (58)
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If the multigraph G is a graph we call the signature unary. A homomorphism of A*-
signatures h : S — &’ is a morphism h : G — G’ of the underlying multigraphs such that,
additionally,

h(IL, (A1, - s An)) = [1,(hA1, ... hA,)
h(C == D) = (hC = hD)

We denote the category of A -signatures and their homomorphisms by A*"~-sig, and the

full subcategory of unary A~ -signatures by AX’_’—sig|1. <

Notation 5.2.5 (c.f. Notation [4.2.23)). For any A~ -signature S = (B, G) we write B for
the set generated from B by the grammar (5.8). In particular, when the signature is just a
set (i.e. the graph G has no edges) we denote the signature S = (28, S) simply by B, o«

Definition 5.2.6. A cartesian closed clone homomorphism
h: (Sa C7 Hn(_)a :‘>) - (T’ D7 Hn(_)7 :‘>>

is a cartesian clone homomorphism (S, C,II,,(—)) — (7,D,II,,(—)) such that the canonical
map A(h(evala g)) : h(A=>B) — (hA=>hB) is invertible. We call h strict if

h(A=>B) = (hA=>hB)

h(evaIAB) = evalhAJLB
for every A,B € S. <

In a similar fashion, we call a cartesian closed functor strict if it strictly preserves
exponentials and the evaluation map.

We now construct the following diagram of adjunctions, in which CCCat denotes the
category of cartesian closed categories and strict cartesian closed functors and CCClone
denotes the category of cartesian closed clones and strict homomorphisms. As in the
preceding chapter, we implicitly restrict to cartesian structure in which [[,(—) is the

identity functor.

CCClone

forget Q
FCI*—(—
N7 -sig =) CCCat (5.9)
free
\ L
Y forget

N7 -sig

The right adjoint to the inclusion ¢ : A><7_’—sig|1 — N7 -sig is defined by E(‘B, g) =
(%8, LG) for L : MGrph — Grph the right adjoint to the inclusion Grph < MGrph
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(c.f. Lemma 4.2.24)). The free-forgetful adjunction between cartesian closed categories and
N7 -signatures is the classical construction of the syntactic model of the simply-typed

lambda calculus over a signature [Lam80]. There are two adjunctions left to construct.

Lemma 5.2.7. The forgetful functor CCClone — A -sig has a left adjoint.

Proof. Define a clone FC1*>7(S) over a signature (%8, G) as follows. The sorts are generated

by the grammar
A, ..., Ay, C,D =B | ][], (A1, ... ,An) | C=D (Be®B,neN)

The operations are those of Construction 4.2.25| (page together with two additional
rules:

t e FCIX~(S) (A1, ... , An, B; C)

neN
evalg ¢ € FC1*(S)(B=C, B; C) At e FCI7(S) (A1, ... ,Ap; B=0C) (et
Similarly, one extends the equational theory = by requiring that
° evalB,C[()\t)[pfj.)’B, s ,pff.),B], pgﬁé)] =tforanyt: Ay, ... ,A,, B— C,
° )\(evalgyc[u[pg.)’B, 7|3E4TL.),B]7 pfﬁfﬁ]) =uforany u: Ay, ... , A, - (B=0C).

It is clear FC1*(S) is cartesian closed. To see that it is also free, let h : S — D be any
AN -signature homomorphism from S to the underlying A* ~-signature of a cartesian closed
clone (T, D, II,(—), =). Define a cartesian closed clone homomorphism A% : FC1*:~(S) — D
by extending the definition of Lemma (page as follows:

h#(A=B) := (h# A== h# B)
h¥#(evala p) := eval 4 4 p# )

Kt (At) == A(ht)

For uniqueness, we already know from Lemma [4.2.27] and the definition of a cartesian closed
clone homomorphism that any cartesian clone homomorphism strictly preserves all the

structure, except for currying. So it suffices to show that any cartesian clone homomorphism

preserves the \(—) mapping. Since At is the unique multimap g : Ay, ... , A, —» (B=C)
such that ¢t = evalp ¢ [g[pill.) By o ,pXL.) Bl pfffé)], for any cartesian clone homomorphism

f:FCI*>7(S) — D one has

10 = f(evalg.c| (A0 o - 5P sl P )

1) (n n+1
= evalyp fo [f()‘t)[|35‘A.,fB’ ’pfA).,fB]7p§”A.,])”B]
it follows that f(At) = Af(t) for every t: Ay, ... , Ay, B — (B =>C), as required. O

It remains to construct the adjunction CCClone = CCCat.
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Lemma 5.2.8. The functor (—) : CCClone — CCCat restricting a cartesian closed clone

to its nucleus has a left adjoint.

Proof. Consider the functor P : CartCat — CartClone defined in Lemma This
restricts to a functor CCCat — CCClone. Explicitly, the evaluation map in PC is the

evaluation map evaly p in C and for any f : Xi,...,X,, — (A=>B) the composite
evaly B [f[pg;.) A ,pg?.) als pg?:rjl)] in PC is the composite evalg go{f o (71, ..., Tp), Tpi1) =

evaly po (f x A)o{{m, ... ,mp), 41, in C. The currying of g : Xy, ..., X,,, A — B is the

currying (in C) of the morphism
MITE X x A= X1 % xanAiB)

Now suppose that F' : C — D is a strict cartesian closed functor. Define F# as the free

cartesian extension of F' from Lemma [1.2.28

(1) (n)
FH(Xy, . Xy 5 Y) = (FXy, . FX, 220D px - p([T,X) 25 FY)

To see that F# preserves the evaluation map, note that—since F' is a strict cartesian
closed functor—the equation F'(evaly g) = evalpa pp[m1, m2] must hold by Remark
It follows that

F#(evalAB) = evalFA,FB[m, 7T2] [’lﬂpx.(p(l), e ,p(n))]
1 2 .
= evalpa rp [P%I)ax =>FB,FA P%A :DFB,FA] by equation (4.13) on page
= evalFA,FB
as required. The proof of uniqueness is exactly as in the cartesian case. O

This completes the construction of the diagram of adjunctions . As for the diagram
of adjunctions for cartesian strucure, it is easy to see that the outer edges of
commute and that g oP = idcccat- One thereby obtains the following chain of natural
isomorphisms (c.f. equation ), in which we write FCat™ 7 (S) for the free cartesian

closed category on a unary signature S:

CCCat(FCat*~(S),C) = CCCat (P(FCath—’(S)), c) ~ CCCat(FCle—’(LS)), c)
(5.10)

It follows that the free cartesian closed category on a A* '~ -signature is described by
restricting the deductive system of Lemma to unary contexts.

Remark 5.2.9. In the preceding lemma we rely on the equation
1 2
evalFA,FB[pEA):DB’A), pEA):DB,A)] = eValFA,FB
to show that F# is strictly cartesian closed. In the bicategorical setting, where this equality
is generally only an isomorphism, the argument fails. As we shall see, the free cc-bicategory
on a signature (in the strict sense of free we have been using throughout) is not obtained

by restricting the free cartesian biclone on the same signature. <
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Cartesian closed clones and the simply-typed lambda calculus. Let us examine
how one extracts the simply-typed lambda calculus from the internal language of FCI*>7(S)
(defined in Lemma [5.2.8)). The evalp ¢ multimap becomes an application operation on

variables:

f:B=C,z: Bt app(f,x): C

The weakening operation t — t[pfj} By s pf:.) B] is the following form of the usual substi-

tution lemma:

x1: A, oo o At C x1: A, ot A,y BETE:C
x1: A1, oo, Ay s B tla /o, oo /an] s C

This mirrors the construction in Agisd and its extensions, where weakening arises from
explicit substitutions corresponding to inclusions of contexts.

The A\(—) mapping is the usual lambda abstraction operation, and the two equations
become the following rules for every x1 : Ay,...,2n : Ap,z: A-t: Band 21 : Ay, ..., Ty :
A, +-u:A=>B:

app((Ax.t)[z1/x1, ... ,xn/zp],2)  and  Az.app(u[zi/z1, ..., 2n/2n],2) = u

As we saw in Section these rules extend to rules on all terms in the presence of the
meta-operation of capture avoiding substitution. Thus, we recover the usual fn-laws of
the simply-typed lambda calculus. The diagram of adjunctions , together with the
isomorphism , then expresses the usual free property of the unary-context syntactic
model [Cro94, Chapter 4].

Our aim in what follows is to define cartesian closed biclones, construct the free instance
to obtain a diagram matching , and use this to extract a type theory in the same
way as we have just sketched for the simply-typed lambda calculus. As for products, our
insistence on strict universal properties makes the full diagram impossible to replicate (recall
Example on page . Nonetheless, we shall see that a version of it exists up to

biequivalence.

5.2.2 Cartesian closed biclones

The definitions of the previous section bicategorify in the way one would expect.

Definition 5.2.10.

1. A (right) closed bi-multicategory is a bi-multicategory M equipped with the following
data for every A, B € M:

a) A chosen object A=> B,
b) A chosen multimap evaly p : (A= B),A — B,
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c¢) For every sequence of objects I in M, an adjoint equivalence

evaly po{(—),Ida)
— 4
MT;A=B) 1~ M(T,A;B)
&T/

specified by choosing a universal arrow with components ; : evaly po(At,Ida) =
t.

2. A (right) closed biclone is a biclone (S,C) equipped with a choice of right-closed

structure on the corresponding bi-multicategory MC.

3. A cartesian closed biclone is a biclone equipped with a choice of both cartesian

structure and right-closed structure. <

Explicitly, a cartesian closed biclone is defined by the following universal property. For

every sequence of objects I := (A, ..., A,) and multimap ¢ : I'; A — B there exists a
multimap At : T' - (A=>B) and a 2-cell ¢ : evalAyB[()\t)[p(Al.) [ ,pgl.) Bl p&ﬁié)] = t.

This 2-cell is universal in the sense that for every u : I' — (A => B) and

1 1
a:evaly p [u[p%lB, V.. ,p(fﬁ)’B], pg:rB)] =t
there exists a 2-cell eT(a) :u = At, unique such that
evala B [QT(O‘)[PE«;IE,Bv 7p54n.),5]7p54n,f]13)]
evala p [u[pfj.)’& ,pff.)’B], pffjé)] _ evalA,B[()\t)[pS.),B, . 7pfqn.)’B], pfffé)]

(5.11)
\ t /

Moreover, since every cartesian biclone is representable (Theorem |4.2.51)), one also
obtains a sequence of pseudonatural adjoint equivalences lifting (5.6|) to biclones:

C(Hn+1(A17 e An,B);C’) ~C(Ay, ..., An,B;C)
C(Ar, ..., Aui B=C) (5.12)
C([T.(A1, ..., An); B=>C)

0

0

It follows that, if (S,C) is cartesian closed, then so is its nucleus C.

Remark 5.2.11. We saw in Remark that the evaluation map witnessing cartesian
closed structure in the nucleus C of a cartesian closed clone (S, C,II,(—),=>) is not the
evaluation multimap in C. Similarly, chasing through the equivalences one sees that
the biuniversal arrow witnessing exponentials in the nucleus C of a cartesian closed biclone
(S,C, 1L, (—),=>) is evaly g[m,m2] : A x (A=>B) — B and the currying of f: X x A > B
is )\( f [tup(p(;’) 4> pg? A)]). To see this defines an exponential, one can replace each of the
equalities in the proof of Remark to construct natural isomorphisms

eval g | (<)PK 4l P | [ra, m2] = ey
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A(evala g [, o] [tup((—)[r1], m2) 1[tup(pe s, PE)]) = ide(xa— By

witnessing an equivalence, which may be promoted to the required adjoint equivalence
without changing the functors (see e.g. [Mac98, § IV 4]). <

Example 5.2.12 (c.f. Example [5.2.2). The cartesian biclone Bicl(B) constructed from a
cc-bicategory (B, IL,(—),=>) (recall Example [4.2.45| on page [109)) is cartesian closed. The

precise statement requires some juggling of products, for which we introduce the following

notation. For any Ay, ..., A,, B € B (n € N) there exists a canonical equivalence
eavB [ [nii(A1, oo An, B) ST (T 1.(A1, ..., An), B) : €8 (5.13)
where e4, p 1= ({71, ... ,mp), Tnt1) and ele”B :={mom, ... ,mpom,me). The witnessing
2-cells
*
WA, B : €4, p°ea, 5= 1d A1, An,B
Hn+1( 1 ) (514)
VA.,B * Id]_[n(Al, 0 Ap)xB T €A,,B © 8,*4.,3
are defined by the two diagrams below:
WA, B
{mpomy, ... ,ipom, w2y o M, .o, M)y Tptl) ———— Idry (A, A0,B)
postl T{ﬁ,l
<(7T1 o 7'('1) O€CABy -++ (ﬂ'n o 7T1) ©€A4A,,B,T20 eA.,B> <7['1, . 77Tn77rn+1>
;l T<w(1)7"'7w<n)77rn+1>
(mio(moea,B), - ,mo(moea, B),m™oea, B) — (T O0{Te), ... ,Tp 0{Ta), Tpt1)
<7r10w(1), ...wnow(1>,w(2)>
VA,,B
Idy] (A, ... An)xB {1y ooy M), Ty1) 0 €4, B
32} Apost_1
<7T177T2> <<7T1, 77T7L>O€:(4.’B)7TTL+1 06:4.7B>

A~

{post™ m, y10e*)

~

<IdHn(A1, s An) o7, 772> <<7T1 o 674.735 ce. 3T © 6;4.7B>, Tin+1 © 674.73>
Graomma) T, . oy =)
KCOTRTRNT HLE SPE oY Gostmss (e 0 1), 2)
Here <14, abbreviates the following composite:
~ S1d =
Cldy = ldx == (mpoldx, ..., mpoldx) = {(m1, ... ,m) (5.15)

The exponential of A, B € B is A=> B, the evaluation multimap is the evaluation map

of B, and the currying of f :[],,(A1,...,An, X) — Y is the exponential transpose of

€., f
HQ(Hn(A17 e ?An)7X) %) HnJrl(Ah s 7An7X) Y
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The counit € is the following composite:

€
evalX7y0<)\(foe;1hX)o<7rl, ,7rn>,7rn+1> ! > f
evalxjy o </\(f o 674.’X) o <7['1, N ,7Tn>,IdX o 7Tn+1> f o IdH(A.)xX
evalofuse ™1 fowa,, x
evalxy o ((A(f oy, x) x X)o eA.,X) foleh, xoea x)

<6V31X,y o (A(fo €, x) ¥ X)) oed, X » (foelh, x)oea,x

E(foe*)OCAq, X

Forany 1-cell g : [ [,,(A41,...,4,) = (X =Y)and 2-cell a : evalx y o {go{(m1,...,Tn), Tpy1) = f
the corresponding mediating 2-cell g = A(foe}, x) is ef(a®), for a° defined by the diagram

below.

evalxy o (g x X) » foel, x

~

~

(evalxy o (g x X)) o Id[ (1., 4.),B)

evalo(ng)ovHQ((Hn Ae),B)

(evalxy o (g x X))o <€A.7X o eth> aoe*

~

~

(evalxy o ((g x X))oea, x)o €h.X

evalofuseoe*

~

(evalxy o{go{m,...,m),Idx o my41)) 0 674.,X — (evalxy 0 {g o {me), Tnt1)) © 674.,)(

<

The free cartesian closed biclone. In Chapters [3] and [4] we synthesised the required
type theory from two principles: first, an appropriate notion of biclone, and second, the
fact that the internal language of those biclones—when each rule is restricted to unary
contexts—gives rise to an internal language for the corresponding bicategories. For the
cartesian closed case, we cannot restrict every rule of the internal language to unary contexts
without also discarding all curried morphisms (lambda abstractions). Nonetheless we
can show that the nucleus of the free cartesian closed biclone is the free cartesian closed
bicategory up to biequivalence. Thus, one obtains the internal language of cartesian closed
bicategories (in a bicategorical sense) by synthesising the internal language of cartesian
closed biclones.

We shall begin by defining an appropriate notion of signature and (strict) pseudofunctors

of cartesian closed biclones. Then we shall construct the adjunctions of the following
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diagram, in which we write CCBiclone for the category of cartesian closed biclones and strict

pseudofunctors and cc-Bicat for the category of cc-bicategories and strict pseudofunctors.

CCBiclone

forget
AJS 7 -sig FBet—(_) cc-Bicat (5.16)
\ /
X

1
Y N forget
A% sig],

Thereafter we shall extract our type theory Aps~ from the free cartesian closed biclone
over a signature, and use this to show that the nucleus of the free cartesian closed biclone is

biequivalent to the free cc-bicategory over the same (unary) signature.

Definition 5.2.13. A A} -signature S = (B, G) consists of
1. A set of base types B,

2. A 2-multigraph G, with nodes generated by the grammar

Ay, ... Ay C,D =B | (A1, ... ,Ay) |C=D (BeB,neN) (517

If G is a 2-graph we call the signature unary. A homomorphism of Ap¢ -signatures

h:S — &' is a morphism h : G — G’ of the underlying multigraphs such that
h(IL, (A1, ..., An)) =1 1,(RA1, ... ,hA,) and h(C=>D) = (hC =>hD)

for all Ay,...,A,,C,D € Gy (neN). We denote the category of Ay -signatures and
their homomorphisms by Ap¢ ™ -sig, and the full subcategory of unary Aps  -signatures by

X, .
Aps —51g’1. <

Notation 5.2.14 (c.f. Notation [5.2.5). For a A -signature S = (B,G), we write B for
the set generated from B by the grammar (5.17). In particular, when the signature is just

~

a set (i.e. the graph G has no edges) we denote the signature S = (B, G) simply by B. «

The embedding ¢ : AX—Sig|1 > A*-sig has a right adjoint by an argument similar to that
for Lemma (c.f. also Lemma [4.2.55).

The definition of cartesian closed pseudofunctor follows the template given by cartesian
pseudofunctors of biclones, while the construction of the free cartesian closed biclone

X . . .
on a Ap¢ -signature echoes that for the free cartesian closed clone on a A~ -signature

(Lemma [5.2.7)).
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Definition 5.2.15. Let (S,C,II,,(—),=>) and (T, D, I1,,(—), =) be cartesian closed biclones.
A cartesian closed pseudofunctor (F,q*,q~") : (S,C,11,(—),=>) — (T, D,1,,(—),=>) is a
cartesian pseudofunctor (F,q*) : (S,C,1I,,(—-)) — (T,C,I1,(—)) equipped with a choice of
equivalence my p : F(A=>B) S FA=-FDB : q3p for every A, B € S, where my p :=
)\(FevalA’B). We call (F,q*,q) strict if (F,q*) is a strict cartesian pseudofunctor such
that

F(A=>B) = (FA=>FB)

F(evalg p) = evalpa rp
F(At) = A(F1)
F(e) =

S
dap =ldra=rB

and the isomorphisms witnessing the adjoint equivalences are the canonical 2-cells

Id(pa—rp) 2 >\<eValFA,FB [Id(FA —>FB) [P&)A :DFB),FAL Pgﬂ)A :>FB),FA]> = Aevalpa,rp)

obtained from the unit and the canonical structural isomorphism. <

For the construction of the free cc-biclone, it will be useful to introduce some notation.
Fort: A — B wedefine t x X := tup(t[m],Idx[m2]) : [ [5(4, X) — [ [,(B, X), and similarly

on 2-cells.

Construction 5.2.16. For any A~ -signature S, define a cartesian closed biclone FCI*(S)

with sorts generated by the grammar
A, ..., Ay, C,D =B |]][,(A1, ... ,A,) | C=D (BeB,neN)

by extending Construction (page with the following rules:
te FCI*7(S)(Aq, ..., A, B;C)
evalgc € FCI*~(S)(B=C, B;C) At e FCI7(S)(Ar, ... ,An; B=0C)

te FCI*7(S)(Aq, ..., A, B;C)
gt € FCI7(S)(Ay, ..., An, B; C) (evalB,C[(At)[p%)B, ,p(fﬁ)’B] pgﬁg)] t)

ue FCI*(S)(Ay, ..., Ap; B=>0C)
ae FCI*7(S)(Ay, ..., Ay, B;O) (evalB,C[ [p;.)B, ,pfﬁ)’B] pfﬁrl)] t)
ef(a) e FCI*(S)(Ay, ..., An; A=> B)(u, \t)

The equational theory = is that of Construction extended by requiring that

e For every o : evalec[u[pS}’B, ,pff.) ], pfffl)] =t:A,...,A,,B—C,
a=c¢eevalpc [eT(a)[pSi& ,pX?}B], pfﬁfé)]



150 CHAPTER 5. A TYPE THEORY FOR CARTESIAN CLOSED BICATEGORIES

e Forevery y:u= X: A, ..., A, > (A= B),
v = eT<et eevalp o ['Y[PS.),B’ .. ,p(X.)’B], pff&fé)])
e fa=d:evalpcfux B]=t:Xi,...,X,, B — C then el(a) = ().
Finally we require that every ¢; and eT(ideval[HQ(% B)]) is invertible. <
It follows that for any 2-cell
o evach[u[pS')’B, ’PEI.),B]? pffjé)] =t:A4,...,A,,B—>C
ef() is the unique 2-cell v of type u = At such that o = &, e evalg ¢ ['y[png, cee p(:.),B], pEﬁTQ].

Existence is the first equation and uniqueness follows by the latter two (c.f. Lemma [4.2.59)).

The required universal property extends that for cartesian biclones.

Lemma 5.2.17. For any Ay -signature S, cartesian closed biclone (T, D, II,,(—), =) and
Aps” -signature homomorphism h : S — D from S to the AjS ™ -signature underlying D,
there exists a unique strict cartesian closed pseudofunctor h# : FCI*~(S) — D such that
h#* o1 = h, for 1 : § < FCI*>7(S) the inclusion.

Proof. We extend the strict cartesian pseudofunctor h# defined in Lemma [4.2.60| (page [118)

with the following rules:
h#*(B =>C) := (h#* A=>h? B)
h#(eval&c) = evalys g pec
h#(At) := A(h#t)
R (1) 1= e
h*(ef(a)) := ef(h#a)

For uniqueness, it suffices to show that any strict cartesian closed pseudofunctor commutes
with the ef(—) operation. For this we use the universal property. Let ' : FCI*~(S) — D be

any cartesian closed pseudofunctor. Then, for any « : evalp ¢ [u[p(All By pffa sl pgﬂé)] =
t: A, ..., Ay, B— Cin FCI*7(S),
EFt ’eValFB,FC[(FeT(C“)) [Pg,)ax.,F& 7|3§«:121.,FB]7 IJ?X.{)FB]
=F(g)oF (evalac [eT(a) [pfj.)’B, e ,p(X.{B] , pffjé)]) by strict preservation
=F <5t eevalpc [eT(a)[pS}’B, e ,pg?B], pgljé)])
= Fa

Hence ef(Fa) must equal F(ef(a)). O
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We saw in Example [4.2.63| (page ) that the free fp-bicategory on a AJ-signature
cannot arise as the nucleus of the free cartesian biclone over the same signature. We can

now see that the addition of exponentials introduces a further obstacle (c.f. Remark .
Let S be a unary Ay~ -signature and m be its nucleus. Just as in the categorical
case, the maps m; in m are the biuniversal arrows defining products in FCI*7(S),
but the evaluation map in m is evalp c[m1, m2] (recall Remark . It follows
that for any cc-bicategory (B,1II,(—), =>) and strict cc-pseudofunctor F : FCI*—(S) — B

one must have
evalFB,Fc = F(evalgp[m,m])
F(evalp,c o (m1,m2)) by def. of products in FCI*—(S)
F(evalB,c) ] F<7T1, 7T2>
(

(5.18)

= F(evalp,c) o (m,m2) by strict preservation

In particular, since h#(evalp ) = evaly# g p#c, the restriction h# of h# to unary mul-
timaps cannot be strictly cartesian closed whenever eval,# g 4 © (m1,T2) # evaly# g p#c
in the target cc-bicategory. This occurs, for instance, in the cc-bicategories of generalised
species [FGHWO07] and concurrent games [Paq20].

One way to diagnose the problem is the chain of equivalences . The product
structure in a cartesian closed biclone arises via the [ [,,(—) operation, but exponentials are
defined with respect to context extension. This mismatch makes it impossible for h# to
strictly preserve both products and exponentials. To construct the free cc-bicategory over a
unary signature, one must define exponentials directly with respect to products, resulting

in a construction similar to that given in [Oua97].

The free cc-bicategory. As for Construction [5.2.16, we write ¢t x B for the (derived)

arrow tup(t[m1],Id[m2]), and likewise on 2-cells.

Construction 5.2.18. For any unary Ap¢  -signature S = (B,G), define a cc-bicategory
FBct*7(S) as follows. The objects are generated by the grammar

Ay, ... Ay, C,D =B |[[,(A1, ..., A4,) |C=D  (BeB,neN)

For 1-cells and 2-cells, one takes the deductive system defining the free fp-bicategory on &
(Lemma [4.2.62] page [119)), extended as follows. For 1-cells:

te FBct*(S)(X x B;C)
evalgc € FBct*(S)(B=>C x B;C) Ate FBct*(S)(X,B=C)

For 2-cells:

u€ FBct*~(S)(X,B=C)
te FBet*~(S)(X x B,C) ae FBct*(S)(X x B,C)(evalp,clu x B],t)

er € FBct*~(S)(X x B,C)(evalp [\t x B,t) ef(a) € FBct*—(S)(X, A= B)(u, \t)
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Moreover, we extend the equational theory of Lemma with the following three

rules:

e For every a:evalpclux Bl =1t: X x B — C,

a =g eevalg olefl(a) x B

e For every v:u= At : X — (A= D),

v = eT(Et ° evalB,C['V x B])

e Ifa=da:evalpcfux B]=1t:X x B — C then ef(a) = ef(a).

Finally we require that every &; and eT(ideval[u>< p)) is invertible. <

The bicategory FBct*>(S) is cartesian closed by exactly the same argument as for the

biclone FCI*7(S). The associated free property is similarly straightforward.

Lemma 5.2.19. For any unary Ap¢~ -signature S, ce-bicategory (C, IT,,(—), =>) and Ap¢ -signature
homomorphism h : S — C from S to the A)g -signature underlying C, there exists a unique

strict cartesian closed pseudofunctor h? : FBct*~(S) — C such that h#* o1 = h, for

t: S — FBct*(S) the inclusion.

Proof. We extend the strict cartesian pseudofunctor h# defined in Lemma [4.2.62 (page [119)

as follows:
h#* (B =>C) := (h* A=>h? B)

h#(evalgc) == evalpxp o
h#* (At) := A(ht)

R (1) 1= epuy
h* (eT(a)) = el(h*a)

For uniqueness, it suffices to show that any strict cartesian closed pseudofunctor commutes
with the ef(—) operation. The proof is as in Lemma [5.2.17] (or, more abstractly, follows

from Lemma [2.2.17)). O

The preceding lemma entails that one may construct a type theory for cartesian closed
bicategories by synthesising the internal language of FBct* ~(S). Within this ‘bicategorical’
(rather than biclone-theoretic) type theory the variables play almost no role. For instance,

the lambda abstraction rule takes on the following form:

p:AxBRt:C q fresh
q: A+ XNg,p.t): B=C

lam
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The variable p is bound, but ¢ is free. It is possible to place such rules within the general
framework of binding signatures, and the syntactic model of the resulting type theory is
biequivalent to the syntactic model of the type theory extracted from the construction of
FCI*(S8), restricted to unary contexts. However, the result is rather alien to the usual
conception of a type theory. We therefore call the internal language of FCI* 7 (S) the ‘type
theory for cartesian closed bicategories’. In Section [5.3.3| we shall show that this terminology
is warranted.

The freeness universal property of FBct*~(S) also entails an up-to-equivalence unique-
ness property we shall employ later. We begin by stating a result for the case where the
signature is just a set; thereafter we employ slightly stronger hypotheses to handle constants.
We write t : Ay, ..., A, > Band7:t=1t:A4,...,4, — B for 1-cells and 2-cells in
FBct*~(S).

Lemma 5.2.20. Let S = (B, G) be aunary A,¢ -signature for which G is a set, (B, IL,,(—), =>)
be a cc-bicategory and h : S — C be a Ay -signature homomorphism. Then, for any

ce-pseudofunctor (F,q*,q~) such that the following diagram commutes,
FBet*~(8) - ¢
]\ / (5.19)
S

there exists an equivalence F' ~ h# between F and the canonical cc-pseudofunctor extending
h.

Proof. We construct a pseudonatural transformation (k,k) : F' = h# whose components
are all equivalences. We define the components kx and their pseudo-inverses k% by mutual

induction as follows:

kp:= FB = hB 25, hB = h#B  for Be B
Ky = h#*B = hB ‘25, hB = FB

n

H:‘L=1F(Ai) '—”Hl 1h A;
Y T, Ay P BT, AL

k3 =>ky
=

(F71,..,Fn)
k1, 40 = F(IT,A.) ———

n

qA

K11, a0 = [T A7 A

kix vy == F(X =Y) 725 (FX = FY) (h#X — h#y)

kx =|>k

(FX = FY) wy F(X =Y)

Kix oy = (h#X — h#Y)
We denote the unit and counit of the equivalence
kx : FX S h# X : k¥

by vx : Idpx = k% okx and wx : kx ok} = Id,%x, respectively, and assume without loss
of generality that they satisfy the two triangle laws.
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We now construct the witnessing 2-cells k; : kg o F't = h#(t) o k4 by induction.
For identities, the definition is forced upon us by the unit law of a pseudonatural

transformation. We define

_ kAO(’([}g)*l ~
kIdA = kA OF(IdA) —_— kA OIdF(A) = Idh#(A) o kA

For the product structure, we define kr, and Ewp(tlp_’tn) by the commutativity of the

following diagrams:

ka, o Fry, h# (7g) o |<(Hn Ad)

|<Akow(_k)l T;

ka, o (mx 0 (FmY) (m o [Ty ka,) o (Fme)
\ (ka, o) 0 (Fa) 4@”
(17 ka, 0 {Fm)) o F(tup(ty, ... \tm)) Ky, . tm) h#(tup(t1, ... tm)) o kx
(T, kay) (<F7T->2£ F(tup(ty, .. ,tm))) <h#(t.‘)> o kx
(1L ko oumpack post—1

> <kA. o F(t.)> _ <h#(t.) o |<X>

fuse Kty s oo Kty

(T ka,) o CF(ta))

The eval and lam cases require more work, but are in a similar spirit.

We are required to give an invertible 2-cell filling the diagram

Fevaly g

— F((A=B) x A) » FB
<F7T17F7r2>l
(k(a=>B) x ka) o(Fm1, Fr2) F(A=>DB) x F(A) Keval kp
a o)k | -
> h#(A=>B) x h# A == (W#A=-h#B) x h¥A —— h¥B

To this end, first define an invertible 2-cell §4 p applying the counit € as far as possible:



5.2. CARTESIAN CLOSED (BI)CLONES 155

evalys 4 p#p © (Ka—n) X ka)

evalps 4 p#p © ((kj4 =>kp) omi 5 x I<A)

>~

~

(evalpsapep © (K =>kp) x h#*A)) o (mh 5 x ka)
€ (koevalo(1d xk*)) O (mY pxka)

((kB oevalpa FR) o (Id(FA=|>FB) X k;)) o (miB x ka)

~

~

(kB o <evalFA,FB o (miB X FA))) o (Id(FA:DFB) X kaA)

kos(F(eval)m% )o(Id X I<*k)l

<I<B o (F(evalAVB) oq2$37A>> o (Id(FA=‘>FB) X k;lkA)

ko Fevaloq® O(IdXVZI)\L
(kB o (F(evalA,B) oqy :DBA)) o (Id(FA _oFB) X IdFA) ——=— (kpo F(evalap)) oq} =>B,A

Then define keyal to be the composite

keval

kg o F(evala B) r evalys 4 g © ((Kasp) x ka) o (Fry, Fra))

A
>~

(kp o F(evalg p)) o ldp(a=>B)xa)

(kBoF(evalAB))O(CE $B,A)_1l

e

(kp o F(evaly p)) o <(1,X4:c>B,A o (Fr, F7T2>)

|

(kB o (F(evalg,p) o (1?1:.>B7A)> o (Fmy, Fra)

6Z}BO<FTI'1,F7T2> (

Suppose t : Z x A — B. By induction we are given k; filling

F(Z x A) £t » FB
<F7r1,F7r2>l

(kz><|<A)O<F7T1,F7T2> FZXFA Et ks

<~
kZXkAl
L W (2) x W#(A) == W#(Z x A) —— h*B

and we are required to fill the diagram

evalp# g p#p © (k(A —B) X kA)) o(Fm, Frg)
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FZ > F(A:DB) .
kz Eg (FAZDFB (Ky =>kp)omj g
\L(k; =kpg)

#
e h# (\t)

(h#*A=>h#B) «—

Our strategy is the following. Writing ¢l for the clockwise composite around the preceding

diagram, we define a 2-cell

Ca tevalys g pup o (cl x W A) = h#(t) o (kg x ¥ A)

so that ef(Ca ) : ¢l = A(h#(t) o (kz x h# A)). We then define ky; as the composite

cl

ef(¢a,B)
>

—1
A(B# (1) o (kz x 1# 4)) LN A(B#t) okz = W#(Xt) o k7

The 2-cell (4 B is defined in stages. First we set v4 p to be the following composite, where

we write =~ for composites of ® and structural isomorphisms:

evalyy 4 pap © (cl x h# A)

~

(evalys g pi s © (K4 = kp) x h#A)) o ((miB o F()\t)) x h#A)

Ekoevalo(Id xk*) (mA BF(/\t)Xh#A)

(ks © evalra,rp) o (1d(pa =) x k3)) © ((mh 5 0 FA) ) x h#4)

~

F
<|<B ¢) (evalFA,FB o (mAB

kBoe(F(cval)O(f< )o(F()\t) xk*)

x F(A)))) o (F(M) x k%)

(ki o (Flevalag) ol opa)) o (FOM) xI)

Next we define 64 g to be the composite

F(evala p) o (qf4 opao (P x FA))

F(eval)oq® o(

0A,B

)\t)xd;A)l

F(evalg p) o <(LX4=|>B,A o ()\t X FIdA)>

F(evaly g) o (F(At x A)o CI},A)

F(eval)onatl

Fto q}’A
TF(at)Off
(At x A))o q}A

T(b(evttl At x A)

F(evaly p o

We can now define (4 g as follows:

I1e

» (F(evala,p) o F(At x A)) ody 4
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evaly# 4 p#p o (cl x h?* A) ‘4.5 » h#(t) o (kz x A)

vz

(kB o (FevalA,B o qil:DB,A)) o (F(At) x k%)
|
(kB o (FewﬂA,B o (qj4 opac (FOM) x FA)>>> o (FZ x k%)
|<BoeA,Bo(FZxkj4)l

(I(Bo (FtquZA)> o (FZ x k%)

|

(kg o Ft) o (QE,A o(FZ x kZ)) h#(t)o(kz xwa)
Keod® o(FZxk’A)l
(h#(t) o ((kz x ka) o (F'my, Fra))) o (qXZ,A o(FZ x k;l))
((W# (1) 0 (kz x ka)) o ((Fm, Fray o4 ) ) o (FZ x K3)
h#(t)o(kzxkA)o(ugA)*lo(FZxk’A)l

h#(t) o (kZ X |<A) oldpzxpa o (FZ X k;‘)

I1e

h#(t) o (kz x kak?)

This completes the definition of ky;. The only remaining case is horizontal composition.

As was the case for identities, the definition for multimaps of the form

tou:Z — B is forced by the axioms of a pseudonatural transformation. Using that h¥ is

a strict pseudofunctor, we define

kg o F(t o) Kiow s (W#(t) o h# (1)) o kz
kBo(¢£u)*1l Tz
kg o (F(t) o F(u)) h#(t) o (h¥(u) o kz)
;J Th#(t)oEu
(kg o Ft) o Fu ~tor (h#(t) o ka) 0 Fu ———=—— h#(t) o (ka o Fu)

To show that (k,k) is indeed a pseudonatural transformation, we need to check the
naturality condition and two axioms. Naturality is a straightforward check for each case
outlined above. The two axioms—corresponding to the identity and hcomp cases—hold by

construction. O
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Examining the construction of the pseudonatural transformation just given, one extracts

the following result.

Corollary 5.2.21. For any unary Ap¢  -signature S = (8, G), cc-bicategory (B, IL,,(—), =),

Aps~ -signature homomorphism h : S — C, and cc-pseudofunctor (F,q*,q™) such that

1. Diagram (5.19)) commutes, i.e.:

FBet*~(S) —£— ¢

A

S

2. For every Ay, ... ,Ap, A, B e FBct™ 7 (S), the 1-cells (Fmy, ..., Fry,) and my p are
isomorphic to the identity,

there exists an equivalence F' ~ h# between F and the canonical cc-pseudofunctor extending

h.

Proof. One only needs to extend the pseudonatural equivalence (k,k) constructed in the
proof of Lemma [5.2.20] to cover constants. For these, one employs the second hypothesis. For
any constant c € G(A, B), condition (1) requires that F(c) = h(c) = h*(c). Condition (2),
on the other hand, entails that the components of (k, k) are, inductively, each isomorphic to
the identity. For the 2-cell filling

FA—fc . pp

k Al ke lkB
# #
h7(A) hT(c)> h#(B)
one may therefore take the composite kg o Fe = Fe = ht (c) = pit (¢) o kg This definition
is natural in ¢, and the two axioms of a pseudonatural transformation continue to hold.

The claim follows. O

5.3 The type theory Aj ;™

Fix a Ap¢ -signature S. The type theory Api~ (S) is constructed as the internal language of
FCI*(S), with rules matching those of Construction These are collected together
in Figures Recall that for a context renaming r we write ¢{r} to denote the term
t{z; — r(z;)} (Figure[3.2), and that we write inc, for the inclusion of contexts I' < ',z : A
extending I" with a fresh variable x.

The lambda abstraction operation extends to a (functorial) mapping on rewrites, and

the unit is derived as the mediating map corresponding to the identity (c.f. the discussion

following Definition [5.1.1]).
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Definition 5.3.1.
1. For any derivable rewrite (I'yx: A 7:t =t : B) we define A\z.7 : Ax.t = Ax.t’ to

be the rewrite ef(z .7 e&;) in context T
2. For any derivable term (T - u : A => B) we define the unit 1, : © = Az.eval{u{inc,}, z}

to be the rewrite ef(x . ideval{ufine, },2}) in context T'. “«

The usual application operation becomes a derived rule:

'-¢t:A=1B '-u:A
I' - eval{t,u}: B

The e-introduction rule only relates lambda abstractions and variables, but the general
form of (explicit) S-reduction is derivable. In the definition we use the following notation.
For a context I := (z; : Aj)i=1,.np and terms I,z : At : Band I' - u : A, we write

t{idr, z — u} to denote the term t{x; — x1, ... ,x, — Ty, — u} in context I.

Definition 5.3.2. For derivable terms I'yx : A+¢: B and ' —u: A we define the j-
reduction rewrite g, @ eval{\z.t,u} = t{idr,z — u} to be g{idr,z — u} e 7 in context

I', where 7 is the following composite of structural isomorphisms:

eval{\z.t,u} =~ eval{(Az.t){inc, }, u}
Azt

=~ eval{ {inc, {idr, z — u}}, u}

)
Az.t)

=~ eval{ {inc, Hidr, z — u}, z{idr, z — u}}

(
(
(
~ eval{(Az.t){inc, }, z}{idpr, z — u} <

In a similar vein, one may wish to introduce the counit via the following more explicit

rule:
Ix:A+t: B

I'y: AF ez s eval{(Az.t){incy},y} = t{idr,z — y} : B

In the presence of the structural rewrites, this definition is equivalent to that given in
Figure [5.2]

We continue to work up to a-equivalence of terms and rewrites. Unlike the extension
from Agéd to AJg, the type theory Apd” has new binding operations: alongside the usual
binding rules for lambda abstraction, we require that the variable z is bound in the rewrite

ef(z.a). This is reflected in the definition of a-equivalence.
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I'z:A+t: B |
T xt:A=B

fiA=Ba:Arevalf,z):B "

Figure 5.1: Terms for cartesian closed structure

Nz:A+t:B )
e-intro
I'z: A e eval{(Az.t){inc,}, 2} =t: B

e:A+t:B ''u:A=B
Iz: AR a:eval{u{inc,},z} =t: B
ef(z . a)-intro
I'-el(z.a):u= \vt: A==B

Figure 5.2: Rewrites for cartesian closed structure

I'z: A a:eval{uf{inc,},z} =1¢: B .
Iz: AR a=c¢goeeval{el(z.a){inc,},z} : eval{ufinc,},z} =t : B

'y:u=Xxt: A=B Ua
I'v=el(z.e 0eval{y{inc,},z}) :u= Azt : A=> B
Nz:Ar+a=

o :eval{ufinc,},z} =t¢: B

I'efz.a)=el(z.a):u= \zt: A= B

cong

Figure 5.3: Universal property and congruence laws for ef(a)

'-u:A=B 1.
7~ “-intro
[+ n;t: Aveval{ufinc,},2} = u: A=>B

I'z:A+t:B L
1 - e~ “-intro
Iz: Ak e, it = eval{(Az.t){inc,},z} : B

I'-u:A=B
Ly engt =idygealfufine, .2} : Az-eval{uf{inc,}, z} = Az.eval{u{inc, }, 2} : A=> B

'-u:A=1B

Nz:A+t:B
F-nten,=id,:u=u:A=B

F,:I::Al—étOE;lEidt:t:t:B

Nz:A+t:B
Dz:Aleleg = ideval{(\z.t){inc, },o} © @Va{(Ax.t){inc, }, z} = eval{(Az.t){inc, },z} : B

Figure 5.4: Inverses for the unit and counit

Rules for Apg (S).
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a-equivalence and free variables For A-abstraction we follow the usual conventions of

the simply-typed lambda calculus (c.f. [Bar85]).
Definition 5.3.3. For any A;S’_)—signature S define the a-equivalence relation =, on terms
by extending Definition £.3.2] with the rules

tly/x] =a t'ly/2’]  y fresh t=ot' oly/x] =a oly/a']  y fresh
Azt = Ao’ .t €t =a v ef(z.0) =4 ef(z’. 0)

Similarly, the meta-operation of capture-avoiding substitution is that of Definition 4.3.2

extended by the rules
eval(f,z)[t/f,u/x] == eval{t,u} and (Az.t)[w;/x;] := Az.(t[z/x,u;/z;]) for z fresh
and
et[ui/zi] := eyfu,/my)  and ef(y.a)[ui/z;] := ef(z.a[z/y, ui/z;]) for z fresh
These rules extend to the inverses of rewrites in the obvious fashion. <

Lemma 5.3.4. Let S be a Apg -signature. Then in Aps ™ (S):
1. f’'~t:Bandt=,t then '+t : B,
2. fI'—7:t=t :Band 7=, 7 thenT' -7 :t=1t:DB. dJ

The =, relation is a congruence on the derived structure. In particular, one obtains the

expected equality for the induced lambda abstraction operation on rewrites.
Lemma 5.3.5. Let S be a Ay -signature. Then in Ay~ (S):

1. If 7[y/z] =q 7'[y/2'] (for y fresh) then A\x.7 =, Az'.7/,

2. If u =4 v then 0, =4 N,

3. If tly/x] = t'[y/2'] and u =4 v then Byt u =a B v w- O

As for Aj, the type theory Aps™ satisfies all the expected type-theoretic well-formedness

properties.

Definition 5.3.6. Fix a A -signature S. We define the free variables in a term t in
Aps” (S) by extending Definition as follows:

fv(Ax.t) :=fv(t) — {z} and fv(eval{p}) := {p}

Similarly, we define the free variables in a rewrite T in Ay~ (S) by extending Deﬁnitionm

as follows:
fv(e;) = fv(t) and fv(el(z.a)) = fv(a) — {z},

We define the free variables of a specified inverse 0! to be exactly the free variables of o.

An occurrence of a variable in a term or rewrite is bound if it is not free. <
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Lemma 5.3.7. Let S be a Ay -signature. For any derivable judgements I' - u : B and
[7:t=t:Bin A) (S),

1. fv(u) < dom(T'),

2. fv(r) < dom(I),

3. The judgements I' ¢ : B and I" ¢’ : B are both derivable.
Moreover, whenever (A - w; : A;)i—1, .. n and T' := (x; : A;)i=1,... n, then

1. T t: B, then A \ t[u;/z;] : B,

2. UT +7:t=1t": B, then A 7[u;/x;] : t[u;/x;] = t'[u;/x;] : B. O

5.3.1 The syntactic model of A},

We now turn to constructing the syntactic model for Aps~ (S) and proving it is the
free cartesian closed biclone on §. The construction is a straightforward extension of
Construction [4.3.6 (page [123)).

Construction 5.3.8. For any Ap¢ -signature S = (8,G), define the syntactic model
Syn*7(S) of Aps~(S) as follows. The sorts are nodes A, B,... of G. The 1-cells are
a-equivalence classes of terms (w1 : Ay, ...,y @ A, = t : B) derivable in Aj3 (S). We
assume a fixed enumeration x1,xo,... of variables, and that the variable name in the
ith position is determined by this enumeration. The 2-cells are a=-equivalence classes of
rewrites (z1: A1, ..., Ap 7 :t=1t: B). Composition is vertical composition and
and the identity on ¢ is id;; the substitution operation is explicit substitution and the

structural rewrites are assoc, ¢ and %), <

Syn7(S) is a cartesian closed biclone. Products are as in Syn*(S) (Section 4.3.1)) and
for exponentials the biuniversal arrow is eval(f,z) : (f : (A=>B),x: A) — (y : B). Indeed,
for any judgement (T',z : A - a : eval{u{inc,}, 2} = t : B) in Aps~(S), the rewrite ef(z. )

is the unique v (modulo a=) such that
I'z: AF a=¢oeval{y{inc,}, z} : eval{u{inc, },z} =t : B (5.20)

Existence is precisely rule Ul. For uniqueness, for any 7 satisfying (5.20)) one has

IS

cong

v = el(z. g, 0 eval{r{inc, }, z}) el(z.a)

Moreover, Syn*7(S) is the free cartesian closed biclone on S, which validates our claim
that Ape(S) is the internal language of FCI*7(S).

Proposition 5.3.9. For any Aps~ -signature S, cartesian closed biclone (T, D, I, (), =>),
and A;S’_)—signature homomorphism A : S — D, there exists a unique strict cartesian closed
pseudofunctor h[—] : Syn*"7(S) — D such that h[—] ot = h, for ¢ : S — Syn*"7(S) the

inclusion.
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Proof. We extend the pseudofunctor h[—] of Proposition [4.3.9 (page [125) with the following

rules.
h[A => B] := h[A] => h[B]

hlf:A=DB,a: At eval(f,a): B] :=evala p
RI' = Axt: A= B] :=Ah[[,z: A t: B])

h[T, 2 : At g eval{(Az.t){inc, }, 2} =t : B] := epr p:ar-1:8]
Al - el(z.a):u= Ixt: A= B] := el(h[[,2 : A+ a : eval{ufinc,},z} =t : B])

Uniqueness follows because any strict cc-pseudofunctor must strictly preserve the A\(—) and

ef(—) operations (c.f. Lemma|5.2.17| and Lemma [2.2.17)). O

Remark 5.3.10. As we saw for products (Remark , the universal property of the
counit for exponentials gives rise to a nesting of (global) biuniversal arrows and (local)
universal arrows. These are related by the following bijective correspondence, in which we
write (x : A) to indicate the variable x of type A is free in the context (c.f. [ML84]):

(x: A)
eval{u{inc, },z} =t: B
u=\x.t: A=B

We conjecture that a calculus for cartesian closed tricategories (cartesian closed co-categories)

would have three (a countably infinite tower) of such correspondences. )

For a unary Ap¢~ -signature S, the nucleus Syn*(S) of Syn*(S) is cartesian closed
with exponentials as described in Remark [5.2.11] We make this explicit in the next construc-
tion, which mirrors the syntactic model of the simply-typed lambda calculus (e.g. [Cro94,
Chapter 4]).

Construction 5.3.11. For any Ap¢  -signature S, define a bicategory Syn™7(S) as follows.
The objects are unary contexts with a single fized variable name. The 1-cells (z : A) — (x:
B) are a-equivalence classes of terms (z : A |t : B) derivable in Aps™ (S). The 2-cells are
a=-equivalence classes of rewrites (x: A 7:t=t': B). Vertical composition is given by

the e operation, and horizontal composition is given by explicit substitution. <

As we have seen, we cannot hope for Syn* 7(S) to satisfy a strict universal property (recall
the discussion following Lemma on page as well as Example on page .
Nonetheless, we shall see in Section that it is weakly initial: any morphism of
Aps” -signatures may be extended to a pseudofunctor out of Syn*:7(S), but this may not
be unique. Hence, Ap¢~ may be soundly interpreted in any cc-bicategory. We shall also
see that Syn™ 7(S8) is biequivalent to the free cc-bicategory FBct* ~(S) on S, yielding a
bicategorical universal property. Before proceeding to these results, we first establish a

series of lemmas that will simplify their proofs.
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5.3.2 Reasoning within A}~

We begin by recovering the unit-counit presentation of exponentials (c.f. [See87, [Hil96]) as
a series of admissible rules. These are collected together in Figure below. The proofs

are similar to the case for products, so we omit them.

Lemma 5.3.12. For any Ap¢ -signature S, the rules of Figure are admissible in
Aps™(S). O

A direct corollary is that the S-reduction rewrite of Definition is natural.

Corollary 5.3.13. For any Ay~ -signature S, if the judgements (T,z: A 7:t =t : B)
and (I' o :u = u: A) are derivable in Ay~ (S), then the following diagram of rewrites
comimutes:

eval{\z.7,0}

eval{\z.t, u} eval{\z.t’, u'}

Bzi,uﬂ ﬂﬁz_t/,u/

t{idp, x > u} ——= t'{idr,z — v}

7{idp,xz—0c}

Nz:A+t:B
' Azid; =idy, s : Azt = Azt : A= B

rz:Ar-7:t'=1¢:B Iz:A+-717:t=1t:B
L Xx.(t'er)= (Az.7’)e(Az.7) : Aat = Axt” : A= B

T'Ho:u=u:A=RB

-nat
[+ ny eo = Av.eval{o{inc,}, x} en, : u = Az.eval{v/{inc,},z}: A= B e

Nx:A-71:t=1t:B
D,o: A 7eg =cpoeval{(A\z.7){inc, }, z} : eval{(Az.t){inc, },z} = t': B

e-nat

Fx:A+t: B
' (Az.ey) e =idygs : Aot = At : A= B

triangle-law-1

'-u:A=B
Iz Ak €eval{u{inc,},x} ® eval{nu{incw}a l‘} = ideval{u{incm},r}

eval{u{inc, }, 2} = eval{u{inc,},z} : B

triangle-law-2

Figure 5.5: Admissible rules for Ay~ (G)

Recall that for products we constructed a rewrite post of type
tup(te, - oo tm){ur, - unt = tup(tif{ur, ... s unt, oo tm{ur, oo un})

For exponentials we call the corresponding rewrite push (c.f. Construction [5.1.5). Just

as post witnesses that explicit substitutions and the tupling operation commute (up to
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isomorphism), so push witnesses that explicit substitutions and lambda abstractions can be

permuted (up to isomorphism). Precisely, push relates the following two derivations (where

I'i=(zi:Aj)iz1,.n):

Nx:A+-t:B
P-Xet:A=B (A wi:A)ic1m
A+ (Azt){x;— u}: A=>B

and
(A ui:A)izt,..n
Iz:A+t:B (Ayz: A ui{ineg} - Aj)i=1,..n Azx:Arz: A
Az A t{x; — ui{incg},x — z}: B
A+ Azt{z; — ui{incg},x — z}: A= B

From the perspective of the simply-typed lambda calculus, the rewrite

push : (Az.t){z; — u;} = \x.t{z; — u;{inc, },z — z}

is an explicit version of the usual rule (Az.t)[u;/z;] = \z.t[u;/z;, z/z] for the meta-operation
of capture-avoiding substitution (c.f. [RAP97, Definition 4], where a similar operation is
constructed for a version of the simply-typed lambda calculus with explicit substitution).

We construct push by emulating Construction within Aps ™.

Construction 5.3.14. For any A~ -signature S we construct a rewrite push(t;ue) in

Aps~ (S) making the following rule is admissible:
'z:A+t:B (A ui:Ay)izt,..n
A+ push(t;ue) : (Ax.t){z; — u;} = \v.t{x; — w;{inc,},z — x}: A= B

v

Following Construction we first need to construct the 2-cell & witnessing the pseudo-
functorality of the product-former. From the judgements I' - ¢ : B and (A - w; : A;)i=1, ..

one obtains the terms

t{inc, }{x; — u;{inc, }, z — x} t{x; — u;}{incy }

and

of type B in context A,z : B by either performing explicit substitution or weakening first.

These terms are related by the following composite, which we call ®; ,,:
e t{inc,{x; — u;{inc, }, z — x}}

~

t{inc, H{z; — u;{inc, },z — x}
t{o®
{2 } t{xi — ui{incx}}

aSSOC71 .
>~ t{x; — u;}{inc,}
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We therefore set push(t; u,) to be ef(x.7), for 7 the composite

eval{(Az.t){z; — u;}{inc, }, =}
= eval{(Az.t){inc, }{z; — w;{inc,}, z — z}, 2{z; — u;{inc,}, x — x}}
= eval{(Az.t){inc, }, z}{z; — w;{inc, }, z — z}

~ t{x; — w;{inc, }, z — z}

where the first isomorphism is eval{(@ )\I,m.)_l, Qi:gﬂj}li) }, the second is assoc™! and the

third is e;{u;{inc, }, x}. <

Thinking of rewrites in A)¢ as witnesses for equalities in the simply-typed lambda
calculus, the following lemma is as expected (c.f. Lemma [5.1.6]).

Lemma 5.3.15. For any Ay~ -signature S, if the judgements T' := (z; : A;)i=1
(At 0; i u; = ) : A;) are derivable in Apg ™ (S), then:

77777

1. (Naturality). If ',z : A+ 7:t=t': B, then

Ozt {uet =22 Az.t{ua{inc,}, z}
(Az.m){ow }ﬂ ﬂ)\x.*r{cr.{incm},x}

Azt ){u,} == \x.t/{u,{inc,}, x}

push
2. (Compatibility with ¢). If T',x : A+ ¢ : B, then

L

Azx.t (Az.t){ze}

)\.Z’.Lﬂ ﬂpush

Az.t{ze} swwTRON Az.t{ze{inc, }, z}

3. (Compatibility with assoc). If 'z : A -t : C, A := (y; : Bj)j=1,..m and
(E Foj: Bj)jzl,...,ma then

(Az.t{ud{inc, }, z}) {ve}

push{ve} push
(Ax.t){ue}{ve} Az t{ue{inc, }, 2 H{ve{inc, }, 2}
assocﬂ ﬂ)\w.assoc
(Ax.t){ue{ve}} Az t{ue{inc, H{ve{inc, }, 2}, x{ve{inc, }, 2} }
pushﬂ ﬂ)\w.t{assoc,g(m"'l)}
Az t{ue{ve}{inc, }, 2} Az t{ue{ye{ve{inc, }, z}}, x}

m %(')}w}

Az t{us{ve{inc, }}, z}
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4. (Compatibility with n). If I',z : A+t : B then

tHua) niv.) (\a.eval{t{ine, }, 2}) {u.}
ﬂpush
n Az.eval{t{inc, }, x}{ue{inc, }, z}

ﬂ)xac.assoc

Az.eval{t{us}{inc, },z} = Az.eval{t{inc, }{us{inc,}, z}, z{ud{inc, }, z}}

Az.eval{®,,, 0™V}

Proof. Long but direct calculations using the universal property of ef(z. ). O

The rewrite push is also compatible with the g-rewrite. In the simply-typed lambda
calculus, for any terms Iz : At : B and I' - w : A and any family (A - v; : 4;)i=1, .. n,
then

(app(Az.t, w))[vi/zi] =gy tlu/z][vi/z;] = t{u[vi/zi]/z, vi/z;] (5.21)

In ASS’_’ this corresponds to the two derivations

z:A+t:B
I'-XMzt: A= B '~u:A
I+ eval{\z.t,u}: B (AFvi:A)i=1,.n

A+ eval{\z.t,u}{z; — v} : B
and
(At Ai)i=1,..n Fu:A

I'z:A+t:B A+ u{z;—v}: A (A vi:A)i=1,..n
A+ t{z; — v,z — u{z; — v;}} : B

Continuing the equalities-as-rewrites perspective—which we make precise in Proposi-

tion |5.4.14f—the equation (5.21]) becomes the following lemma.

Lemma 5.3.16. Let S be any Ap¢ -signature and I' := (x; : Aj)i=1,..n and A :=
(yj : Bj)j=1,..,m be contexts. If the judgements (I'z : A+ ¢ : B) and (I' - u : A)
and (At v; : A;)iz1,_n are derivable in Aps~ (S), then

eval{Az.t, u}{ve} === eval{(Az.t){ve}, u{ve}}

B.t,u{ve }ﬂ ﬂeval{push,u{v. 1}
t{idp, x — u}{ve} eval{\z.t{ve{inc, }, x}, u{ve}}

;ﬂ ﬂﬁmt{v.{incm},z},u{v.}

t{veline, }, u{ve}} == t{ve{inc,}, z}{ida, z — u{ve}}

where the unlabelled isomorphisms are defined by commutativity of the following two

diagrams:
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t{idp, u}{ve} =———= t{ve{inc,}, u{ve}}

assocﬂ Wt{L,u{U.}}

t{idr{ve}, u{ve}} t{ve, u{ve}}

_
t{ol*) ufve}}

t{ve{incy }, z}{ida, u{ve}} t{ve{incy }, u{ve}}
assocﬂ ﬂt{v.{g(‘)},u{v.}}
t{ve{incg H{ida, u{ve}}, z{ida, u{ve}}} tH{ve{ye{ida, u{ve}}}, u{ve}}

t{assoc,g(l)}

Proof. Unfold the definitions and apply coherence. O

5.3.3 The free property of Syn™7(S)

In this section we shall make precise the relationship between Syn™ 7(S) and the free
cc-bicategory FBct*(S) on S (Construction . We establish two related results.
First, we shall show that for any cc-bicategory (B,11,(—),=>) and Ay -homomorphism
h: S — B, there exists a semantic intepretation cc-pseudofunctor h[—] : Syn*"~(S) — B.
Along the way, we shall observe that such an interpretation extends to the cc-bicategory
defined by extending 7£’X(S ) (Construction with exponentials. This ce-bicategory,
in which every context appears as an object, will play an important role in the normalisation-
by-evaluation proof of Chapter |8, Second, we shall show that Syn*7(S) is biequivalent
FBct*7(S). Thus, one does not obtain a strict universal property in the style of The-

orem [3.2.17| (for ADi®*) or Theorem [4.3.10| (for A)%), but one does obtain such a universal

property up to biequivalence.

Semantic interpretation. The semantic interpretation of Ay~ follows the tradition of
semantic interpretation of the simply-typed lambda calculus [Lam80l Lam86]. For a fixed
cartesian closed category (C, I, (—),=>) and A*>-signature homomorphism h : § — C, the
interpretation of a judgement (I' - ¢ : B) in the simply-typed lambda calculus over § is
R[T + t : B], where h[—] is the unique cartesian closed clone homomorphism extending h
(so h[—] has domain the free cartesian closed clone on S—namely, the syntactic model of the
simply-typed lambda calculus—and codomain the cartesian closed clone CI(C) constructed
in Example [5.2.2] (page [139)).

Proposition 5.3.17. For any unary Ap¢ -signature S, cartesian closed bicategory (B, I, (—), =),
and unary Ap¢ -signature homomorphism h : S — B, there exists a semantic inter-
pretation h[—] assigning to every term (I' - ¢ : B) a 1l-cell in B and to every rewrite

('~ 7:t=1:B) a 2-cell in B. Moreover, this interpretation is sound in the sense that if
Crr=7:t=t:B)thenh[l'+-7:t=t:B]=h[l'+—7":t=1:B].

Proof. The Aps~ -signature homomorphism h also defines a Ap¢ -signature homomorphism
S — Bicl(B) from S to the cartesian closed biclone arising from the cartesian closed
structure of B (recall Example [5.2.12] on page [146)). It follows from the universal property
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of Syn*(8) (Proposition [5.3.9)) that there exists a strict cartesian closed pseudofunctor
of biclones h[—] : Syn*7~(S) — Bicl(B). We take this to be the semantic interpretation.

Soundness is then automatic. O

To avoid obstructing the flow of our discussion we leave the full description of the
semantic interpretation to an appendix (Section |C.2)).

The following observation entails a weak universal property for Syn™7(S).

Lemma 5.3.18. Let (B,I1,(—), =>) be a cc-bicategory and (ob(B), Bicl(B), IL,(—), =>) th
associated cartesian closed biclone. Then, for any cartesian closed biclone (5, C, I, (— )
and cartesian closed pseudofunctor of biclones (F,q*,q™) : C — Bicl(B) such that ¢y =
Idpr rx; for all X1,...,X, €S (n e N), the restriction to unary multimaps (F,q*,q~) :

C — B is a cc-pseudofunctor of bicategories.

Proof. Define F(X) := FX and Fxy := Fx,y : C(X,Y) = C(X;Y) — B(X,Y). The
2-cells (;SF and 1/1? are defined by restricting the 2-cells ¢ and ¥® of F to linear multimaps.
The three axioms to check then follow from the three laws of a biclone pseudofunctor,
restricted to linear multimaps.

For preservation of products, we are already given an equivalence

(Fry, ..., Frpy: F([[,(X1,..., X)) S TL(FX1,..., FX,) : dk,

for every Xi,...,X, €S (n € N) because tupling in Bicl(B) is tupling in B. It follows that
(F,q*) is an fp-pseudofunctor.

For preservation of exponentials, the cartesian closure of F' provides an equivalence
A(F(evala ) o(m,m)) : F(A=B) < (FA=-FB): q;p

for every A, B € S (recall from Example |5.2.12 the definition of currying in Bicl(B)). On
the other hand,

m’y = A(F(evalag) o < p)

| l

>~ ( (evaly,p) IdFAXFB) by assumption on q*

| ¢

= ( evalAB <7T1,7T2>)

Since (f, g*) is an equivalence whenever (g, ¢*) is an equivalence and f =~ g, it follows that
(mi’ B qj‘?B) is an equivalence for every A, B € S. Hence, (F,q*,q™) is a cc-pseudofunctor.
O]

Applying this lemma to the semantic interpretation h[—] of Proposition [5.3.17| immedi-
ately yields the following weak universal property of Syn*7(S).

Corollary 5.3.19. For any unary A} -signature S, cc-bicategory (B,1I1,(—),=>), and
Aps~ -signature homomorphism h : & — B, there exists a cc-pseudofunctor A[—] : Syn*(S) —
B such that h[—] ot = h, for ¢ : § < Syn*"7(S) the inclusion. O
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For the normalisation-by-evaluation argument in Chapter [8| we shall work with sets of
terms indexed by types and contexts. We shall therefore require a syntactic model in which
all contexts appear. For this purpose we extend %?’X(S) (Construction on page
with exponentials. Recall from Section that the resulting bicategory has two product
structures: one from context extension, and the other from the type theory. We emphasise

this fact in our notation.

Construction 5.3.20. For any Ap¢ -signature S, define a bicategory TP?’X’_’(S ) as follows.
The objects are contexts I'; A,.... The 1-cells I' — (y; : Bj)j=1,..,m are m-tuples of
a-equivalence classes of terms (I' - ¢; : Bj)j=1,.. m derivable in A;s’_) (S), and the 2-cells
('t : Bj)j=1,...m = (' + t;- : Bj)j=1,...m are m-tuples of a=-equivalence classes of
rewrites (I' -7 :¢; = t;- : Bj)j=1,.. m- Vertical composition is given pointwise by the o

operation, and horizontal composition

(tl, ,tl),(ul, ,um) — (tl{x,; — ’U,Z}, .,tm{x,; — ’U,Z})

(T1y - ym), (01, oo yom) — ({xs — 03}, oo Tf{xs — 04})

by explicit substitution. The identity on A = (y; : Bj)j=1,...m i8 (A - y; : Bj)j=1,....m. The

structural isomorphisms |, r and a are given pointwise by o, ¢~ and assoc, respectively. «

We define exponentials in a similar way to the type-theoretic product structure on
7;?“(8) (Lemma [4.3.19)): following Remark [5.1.4] the exponential I => A is defined to be

(p : Hn(Al? tt 7An)) = (q : Hm(Bl7 e ’Bm))
for I' := (2; : Ai)i=1,.. n and A := (y; : Bj)j=1,...m-

Remark 5.3.21. Since Lemma |4.3.16] extends verbatim to Tpe " (S), one sces that
s (S) ~ Syn*(S) for every unary Ap¢ -signature S (c.f. Remark |4.3.17). Indeed, it
Q, x ,—

is plain from the two definitions that the full sub-bicategory of Ty (S) consisting of just

the unary contexts is exactly Syn*"—(S). <

%?’X(S) satisfies a weak universal property akin to Corollary |5.3.19 However, since this
bicategory does not arise from Syn*>~(S) we must define the interpretation pseudofunctor
by hand.

Proposition 5.3.22. For any unary A} -signature S, cc-bicategory (B,1I,(—), =), and
Ap¢™ -signature homomorphism h : S — B, there exists a cc-pseudofunctor h[—] : Tps' " (S) —
B (for the type-theoretic product structure of Lemma , such that h[—] o = h, for
L8 — Ty 7(S) the inclusion.

Proof. As the notation suggests, we extend the interpretation h[—] of Proposition [5.3.17| to
Toa " 7(S) by setting

h[[(F — tj : Bj)jzl,m’mﬂ = <h[[F 1 Bl]], . ,h[[F =ty Bm]]>
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h[[(F F1jity = t; : Bj)j:l,...,m]] = <h[[F Fricty =t B, h[C Tt =t Bm]]>

This is well-defined on a=-equivalence classes of rewrites by the soundness of the semantic

interpretation. For preservation of composition, we define qﬁh[H] as follows (where I' :=
(x; : Ai)i:l,...,n):

hl-1
RIT 52 By)jet, . m] 0 BI(A F st Ai)icr, n] S RI(A - ti{as = ws} : Bj)jet, . m]

a <h[[tj]]F [¢) <h[[u2]]A>Z>J

r A
<h[[tj]] >j © <h[[ul]] >2 post
For preservation of identities, we take

S1dyry

Pl = Idyr) == (71, ... ,7n) = B[(T =25 0 Aj)iz1,. ]

where < is defined in (5.15)) on page We check the three axioms of a pseudofunctor.
For the left unit law, one derives the commutative diagram below, then applies the triangle

law relating the unit ¢ and counit w for products:

lle

Idpqry o Chui]™i

| T

staoChui]™ i
Sty ry -
(ma o Idppry ) © Chui]* i

~

<;

(m1, ooy o Chlu ), mat ((wa 0 Idygry

/

post
(e o Chllus] "))
(@)

(]

Sdochlug 1)

.

(me o (Idppry o hlug] i)y  mat-

post

/

|
-
)

\

~

Chlui]® s

$hlulD;

¢} <h[[ul]]r>1> i) <7T. o <l:[[ulﬂp>z>

The unlabelled triangular shape is an easily-verified property of post (c. f. Lemma dia-
gram ) The right unit law is similar, and the associativity law follows directly from the
naturality of post and the observation that the following commutes (c. f. Lemma ):

postoh

(fepog)oh (foogyoh

x| Jpost

(fopol(goh) ———— {foo(goh)) ﬁ ((foeog)oh)

post
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Now we want to show that h[—] is a cc-pseudofunctor. We start with products. It is imme-
diate from the definition that, for any family of unary contexts (1 : A1), ..., (zn : 4y) (n€
N), the pseudofunctor h[—] strictly preserves the data making (p: ][], (A1, ..., A4,)) =
[T, (i : A;) an n-ary product. More generally, for contexts T(®) := (x 52) : A§-i))j:17.,,,|r(i)|(i =
1,...,n), the n-ary product I'M x ... x T is interpreted as

o< TL (T A Tl A8 ] = T TS ALAST =TT 0]

and the ¢th projection

( 1 (H\r(l)\A- e H|1"(n)|A )) Fmi{mi(p)} Ag.i))

L. n (i) <7|'107ri7---77rlr(i)‘07ri> ‘F( )‘ (i) .
is interpreted as [ [;_;A[T'"] [Ti- h[[A ]] = h[T'W]. To witness that
h[—] preserves products, then, one can take qF( . to be the identity, with witnessing 2-cell

j=1,...,[L@)|

-----

<|Jost ! post™ 1>
{meom1), ., {Te 0 Tn)) <<771> --aﬂ\r(1)|>O7T1,-- <7Tl:---a7f\r<n>\>07rn>

&gt

>
<Idhﬂr(1)ﬂ OTly... ,Idh[[r(n)]] e} 7Tn>
=M,y Ty
671
= Idypy, ray
Note we once again use the 2-cell < defined in on page m
For exponentials, one sees that (where A := (y; : Bj)j=1,...m):
A=Al =h[(p:[1,(A1, ..., An)) = (q: [Ln(B1, .-, Bm))]
=hlf:11,(A1, ..., An)=11,,(B1, ..., Bw)]
= (ITh[A]) = (TTj=1 h[B)])
and
h[[(FZDA) X F]] = h[[p : HQ(HnA' ﬁ>nt°7nnA')]]
= (ITsy plA] = TTj=1hIBST) < T2, hLA]

It follows that ml}ﬁﬂgﬂ is the currying of

hip: TTo(IT,Ae = 11, Bs, I 1,4s)  eval{mi(p), m2(p)} : [ 1,,Be] © Id(hr = A]xA[rY)
= (eValh[[F]],h[[A]] ° <7T1>7T2>) o Id(h[r > A]xA[r])

hl-1

Hence, mp A" is naturally isomorphic to the identity via the composite
A( (evalgppry agag) © (1, m2)) © Id e s ATxA[I]))
=~ A(evalppryaag) © (1 © Id(nr = A] <[] > Idmso(h[r = AT xA[IT) ) )
>~ A(eval(prp pgag) © Idagr s ap % [1,,h[B.]))
n
= Idpr =]

and h[—] is a cc-pseudofunctor. O
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Our aim now is to prove that Syn*"7(S) is biequivalent to the free cc-bicategory on
the unary Ap¢ -signature S (defined in Construction [5.2.18)), and hence that Ay~ is the

internal language for cc-bicategories up to biequivalence.

Syn*:7(S) is biequivalent to FBct* 7 (S). Fix a unary Ap¢ -signature S. We shall
show that the canonical cc-pseudofunctors t# : FBct* ™ (S) — Tps ' (S) and ([—] :
s (S) = FBct* ™ (S) extending the respective inclusions S < FBct* 7 (S) and S —
ps’ 7 (8) induce a biequivalence R?’X’H(S) ~ FBct*(S). (These cc-pseudofunctors
are defined in Lemma, and Proposition , respectively.) One then obtains the
required biequivalence by restricting E?’X’H(S) to unary contexts (recall Remark .

Remark 5.3.23. Because the pseudofunctor ¢# is defined inductively using the cartesian
closed structure of Tps' ™" (S), we must be explicit about which cartesian closed structure
we choose. We take the type-theoretic product structure, so that the composite ¢ o -]
takes an arbitrary context I' to an (equivalent) unary context. Because the restriction of

s (S) to unary contexts is exactly Syn*7(S), this ensures that the biequivalence we
construct will restrict to Syn*7(S) with its canonical cartesian closed structure (namely,
that of Remark . Of course, up to biequivalence of the underlying bicategories,
the uniqueness of products and exponentials ensures that the choice of cc-bicategory is
immaterial (recall Remark and Lemma |5.1.9)). “«

Our two-step approach reflects two intended applications. In this chapter we wish to
prove a free property, so restrict to unary contexts, but in Chapter [8 we wish to interpret

the syntax of Ay~ varying over a (2-)category of contexts, and so require all contexts.

Remark 5.3.24. Although we present the argument indirectly here, it is also possible to
prove directly that the canonical cc-pseudofunctors induce a biequivalence Syn*"~(S) ~

FBct*(S). The calculations involved are similar to those we shall see below. “«

We begin by showing that ([—] o t# ~ idreex—(s)- Recall from Proposition [5.3.22
that ([—] preserves products and exponentials up to equivalence in a particularly strong

way, in the sense that (t[r1],...,t[m,]) = id and m‘l-] =~ id. One may therefore apply

Corollary [5.2.21]

Proposition 5.3.25. For any unary Ap¢  -signature S, the composite ([—]oc# : FBct*~(S) —
FBct*7(8S) induced by the following diagram is equivalent to idrge;x.—(s):

FBet*~(8) — 5 12~s) — Ly 7Ber— ()

] | J

N S S

Proof. The diagram commutes, and the composite t[—] o t# is certainly a cc-pseudofunctor.

Since (# is strict and ([—] has q* and q= both given by the identity, Corollary [5.2.21
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applies. Hence t[—] o +# is equivalent to the unique strict cc-pseudofunctor FBct*~(S) —
FBct*(S) extending the inclusion & — FBct*(S). Since the identity is such a strict
cc-pseudofunctor, it follows that t[—] o t# ~ id FBet*—(S), s required. t

We shall see in Chapter [§] that this result is crucial to the normalisation-by-evaluation
proof. Roughly speaking, it plays the same role as the 1-categorical observation that the
canonical map from the free cartesian closed category to itself is the identity.

We now turn to showing that : o .[—] is equivalent to the identity. To this end, observe

that for any context I' := (z; : 4;)i=1, .. n,

L#(LIIP]]) = L#(Hn(Ah s 7An)) = (p : Hn(A17 s 7ATL))

We define a pseudonatural transformation (j,j) : t# o t[—] = idT@,x,ﬂ( with components
ps

S)
jr 1 t#(4[T]) — T given by the equivalence

(Trtup(z1, .o s@n):] [, As)

P< p: nAla"'7ATL
(p:I 1, (A1, ., An)mi(P):Ad)i=1, ... ,n ( H ( ))

constructed in Lemma [4.3.16 (page [130). We are therefore required to provide an invertible
2-cell filling the diagram below for every judgement (I" -t : B):

) —2UED Gy - BY)
jrl Jé ijB (5.22)
I

(T—:B) » (y:B)

Construction 5.3.26. For any Ay~ -signature S, we define a family of 2-cells th filling 1'

in p?’x’_’(S ). Unfolding the anticlockwise composite, one sees that

'+t:B)ojr=(T'+t:B)o (p [1Ae = mi(p) : Ai)i:l,...,n
= (p: [To(AL -+, An) - ta; = m(p)) : B)

Thus, it suffices to define 2-cells k; of type (p: [, Ae -t = t{z; — mi(p)} : B), where { is
the term in the judgement (* ([T -t : B]). Since jp is simply (y : B - y : B), one may
then define the required 2-cell j, to be

- e R

i = y{t} =t = t{z; > m(p)}

We define k; by induction on the derivation of .

For (I - xy : Ag) the corresponding term Ty is (p 11,4 = mi(p) : Ak), SO we
define

T —k
ke, := (p: [ 1,4 - QET.(p)) : mp(p) = a{wi — mip)} : Ag)
For any constant ¢ € G(A, B), the judgement (#i[x : A |- ¢(x) : B] is simply

(x: A+ c(x) : B). Since the context is unary, jp is the identity and we may take Ec(m) to

be canonical structural isomorphism.
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Observing that «# o [—] is the identity on (p: [ ], (A1, ..., Ay) - m(p) : 4i),

we take the canonical isomorphism

(p:[ 1, Aeti(p):As)

(p . Hn(A17 c. ,An))

\ ~

(P11, Aep:I 1, As) (p:I1,, Aekmi(p):A;) (z5:As24:45)

=~ \

(p : Hn(Al’ o 7An)) (p:] 1, Aemi(p):As) (xz : AZ)

From the induction hypothesis one obtains (p : [],,4e b ke, : & = tj{z; — m(p)} : B;)

for j=1,...,m. So for Etup(th .. tm) We take the composite rewrite
_ o tup(Keyy e ke ) post—1
tup(t1, - .., tm) ———— tup(t1{me(P)}, - -t {me(p)}) == tup(t1, ... ,tm){me(p)}

of type [[,,(Bi, .., Bp) in context (p: [, (A1, ..., 45)).
The evaluation 1-cell (f : A=>B) x (x : A) — (y : B) in 7;?“’%(8) with

the type-theoretic product structure is (p: (A=>B) x A - eval{mi(p), m2(p)} : B), so one

obtains

Flf A= Ba: Ab eval(f,x) : B]) = *(eval, )
= (p: (A=>B) x A+ eval{mi(p), m=2(p)} : B)

We therefore define Eeval( f,z) to be the identity.

The exponential transpose of a term (p: Z x B\t : C) in Tpe " 7(8) is
(z: Z+ Ax.(t{p — tup(z,2)}) : B=>C)
It follows that

FOC - Azt : B==C]) = Mg : [[,([],4e, B) - t{tup(me{mi(q)}, m2(q))} : C)
= (p 11,4 + /\x.f{tup(w.{m(q)},Wg(q))}{tup(p, x)}: B =(>C)

Now, the induction hypothesis provides the 2-cell
(s:[1,(A1, ... ,Ap, B) ke 1 &= t{zy > mi(s)} : C)

so for ky,; we begin by defining a composite ¥J; by
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Htup(ri{mi(g)}, ... ma{mi(@)}, m2(q)) Htup(p, 2)}

assocﬂ

t{tup(mi{mi(q)}, ... ,m{m (@)}, m2(q)) {tup(p, )} } J

%{post}ﬂ

Htup(m{mi(g)Htup(p, 2)}, ..., ma{mi (@) Htup(p, 2)}, w2 {tup(p, 2)}) }

tﬁm t{tup(mi{p}, ... ,mu{p}, )}

in context (p LA - AR, x B)7 where ~;, is defined, in the same context, to be

1
assoc Tk {w;(;,%}

e = me{m ()} {tup(p, 2)} == mp{m {tup(p, 2)}} === m{p}

for k=1, ... ,n. We then define ky,; to be the composite

A E{tup(ma (s (0)} 7))} {tp (1)) ——22 s Q) ma(p), - 7))
)\m.ﬂtﬂ
Ax.f{tup(m{p}, oy Tip}, :Jc)}
A Reltup(m (5} . 23| push~!
Ax.t{mi(s), ... ,mn(8), Tnr1(s)Htup(mi{p}, ... ,m{p}, )}

Aw.assocﬂ

)\x.t{ﬂ.{tup(m {p}, ..., m{p}, 51?)}}

Az.t{mi{p}, ..., m{p}, x}

Az t{w ()}

It remains to consider the cases of explicit substitutions and n-tuples of terms. We take

the latter first and then put it to work for explicit substitutions.

For contexts I' := (z; : A;)i=1,.. n and A := (2; : Zj)j=1,..,m and an

n-tuple (A - t; : A;)i=1, .. n : A = I', we directly define the rewrite j(tj)jzl _ filling
(q:l_[m Zet-tup(ti, ... ,tn):] [, A.)
(¢:TLu(Z1s - s Zm)) (p: 11, (A1, ... An))
= j(ti)izl, n =
<~
A r
(At As)i=1, ... n

to be the n-tuple with components

. _ (5 R, v

Jti)ict, o = Wk{tup(tl’ ’tn)} = 1k = te{mi(q), -, mm(q)}
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For explicit substitutions (A - t{z; — w;} : B) = (' =t : B)o (A u; :

A;)i=1,..n we take the definition from the associativity law of a pseudonatural transformation.
Thus, we define jt{m»—»ui} to be the pasting diagram
(q:Hm Bot{tup(ag, ... ,W)}:C’)
(q:[Ln(Bi, ..., Bm)) > (z:C)
\ g
(¢:11,,, Be-tup(at, ... ;un):[ 1, As) ([T, (A1, .., Ap)HEC)
\ /
(p 1L (A - ,An))
|
~ - - z:Ck2z:C
](ui)izzl,“.,n j <Jé (z:0F=0C)
(AbuiAg)i=1, ... n (Tt:C) \
A (2 C)

(Art{z;—u;}:C)

The preceding construction does indeed define a pseudonatural transformation. It is
clear that each j, is natural, so it remains to check the unit and associativity laws. For
the unit law, we are required to show the following equality of pasting diagrams for every
context I' := (x; : Ai)i=1,..n

([T, AekpI1, A.)

(p:]_[n Aetp:[ ], A.)
(p : HnA') vt OL[[ : p HnA' p : HnA') - (p : HnA°)
\\\‘\~\‘______;:;____ﬂ_,——”/’%
(pI 1, Asktup(ri{p},emn{p}):I 1, As) \ ~
= J(z;)z - 2\‘ -
@ =
r (Thzi:As)iz1, » T T (Thzi:Ai)i=1, ... ,n r

Applying the definition of ¥*I=] given in Proposition [5.3.22] this entails checking the outer

edges of the following diagram commute for k=1, ... ,n:
e ®)
7 (p
me{p} : k(D)
mi{sp} triang. law
m{top(ri (o, o)} g miph - o5
7"0{1?} ‘
mtp( )} nat L)
m{tup(mi(p), ... ,m(p))} ——— (D) —= zp{x; — mi(p)}

)
“re(p)

Or . (p)
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Hence, the unit law does indeed hold. The associativity law holds by construction for
composites of terms in unary contexts. For the general case, one instantiates the definition
of ¢I=1 from Proposition [5.3.22/and applies the definition of post to get exactly the required

composite. This completes the proof of the next lemma.
Lemma 5.3.27. For any unary Ap¢~ -signature S, the composite t# o 1[—] E?’X’_’(S) —
s (S) induced by the following diagram is equivalent to id7@,x,_>( sy
ps

T 7(8) o FBet*(8) — T2 (S)

I I I (5.23)

S S S

O]

Putting this lemma together with Proposition [5.3.25, one obtains the biequivalence
between Tpe7(S) and FBet* ™ (S):

Proposition 5.3.28. For any unary Ay -signature S, the cc-pseudofunctors ¢[—] and ¢#
extending the inclusion as in the diagram

FBet*—~(8) —s 727(8) L FBet<— ()

| | ]|

S S S

form a biequivalence FBct* 7 (S) ~ Tp?’X’H(S). O

It is not hard to see that the pseudonatural transformation (j,j) defined in Construc-
tion [5.3.26| restricts to a pseudonatural transformation ¢[—] o 17 ~ idm for ¢[—] the
restriction of the interpretation pseudofunctor of Proposition MI to Syn*"7(S). Since
the proof of Proposition also restricts to the unary case, one obtains the following.

Corollary 5.3.29. For any unary A<~ -signature S, the cc-pseudofunctors ¢[—] and ¢#

extending the inclusion as in the diagram

FBet*—(8) —— Syw(8) Ly 7Berx—(8)

| | |

S S S

form a biequivalence FBct* ™ (S) ~ Syn*7(S). O

Hence, up to canonical biequivalence, the syntactic model of A}~ (S) is the free
cc-bicategory on the Aps~ -signature S. We are therefore justified in calling Aps~ the
internal language of cartesian closed bicategories.

It further follows that the canonical pseudofunctor is unique up to equivalence.
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Corollary 5.3.30. For any cc-bicategory (B,II,(—),=>), unary Ay -signature S and
Aps” -signature homomorphism h : & — B, there exists a strict cc-pseudofunctor h—] :
Syn°(S) — B. Up to equivalence, this is the unique strict cc-pseudofunctor F :
Syn*7(S8) — B such that F ot = h, for ¢ the inclusion.

Proof. Existence is Corollary [5.3.19] so it suffices to show uniqueness. To this end, consider

the diagram

FBct*™(S BN Syn*(S)

\j/

where F' is any strict cc-pseudofunctor. By the free property of FBct*>~(S) (Lemma/5.2.19)),
h# = F o.#. Then, applying Corollary [5.3.29] one sees that

F:FO(L#OL[[—]]) ~ (FOL#)OL[[—H = h#OLH_H

It follows that any strict cc-pseudofunctor extending h is equivalent to A% o t[—]. Hence,

h[—] is unique up to equivalence. O]

We finish this section with a corollary relating the semantic interpretation of Proposi-
tion [5.3.17] to the free property of the free cc-bicategory (Lemma |5.2.19)).

Corollary 5.3.31. For any cc-bicategory (X, IT,,(—), =>), set of base types B, and Ay~ -signature
homomorphism % : S — X, there exists an equivalence h* o ([—] ~ h[-] : ps’x’_’(%) - X.

~ S o iy AL,
Proof. Observe that the composite B < FBct*~(B) - Tps 7 (B) ML s equal to

simply h. Thus, applying Lemma [5.2.20| there exists an equivalence h# ~ h[-] o J#. But
by Proposition [5.3.28| there also exists an equivalence ¢ o t[—] ~ id FBetx— (%) Hence,

W# o ul-] = (h[-] o #) o o[ -] ~ h[-]

as claimed. 0

5.4 Normal forms in Aj;™

In this final section we shall make precise the sense in which Ajg ™ is the simply-typed
lambda calculus ‘up to isomorphism’, which will enable us to port the notion of (long-5n)
normal form from the simply-typed lambda calculus into A} . Our approach is to extend
the mappings defined in Section for Agisd to include cartesian closed structure. One could
go further, and prove that the syntactic model of Ap¢ is biequivalent to the syntactic model
of the strict language H! extended with pseudo cartesian closed structure. Such a result
provides a constructive proof that the free cartesian closed bicategory on a Ap¢ -signature
S is biequivalent to the free 2-category with bicategorical products and exponentials on S.

Since this follows from the Mac Lane-Paré coherence theorem [MP85], together with fact
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that biequivalences preserve bilimits and biadjunctions, we restrict ourselves to mappings
on terms. However, we shall present certain results one requires in order to construct this
biequivalence, as they turn out to be of importance in the proof of our main theorem in
Chapter

To fix notation, let A*>7(S) denote the simply-typed lambda calculus with constants
and base types specified by a A" -signature S = (*8,G). This is defined in Figure
below. As for Aps ™, we present products in an n-ary style which is equivalent to the usual
presentation in terms of binary products and a terminal object. The equational theory is

the usual affn-equality for the simply-typed lambda calculus (e.g. [Bar85, [Cro94]).

var (1 <k <n)

x1: A1, o, An B oag s Ag
ceG(Al,...,Ap; B) (A Ag)iz1

.....

t
A+ c(uy,...,uy): B eons
I't1:4, ... T+t,:A, I'—t: A, . A,
Fh ! =t n-tuple - Hn( ! ) k-proj (1 <k <mn)
P}—<t1,...,tn>:Hn(Al,...,An) FI—?Tk-(t)IAk
I'z:A+t:B '-t:A=B T'Hu:A
lam app

'-Xzt:A=B I'+ app(t,u) : B

Figure 5.6: Rules for A7 (S).

We shall not distinguish notationally between the type theory A*~ (resp. Aps ) and
its set of terms (or set of terms and rewrites) up to a-equivalence. We employ the following

notation:
NT(S)T;B):={t|T FsrLct: B}/ =a
ASS’H(S)(F; B):={t|T '_Agsﬁ t:B} /=4

Similarly, we write A7 (S) to denote the set of all A*>-terms modulo a-equivalence, and
Aps” (S) to denote the set of all Aps~ -terms modulo a-equivalence. (Precisely, these are
sets indexed by (context, type) pairs.) We drop the decorations on the turnstile symbol

unless the type theory in question is ambiguous.

Relating Ap~ and A*~. We define a pair of maps (=) : A 7(S) 5 Aps (S) : (—) for
a fixed A7 -signature S. These maps extend those constructed in Section for biclones;
indeed, the terms of H%(S) are exactly the variables and constants in A (S).

X,—

Construction 5.4.1. For any A -signature S, define a mapping (=) : Aps (S) —
N7(S) as follows:

I
o
—~
8

_
8
\:_/

T; 1= T; c(xy, ..., xy

Il
S

~
—
vw
3
N

(D) tup(t1, ... ,tn
app(f,a) Azt = Ax.t

3

El

=
I

[p)]
<
)
o
—~~
-
o
SN—
I
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It is elementary to check this definition respects a-equivalence and the equational

theory =.

Lemma 5.4.2. For any A*>~-signature S,
1. For all derivable terms t,# in Aps (S), if t =, ' then t =, ¥/,

2. fT t:Bin Ay (S) then T' 7 : B in A7 (S), i.e. one obtains maps of indexed
sets. O

As we did for biclones, we think of 7 as the strictification of a term in Ap¢~ . The map

(—) interprets A*"~-terms in Aps .

Construction 5.4.3. For any A*”-signature S, define a mapping (—) : A 7(S) —
Aps T (S) as follows:

(xg) := xx (c(ur, .. up)) :=c{(ur)), ..., (un)}
(me(t) ) := me{(L)} (app(t,u)) := eval{(t), (u)}
({t1, -yt i=tup((t1]), -, (tn)) (Az.t) = Az.(t)

This mapping also respects typing and a-equivalence.

Lemma 5.4.4. For any A*"~-signature S,
1. For all derivable terms t,t' in A7 (S), if t =, t’ then (t) =, (¢'),

2. T t:Bin A7(S) then T+ (t) : B in Aps~ (S), i.e. one obtains maps of indexed
sets. O

As in Section strictifying a A*>”-term does nothing.

Lemma 5.4.5. The composite mapping (—) o (—| is exactly the identity on A* 7 (S).

Proof. The claim holds by induction, using the usual laws of capture-avoiding substitution

for the simply-typed lambda calculus:

T — T — Tk

c(uty ... yup) = cf(ur), ..., (un )} — c(z1, ... on)[(wi)/zi]

mie(t) = me{ ()} — T (p)[(£)/p]
ty

iy ooty = tup((t1]), oo () — Aty oo, ()

app(t,u) — eval{(t), (u)} — (app(f, a))[(t)/f; (u)/a]
Azt — Az.(t) — Az.(t)
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We shall require a rewrite reducing explicit substitutions to the meta-operation of
capture-avoiding substitution. As in the biclone case, this is the extra data required to make
(—) into a pseudofunctor. Unlike the biclone case, however, we must now deal with variable
binding. This entails an extra step in our construction. To inductively prove a lemma about
substitution in the simply-typed lambda calculus, it is common to first prove a lemma about
weakening. This auxiliary result allows one to deal with the fresh variable appearing in the
lambda abstraction step. We shall do something similar. First, we shall define a rewrite
reducing context renamings (in particular, weakenings) to actual syntactic substitutions.
Then, we shall use this to construct our rewrite handling arbitrary substitutions.

We call the auxiliary rewrite cont for context renaming.

Construction 5.4.6. For any A*"~-signature S and context renaming r, we construct a
rewrite cont(t; ) making the following rule admissible:
'+ (t):B r:I'— A
A cont(t;r) : (t){x; — (i)} = (t[r(x;)/x;]) : B

The definition is by induction on the derivation of ¢:

or(@)
cont(zy;r) = xp{z; — r(z;)} R (r(z:))

assoc c{cont7 ,cont}

cont(c(ue);r) = cf(ur), -, (un DHr} == c{(ue p{r}} A(uelr(z:) /] )}
7y {cont}

cont(my(t);7) == m{ (¢)Hr} == m{(t){r}} === me{(t[r(z:)/x:] )}

tup(cont, ... ,cont)

cont({ty, ... ytny;ue) i=tup((t1), -, (tn)){(ue)} o tup((te D{(ue)}) tup((te[ui/z:]))
cont(app(t,u);r) == eval{(t), (u)}{r} == eval{(t){r}, (u){r}}
SR eval{(¢fr(ai) il ), (ulr (i) /o)D)

B2 () = s o v {ine, )}

Az.(t){x,cont(r(z;);incy)}

cont(Az.t;7) := (Az.(t)){r}

Az (t){x — x,x; — ()}

2200 Nt/ r(xs) /2] ) )

We can now define sub. The construction extends its biclone counterpart, Construc-

tion 3.3.14

Construction 5.4.7. For any A~ -signature S, we construct a rewrite sub(¢; ue) so that
the following rule is admissible:
x1: AL, oy Tn  Ap () 2 B (A (i) Ai)ict,m
A sub(t;ue) : (t){xs — (ui)} = (t[ui/x;]) :

The definition is by induction on the derivation of ¢:

sub(zr; te) 1= Tp{x; — (ui)} g (ur)

sub(c(ua); va) = ef(ur ), ., (n D}{(va)} 25 ef(ua D{(ve D} 222 o (ualv; /1))
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Tk {sub}

sub(m(t); wa) = (1)} {(ue )} == m{ (¢ ){(ua)}} =
sub({tyy . tny;ue) = tup((t1), - 5 (tn)){(ue )} bosy tup((te D{(ue)})

me{(t[ui/zi] )}

tup(sub, ... ,sub)
tup((tefui/z:]))

assoc

sub(app(t, u); ve) := eval{(t), (u)}{(ve )} = eval{ (ve )}, (uD{(ve D}}

eval{sub,sub} eval{(] tlv;/y;i 1) (ulvi/y;] D}

sub(A.ti ) = (A.(£)){(ve )} £ Aa.(#){a, (u)finc,})
Az.(t D{z,cont(u,lncm )\CCQ " D{$, (] u D}
Az (t[x/z, wi/zi])

Az.sub
_

Note the use of cont in the lambda abstraction step. As one would expect, sub and cont

coincide where the terms being substituted are all variables.

Lemma 5.4.8. For any A%~ -signature S, judgement (I - (t) : B) in Ay (S), and

context renaming 7 : I' —> A, then
A+ sub(t;r(xe)) = cont(t;r) : (t){x; — r(z;)} = (t) : B

Proof. By induction on the derivation of ¢: comparing the cases one-by-one, the equality is

immediate. O

Let us note some of other the ways in which cont and sub behave as expected (c.f. Lemma(3.3.17)).
We shall not need these results immediately, but they will play an important role in the

normalisation-by-evaluation proof of Chapter

Lemma 5.4.9. For any A*~-signature S and any contexts I' := (z; : A;)i—1,.. » and
A= (y5: Bj)j=1,..ms
1. f T+ (t) : B then

ﬂ \ (5.24)

{3
{[,C,Ll—>{]jz} _ l‘Z/xZ]D
cont(t;idr)

2. IfT'+ (t) : B and (A (u;]) : Aj)i=1,... »n then

(t){sub(us;ida)}

(t){ai = (uid}{ida} == (t){zi — (w){ida}} == (t){zi — (ui)}
sub(t;u.){idA}ﬂ ﬂsub(t;u.) (525)

(#[us/i]D(ida} e e s) (#lusf])
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3. (T (t): B), (A (wi) : Ai)i=1,...n and (X = (vj) : Bj)j=1,...,m, then

(t){sub(ui;ve)}

(E){(ueD}{(ve)} =5 (¢){(uaD{(ve)}} == (¢D{Qualvj/y;]1)}
sub(t;u.){v.}ﬂ ﬂsub(t;u.) (526)

(tlui/zi]D{(ve )} (¢ [wilv/y;]/2:]D

sub(t[u;/z;];ve)

Proof. Each of the claims is proven by induction. Most of the cases for are almost
immediate, except for lambda abstraction. There one uses Lemma, .

For and , all the cases except for lambda abstraction are relatively simple. One
can prove and derive as a special case. For lambda abstraction, i.e. for judgements
of the form (I' - ¢ : A=> B), one must deal with fresh variables. For this we take the claims
in order.

To prove the lam case of one first proves three further lemmas building towards the
target result. The first is that whenever (A - (u;) : A;), then

N : (ui D{ol?)} :
(ui){idaH{ida} == (ui){y;{ida}} (ui){ida}
sub(t;idA){idA}ﬂ ﬂsub(uz-;y.) (5.27)

(wi){ida} (ui)

sub(t;ida)

To show this diagram commutes, one inducts on the derivation of (t); all the cases but lam

bicl

follow as for . For the lam case one uses the inductive hypothesis, the coherence of AJ,

and Lemma [5.3.15((3).
Next we show that, whenever (I' - (¢) : B) and (A F (u;)) : Ai)i=1, ... n, then

Sssoc (t){sub(u;;ida)}
(t){(ueHida} === (t){zi — (wi){ida}} === (t]){(u. )}

sub(t;u.){idA}ﬂ ﬂsub(t;u.) (5'28)
(t[ui/z:i]D{ida} (tlui/zi])

sub(t[w;/z;];idA)

Once again all the cases but lam follow from the generality of . For the lambda
abstraction case the proof is similar to that for (5.27)): one applies the inductive hypothesis,

Lemma [5.3.15|[3) and (5.27).
The final lemma required is the following. For any judgements (I' — (t) : B),

(A (ui) : Ai)iz1,..nand (X, 2 : A+ (vj) : Bj)j=1,..m, one shows that

(4D {0 )} {(ida )} =2 (¢){mi > (ug){ida}} LMD 4 £ )y
sub(t;u.){idA}ﬂ ﬂsub(t;u.)
(t[us/2:] ida) S a) (lusf])

(5.29)
We are finally in a position to prove the lam case of . Unwinding the clockwise route
around the claim, one obtains the left-hand edge of Figure below (page [188]), in which
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we abbreviate the term
)\l‘(] t DF,:E:A{ (] Us D{ian}A’z:A{q Ve D{inCI}E’I:A, xZ,x:A}, xA,x:A{(] Ve D{incx}z’x:A, xZ,m:A}}

by Az.(t){(*)} and write ngf)x for the rewrite ggfi)x s x{z; — u;, x — v} = v taking the
projection at the variable . One then unfolds the anticlockwise route and applies the

inductive hypothesis to obtain the outer edge of Figure completing the proof. O

STLC up to isomorphism. One approach in the field of game semantics is to quotient
a (putative) cc-bicategory to obtain a cartesian closed category (see e.g. [Paq20, Chapter 2]).
Doing so loses intensional information, but makes calculations simpler. This suggests that
one ought to be able to quotient Aps~ (up to the existence of an invertible rewrite) to
obtain A7 (up to fn-equality).

We begin by making precise the sense in which the (—| mapping respects Sn-equality

up to isomorphism.

Lemma 5.4.10. Let S be a A" -signature.
LIUTH7:t=1t:Ain Ay (S), then f =4, t'.
2. If t =, t' for t,t' € N7 (S)(T'; A), then there exists a rewrite I' - BE(¢,t) : (t) =
(') : Ain Aps ™ (S).

Proof. For (1)) we induct on the derivation of 7. For the structural rewrites and the identity

the result is trivial, while for 7/ e 7 it follows immediately from the inductive hypothesis. For

@®) one obtains m{tup(t, ... ,tn)} = ({1, -+ ,Eny) =gy Lk, while for pf(as, ..., an)

one has u =g, (71 (W), ... ,mp(W)) Eﬁn (t1, ... ,tn). The cases for exponential structure are

similar: for €; one sees that eval{(Az.t){inc,}, 2} = app(Az.t,z) =4, , while for ef(z.7)
one finds that @ =g, A\z.app(u, x) Igﬁn Ax.t.
For we induct on the definition of fn-equality (e.g. [Cro94, Figure 4.2]).
(k)

For the 7, ({t1, ... ,tn)) =gy ti rule one takes mp{tup((ti)), ..., (tn))} - (tr)-

For app(Az.t,u) =g, t[u/x] one takes

sub

eval{\z.(t), (u)} :B,, (t){idp, x — (u)} = (t[u/x])

In a similar fashion, for t =g, (m1(t), ... ,m,(t)) one takes
(t) = tup(m{(t)}, -, ma{(2D))

while for t =g, Az.app(t,z) one takes

Az.eval{sub,z}

(t) = Az.eval{(t){inc,},z} Az.eval{(t),x}

The rules for an equivalence relation hold by the categorical rules on vertical composition.
The congruence rules hold by the functoriality of explicit substitution and the functoriality

of the tup(—, ... ,=) and Az.(—) operations. O
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The preceding lemma motivates the following definition.

Definition 5.4.11. Fix a A~ -signature S. For every context I' and type A, define an
equivalence relation =%, on Ay~ (S)(T; A) by setting t =4 ¢’ if and only if there exists a

(necessarily invertible) rewrite 7 such that I' - 7:¢ = t': A. <

We can therefore rephrase Lemma [5.4.10| as follows. For any pair of terms ¢,t' €
N7(T; A) such that t =g, ', then (t) =1, (#'); moreover, if ¢ =1, # then f =g, ¢. To show
that A%~ (S)(T; A)-terms modulo-A7 are in bijection with Aps™ (S)(T; A)-terms modulo-=Y,

it remains to show how to reduce a term of the form (¢) to the original term t¢.

Construction 5.4.12. Define an invertible rewrite reduce with typing
'—¢: A
[+ reduce(t) : t = (t): A
by extending Construction [3.3.20| with the following rules:

reduce(mi(p)) := mx(p) = Trip}

tup(reduce, ... ,reduce)

tup((t1), -, (Zn))

reduce(eval(f,z)) := eval(f,z) = eval{f, z}

reduce(tup(ty, ... ,tn)) :=tup(t1, ... ,tn)

reduce(Ax.t) := Az.t Avreduce(®) Az.(t)

Thought of as syntax trees, the term (%) is constructed by evaluating explicit substitu-
tions as far as possible and pushing them as far as possible to the left. The reduce rewrites
reach a fixpoint on terms of form (¢), thereby providing a notion of normalisation in the

sense of abstract rewriting systems (e.g. [BN9§]).

Lemma 5.4.13. For any A*>"-signature S and any term (I' - ¢ : A) derivable in A7 (S),
the judgement (I' - reduce((t)) =id) : (t) = (t) : A) is derivable in Ay (S).

Proof. Induction on the structure of t. O

We are now in a position to make precise the sense in which A~ is A~ up to

isomorphism.

Proposition 5.4.14. For any A*"~-signature S, the maps (—|) : A7 (S) < Aps (S) : (—)

descend to a bijection
NOT(S) (T3 A)/Bn = A~ (S)(T; A) /=)

between afn-equivalence classes of A7 (S)-terms and a=l;-equivalence classes of Ajs~ (S)-

terms.

Proof. The maps are well-defined on equivalence classes by Lemmal[5.4.10] and respect typing
by Lemmas [5.4.2 and [5.4.4] so it suffices to check the isomorphism. By Lemma the

composite (—) o (—) is the identity. For the other composite, one needs to construct an

invertible rewrite () = ¢ for every derivable term t: we take reduce. O
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In particular, every typeable term (I |- ¢ : A) in Ap¢ (S) has a natural choice of normal

orm, namely the long-37n normal form (e.g. [Hue76]) of t as an A*~-term.
form, y g-bn g

Corollary 5.4.15. Let S be a A*~-signature. For any derivable term I' ¢ : B in Ay~ (S),
there exists a unique long-An normal form term N in A~ (S) such that ¢t ~L (N) and
reduce((N)) =idn)-

Proof. We take N to be the long-fn normal form of . Then N =g, t so, by Proposi-
o ac

(N) =5 (1) =p ¢
For uniqueness, suppose that N and N’ are long-n normal terms such that (N|) = ¢ ;1]_;
(N'). Then (N|) =g, (N}, so that N =g, N’, and hence N = N’ by the uniqueness of

long Sn-normal forms. O

We end this chapter by recording the bicategorical statement of the work in this section.

Theorem 5.4.16. Fix a unary Ap¢  -signature S. The mappings (—) and (—) extend to
pseudofunctors between the free cartesian closed bicategory on § and the free 2-category
with bicategorical cartesian closed structure on S. Together with the pseudonatural

transformation (Id,reduce), they form a biequivalence. O
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Figure 5.7: Diagram for the proof of Lemma [5.4.9(3)
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Chapter 6

Indexed categories as bicategorical

presheaves

Categories of (pre)sheaves are often useful as a kind of ‘completion’, allowing one to employ
extra structure that may not exist in the original category. The aim of this chapter is to show
that bicategorical versions of some of these properties extend to the bicategory Hom(B, Cat)
of pseudofunctors from a bicategory B to the 2-category Cat. (Pseudofunctors B°? — Cat
are also called indezved categories [MP85].) Recall that, since Cat is a 2-category, so is
Hom(B, Cat), and that we write Cat for the 2-category of small categories (Notation [2.1.10)).

Specifically, we shall prove three results which will be used in later chapters:

1. Hom(B, Cat) has all small bilimits, which are given pointwise,

2. Hom(B, Cat) is cartesian closed, and the value of the exponential [P,Q] at X € B
can be taken to be Hom(B,Cat)(YX x P,Q) : B — Cat, for YX := B(X,—) the
covariant Yoneda embedding,

3. For any X € B the exponential [YX, P] in Hom(B, Cat) may be given by P(— x X).
The proofs are rather technical. The reader willing to take these three statements on
trust—for example, by analogy with the case of presheaves—may safely skip this chapter.
For reference, the cartesian closed structures we construct here are summarised in an
appendix (Tables and [B.2)).

Our first result is that Hom(B, Cat) is bicomplete. For brevity, we provide an abstract

argument which relies on the notions of pseudolimit [Str80] and flexible limit [BKP89]. We
will not use these concepts anywhere else, so do not delve into the details here: an excellent

overview of the various forms of limit and their relationship is available in [Lac10].

Proposition 6.0.1. For any bicategory B, the 2-category Hom(B, Cat) is bicomplete, with

bilimits given pointwise.

Proof. We may assume without loss of generality that B is a 2-category. To see this is the
case, observe that if V ~ )’ are biequivalent bicategories then Hom(V, Cat) ~ Hom()’, Cat)
(see Lemma|6.1.1)), and hence Hom(), Cat) has all small bilimits if and only if Hom()’, Cat)

191
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does. By the coherence theorem for bicategories [MP85] every bicategory is biequivalent to
a 2-category, so the claim follows.

Now, by [Pow89bl Proposition 3.6] for any 2-category C the 2-category Hom(C, Cat) ad-
mits all flexible limits, calculated pointwise. The so-called ‘PIE limits’ are flexible ([BKPS89,
Proposition 4.7]) and suffice to construct all pseudolimits ([Kel89, Proposition 5.2]), so
Hom(B, Cat) has all pseudolimits. But, as explained in [Lacl0, §6.12], a 2-category with
all pseudolimits has all bilimits, completing the proof. O

This result may also be obtained directly, in a manner similar to the categorical argument,
as a corollary of the following proposition. We do not pursue the point any further here for

reasons of space.

Proposition 6.0.2. Let F': B— W and D :V — W (D for ‘diagram’) be pseudofunctors
equipped with a chosen biuniversal arrow (LB,up : D(LB) — F'B) from D to F'B for every
B e B. Then

1. The mapping L : 0b(B) — ob(V) extends canonically to a pseudofunctor B — V', and

2. The biuniversal arrows upg are the components of a biuniversal arrow DL = F' from
Do (—):Hom(B,V) - Hom(B, W) to F. O

6.1 Hom(B, Cat) is cartesian closed

It follows immediately from Proposition that, for any bicategory B, the 2-category
Hom(B,Cat) has all finite products. In this section we confront the construction of
exponentials. The usual Yoneda argument (see e.g. [Awol0, §8.7]), expressed bicategorically,
gives us a canonical choice of exponential to check. For any pseudofunctors P, @ : B — Cat,

putative exponential [P, Q] and object X € B one must have

[P,Q](X) ~ Hom(B, Cat)(YX, [P, Q]) by the Yoneda lemma
~ Hom(B, Cat)(YX x P,Q) by definition of an exponential

So it remains to show that the pseudofunctor Hom(B, Cat)(Y(—) x P,Q) : B — Cat is
indeed the exponential [P, Q] in Hom(B, Cat), where YX := B(X, —) denotes the covariant
Yoneda embedding.

To simplify the presentation we assume throughout this section that B is a 2-category.

The following lemma guarantees that this entails no loss of generality.
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Lemma 6.1.1. Suppose that B ~ B’ are biequivalent bicategories and V is any bicategory.
Then:

1. The hom-bicategories Hom(B,V) and Hom(B’, V) are biequivalent, and

2. If B is cartesian closed, so is B’.

Proof. For , suppose the biequivalence is given by pseudofunctors P : B < B : Q.
Define pseudofunctors @ : Hom(B,V) < Hom(B',V) : P, by setting Q«(H) := H o @ and
P.(F) := F o P. From the biequivalence B ~ B’ one obtains equivalences PQ ~ idg and
QP ~idg and hence equivalences PyQx ~ idpom(s,v) and Q« Py ~ idgoms,y), as required.

For , one applies Lemma to carry the required biuniversal arrows from B to B’
(c.f. also Corollary [2.3.3)). O]

We now turn to the construction of exponentials in Hom(B, Cat). This entails con-
structing an adjoint equivalence Hom(B, Cat)(R, [P, Q]) ~ Hom(B,Cat)(R x P,Q) for
every triple of pseudofunctors P, Q, R : B — Cat. Since the definition of [P, @] is also in
terms of hom-categories, working with the 1- and 2-cells in Hom(B, Cat)(R, [P, Q]) and
Hom(B, Cat)(R x P, Q) quickly becomes complex, with several layers of data to consider.
We therefore take the time to unwind some of the definitions we shall be using; as well as
serving as a quick-reference on the details of the various definitions, this will fix notation

for what follows.

6.1.1 A quick-reference summary

The pseudofunctor Hom(B, Cat) (Y(—) x P, Q). Suppose f : X — X’ in B. The functor
Hom(B, Cat)(Y f x P,Q) : Hom(B, Cat)(YX x P,Q) — Hom(B, Cat)(YX’ x P,Q) takes
a pseudonatural transformation (k, k) : YX x P — @ to the pseudonatural transformation
with components k(— o f, =) and witnessing 2-cell given by the following composite for

every g : B — B”:

B(X',g)x Pg

B(X',B) x PB B(X',B) x PB’
B(f,B)xPBl = lB(f,B’)xPB’
B(X,B) x PB — X979 m(x By x PB’

kBl kg \LkB/
P

QB QB

The top square commutes because products in Cat are strict and we have assumed that B

is a 2-category.

Remark 6.1.2. We shall write both kg and k(B,—, =) to denote the component of a
pseudonatural transformation (k, k) at an object B. These are just two notations for the
same concept: the choice in any particular context is only dependent on which is clearest

for exposition. Similar remarks apply to the 2-cells k and to modifications. <
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Pseudonatural transformations R = [P,Q]. To give a pseudonatural transformation
(k,k) : R = Hom(B, Cat)(Y(—) x P,Q) is to give
e For every X € B a functor kx : RX — Hom(B, Cat)(YX x P,Q),

e For every f: X — X’ in B an invertible 2-cell (that is, a natural isomorphism) ks as
in the following diagram:

RX R RX'

kx l ké lk x!

Hom(B, Cat)(YX x P,Q) —— Hom(B,Cat)(YX' x P,Q)
Hom(B,Cat)(Y f x P,Q)

Thus, for every € RX one obtains a pseudonatural transformation k(X,r,—) : YXx P = Q

and an invertible 2-cell (modification) k(f,r) : k(X', (Rf)(r), —) — Hom(B, Cat)(Y f x P,Q)(k(X,r

The components of this modification are natural isomorphisms k(f,r, B), with components

k(f,r,B)(h,z)

A(h, z)BEBIXPB (X" (Rf)(r), B)(h, z) k(X,r,B)(ho f,z) (6.1)

indexed by B € B. (Note that we use the A\-notation \(h,z)8X"B)*PE (X r B)(h,z)
to anonymously refer to the action on objects (h,z) € B(X’, B) x PB.) The modification
axiom on k(f,r) requires that the diagram below commutes for every (h,p) € B(X, B) x PB,
g:B— B and f: X - X' in B:

KOX(RF)(r).9) (s (PF)(p)
k(X', (Rf)(r), B') (gh, (Pf)(p)) ——— (Qq)(k(X", (Rf)(r), B)(h,p))

k(fvr)(gh,(Pf)(p))l l@g)(k(f,r)(h,p)) (6.2)

k(X,r, B") (ght, (Pf)(p)) R ERYTITTYES (Qg) (k(X,r, B)(hf,p))

We can unfold the pseudonatural transformation k(X,r, —) further. It has components
given by functors k(X,r, B) : B(X,B) x PB — QB (for B € B), and for every g : B — B’

one obtains an invertible 2-cell (that is, a natural isomorphism) k(X,r, g) as in

B(X,B) x PB X P9 pix By« PR
I<(X,T,B)l K(X,r9) Jk(X,r,B’) (6.3)
«—
/
QB o QB

Examining the components of this 2-cell, one sees that for each (h,p) € B(X, B) x PB one ob-
tains an invertible 1-cell k(X, 7, g)(h, p) : k(X, 7, B)(goh, (Pg)(p)) — (Qg)(k(X,r, B)(h,p)).

There are then two levels of naturality at play, related via . The naturality
condition making k(X,r, —) a pseudonatural transformation requires that for every 2-cell

7:9= ¢ : B— B’ the following commutes:

.=)-
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k(X,r,B")(Toh,(PT)(p))

k(X,r,B")(g o h, (Pg)(p)) k(X,r,B')(g" o h,(Pg)(p))
k(x mg)(h,p)l lk(X ;7,9")(h,p)
(Qg) (k(X, 7, B)(h,p)) (Qg") (k(X,r, B)(h,p))

(@) (k(X,r,B)(h,p))

On the other hand, the naturality condition making k(X,r,g) a natural transformation

requires that for every p: h = h/ in B(X,B) and ¢ : p — p’ in PB, the following commutes:

k(X,r,B")(gop,(Pg)(1))

k(X,r, B')(g o h, (Pg)(p)) k(X,r, B")(gol,(Pg)(r))
k(X,r,g)(h,p)l lk(Xmg)(h’ﬂp’)
(Qg) (k(X,r, B)(h,p)) (Qg) (k(X,r, B)(W,p))

(Qg)(k(X,r,B)(p;t))

Modifications (j,j) — (m,m) : R = [P,Q]. To give a modification ¥ : (j,j) — (m,m)
between pseudonatural transformations R = [P, Q] is to give a natural transformation
Ux : jx = mx between functors of type RX — Hom(B, Cat)(YX x P, Q) for every X € B,
such that the whole X-indexed family of natural transformations satisfies the modification
axiom.

Unwinding the definition of natural transformation, Uy is a family of 2-cells (that
is, modifications) ¥(X,r, —) : j(X,r,—) = m(X,r,—), natural in r € B and such that
every (X, r,—) satisfies the modification axiom. In particular, since every W(X,r, —) is
a modification between pseudonatural transformations YX x P = @, for every B € B we
have a natural transformation V(X,r, B) : j(X,r, B) = m(X,r,B) : B(X,B) x PB — QB.

6.1.2 The cartesian closed structure of Hom(, Cat)

To construct exponentials in Hom(B, Cat) we are required to give:

e A biuniversal arrow evalpg : [P, Q] x P — @ for each P,Q : B — Cat,
e A mapping A : ob(Hom(B, Cat)(R x P, Q)) — ob(Hom(B, Cat)(R, [P, Q])),
j

e An invertible universal 2-cell evalp g o A(j,j) = (j,]) defining the counit, such that the

unit is also invertible.

We take these components in turn. The main difficulty of the proof is maintaining a clear
view of what one is required to construct, and ensuring that all the relevant axioms have
been checked.

The biuniversal arrow. Our first step is the construction of the biuniversal arrow
evalpg : [P, Q] x P — Q. To be a 1-cell in Hom(B, Cat), this needs to be a pseudonatural
transformation for which each component is a functor ex : Hom(B, Cat)(YX x P, Q)x PX —
QRX.

Let X € B be fixed; we define ex. Consider a pair ((k,k),p) € Hom(B, Cat)(YX x P,Q)

consisting of a pseudonatural transformation (k,k) : YX x P = @ and an element p € PX.
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Noting that, in particular, the component of (k, k) at X € B has type B(X, X) x PX — QX,
one obtains a functor k(X,Idx,—) : PX — QX. We therefore define eX((k,E),p) =
k(X,Idx,p).

To extend this to morphisms, we need to define a morphism k(X,Idx, p) — kK'(X,Idx, p)
for every pair (Z, f) consisting of a modification = : (k, k) — (k' ,E/) and morphism f : p — p'.
The modification Z is a family of natural transformations Zx : k(X, —, =) = k'(X, —, =)
for X € B, where naturality amounts to the following commutative diagram for every
7:h=h:X—>Band f:p—p in PB:

k(X h,p) — 2 (X w )

Ex(h,p)l lEx(h’,p’)
!/ / / /
k (Xahap) W k (Xahap)

We define ex (Z, f) to be the composite

) Ex (Idx,p) K'(X,Idx,f)

ex(Z, f) == k(X,Idx, p K'(X,1dx,p) K'(X,1dx,p)

This definition is functorial.
Next we need to provide invertible 2-cells witnessing that the mappings ex are pseud-
onatural. That is, for every f : X — X’ in B we need to provide a natural isomorphism as

in the following diagram:

Hom(B,Cat)(YfxP,Q)xPf

Hom(B,Cat)(YX x P,Q) x PX Hom(B, Cat)(YX’' x P,Q) x PX'
exl Z J/CX/
!/

Chasing an arbitrary element ((k,E), p) € Hom(B, Cat)(YX x P,Q) x PX through this dia-
gram, one sees that we need to provide an isomorphism k (X’, f, (Pf)(p)) ~ (Qf)(k(X,Idx,p))
in QX’. We take

E(X,’I‘,f) (IdX 7p)
—

er((k,k),p) == k(X', f,(Pf)(p)) = k(X', foldx, (Pf)(p)) Q) (k(X,r, B)(Idx, p))

using the natural isomorphism provided by diagram (6.3)).

Lemma 6.1.3. The pair (e, €) defined above is a pseudonatural transformation [P, Q] x P =

Q.

Proof. The naturality condition follows directly from that for k. Similarly, the unit and

associativity and unit laws hold immediately because they hold for (k, k). O

We now have a candidate for the biuniversal arrow evalp g defining exponentials. The
next step is to define a mapping A : 0b (Hom(B, Cat)(Rx P, Q)) — ob (Hom(B, Cat)(R, [P, Q]))
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The mapping A. Let (j,j) be a pseudonatural transformation R x P = Q. We define
A(j,j) : R = [P,Q] in stages. For the 1-cell components we need to define a functor
RX — Hom(B,Cat)(YX x P,Q) for every X € B. We do this first.

Fix some X € B and r € RX. We define a pseudonatural transformation (Aj)(X,r, —):
YX x P= Q. For every B € B we take the functor

B(X,B) x PB — QB
(h,p) = (X, (RR)(r),p)

This is well-defined because jx : RX x PX — QX, so (Rh)(r) € RB. We take the evident
functorial action on 2-cells: (Aj)(X,r, B)(T, f) := (X, (R7)(r), f).
To extend these 1-cells to a pseudonatural transformation we need to provide a natural

isomorphism (Aj)(X,r, g) as in

B(X,B) x PB —2X9"P9 | pix By« PB
(A(X mB)l (AN (X,r,9) l(Aj)(X,r)B,
<«
/
QB - QB

for every g : B — B’ in B. So for every (h,p) € B(X, B) x PB we need to give an isomorphism
i(X, (Rgh)(r), (Pg)(p)) = (Qg)(i(X, (Rh)(r),p)), for which we take the composite defined

by commutativity of

(A)(X,r9)

(X, (Rgh)(r), (Pg)(p)) (Qg)(i(X, (Rh)(r),p))

i(X.(65,) 7 (r).(Pg) () i(g,(Rh)(r),p)

(X, (Rg)(RR)(r), (Pg)(p))

This definition is natural in g because gbf’h and jg both are. The unit and associativity laws

follow easily from those of (j,]), yielding the following.

Lemma 6.1.4. For every X € B, r € RX and pseudonatural transformation (j,j) : R x P =

Q, the pair ((Aj)(X,r, —), (Aj)(X,r, —)) is a pseudonatural transformation YXxP = Q. O

The preceding lemma defines a mapping ob(RX) — ob(Hom(B,Cat)(YX x P,Q)).
Our next task is to extend this to a functor. So suppose f : r — ' in RX. To give a
modification (Aj)(X, f,—) : (A)(X,r,—) — (A))(X,r’,—), one must provide a family of
natural transformations (Aj)(X,r, B) = (Aj)(X, 7', B) indexed by B € B. For a fixed choice
of B and (h,p) € B(X, B) x PB, we take the 1-cell

(A)(X, £, B)(h,p) := (X, (RR)(r), p) “=LD2L 505 (R (1), p)

This is natural in h and p by functoriality. The modification law for (Aj)(X, f,—) is a

consequence of the naturality properties. For (h,p) as above and f : » — 7/, one has
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(X",(Rgh)(£),(Pg)(p))

J(X', (Rgh)(r), (Pg)(p)) - (X', (Rgh) ("), (Pg)(p))

I(X(68,) 71 (). (Pg) () I(X7(67,) 71 (). (Pg) ()
\ §(X7,(Rg) (RR)(f),(Pg)(p))
i(X’, (Rg)(Rh)(r), (Pg)(p)) i(X', (Rg)(Rh)(r"), (Pg)(p))
i(g,(RR)(r),p) i(g,(RR)(r"),p)

(Qg)(i(X, (Rh)(r),p)) (Qg)(i(X, (Rh)(r),p))

(Q9)((X,(RR)(f).p))

in which the top square commutes by naturality of ¢’ and the bottom square by the fact
that ]g is a natural transformation.

We have now defined a functor (Aj)(X,—,=) : RX — Hom(B, Cat)(YX x P,Q) for
each X € B. It remains to show these functors are the components of a pseudonatural

transformation. Thus, for every f : X — X’ we need to provide invertible 2-cells (Aj)(f, —, =

) as in

RX RS RX'

<Aj><x,—7=)l A)(fm=) J(An(x’,—;)

Hom(B,Cat)(YX x P,QQ) —— Hom(B, Cat)(YX' x P,Q)
Hom(B,Cat)(Y fx P,Q)

This diagram requires an isomorphism
ABE (R, p) BB (X (RR)(R)(1),p) = J(X, (RR)(r),p) (6:4)

for each r € RX, for which we take simply ABZ . )\(h,p)B(X/B)XPB (X, qﬁff(r),p). The unit
and associativity laws then follow from the unit and associativity laws of the pseudofunctor
R.

We record our progress in the following lemma.

Lemma 6.1.5. The pair ((Aj)(X, —, =), (Aj)(f,—,=)) is a pseudonatural transformation
R = Hom(B, Cat)(YX x P,Q). O

We define the required mapping as follows:

A : ob(Hom(B, Cat)(R x P,Q)) — ob(Hom(B, Cat)(R, [P, Q]))
(ij) — ((AJ)(X7 ) :)7®<f7 ) :))

Our next task is to define the universal arrow, which will act as the counit.
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The counit E. We begin by calculating evalpg o ((k,E) X P) : Rx P = @ for any
(k,k) : R = [P,Q]. The component at X € B is the functor acting on (r,p) € RX x PX by

(eX o(kx x PX))(X,r,p) = eX(k(X,r, —),p)
= ex (ABB . A(h, 2)B&BIXPB (X 7 B)(h,x),p)
=k(X,r, X)(Idx, p)

For any f: X — X’ and (r,p) € RX x PX, the witnessing 2-cell is defined by the following

commutative diagram:

(evalp, go((k,k)x P)) ¢ (r,p)

k(X' (Rf)(r), X") (Idx/, (Pf)(p)) Q) (k(X,r, X)(Idx, p))

k(fm)(ldxu(Pf)(p))J Tk(XJ‘:f)(IdX »)
k(X,r, X")(Idxs o f, (Pf)(p)) K(X,r, X')(f o Idx, (Pf)(p))
(6.5)

Note that both levels of naturality appear in this definition: the first arrow arises from the
components of the modification k(f,r) given in , while the second arises from the 2-cell
witnessing the naturality of kx in diagram (6.3)).

Now suppose that (j,j) : R x P = Q and consider evalpg o (A(j,j) x P) : R x P = Q.

The 1-cell components of this pseudonatural transformation act by

RX x PX — QX

(6.6)
(7’, p) — J(Xv (RIdx)(T>,p)

and for f: X — X’ and (r,p) € RX x PX the witnessing 2-cell is the composite

(evalp,go(A() % P))

i(X', (RIdx/)(Rf)(r), (Pf)(p)) (@) (i(X, R(Idx)(r),p))
(Xl ;0PN |
i(X,R(Idx: o f)(r), (Pf)(p)) i, (R1dx) (1))

i(X', R(f o Idx)(r), (Pf)(p)) > (X7, R(f)R(1dx)(r), (Pf)(p))
I(X (651 ) L)) ()

By the identification , to define the counit modification E : evalpg o (A(j,j) x
P) — (j,j) we need to provide a natural transformation Ex : j(X, (Rldx)(-),=) =
j(X,—,=) : RX x PX — QX for every X € B. We take the obvious choice, namely
A(r, p) B PX (X, (8) 7 (r),p). Since Y& : Idgx = RIdx is a 2-cell in Cat, i.c. a

natural transformation, it only remains to check the modification axiom.
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Lemma 6.1.6. The family of 2-cells Ex := j(X, (¢§)7'(-),=) (for X € B) form a modi-
fication evalpg o A(j,]) — (j,j)-

Proof. We need to verify that the following diagram commutes for every f: X — X’ in B:
I (RN, (PAH() —L7
B (RO)PI0) |
J(X, (RIdx/)(Rf)(r), (Pf)(p))
j(xwﬁ,f(r),(Pf)(p))l
J(X', R(Idx o f)(r), (P£)(p))
(evalp,go(A(j) x P))(f,rp) H (Q@N(Ex (rp)))
J(X', R(f o1dx)(r), (Pf)(p))
J'(X’v(¢f3,1d)*1(T),(Pf)(p))l
J(X, R(HRIdx)(r), (P£)(p))
](va(Idx)(r),p))l 1
QN (X, R(Idx)(r),p)) === (Qf)(i(X, R(Idx)(r),p))

QF)(i(X,r,p))

(6.7)

To this end, one uses the two unit laws of a pseudofunctor to see that the following commutes:

jxi o (Rf x Pf)
jX/O(zW
jX’ ) ((RIdX/ @) Rf) X Pf)
jX/O((lsﬁ’fXPf)l
jX’ o (R(IdX/ o f) X Pf)
J

K T
jx'o (R(foldx) x Pf) — jxr o ((Rf o Rldx) x Pf)

(X (@R )~ PF)

jxro(Rfoy ) xPf)

Diagram (6.7)) therefore reduces to
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J(X (RA), (PH) —2 s Q) ((X,7,p))

J(XL(RO@R) (), (PF)(p))

~

(X', R(f)R(1dx)(r), (Pf)(p)) (@NGXE().p)
(£, R(1dx)(r).p))
(QF)(i(X, R(Idx)(r),p)) === (Qf)(i(X, R(Idx)(r),p))
which commutes by the naturality of j(f, —, =) in 7. O

We have constructed our candidate counit E; now we need to show it is universal. For
the existence part of this claim, we need to construct a modification Zf : (k, k) — A(j,j) for
every pair of pseudonatural transformations (j,j) : R x P = @ and (k,k) : R = [P, Q] and
every modification Z : evalp g o ((k, k) x P) — (j,]).

The modification Zf. We begin by unwinding the definition of a modification

evalpg o ((k,E) X P) - (j,)

For every X € Band (r,p) € RX x PX, we are given a 1-cell Z(X, r,p) : k(X,r, X)(Idx,p) —
j(X,r,p) in QX. These are natural in the sense that, for any g : 7 — r and h: p — p/ in
RX x PX, the following commutes:

K(X, 7, X)(Idy, p) SE2OM 0 XY (1d, )

E(X,r,p)l lE(Xﬂ"l»P/)
(X, 7, p) » (X, )

i(X,9,h)

The X-indexed family of natural transformations Z(X, —, =) is subject to the modification

axiom, which requires that the following commutes for every f: X — X’ in B (recall the

definition of (evalpg o ((k,k) x P)f from ):

2(X',(RF)(),(P)())

K(X',(Rf)(r), X") (Idx+, (Pf)(p)) —— (X, (Rf)(r), (Pf)(p))

k( f,r,B)(IdX/,(Pf)(P))l
k(X,r, X’)(IdX/ o f, (Pf)(p))
| () (6.8)
K(X, 7, X')(f o ldx, (Pf)(p))
E(me)(ldxvp)l \,
(Qf) (k(X,r, X)(Idx,p)) OHEEa) Q) (i(X,7,p))

Now, to define Zf we are required to provide a 2-cell EE(  kx — (Aj)x for every
X € B, subject to the modification axiom. Since kx and (Aj)x are functors RX — [P, Q] X,
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such a natural transformation consists of a family of 1-cells (modifications) Zf(X,r, —) :
k(X,r,—) = (Aj)(X,r,—) that is natural in r. We build this data in stages.

Fix X € B and r € RX. We begin by defining the modifications Zf(X,r, —). For the
components, we define a natural transformation Z'(X,r, B) : k(X,r, B) = (Aj)(X,r, B)
for each B € B as follows. For (h,p) € B(X,B) x PB, we take the 1-cell defined by
commutativity of the diagram below, where the bottom arrow arises from the fact that each

Ef is a modification with type given in {i

X r B ) =X ,r,B)(h,p) J(B, (Rh)(r),p)
H TE(B,(Rh)(T)’P) (6.9)
k(X,r, B)(Idp o h,p) — - k(B, (Rh)(r), B)(1dz, p)

k(h,r,B)(Idg,p)~

The family of 1-cells thus defined is natural in (h,p) because each component is. We
claim that the family of natural transformations Zf(X,r, —) is a modification. This entails
checking that the following commutes for every f: B — B’ in B:

2N(X,r,B)o(B(X,f)x Pf)
I((X,T’,B) © (B(va) X Pf) E— (AJ)(X7T7B)O (B(Xaf) X Pf)

k(X,T,f)l JV(AJ)(ervf)

QN (X1 B)) —— oo (A)(X.r. B)

To prove this, fix some (h,p) € B(X, B) x PB. Applying the naturality of = with respect
to the map gf)ﬁh(r) : (Rf)(Rh)(r) — R(f o h)(r), and the modification axiom , one

reduces the claim to showing that

k(X,r,B')(Idp: o f o h, (P[)(p))

k(foh,r)(Idgr,(Pf)(p)) \

(B, R, B) (s, (PF) () k(X B)(f o b, (PF)(p))
k(B’@}%h(r),B')adB/,(Pf>(p)ﬂ
k(B', (Rf)(Rh)(r), B")(1dp:, (Pf)(p)) KX, f) (hp)
R(BR() (1)) (g (P ) o >>J
k(B, (Rh)(r), B")(Idp: o f,(Pf)(p)) (Qf)(k(X,r, B)(h,p))
k(B, (Rh)(r) Hf oldg, (Pf)(p)) (Qf)(k(X,r, B)(Idp o h, p))

k(B,(Rh)(r),f)(1dp,p) (Qf)(k(h,r)(1dp,p))

Q) (K(B', (Rh)(r), B')(1dp, p))

This commutes by an application of the associativity law for R and the modification

axiom for k(f, )
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Thus, ZF(X,r) is a modification (k(X,r,—),k(X,r,—)) = ((A))(X,r, -), (A (X, T, -))
for every X € B and r € RX. Moreover, since each of the components in the definition
of ZF(X,r) is natural in r, this r-indexed family of 1-cells forms a natural transformation
ETX : kX = (ADX

To show that Z' is a modification (k,k) — (Aj, Aj), it remains to check the following
modification law for every f: X — X’ and (h,p) € B(X', B) x PB:

/ E(fﬁ')
k(X' (Rf)(r), B)(h,p) ———
= XRN B )| [ER (6.10)

(Aj)(X/7 (Rf)(T),B)(h,p) m} (Aj)(X7T7 B)(ho fap)

|<(X,7“, B)(ho f,p)

This follows from the associativity law for evalpg o ((k,E) X P), namely

(B, (RR)(RA)(r). B) (i, p) ——— s 2N

E(h,(Rf)w))(IdB,p)l
k(X',(Rf)(r), B)(Idp o h,p) K(hof,r)(1d,p)

k(X',(Rf)(r), B)(h,p) m k(X,r,B)(ho f,p)

k(B,R(hf)(r),B)(1dp,p)

k(X,r, B)(Idg o ho f.p)

together with the naturality of =x with respect to the morphism gbfif(r) :(Rh)(Rf)(r) —
R(hf)(r). We summarise the result:

Lemma 6.1.7. The family of natural transformations Zf(X, —, =) defined in (6.9)) forms a
modification (k, k) — (Aj, Aj). O
The final part of the proof is showing that =1 is the unique modification ¥ such that

evalpr ] ((k,E) X P) evalr.@o(Vx ) evalRQ o (A(J,j) X P)

X / (6.11)

We turn to this next.
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The universal property of E. The existence part of the claim follows from the unit law

of a pseudonatural transformation and the fact that Z(X,r, p) is a natural transformation:

k(X,r, X)(Idx,p)

\

=2H(X,r,X)(Idx,p) k(X,r, X)(Idx o Idx,p)
& \F(Idx,r)(ldx,p)*l
i(X, R(Idx)(r),p) +—— k(X,R(Idx)(r), X)(Idx,p) witlew
E(X,R(1dx)(r),p) lk (X,68) (). (I )
nat

(X, (0 8) 1 (r).p) = k(X,r, X)(Idx,p) =

o4 =(X,r,p)
i(X,r,p)

For uniqueness, suppose that ¥ is a modification filling (6.11]). Then, applying the definition
of (Aj)(f, —, =) from (6.4)), one obtains the diagram below, in which one uses the modification
axiom (c. f. ), the assumption on ¥ and the unit law of a pseudofunctor:

k(X,r, B)(h,p)

U(X,r,B)(h.p)

¥ (X,r,B)(Idgoh,p)
k(X,r, B)(Idp o h,p) — j(B, R(Idp o h)(r),p)

K(h,r) (1dp )" modif. law i(By(oF )~ (7))
V(B,(RR)(),B)(dpp) wnit law

k(B,(Rh)(r),B)(Idg,p) — j(B, (RIdg)(Rh)(r),p)

(BB (RR)(r).p)

E(B,(Rh)(r),B)(1dp,p)

i(B, (Rh)(r).p)

Since the left-hand leg of this diagram is the definition of =T , one obtains the required

universal property:

Lemma 6.1.8. For any modification = : evalpg o ((k,k) x P) — (j,j) the modification =T

of Lemma is the unique such filling (6.11]). O

Putting together everything we have seen in this section, for every P,(Q : B — Cat the
pseudofunctor [P, Q] := Hom(B, Cat)(Y(—) x P,Q) satisfies an adjoint equivalence

A : (Hom(B, Cat)(R x P,Q)) < (Hom(B, Cat)(R, [P, Q])) : evalpg o (— x P)

with evaluation map defined as in Lemma, and counit E defined as in Lemma
The universality of the counit is witnessed by the mapping (—)T of Lemma Moreover,
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it is clear that Z is invertible if Z is, so in particular the unit is invertible. Thus, [P, Q] is

an exponential in Hom(B, Cat).

Proposition 6.1.9. For any 2-category B and pseudofunctors P, () : B — Cat, the expo-
nential [P, Q] exists and may be given by Hom(B, Cat)(Y(—) x P, Q). O

Hence, Hom(B, Cat) is cartesian closed for any 2-category B. Applying Lemma

yields our final result.

Theorem 6.1.10. For any bicategory B, the 2-category Hom(B, Cat) is cartesian closed.
O

6.2 Exponentiating by a representable

For any 2-category B with pseudo-products, object X € B and pseudofunctor P : B°? — Cat,
the exponential [Y X, P] may be given as P(— x X). This follows immediately from the the
uniqueness of exponentials up to equivalence (Remark |5.1.4]), together with the following

chain of equivalences:

[YX, P] ~ Hom(B,Cat)(Y(—) x YX,P) by Proposition [6.1.9
~ Hom(B, Cat)(Y(— x X), P) (6.12)
~ P(— x X) by the Yoneda Lemma

For the second line we use the fact that birepresentables preserve bilimits (Lemma [2.3.4]).

In the normalisation-by-evaluation argument (Chapter |8) we shall require an explicit
description of the evaluation map witnessing P(— x X) as the exponential [Y X, P]. In this
section, therefore, we outline the exponential structure of P(— x X) and briefly show that
it satisfies the required universal property. Since this structure may be extracted from the
work of the preceding section by chasing through the equivalences , our presentation
will be less detailed than before.

Note that, for the rest of this chapter, we work contravariantly. Since we are assuming
B is a 2-category, the Yoneda pseudofunctor is now both strict (in fact, a 2-functor) and
contravariant: YX = BP(X, —) = B(—, X).

The evaluation map. We begin with the pseudonatural transformation P(— x X) x
Y X = P that will act as the evaluation map. For the component at B € B we take the

functor

ep: P(B x X) x B(B,X) —> PB
(p, h) — P({dp, h))(p)

with the evident action on 2-cells. To turn this into a pseudonatural transformation we

need to provide an invertible 2-cell €; as in the diagram below for every f: B’ — B in B:
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P(fxX)xB(f,X)

P(B x X) x B(B, X) P(B'x X) x B(B', X)

eBl ey leB’
=

PB PB’

At h: B — X we define €¢(h, —) to be the composite

Ef(hv_)

P({ddg,ho f))o P(f x X) ———— P(f)o P{ddp,h)
¢gd,hf>,f><xl T(¢<Pld,h>,f)7l
P((f x X){Idg,hf)) R P({dpg,hyo f)

fuse post™!

where the isomorphism swapy, ¢ is (f x X) o{ldp, hf) = {f, hf) == {dp/,hyo f. The
whole composite is a natural isomorphism because each component is, so it remains to check
the two axioms of a pseudonatural transformation. The unit law is a short diagram chase

using the unit law for P and the fact that

srao<Id,h) swap

IdBX)(O<IdB,h> <IdB,h>OIdB:>Idexo<IdB,h>

is the identity.

To prove the associativity law, on the other hand, one uses the naturality of the ¢*
2-cells and the associativity law of a pseudofunctor to reduce the problem to a diagram
in the image of P, whereupon one can apply standard properties of the product structure
(recall Lemma [£.1.7)).

Lemma 6.2.1. For any X € B and pseudofunctor P : B°? — Cat, the pair (e,€) defined

above forms a pseudonatural transformation P(— x X) x YX = P. Ul

The mapping A. Next we define the mapping A : ob(Hom(BOP, Cat)(R x YX, P)) —
ob(Hom(B°P, Cat)(R, P(— x X))). Let (k,k) : R x YX = P be a pseudonatural transform-
ation. We define A(k,k) := (Ak,Ak) : R = P(— x X) as follows. For B € B we take the

functor
(Ak)p: RB — P(B x X)
r— |<B><X(R(7T1>(7"), 7T2)
Thus, (Ak)p is the composite RB Bm, R(B x X) Kexx(Cm), P(B x X). To define (Ak),,

where f : B’ — B, we need to give an invertible 2-cell as in

rRB— | Rrp
(AK) Bl (A<:k)f l(Ak) -
P(Bx X) ——— P(B' x X)
P(fxX)

This must be a natural isomorphism kg x (R(m1)R(f)(—), 72) = P(fxX) (kpxx (R(m)(—),m2)),

for which we take the following composite:
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(Ak) ¢

kprxx (R(m1) o R(f),72)
kB/xX((z)?Jq 77|'2)l
Kprxx (R(f o), 7T2) kfxx (Rm1,m2)
kB,XX(Rw<—1>,w<—2)>l

kpxx (R(mi(f x X)), m(f x X)) —— kpxx (R(f x X) o R(m),m(f x X))
kB’xX((¢§17fXX)717W2(fXX))

P(f X X)(|<Bxx(R7T1,7T2))

To see that this is a pseudonatural transformation, observe that we have actually defined

A(k, k) as a composite

RB » RB'
ng 2 ngs
R(Bx X)xB(BxX,X) —— R(B'xX)xB(B'xX,X) (6.13)
R(fxX)xB(fxX,X)
kBxx Krux Kprxx
—
N !/

P(B x X) P » P(B' x X)

where ng(r) := (R(m)(r),72) and fiy has first component

Fr Rw(-D ) (Gn pxx) !
_

RmoRf(b:R(fom):>R(7rlo(f><X) R(f x X)o Rmy  (6.14)

and second component o g ma o (f x X). So it suffices to show that (n,n) defines a
pseudonatural transformation R = R(— x X ) x B(—x X, X ). Naturality follows immediately
from the fact each component in the definition is natural. For the unit law, the first
component is the triangle law for products, and the second component is a short diagram
chase.

For the associativity law, it is once again the second component that is more difficult. As
for (e,€) (Lemmal6.2.1]), the proof consists of using the associativity axiom of a pseudofunctor
and the naturality of ¢*. Once the calculation has been pushed ‘inside’ R, what remains is
a relatively easy diagram chase. This completes the proof that (n,n) is a pseudonatural

transformation, and hence the definition of the mapping A.

Lemma 6.2.2. The pair (n,n) defined in (6.14) forms a pseudonatural transformation
R= R(—x X)) x B(— x X, X). O

Corollary 6.2.3. The pair (Ak, Ak) defined in (6.13) forms a pseudonatural transformation
R = P(— x X) for every (k,k) : Rx YX = P. O
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The counit E. For every (k,k) : R x YX = P we need to provide an invertible modifica-
tion E&N : (e,8) o (A(k,k) x YX) — (k, k).
Unwrapping the definition of (e,e) o (A(k,k) x YX) at B € B and (r,h) € RBx B(B, X),

one sees that

(eB o (AK)p x YX)) (r,h) = ep(kpxx (R(m1)(r), m2), h)
= P ({dp,h)) (|<BxX(R(7T1)(T)v 772))

Furthermore, for f : B’ — B the corresponding 2-cell (e BO ((Ak) BXYX )) s is defined by
(eso((AK) 5 XY X)) (r,h)
P({dp, hf)) (kg x (R(m1) R(f)(r), m2)) ———— P(f)P(Idp, b)) (kpxx (R(m)(r), 72))
P(<Idthf>)(jf(T))l }f(h7|<3xx(R(m)(T)Jr2))

P({dp, hf))(kpxx (R(f x X)R(m)(r), ma(f x X)) — P({dp, hf))P(f x X)(kpxx (R(m1)(r), 7))
P(ddp,hf))(kfxx (R(m1)(r),m2))

We therefore take the component at B € B of Eg’k) to be the natural isomorphism defined

by
E&D (7, h)
P({Idp, h))(kpxx (R(m1)(r), m2)) kg(r, h)
k(I(li,h>(R(7"1)("')’7"2)J TkB((Tl’g)l,h)
kg (R({Idp, h))R(m)(r), mo{Idp, h)) — kp(R(mddp, h))(r),h) — kp(R(Idp)(r),h)
kB(¢§1’<1d,h>(T)’w<2)) kB(Rw(l)’h)
(6.15)

We need to check the B-indexed family of 2-cells EK satisfies the modification axiom,

namely that

) Eg*i)(R(m)R(f)(T)vm)

P({dp, hf))(kpxx (R(m1) R(f)(r), m2) » kg (R(f)(r), hf)

(eBo ((Ak)B xYX))f (r,h)l lkf (r,h)
P(f)P({Idp, ) (kpxx (R(m1)(r), m2)) P(f)(kp(r,h))

P(H(EE (rh)

Unfolding all the data results in a long exercise in diagram chasing. The second component
is relatively straightforward. For the first component, one applies the naturality properties

and associativity law of a pseudofunctor to reduce the claim to the following:
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O gy O R R(wW)oR(f)
R({Idp, hf)) o R(m) o R(f) —— R(m{Idg, hf)) o R(f) —— R(Idp) o R(f)
R 06, | ng,ow)
R({dp, hf)) o R(f om) R(f)
R(Id o hf)oR (1) H

R({Idpr,hf)) o R(mi o (f x X)) R(Idg o f)

R 00065, 7)™ | memof)
R(dg, hf>) o R(f x X) o R(m) R(my o (Idg, h) o f)
¢?xx,<1d,hf>OR(”1)v T¢f1«<1d57h>0f

R((f x X) o{ldps, hf)) o R(m1) — R((f,1f)) o R(m) —— R({Idp, hyo f)o R(m)
R(fuse)oR(m1) R(post™1)oR(m1)

The strategy is now familiar: one applies naturality and the associativity law to bring
together all the morphisms in the image of R, and then unwraps the definition of post and

fuse to reduce the long anticlockwise claim to the top row.

We have therefore constructed a modification to act as the counit.

Lemma 6.2.4. The 2-cells E%(’E) (B € B) defined in (6.15)) form an invertible modification
(e,€) o (A(k,k) x YX) — (k, k). O

All that remains is to show the modification E®K) is a universal arrow.

The modification Zf. We aim to construct a modification Z for every pseudonatural
transformation (j,j) : R = P(— x X) and modification = : (e,€) o ((j,]) x YX) — (k, k),
such that = is the unique modification filing

_ LT (e,€)o(Ef xY X)
(e,8) o ((,)) x YX)

(e,8) o (A(k,k) x YX)

(6.16)
= E(k,E)

(k, k)

Because the definitions of (e,e), A(k,k) and E®K are all composites, the proof requires
working with a large accumulation of data. Nonetheless the diagram chases—although

long—are not especially difficult.

Suppose that Z: (e,e) o ((j,j) x YX) — (k,k). Since

(ep o (iB x YX))(r,h) = ep(j(r),h) = P((Idp, 1)) (jp(r))
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for every B € B we are provided with a natural transformation with components Zg(r, h) :
(P{dp, h))(jg(r)) — kg(r,h) for (r,h) € RB x B(B, X ). We define ETB to be the composite

=T

iB — kpxx (Rmy, o)
TﬁgXijBi TEB(RTH,M)
P(Idpxx)ojB P({dpxx,m2)) 0 jpxx © R
P(qd)ojgi TP«IdeX,m»oi;f

P(<7T1,7T2>)OJB — P((Wl X X>O<Idex,7T2>)OjB — P(<Idgxx,7rg>)op(7rl X X)OjB

P(fuse_l)ojB (¢7I:1XX,<Id’ﬂ-2>)_1OjB

(6.17)

and claim this does indeed define a modification. We therefore need to verify the following

diagram of functors commutes for every f : B’ — B in B:

=L, (R(F))

is (R(f)) » kprxx (R(m)R(f), m2)

ir| |

P(f x X)(j) P OEL) P(f x X)(kpxx (R(m),m2))

Unfolding all the various composites results in a very large diagram. We give the strategy
for proving it commutes. One begins by using naturality until one can apply the modi-
fication axiom for = to relate the final term in the composite defining mf with P(f x
X)(Epxx(R(m)(r),m)). Next one applies the associativity law for (j,j) in order to push
the 2-cells ¢! as early as possible. One then observes that the following diagram commutes,

and hence that its image under P commutes:

fxX sac(/xX) y (my,m2y0 (f x X)
(fxX)osa
(f x X)odm,m2) fuseo(f x X)
(fXX)O<7f17W(’2)>V
(f x X)olm,m(f x X)) (m x X)oddpxx,m)yo (f x X)
(f xX)ofuse™! (71 x X Joswap
(f x X)o(m x X)oddpe,m(f x X)) (m x X) o ((f x X) x X) o (dprx, ma(f x X))
Dforyildy o<Id,7r2(f><X)>v /\‘P;f,fxx;mx olld,m2(fx X))

((fo7r1) X X) O<IdB/><X,7T2(f X X)> _— ((7T1(f X X)) X X) O<IdB/><X,7T2(f X X)>
(w1 x X)olld,ma (f x X))

From this point the rest of the proof is a manageable diagram chase. Hence, = is a

modification.

Lemma 6.2.5. For every modification = : (e,€) o ((j,j) x YX) — (k, k) between pseudonat-

ural transformations R x YX = P, the 2-cells E% form a modification (j,j) — A(k,k). O
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The last part of the proof is checking that = is the unique modification filling the

diagram (|6.16]).

The universal property of E. The existence and uniqueness parts of also entail
long but not especially difficult diagram chases. In each case one unfolds the various
composites and applies the modification axiom for Z. The rest of the proof is an exercise in
applying the various naturality properties and the two laws of a pseudofunctor.

Putting together all the work of this section, one obtains the following.

Proposition 6.2.6. For any 2-category B with pseudo-products, pseudofunctor P : B°P —
Cat and object X € B, the modification E of Lemma is the counit of an adjoint

equivalence
A : Hom(B, Cat)(R x YX, P) <5 Hom(B, Cat) (R, P(— x X)) : (e,€) o (— x YX)

in which the pseudonatural transformation (e, €) and mapping A are as in Lemma and
Corollary respectively. O

Theorem 6.2.7. For any 2-category B with pseudo-products, pseudofunctor P : B°® — Cat
and object X € B, the pseudofunctor P(— x X) is (up to equivalence) the exponential
[YX, P] in Hom(B°P, Cat). O

Setting C := B°P recovers the covariant statement.






Chapter 7
Bicategorical glueing

Glueing is a powerful technique which may be used to leverage semantic arguments in
order to prove syntactic results. Intuitively, one ‘glues together’ syntactic and semantic
information, allowing one to extract proofs of syntactic properties from semantic arguments.
The breadth and utility of this approach has led to its being discovered in various forms, with
correspondingly various names: the notions of logical relation [Plo73] [Sta85], sconing [FS90],
Freyd covers and glueing (e.g. [LS86]) are all closely related (see e.g. [MS93] for an overview of
the connections). Taylor identifies the basic apparatus as going back to Groethendieck [Tay99,
Section 7.7], while versions of logical relations appear as early as Gandy’s thesis (who,
in turn, attributes some of the theory to Turing) |[Ganb3|. Originally presented in the
set-theoretic setting, the technique was quickly given categorical expression [MR92, [MS93],
for which Hermida provided an account in terms of fibrations in his thesis [Her93|]. Such
techniques are now a standard component of the armoury for studying type theories.

In this chapter we define a notion of glueing for bicategories and prove a bicategorical
version of the fundamental result establishing mild conditions for the glueing category to
be cartesian closed. (For reference, the construction is summarised in the appendix on
page [290]) This will form the core of our normalisation-by-evaluation proof in the next
chapter.

We begin by recalling the categorical glueing construction and giving a precise statement
of the cartesian closure result we wish to prove. These will provide a template for our

bicategorical work.

7.1 Categorical glueing
The most succinct description of categorical glueing is as a special kind of comma category.

Definition 7.1.1.

1. Let F': A— C and G : B — C be functors. The comma category (F | G) has objects
triples (A, f, B), where A € A and B € B are objects and f : FA — GB is a morphism
in C. Morphisms (A, f, B) — (A4', f', B) are pairs of morphisms (p, ¢) such that the

213
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following square commutes:
FA -2 pa
fl lf, (7.1)
GB e GB’
2. The glueing gl(J) of B to C along a functor J : B — C is the comma category (idc | J).

We denote the objects and morphisms following the vertical order of their appearance
in diagram (7.1), as (C € C,c: C - JB,BeB)and (¢:C - C',p: B— B’). “«

There are evident projection functors B <22 ¢](J) 2«4 C. We wish to bicategorify the
following folklore result (c.f. [MR92l Proposition 2]):

Proposition 7.1.2. Let J : B — C be a functor between cartesian closed categories, such
that J preserves products and C has all pullbacks. Then the glueing category gl(J) is

cartesian closed, and the projection mqom strictly preserves the cartesian closed structure.

Proof. For n € N the n-ary product of objects (C;, ¢;, B;) (i =1, ... ,n) is the composite

[T G T, @B = 3T B)
Projections are given pointwise, as (7°, 72), and the n-ary tupling of a family of 1-cells
(firgi) : (X,2,Y) — (Ci,c;,B;) (i = 1,...,n) is the pair ((f1, ..., fa, {91, -+ s Gn))-
Hence both mgom and meoq strictly preserve products.
The exponential (C, ¢, B) =>(C", ¢, B') is defined to be the left-hand vertical map in the
pullback diagram

Coc (C=C"
pc,cll 4 JVCZDC/ (7.2)
JB=B) —— (JB=3JB') —— (C=3JB)

mp B’ (c==JB’)

SevalB,B/

where mp p is the exponential transpose of (J(B =>B') x JB = J((B=>B')xB)
7 X

Qe ¢ C evalcycl

(C=C")xC—>

C" and second component simply evalp pr. The currying operation is given by the universal

JB'). The evaluation map has first component (C' > C") x C

property of pullbacks. O

The rest of the chapter is dedicated to proving a bicategorical version of this proposition.

7.2 Bicategorical glueing

We bicategorify Definition in the usual way: by replacing commuting squares with

invertible 2-cells, subject to coherence conditions.
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Definition 7.2.1. Let F: A — C and G : B — C be pseudofunctors of bicategories. The
comma bicategory (F | G) has objects triples (A€ A, f : FA — GB, B € B). The 1-cells
(A, f,B) — (A, f', B') are triples (p,«,q), where p: A — A’ and ¢ : B — B’ are 1-cells
and « is an invertible 2-cell a: f o Fp = Gq o f witnessing the commutativity of :

—— FA
fl lf/ (7.3)
GB G GB’

The 2-cells (p,a, q) = (p',d,q¢’) are pairs of 2-cells (o : p = p/,7 : ¢ = ¢') such that the

following diagram commutes:

f/oF(o.*)) f/ o F(p/)

o [ (7.4)

G@)of — G)of

The horizontal composite of (4, f, B) —> (i), (A, f,B) —= (rhoe), (A", ", B") is (rop, =, soq),

where the isomorphism is the composite on the left below:

f"oF(rop) ——— G(soq)o f

f’lo(¢£p)7l\, ¢S qof
f"o(FroFp) (GsoGq)o f foFIdas —— Gldpo f
= E fo(w/i)—ll ngof
(f"oFr)oFp Gso(Ggqo f) foldpa —=— Idgpo f
Bonv Gsoa

(Gso f')oFp —<— Gso(f'oFp)

In a similar fashion, the identity 1-cell on (A, f, B) is (Id4, =,Idp) with isomorphism =~ as
on the right above.
Vertical composition and the identity 2-cell are given component-wise, as are the

structural isomorphisms a, | and r. <

The identities and composition may be expressed as the following pasting diagrams:

F(rop)

/‘z’?\

F1d 4 Fp

FA —% FA FA FA I FA"

\ « ! "
AN Iy L b d l sl o2 s

GB T@) GB GB Ga s GB' Gs GB"

\\(zi/

G(soq)
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We call axiom the cylinder condition due to its shape when viewed as a (3-dimensional)
pasting diagram (c.f. the cylinders of [Bén67, § 8]). From this perspective, the axiom requires
that if one passes across the top of the cylinder and then down the front, the result is the
same as passing first down the back of the cylinder and then the bottom (c.f. the definition

of transformation between T-algebra morphisms in 2-dimensional universal algebra [Lac10),

§ 4.1]):

FA |~ FA FA~ FA
\_2 ,
<—
GA GB GA 17 aB
~ ~

The following lemma, which mirrors the categorical statement, helps assure us the

preceding definition is correct. For the proof one simply unwinds the two universal properties.

Lemma 7.2.2. For any pseudofunctor F': B — C and C € C, the following are equivalent:

1. (R,u) is a biuniversal arrow from F' to C,

2. (FR - C) is the terminal object in (F' | constc), where constc denotes the constant
pseudofunctor at C. O

The glueing construction is an instance of the comma construction.

Definition 7.2.3. The glueing bicategory gl(J) of bicategories B and C along a pseudofunctor

~

J: B — C is the comma bicategory (id¢ | J). <

As in Definition we order the tuples in a comma bicategory as they are read down
the page. In the particular case of a glueing bicategory, therefore, the objects, 1-cells and

2-cells have the following form:

objects : (CeC,c: C - JIB,B e B)
l-cells: (¢: C - C',a:doq=J(p)oc,p: B— B
2-cells: (t:q=¢,0:p=7p)
One now obtains projection pseudofunctors B <22 o](J) =24 C. Note also that there is a

‘weakest link” property at play: the bicategory gl(J) is a 2-category only if B, C and J are

all strict.

Remark 7.2.4. The preceding definitions are pseudo. One obtains a lax comma bicategory
(and hence lax glueing bicategory) by dropping the requirement that the 2-cells filling (|7.3))

are invertible. <

7.3 Cartesian closed structure on gl(J)

We now turn to a bicategorical version of Proposition The construction for products

is relatively easy.
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7.3.1 Finite products in gl(J)

Recall from Definition that a bicategory with finite products—an fp-bicategory—is
a bicategory B equipped with a chosen object ], (A41,...,A4,) and a biuniversal arrow
(T1y oev ) A(Hn(Al, ,An)) — (A1, ..., A,) for every Ay, ... , A, € B (neN). An
fp-pseudofunctor is then a pseudofunctor of the underlying bicategories that preserves these

biuniversal arrows (Definition [4.1.9)).
We claim the following:

Proposition 7.3.1. Let (B,1I,,(—)) and (C,I1,(—)) be fp-bicategories and (J,q*) : B —C
an fp-pseudofunctor. Then gl(J) is an fp-bicategory with both projection pseudofunctors

Tdom and 7reoq strictly preserving products. O

We construct the data in stages and then verify the required equivalence on hom-
categories. Recall that we denote the 2-cells witnessing the fact that J preserves products
by

ug. : Id(HiSBi) = (Jm1, ..., Iy 0 q>1<3.

cp. i dp, 0T, -, 3Ty = 1dy(1. B))

We begin with the product mapping. For a family of objects (Cj, ¢;, Bi)i=1,... n we define
the n-ary product [} (Cj, ¢, B;) to be the tuple ([T, Ci,qf, o [Trey ¢i, [ 11—y Bi). We
set the k-th projection 7, to be (mx, ik, 7k), where uy is defined by commutativity of the

following diagram:

o m & 3w o (a5, o T i)
w(*k) /\;
moll;c (I © qg.) ol[;ci
~ Aw(k)oqé. o[, e (75)
(7Tk @) Id(HlaBl)) o HZ C; <(7Tk; o <37Tla cee 737Tn>) o QE,) © Hz Ci

WkOng.OHi\ <

w0 (@, - 3y o y,)) o Tlhes

Next we define the n-ary tupling map. For an n-ary family of 1-cells (g;, a4, fi) :
Yy, X) — (Ci,ci,B;) (i=1,...,n), we set the n-ary tupling to be

g5 s gnps{ons s and (frs oy fu))
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where {a1, ... ,ay} is the composite

(q>l<3’. oHiCi> o<glu 7gn> o, o) ” 3<fla 7fn>oy

~ ~

~

ap, o ([1;ciodg1s -+, 9n)) IdzrB,) © (f1s -+ s fa)oy)
dp, ofuse 5 03 f1, -+ s fn))oy
dp, ©{C10g1, -+ ,Cn O gn) (qé. o (Jm, ... ,Jﬂn>) o (J{f1y - s fayoy)

A~

~

Cf<B.O<Ot1,...,Oén>
dp, ©Ffroy, ... Ifnoy) dp, © (71, oo, Imn) 0 Ff1, -+, fa)) oY)

\) A(fjg.ounpackjj.loy
q>;3.opost_1 q>]<3. o (<3f15 e 73fn> o y)

Finally, we are required to provide a universal arrow to act as the counit. For every
family of 1-cells (gi, o, fi) : (Y,y,X) — (Ci,ci, B;) (i =1, ,n) we require a glued 2-cell

(7.6)

Ty, © (<gla 7gn>a {041, 7an}7<f17 7fn>) = (gk>ak7fk)

for which we take simply (wgf),wgff)). The next lemma establishes that this is a 2-cell in

gl(3).

Lemma 7.3.2. For every family of 1-cells (¢, o, fi) : (Y, y, X) — (Ci, ¢, B;) (1 =1, ... ,n),

the cylinder condition holds for (wé’f) wj(c )) That is, the following diagram commutes:

epom®
ck o (mg 0{g1, - ygn)) ———— Ck O gk — % I(fx)oy
= I(@w®)oy
(ckomg) 091, - s gn) J(mkolfry o5 fa) 0
PGy e ,gn>v /\¢§rk;<f.>oy
(3(m) o (af, o TLiei) ) o ons - s9m) (@m0 I fr o fd) oy

ameo ((ai, o Tlier) o ors v v00)) —mm—a— 3™ @1 - fdoy)

Proof. Unfolding the definition of fuse and applying the functoriality of composition as far
as possible, the claim reduces to commutative diagram below, in which the unlabelled cells
are all instances of functoriality of composition or naturality. To improve readability we
neglect the bracketing and corresponding associativity constraints; the coherence theorem

for bicategories guarantees that one can translate to the ‘fully bicategorical’ version as

required.
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w(k)
T © (Co © o) Ck O Gk
—_
>~ 7RI IG5
~ \ R
T © Id (1], 3B;) © {Ce © go) Tk o {J(fo) oy
mpou gy, 0{Ce0ge)
e mroldolan, ... ,an )
T 0 {(Jme) 0 q, ©{Co © go) ~
triané law
7rkO<J7r->OCf<B. O<0‘1, ,an>
mocs, o(J(fe)oy) +

™ © (Jme) 0 A, © F(fe) 0y) ——— mold(y 35, 0 F(fe) o)

7rkopost71 ﬂkOIdO|JOSt71 ﬂkOPOSt_l
+ mrock, o(3feboy v
T 0 (Jmey o, 0{Jfey oy ———— mpold(ry,3m,) 0 Ffe) oy o
7rko<37r.>oq>;3. ounpackjf.loy /
Tk © <37T.> ° qg‘ ° <37T.> ° 3<f.> oY 7 o{Ime Younpack; Loy T
)0 acky o
mpo(@meyoc, 03 fadoy J
+ post def.
T 0 ey o Ty 1, 3y © I o) 0y 0 @feyoy -
= 7rkounpack;.1 oy \
Tk © <37T'> © 3<f'> °Yy T unpack def. @By
@ " o3( foyoy \
3(m) 0 3fay oy —— 3o () oy —— Afe) e
Pl (S Y oy

It remains to check the universal property. Taking arbitrary 1-cells
(v, 7,u)  (YV,y, X) = [[iL1(Ci,ci, Bi)
(tiy7iys:) : (Yyy,X) — (Ci, ¢, By) (i=1,...,n)
related by 2-cells
(Bi,0q) s w0 (v,v,u) = (ti, 73, 5i) (i=1,...,n)

we observe that 5; : m; ov = t; and «; : m; ou = s; for each 7. We therefore claim
that (pT(Bl, oy Bn), pllag, ... ,an)) is the unique 2-cell in gl(J) such that the following

commutes for ¢ =1, ..., n:

m0(pT(Be),pl(cxe))
o (v,7,u) » i 0 ((te), {Te ), (S0))

(Bm %wg.))

(ti7 Ti, Si)
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Of course, it suffices to show that (pf(8s), pf(cw)) is a 2-cell in gl(J): the rest of the claim

follows from the (bi)universality of products in B and C.

Lemma 7.3.3. For any 1-cells (v, 7, w) and (t;, 73, s;) and any 2-cells (5;, ;) : mio(v,y,u) =
(tiyTiy8;) (i =1,...,n) as above, the pair (pT(,Bl, oy Bn),pllay, ... ,an)) is a 2-cell in
gl)-

Proof. We need to check the cylinder condition, which in this case is the following:

dg,o(IT; ¢i)op’(B1,....80)

(af, o TTies) o (@, o TLiei) ot e s ta)

| [

J(u) o > J({81, ... ,8p)) 0
3w oy 3pl(aer, o n))oy o w) oy
For this, one begins by observing that the following commutes for every k =1, ... ,n:
~ w=(®) oy
o ([[;ciov) ——— (mpo[];¢i)ov ——— (cpom)ov
\
meo(T1; ¢)op(Brs .- ,Bn) mo] I ciop (B1, ... ,Bn) >
A
mr o ([ 1; cio(te)) — (o], ci)olte) ¢k o (mk o)
| |
w®o(te) cxompop’(Bi, .. .Bn)
\ {
mrofuse (cp o mg) o (te) —= C, O (1 0 (te))
- | k0B
def. o:f fuse cpow (k)
1
e Ole > t
TEO{Tey ‘/Tk
Tk © <3(5°) © y> (k) 3(8’6) oy
w
mopost™! def. of post |

T © ((Jsep0y) —=— (Mp 0<{Jse)) 0y W J(sk) oy

and that the following commutes:
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e
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\

CkO(TrkO’U)

ckoPk
T © tk
Tk
J(ag)oy
v V'l
J(sp)oy  def
J(@(F))oy

J(m 0 (se)) 0y

cylinder _condition

J(mopT(as))oy

(cko7rk)ov

>

[0V
ol]; cz)) ov
oll; ci) o v)
J(mi)oy

() o (3(u) o)

X

(mk) 0 (qB,

(3

J(mg) o ((qfa.

by u0Y

10

~

(JmpoJu) oy

(i) oF (pH(eve))oy

(¢§rk1<5.>)7loy

» (3(mr) 0 J(se)) 0y

Putting these two together and applying the definition of unpack, one obtains the following

commuting diagram:

I1e

\

o ([ ], ciov)
mrol I; ciopl(Ba)
Tg © (Hi

mofuse

¢i 0 (te))

T ©{Ce O te)

TE0{Te)

T 0 (J(se) 0 )

7rk,opos't_1

7 0 (353 0 9)

TRou npack;1 oy

~

T 0 (((Fme) 0 J(s0)) 0y) —> (M 0 F7e)) © (I(50) 0 Y)

>

(me 0 Id(r7,38,)) © (I L; ci o v)
lﬂkou % o[ ciov
(meo (@roay,)) o ([Ticiow)
l;
(7 0 (Imey) © ((qg. ol]; ci> o U)
lwmoqg,‘ ol 1, ciov
J(mg) o ((qu. ol]; ci) o v)
[t
J(mg) o (J(w) o y)
|3t apen
() © (I(se) 0 y)

—_—
w®)oJ(se Yoy

With this lemma in hand, the rest of the proof is a diagram chase applying naturality and

the definition of post.

O

Lemma completes the proof that gl(J) does indeed have finite products, and

hence the proof of Proposition For the construction of exponentials we will require
morphisms of the form f x A. We briefly check that such morphisms appear in gl(J) in the

way one would expect, namely as pasting diagrams of the form
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C'xY

dp, xo(cxy) B x JX

In particular, when the bicategories B and C are 2-categories with strict products and

J: B — C is a strict fp-pseudofunctor, this 2-cell is simply a x y.

Lemma 7.3.4. For every l-cell g := (g,a, f) : (C,¢,B) — (C',¢,B’) and object ¥ :=
(Y,y,X) in gl(J), the 1-cell g x Y : (C,¢,B) x (Y,y,X) — (C",c/, B") x (Y,y,X) is equal

to (g x Y,ay, f x Y), where ay is the composite

(4 x o (@ xw)) o (g < V) — 3= X)o (a0 lexy))
Wy x o (¢ x y) o (g% V) (3 x X)odf ) o (e xy)
q>;3’,XO(I’C’,g;y,Id A|1atf71dxo(c><y)

X / Id X ~ ~Id (77)
A x © (¢ o g) x (yoldy)) Ty x © (3 x Jdx) ) o (¢ x y)

Gy x © ((3f x 3ldx) o (e x y)

Ay © (¢ o g) x (Idgx oy))
Cﬁg/,xoq’ﬁcmd,y

@;/’XO(GX(IdJXOy))
qXB’,X o ((:jf o c) X (GIdX o y))

Wy x 0 ((3f 0.¢) x (Idyx 019)
& o((3fo0)x (¥ o))

Proof. The proof amounts to unfolding the definition and checking that it does indeed equal

the composite given in the claim. Let 71 and 75 respectively denote the 2-cells defined by

the pasting diagrams on the left and right below:
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gomy IdyO7T2
Cxy ™ 025 Cxy -2,y W3y
cxyl cxyl =
dy xolexy) dp xo(exy) \
IBxJ3yX & c & d JBxJX 2 Yy
qB Xi l (f;s,xl l \
J(B x X) 3B B’ JBxX)— X/wg\/lfj
X S S X
Jm 3f Jma ~
(b} 3 U
< ld,my Jldx
JI(fom) J(Idxoms)

By definition, the 1-cell g x ¥ has a witnessing 2-cell given by the following composite, in
which we write () for qJ;, Xo< (3(]“ o) o Qg X) o (e xy), <J(IdX 0 m2) O gy X) o (e x y)>:

{r1,72}

(i x 0 (¢ x w)) o (gom, Ty o m) 3 xB)o (dhxo (e x )

~

A x © (¢ x y) o{gom,Idy om))

x
[e)
dpr x fuse

~

e

qfxsf,x o{co(gom),yo (Idy om))

A x o(T1,72)

(%) Idyprxxy o J(f x X)o(exy)

X -1
qB,YXopost

Qi x o (@ 7,3y 072) (@ x o (e xv))

q>;3 Xounpackf0771 Idowo(cxy) C;;/’XO:J(J[XX)O(CXZ/)

~

G x 0 (@1, 3m2) 0 3(F x X))o (o (e x ) )

~ (qTBﬁXO<37T1,37T2>> o (3(fo)o (qE/XXo(CXy))>

Applying naturality and the lemma relating unpack with u* (Lemma4.1.13)), a long diagram

chase transforms this to the composite in the claim. O

7.3.2 Exponentials in gl(J)

As in the 1-categorical case, the definition of currying in gl(J) employs pullbacks. We

therefore take a brief diversion to spell out their universal property.

Pullbacks in a bicategory. The notion of pullback we employ is sometimes referred to
as a bipullback (e.g. [Lacl0]) to distinguish it from pullbacks defined as a pseudolimit. Since

the only limits we work with in this thesis are bilimits, we omit the prefix.
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Definition 7.3.5. Let C (for ‘cospan’) denote the category (1 M, gl 2) and B be any
bicategory. A pullback of the cospan (X3 A, Xo L X3) in B is a bilimit for the strict

pseudofunctor C — B determined by this cospan. “

This characterisation of pullbacks, while precise, must be unfolded to obtain a universal
property one can use for calculations. The next lemma establishes such a property. The
proof is not especially hard, and the result appears to be known—although not explicitly

proven—in the literature, so we leave it for an appendix (Appendix @

Lemma 7.3.6. For any bicategory B and cospan (X3 A, Xo 2 Xs) in B, the pullback of
(X1 EiR X L2 X>) is determined, up to equivalence, by the following universal property:
there exists a chosen object P € B, span (X] <= P 2 X5) and invertible 2-cell 7 filling
the diagram on the left below

i r N7 e N N
X I X X1 L X (7.8)
fl\”‘ X, /2 f1 X, ’/fz

such that for any other such square as on the right above there exists an invertible fill-in
(u,Z1,Z2) (c.f. [VitlQ]), namely a 1-cell u : Q@ — P and invertible 2-cells Z; : v; o u =
w; (i =1,2) such that

>~ f20E
(faoye)ou —=— fro(ppou) —— faopus

Fou| ln (7.9)

(from) ou —=— fio(nouw) ——=— fiom
This fill-in is universal in the following sense. For any other fill-in

(v:Q@—> PV :y0v=p1,Vs: 200 = p)
there exists a 2-cell UT : v = u, unique such that

FioWT
Yi OV — > Y; oUu

m % (7.10)
i

for i = 1,2. Finally, it is required that for any w : Q — P the 2-cell id obtained by applying

the universal property to (w,idy, ow,idy,0w) is invertible. O

Remark 7.3.7. The universal property of pullbacks can be stated in a slightly different
way, which is more useful for some calculations. The pullback of a cospan (X EiN Xo L Xs)
is determined by a biuniversal arrow (vy,7) : AP = F', for F' the pseudofunctor determined
by the cospan, P the pullback, and (,7) an iso-commuting square as in . It follows that
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the functor (,7) o A(—) : B(Z,P) — Hom(C, B)(AZ, F) is fully-faithful and essentially
surjective for every Z € B. Being essentially surjective is exactly the existence of a fill-in
for every iso-commuting square, as in the preceding lemma. Being full and faithful entails
that, for every pair of 1-cells t,u : Z — P equipped with 2-cells I'; : y; 0t = v, 0u (i = 1,2)
satisfying the fill-in law , there exists a unique 2-cell T'T : ¢ = v such that ; o T'T =T
fori=1,2. <

The following is an example of where it is convenient to use the universal property of
Remark The lemma guarantees that one may define objects in a glueing bicategory
(up to equivalence) by pullback.

Lemma 7.3.8. For any pseudofunctor J : B — C and any pullbacks

p—-%1.pB x -, B
PJ; lb :pJé lb
JA —— C JA —— C

in C, the objects (P 2 JA) and (X 5 JA) are equivalent in gl(J).

Proof. 1t is immediate from the uniqueness of bilimits that there exists a canonical equi-
valence P ~ X. The only question is whether this equivalence lifts to a 1-cell in gl(J). If
one constructs the equivalence using the universal property of Remark this follows

immediately. OJ

Preliminaries complete, we can now give the data for defining exponentials in the glueing
bicategory. Precisely, we extend Proposition to the following. Recall that a cartesian
closed bicategory—a cc-bicategory—is an fp-bicategory equipped with a right biadjoint to
(=) x A for every object A (Definition [5.1.1]).

Theorem 7.3.9. Let (B,11,(—),=>) and (C,II,,(—), =>) be cc-bicategories and suppose that
C has all pullbacks. Then for any fp-pseudofunctor (J,q*) : (B,1,(—)) — (C,II,(—)) the
glueing bicategory gl(J) is cartesian closed with forgetful pseudofunctor mqop, : gl(J) — B

strictly preserving products and exponentials. O

Much of the complication in the definitions that follow arises from the invertible 2-cells
moving 1-cells in and out of products; where the product structure is strict, the exponentials
in gl(J) are given similarly to the 1-categorical case. The reader happy to employ Power’s
coherence result for fp-bicategories (Proposition may therefore greatly simplify the
definitions just given and the calculations to come. Because we wish to prove an independent
coherence result, we do not take this approach.

We begin by defining the mapping (—) =>(=) and the evaluation 1-cell eval.
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Defining (—) =>(=) and eval. For C := (C,¢,B) and C' := (C’,¢, B’) in gl(J) we set
the exponential C'=>C" to be the left-hand vertical leg of the following pullback diagram,
in which mp p/ is the exponential transpose of J(evalg p/) o g* (cf the definition in the

1-categorical case ):

qc,c/

CoC » (C=>C")
d
pc,c,l wccvc' l)\(c'oevalacz) (711)
3(B=B) e (3B =3B s (C =3B
L ’ Mevalyp ypro((3B =-3B') xc)) j

Aevalyg 55/ 0 (JB=>JB’) x ¢)) omp pr

We use A(c' o evalgr) and A(evalyp gz o (JB=>3B’) x ¢)) instead of (JB=>c¢) and
(C =>() as a simplifying measure: doing so avoids the need to apply the isomorphisms
(IJB=>c¢) = A/ oevalgr) and (C' =) = A(evalyp yp o ((JB =>JB’) x ¢)) removing the
redundant identities in the left-hand side (recall the comment after Notation .

Notation 7.3.10. For reasons of space—particularly for fitting pasting diagrams onto a
single page—we will sometimes write ¢ := evalyp 35/ 0 ((JB =>JB’) x ¢) where ¢: C' — JB

in C (see, for example, ((7.12))). «

For the evaluation 1-cell eval we take the 1-cell with components

e, ! xC' evalg o

(C=C")x C —— ('

evalB)B/

(Co>C)xC
(B=>B')x B B
The witnessing 2-cell E¢ ¢ is given by the following pasting diagram.

evalg r0(g., . xC)

) == X
(C > : (C=C)xC =3

x C
~ \
Pe, ot XC wc,g’:(c A(coevalg or)xC
s mp prxC B AexC +
pewxe & J(B=B)xC — (JB=3B)x O (C=3B)xC £
» — \
95 5/, 5)°Pe,e %) J(B=>B)xc ~ (3B=-3B)xc
~ l/ \1/ ,‘i
3(B = B/) x JB w5 3B > (JB :DﬁB/) x JB = evalg yp/

|

X \

9B =B’,B) evalyp 5p/
-

llR™

J(B=B') x B) T

~ 7
\jevalB,B/

(7.12)

Here we omit the canonical 2-cells for the product structure: thus, the shape labelled

we,r x C'is actually the composite

~

J

Bl
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(M oevalg ) x C) 0 (gee x C) ——— (A& x C) o ((mp,p x C)o (pe x C))
q))\(c’oeval),q;ldl

(M o evalger) 0 o) % (Ide o Idc)

|

()\(c’ oevalg cr) o qc,c/) x C

12

(AEO mpg, B/ Opc,c’) xC

wC,CI XC

in which the unlabelled isomorphism employs two applications of ®~1, together with the

evident structural isomorphisms.

Notation 7.3.11. For the rest of this chapter we will adopt the convention just employed,
and write simply =~ for instances of either ® or its inverse, composed with structural
isomorphisms. Power’s coherence result guarantees that this is valid as an explanatory
shorthand: of course, the masochistic reader could work explicitly with all the instances of
® and prove exactly the same set of diagrams commute. Thus, while Power’s result is useful

for reasons of exposition and presentation, the proofs we present do not rely on it. <

With this convention, E¢ ¢ is the following composite:

/ eRel ~ X
¢ o (evalg,cr 0 (gee x C)) J(evalppr) o (A o i py © (e X ©))
(Cl o evalc,cl) o (qcvc/ X C) x~
E(j:}oeval)o(qCvc/ XC)
(evalg,cr o (A(¢ o evalgcr) x C)) o (geer x C) (J(evalp pr) o q?B =l>]3,7]3)) 0 (pe,e X €)
~ Ag(ﬁevalocf( )O(pc’cl xc)

evalg o o (/\(c’ oevalgcr) o QC,c’) x C (eval;jBJB/ o (mp p X 3B)) 0 (pe,er X €)
evalo(wgcz x ()

evalg o o ((/\Eo mB’B:) opqd) x C ~

(evalc,cx o ()\5 X C)) o (mB,B’pc,c’ X C) co (mB,B’pc,c’ X C)

ago(mB,B/pc,c’ XC)

(7.13)
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The mapping A. Next we need to provide a mapping A assigning a 1-cell of type
R — (C=C") to every l-cell R x C — C'. Let R := (R,r,Q), C := (C,¢,B) and
C':= (C',d, B’). As our starting point, suppose given a 1-cell (¢,a,s): R x C — C’, as on
the left below:

Rx(C —t s ¢ R Mt C =

/e /]

qg,Bo(rxc) 3@ x JB é ¢ J(As)or :}Q I<‘:a )\(c’oevalc’cl)
\, ol !
~ ~ 1/ ~ /! ~ ~ N/ ~ !
)\EomByB/

We construct a 2-cell L, as on the right above and apply the universal property of the

pullback ([7.11)). To this end, let us define two invertible composites, which we denote by
T, and U,. For T, we take

evalc ypr © ()\(c’ oevalgcr) o )\t) x C To dot

gl Tc’ost

evalgap o (A(d oevalgor) x C)) o (At x C d o (evalg,cr o (At x C)
3 : :

‘E(c’oeval)o()‘txc) /;7

( oevalgr) o (At x O)

and for U, we take

evalc gp o (A¢omp p) o (J(As)or)) x C Yo Jso (an o(rx c))

~

evalc g5 0 (A¢ x C) o (mp g o (J(As)or)) x C

Jesoq o(rxc)
czo(mp, proJ(As)or) xC
o (mp.p o (J(As) o7)) x C J(evalp.z o (As x B)) o (an o (r x c))
- %Sval,ksxsocﬁo(rxc)
(evalyp 357 0 (mp,p x IB)) o ((F(As) x IB) o (r x c)) (3levalp,p) 0 I(As x B)) o (af g o (r x c))
€ Gevatogt ) O (X)X IB)o(rxc) T;

(3(evalsp) 0 Gy gy ) © (@) x JMdp) o (rx ) levalp) o ((I0s x B o) o (r x o))

T(}(evalB’B/)onato(r xc)

12

J(evalp pr) o ((q?B o) © (F(As) x Jldg)) o (r x ¢))

We may therefore define a 2-cell K, as the composite
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evalc yp/ © ()\(c’ oevalgcr) o )\t) (O — B evalcyp o (()\50 mB,B') o (J(As) o r)) x C
Tal TU;l
dot < 3so(q6,Bo(r><c))
and, finally, L, as
Lo ~ ~
» (AComp pr) o (J(As)or)

A(d oevalgcr) o At

eT(KM 1
¢ o (J(As) o r)) X C)

)\(evachB o (()\c o vaB/)
Since we work in the pseudo setting, U,, Ty, Ko,—and hence L,—are all invertible

Now, L, fills the following diagram:

R AL (C=C")
3(>\5)07“J’ L§ lA(c’oevalc,C/) (7.14)
(C=>3B)

WB=B) —r

Hence, by the universal property of the pullback (7.11]), one obtains a 1-cell lam(¢) and a
e, and A » filling the diagram

pair of invertible 2-cells I'

y (C=C") (7.15)

Co(C

| 1
piLC/ wg/ l)\(c’oevalc’cl )
~ / N ~ D/
J(BZDB) )\Eom&B/ . (C:D‘JB)

such that the pasting diagrams ([7.14)) and ((7.15|) are equal, i.e. the following commutes

A oevalg ) qC o olam(t

(M(c' o evalg,cr) 0 geer) o lam(t (d oevalgcr) o At

%mmﬂ
)\COHIB B’ )\S) )

(()\E’omB,B/)opcC olam

)\c omp B/ (pc o olam(t
(7.16)

Moreover, I'. » and A, are universal in the sense of Lemma We define A(t, a, s) :=

(laim(t% e, A3) .
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The counit . Finally we come to the counit. Let us first calculate eval o (A(t, a,8) %
(C,c,B)) for a l-cell t := (t,a,s) : (R,7,Q) x (C,¢,B) — (C",d,B’). Using Lemma 7.3.4]
one unwinds this 1-cell to the following pasting diagram, in which we omit the canonical

isomorphisms for the product structure as well as the structural isomorphisms:

(evalC,C’ © (qc,c’ X C)) ° (@(t) X C)

a val 10(qp. ot XC
RxC —20%C o5 ory ¢ See XA o
FC C/XC
=
rxe I09)x3IB G, Xe
4o polrxa)| JQ xJB  IAWE J(B==B)xJB Foc o
4.5 I(As)x31dp dp = 5.5)

| e | !
3((B=|>B’)><B) 3B’

3 A~
2

Jevalp pr

J

J(evalg pr o (As x B))

For the counit g, we therefore take the 2-cell with first component e, defined by

(evalg v 0 (gew x C)) o (lam(t) x C) sy

% }t (7.17)

evalo v © (ge, 0 lam(t)) x C ——— evalg v o (At x O)
evalc,c/o(Acyc/ x ()

and second component simply
evalg g o (As x B) =5

We need to check that this to be a legitimate 2-cell in gl(J), i.e. that the cylinder condition
holds.
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Lemma 7.3.12. For any objects R := (R,7,Q), C := (C,¢,B) and C’ := (C', ¢/, B") and
I-cell t := (t,,8) : R x C — C' in gl(J), the pasting diagram

(e"alc,c’ o (qc,c’ X C)) o (@(t) X C)

e )
A val oro(q, o xC
RxC —2m0XC o5y« SMee O o
FC CI xc
=
rxc J(As)xJB G, ot XC
doporxe)| JQxJIB  INUE  J(B=B)xIB Foo o
qXQ,B J(As)x3ld CfZB = B/,B)
l nﬂt l
~ ~ / ~ R/
‘J(Q x B) J(AsxB) d((B - ? ) % B) Jevalg pr JP
2
J(evalg g o (As x B)) Jes
— B J
Js
is equal to
(evalg,cr 0 (qe,r X C)) o (lam(t) x C)
e )
(ge,er x C) o (lam(t) x C)
e o xC' l B
~ (CoC)xC —— (C=C")xC
1 ~
lam(t)xC  $Aeer % % et evalg o
- AtxC =
RxC . 0 S
TXce
qE‘Bo(rXc)
JQ x 3B 2 d
qz),B
3Q x B) - B

Hence g, := (e;,¢5) is a 2-cell in gl(J).

Proof. Unfolding the first diagram, one sees that it is equal to the composite
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d o ((evalg,cr o (g, x C)) o (lam(t) x C)) Jso (q&B o(r x c))
(*)l /\Ua
evaloyp o ((A¢omp ) o (J(As)or)) x C

evalgBVJB/ ] (mBVB/ @) (pc,c’ O@(t))) X C
(evalggp o (AT x C)) o (mp p o (J(As)or)) x C

sg O(mB,B/OJ()‘S)OT) xC

evalyp ypro(mp grol, ) XC’\L

evalyp 3p/ © (mB,B/ o (J(As) o r)) X C
(evalB7B/ ) 5) o (mB,B/ o (J(As) o r)) x C

IIe

where the arrow labelled () arises by composing the following with structural isomorphisms

> eval;,BJB/ o ((mB,B’ opc,c’) x C)

E

(evalypyp o (mp g x IB)) © (pee X C)

—1
T‘Eevalo(mxaB)o(pc,c/ XC)

B)) o (peer % €)

and ®:

c o (evalcﬂc/ o (qC,c’ X C))

|

do (evalqcr © (qc,c' X C))

Ec’c/l
3(6V&13731) o (q>(<B —B',B) o (pc,c’ X C)) — (3(6V&137B/) oq

X
(B=>B,

Applying the coherence condition ([7.16]), the first diagram in the claim reduces further to
pgo(rx c))

o ((evalg,cr o (e x C)) o (lam(t) x C)) —————— Jso (qg’

|

o (evalc,c/ o ((qC,cf O@(t)) X C)

Ua

doevalg cro(Ag or X C’)l
evalyp cr o (AMomp p) o (J(As)or)) x C

c o (evalg o o (At x C))
evalyp cro(La xC)

|

(¢ oevalg,cr) o (At x C)

s&}oeval)o(kth)\L
(evalyp,cr o (A(¢ oevalg,cr) x C)) o (At x C) — evalzp,cr o (A o evalg,cr) 0 At) x C

Ko

Next, by the definition of L, and the triangle law relating n and €, one sees that

— ~_
evalﬁByco)\(ngl XC)

=

evalypc o (A x C) —5 h

evalyp, co(ef(Ka)xC)

eval‘jB’C © (A(C © evalc’c ) © )\t) xC evalyp oro(LaxC)

(7.18)
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for h:= evalggp o ((A¢omp p/) o (J(As) or)) x C. Hence, the composite (7.18) is equal to
the anti-clockwise route around the diagram below, in which (f) abbreviates

coey

(c oevalg ) o (At x O) =cdo (evalgcr o (At x C)) == /ot

and the bottom two shapes commute by definition:

d o ((evalg,cr o (ge, x €)) o (lam(t) x C))
(¢ o evalor) o (g o lam(t)) x
)

coeval ro(A, o xC

~

(c oevalger) o (At x C)
€(7C}Oevaul)o(’\t><c) \
(evalyp v o (A(c o evalgcr) x C)) o (M x C) — ( oevalgcr) o (At x C) 7(” dot
8(c/oeval)o()‘txc)

Ta

// @

evalyp cr o (A(c o evalgcr) o At) x C
Ka

evalyp v © (()\Eo mB7B/) o (J(As) o r)) x C o Jso <q>é’B o (r x c))

The clockwise route around this diagram is equal to the 2-cell given by the second diagram
O

in the claim, so the proof is complete.

We have now constructed all the data we shall require. It remains to show that, together,

it defines an adjoint equivalence
A gl@)(Bx C.C') S gl(3)(R,C=C') : eval s o (— % C)

Thus, we need to check that for every pair of 1-cells g: R — (C=C") and t : Rx C — C’
related by a 2-cell 7 := (7,0) : evalo v o (g x C) = £, there exists a 2-cell ef(r) : g= A,

unique such that

eval -, ~o(ef(r)xC
evale, o1 0 (g x €) ——2UED L al oo (A % €)

\ | . (7.19)

We turn to this next.
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Universality of ¢ = (e,c). We begin with the existence part of the claim. Let g :=
(97’77 f) : (R7 T, Q) - (C = C,7pc,c/7B:‘>B,) and t = (t,a,s) : (R X Ca qXQ7B o (T X C)7Q X
B) — (C',d, B') be 1-cells and suppose that 7 := (7,0) : evalg v 0 (g x C) = t. Thus, 7
and o have type

7 (evalgcr 0 (gee x C)) o (gx C) =t

og:evalpp o(f xB)=s
and we are required to provide 2-cells 7# and of of type

7% g = lam(t)
of i f= s

satisfying the cylinder condition. For the second component we can simply take ef(c). For
the first component we use the universal property of pullbacks. We aim to construct a pair
of 2-cells

Peyer ©9 = G(AS) or
Ge,c! © 9 = At

such that the coherence condition ([7.16]) holds. We claim that the following 2-cells suffice
7 og))or
Y1:=DPeeog %3(]“) or %30\5) or

N
Yo :1=(qer0g ;(=X)> At

(7.20)

where y := evalg,c 0 ((ge,w © ) x C) = (evalg,cr © (e x C)) o (g x c) = At. The required

coherence condition is the subject of the following lemma.

Lemma 7.3.13. Consider a pair of 1-cells

= (9,7 1) (B,1,Q) > (C > " ,pew, B=DB)
= (t,a,5) : (Rx C,qh go(rxc),QxB)— (C',d,B)

I+~ 1<

in gl(J) related by a 2-cell 7 := (1,0) : evalg o 0 (g x C) = t. Then, where ¥; and ¥ are
defined in ([7.20)), the following diagram commutes:

A(c/oeval g or)oXa
(M oevalger) 0 gee) 0g —— A oevalger) o (gee ©9) ——— A( oevalgcr) o At

wc,clogl lLa

(A\¢ompp)opee)og — (Aomp p) o (pee 0g) — (Aompp) o (J(As)or)
Acomp proXy
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Proof. Straightforward manipulations and an application of the cylinder condition on 7

unfolds the clockwise route to the following composite:

> (\omp pr)o (J(As)or)

(A cevalg,cr) 0 qeer) 0 g

)\(evalc,GB (¢} ((AEO mB7B/) o)

Tnfl

(F(As)or)) x C)

TkU;l

A(evalg g o (A oevalgcr) 0gee) 0 g) X C) )\—C> )\(38 o (an o(rx C)))

(7.21)

Here ¢ : evalg gpr0 (()\(c’ oevalgcr) o qQC/) o g) xC — Jso (qu go(rx c)) is the composite

defined by commutativity of the following diagram:

¢

evale g o (A(¢ oevalgcr) 0 gee) 0g) x C
(evalCn;B/ o ()\(c’ oevalc o) X C)) o ((qqcl 0g) x C’)

€(c’oeval) O(qg x C)

~

(C/ o evalc,c/) o ((qC,C/ © g) x C)

~

~

(C’ o (evalqc/ o (qac/ X C))) o(gxC)

EQ’Q/O(QXC)

(3(6\7&13,3’) o (q>(<B =>B',B) o (pc,c’ X C))) © (g X C)
(3(evalB’B/) o q>(<B :I>B’,B)) o ((pQC/ 0g) X c)

J(eval)oq o(yxc)

~

» Jso (an o(r x c))

AJ(a)ocf o(rxc)

3 (evalppro (f x B)) o (@ o (r x )
Fevat,fx pod* o(rxc)

(3levalpp) 0 3(f x B)) o (ap0 (r x c))

~

(3(6V&13731) o <J(f x B) oan)> o(rxc)

J(eval)onaty 1qo(rxc)

(3(evalByB/) o (q>(<B:1>B/,B) o (Jf x 3IdB))) o(r xc)

J(eval)oq® o(fjfxq/;%)o(rxc)

(S(evaIBBI) o q?B ﬂ>B,’B)) o ((3f or) X c) — (3(evalB’B/) o (q>(<B:|>B’,B) o (Jf x 3B))) o(r xc)

A short calculation shows that the following also commutes:

evalCJB/ o (()\(C, o evalqcx) o qC7C/) o g) x C
evalo(w, ./0g)x Cl

evalegp o ((Aomp ) opee)og) x C

|

>fjso(ano(r><c))

Ua

evalCJB/ o ((AEO mB7B/) o] (pc,c’ Og)) x C —— evalCJB/ ] (()\EO mB7B/) ¢} (3()\8) o] T)) x C
evalo(A¢omoX)xC

Substituting this back into ([7.21)) and applying the naturality of 7, one obtains the anti-

clockwise route around the claim, as required.

O
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It follows that (g,X%1,39) is a fill-in. By the universality of the fill-in (lam(¢),T, A),

therefore, one obtains a 2-cell £ : g = lam(t), unique such that the following two diagrams

commute (cf ):

De, /og—>d( Ge,c’ © 9
pc,c/ozfl l:i(e’f (o))o qc,c/OETl 00 (7.22)
Pe, Om(t) 1—\*) J()\S or qe,c’ O@(t) W At

We therefore define the components of ef(7) as follows:

4= %" g = lam(t)

ot i=el(o): f= As (723)

Note that the left-hand diagram of (7.22)) establishes this pair is a 2-cell in gl(J). We
need to show that this 2-cell makes ((7.19) commute. For the second component, this holds
by assumption. For the first component, we observe that e, is the right-hand leg of the

following diagram:

evaly or0(q, o xC)o stxcC
(evalc,c/ 0 (qeer % C)) o(gxO) ol el ) (evalacl 0 (qeer % C’)) o (lam(t) x C)
\ ~ nat. ~
\ - evalc’c/o(ET xC) +

evalo,or © ((geer © g) x C) — evalg,er o (g o lam(t)) x C)

\} evalg cro(A, v xC)
evalg cr o (At x O)

&t

t

The unlabelled inner arrow is evalg o o (ef(x) x C) (where y is defined just after (7.20))),
so the triangular shape commutes by (7.22)). This completes the existence part of the

universality claim; we record our progress so far in the following lemma.

Lemma 7.3.14. For any triple of 1- and 2-cells as in Lemma [7.3.13] the pair ef(r) :=

(27, ef(0)) defined in (7.23) is a 2-cell g = At in gl(J) satisfying (7.19). O

It remains to show uniqueness. Suppose given a 2-cell § : ¢ = At in gl(J) with

components

0 : g = lam(t)
d:f=As

such that 6 fills (7.19). Examining the second component, it is immediate from the universal
property of ef(o) that ef(¢) = 9. For the first component, we show that § = X7 by showing
that 6 satisfies the two diagrams of ((7.22)). For the left-hand diagram, the cylinder condition

on ¢ requires that
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DPe,cr © 9 ;) S(f or

)
pcyc,oel l(}(ﬁ)or

Pe,er © @(t) F—/> 3()\8) or

c,c

But we already know that 9 = ef(c), so the required diagram commutes. For the right-hand
diagram, it follows from ([7.19)) and the definition of e, that the following commutes:

I1e

evalc cr o ((qc,c/ 0g) X C)

eval r0(g,, 08) % CJ’

(evalC,C’ © (QC,C’ X C)) © (g X C)

evalg cr 0 (((Jc,c' o@(t)) X C) — evalg v o (At x C) >t

evalg cro(A, v xC)

€t

The claim then holds by the universal property of ef(«9). Thus:

Lemma 7.3.15. For any triple of 1- and 2-cells as in Lemma [7.3.13] the pair ef(7) :=
(27, ef(o)) defined in 1' is the unique 2-cell g = At in gl(J) satisfying |D O]

This completes the proof that for any R, C and C’ in gl(J) the diagram
A:gl@) (B x C,C) S 8lQ)(R,C =) : evalg v o (— x O)

is an adjoint equivalence, and hence the proof of Theorem [7.3.9






Chapter 8

Normalisation-by-evaluation for
Aps
ps

We now turn to the main result of this thesis, namely the coherence result for cartesian
closed bicategories. Our strategy is to employ a bicategorical treatment of the normalisation-
by-evaluation proof technique. It is well-known that the naive strategy for proving strong
normalisation of the simply-typed lambda calculus—by a straightforward structural induc-
tion on terms—fails because an application app(¢,u) may contain redexes that do not occur
in either ¢ or u. One classical solution, originally due to Tait [Tai67], is to strengthen the in-
ductive hypothesis using reducibility predicates. This approach was refined by Girard [Gir72],
who introduced the notion of neutral terms. These can be viewed as the obstructions to
the normalisation proof: they are the terms whose introduction rules may introduce new
[B-redexes.

Normalisation-by-evaluation provides an alternative strategy: as a slogan, one ‘inverts
the evaluation functional’ to construct a mapping from neutral to normal terms. Loosely
speaking, one constructs a model with enough intensional information to pass back and
forth between semantics and syntax. One quotes a morphism f to a (normal) term in the
syntax, and unquotes a term t to a morphism in the semantics (these operations are also
known as reify and reflect).

The intuition is—very roughly—as follows. Consider a semantics [—] for the simply-typed
lambda calculus, determined by a choice of cartesian closed category and an interpretation
of the base types, and suppose that one has constructed mappings quote and unquote
between the syntax and semantics, as indicated above. For a term (z : A - t : B) one has an
interpretation [t] : [A] — [B]. Now, where x is a generic fresh variable, unquote(z) : [A].
So one may evaluate [[t] at unquote(z) to obtain a normal term quote ([¢] (unquote(x))) of
type B. The normal form of Az.t is then Az. quote ([¢] (unquote(x))).

First introduced by Berger & Schwichtenberg [BS91] for the simply-typed lambda
calculus, normalisation-by-evaluation has become a standard tool for tackling normalisation
problems. It has been extended to a number of richer calculi, including the simply-typed
lambda calculus with sum types [ADHSO01], versions of Martin-Lof type theory (e.g. [ACDO7,

239
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AK16, [AK17]), and even to type theories with algebraic effects [Stal3]. Moreover, the
normalisation algorithm one extracts from normalisation-by-evaluation is generally highly
efficient, which has led to significant study for applications in interactive proof systems
(see e.g. [BES9S]).

Here we follow in the vein of categorical reconstructions of the normalisation-by-
evaluation argument (e.g. [AHS95 [CD97, [CD98, [Fi002]). In particular, the argument
we present closely follows [Fio02]; the reliance on categorical properties there lends itself
especially to bicategorical translation.

The chapter is arranged as follows. We begin in Section by briefly recapitulating the
argument of [Fio02]. In Sections we show how the crucial elements of this argument
can be lifted to the bicategorical setting. Section presents the main result of this thesis:

Ap¢™ is locally coherent.

8.1 Fiore’s categorical normalisation-by-evaluation proof

We extract the bare bones of Fiore’s argument [Fi002]. The intention is not to provide the
reader with the full proof, but to waypoint the key steps in the bicategorical argument we

present thereafter.

Syntax as presheaves. For any set of base types B, let Cong denote the free strict

cocartesian category on the set B generated by the grammar
X1, ..., XY, Z:=B|[[,(X1,....X,) | Y =Z (Be®B,neN)

Explicitly, this is the comma category (F | %), where F is a skeleton of the category of
finite sets and all set-theoretic functions. For our purposes, however, we identify it with
the category of contexts, in which the objects are contexts (defined by Figure , below)
and the morphisms are context renamings. Note that we index from 0 to avoid awkward

off-by-one manipulations.

I ctx Tl =n
o ctx Iz, : Actx

(AeB)

Figure 8.1: Rules for contexts

To ensure that that Cong is strict cocartesian, we stipulate that variables are named
in order according to a fixed enumeration. However, following our standing abuse (Nota-
tion , we shall freely employ more indicative variable names, such as using f to
denote a variable of exponential type.

An object v : [n] = B (for [n] = {0, ... ,n— 1} € F) in (F | B) corresponds to the

context (x; : ¥(i));1,  ,- A morphism h: v — ¢, namely a set map [n] — [m] such that
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the diagram below commutes, corresponds to the context renaming x; — xp;.

[n] ———— [m]

N

~

B

The coproduct I" + A is the concatenated context I' @ A.

We denote the universal embedding of B into Cong by [—]; thus, [A] coerces the type
A into the unary context (1 : A), and the coproduct I" + [A] is the weakening of T" by a
variable of type A. The notation is chosen to suggest a list of length one.

In the tradition of algebraic type theory (e.g. [FPT99, [Fioll]), the category P(Cong°P)
of covariant presheaves Cong — Set provides a semantic universe for the study of abstract
syntax. For example, for the simply-typed lambda calculus A7 (B) over B, the set of
terms-in-context of a given type B (modulo a-equivalence) define a presheaf L(—; B) by
L(T;B) := {t | T+ t: B} /=4. The functorial action is given by context renamings: for
contexts I' := (x; : Aj)i=1,.. n and A := (y; : Bj)j=1,... m and a context renaming r : I' — A,

one obtains a mapping

L(T';B) — L(A; B)
t— tlr(x;)/zi)

by the admissibility of the rule

I'-t:B r:A—-T
A+ t[r(z;)/zi] - B

The Yoneda embedding y yields a presheaf of variables: for any type A € B and context T,
y([A])(T) = y(x : A)(T") = Cong((z : A),T") corresponds to the set of inclusions of contexts
(x : A) — I'. This determines a presheaf V (—; A) defined by V(I'; A) = {z | ' - = : A}. The
well-known fact that [y X, P] = P(— x X) in any presheaf category over a cartesian category
corresponds to the observation that the exponential presheaf [y A, L(—; B)] consists of terms
of type B in the extended context I' + [A] (note that, since Cong is strict cocartesian, its

opposite category is strict cartesian).

Intensional Kripke relations We extend the Kripke logical relations of varying arity
of [JT93|[ATi95] to a category of intensional Kripke relations. Encoding this extra intensional
information allows one to extract a normalisation algorithm from the proof. Abstractly,
the key to this construction is the relative hom-functor (also known as the nerve functor).
For any functor J : B — X the left Kan extension (J) := lanj(y) exists as in the following

diagram, in which P(B) denotes the presheaf category:

B— Y  PB

\ulan % (8.1)
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Explicitly, (J)(X) := X(J(=),X) : B® — Set and lanp : B(—, B) = X(J(—),IB) is just
the functorial action of J. This construction is particularly well-known in the context of
profunctors (distributors), since B(J(—), X) and B(X,J(—)) provide canonical (indeed,
adjoint) profunctors X —» B for every functor J : B — X (e.g. [Bor94, Example 7.8.3)).

Definition 8.1.1.
1. For J : B — X a functor, the relative hom-functor is the functor {(J) : X — P(B)

defined above.

2. For a category B and a functor J : B — X, the category of B-intensional Kripke relations

of arity J is the glueing category gl((J)) associated to the relative hom-functor.  «

The relative hom-functor preserves limits so, when X is cartesian closed, the glueing
category gl({(J)) is cartesian closed and the forgetful functor to X strictly preserves products

and exponentials. Moreover, the Yoneda embedding extends to an embedding y : B — gl((J))

by y(8) = (¥(8)5(8) 2% 0)(aE). 35 ).

Consider now the following situation. Fix a set of base types B8 and an interpretation
h B — X in a cartesian closed category X. By the cartesian closed structure, this extends
to a map B — X we also denote by h. Applying the universal property, h extends in
turn to a cartesian functor A : Cor%(’p — X interpreting all contexts within X. Moreover,
writing F(B) for the free cartesian closed category on B, namely the syntactic model of
the simply-typed lambda calculus A7 (B), the coercion [—] : B — Cong, extends to a

~

cartesian functor Cong — F (%B). By the various uniqueness properties, this factors the

~

semantic interpretation h[—] : F(B) — X extending h. The situation is summarised in the

following diagram.

F(B)

(8.2)

Note in particular that AI' = h[I'] for every context I' € Cong, and that for any type A € B
the interpretation h[A] is equal to h[A]. (Here we use the assumption that [[,(X) = X to
identify hlz : A] with h[A].)

An object in the category gl({(h)) of Cong-intensional Kripke relations of arity h then
5 — Set (which one might think of as syntactic intensional
information), an object X € X, and a natural transformation 7 : P = X(h(—), X) (which

consists of a presheaf P : Con

one might think of as semantic information). One may think of this category as internalising
the relationship between syntax and semantics required for the normalisation-by-evaluation

argument.
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Neutral and normal terms as glued objects. The definitions of neutral and (long-57)
normal terms for the simply-typed lambda calculus, given in Figure below, are standard
(e.g. [GTL8Y, Chapter 4]). We define a family of judgements I' -y, ¢ : Band 'y ¢ : B

characterising neutral and normal terms, respectively, by mutual induction.

var

x1: A1, T Ap s Ay

F'pt: [ (AL Ap)
T o m(t) = Ay

proj (k=1,...,n)

I'yt: A=B '-yvu:A
[ app(t,u) : B

app

TNt A; (i=1,...,n) Ie:Ar-nyt: B
tuple lam
FEn iy estn) 1], (A Ap) 'y Azt: A=B
llil:wif:ginc (B a base type)
Nt:

Figure 8.2: Neutral terms and normal terms in the simply-typed lambda calculus

Crucially, the sets of neutral and normal terms are invariant under renaming, so for
every type A € B one now obtains four presheaves Cong — Set, defined at I € Cong as
follows:

V(I A) =y[Al ={z | THa: A} /=
MT;A) :={t|TFpyt: A}/ = (8.3)
NI;A)={t|T+nt:A} /=
LT;A):={t[T+t:A}/=

Each rule of Figure defines a morphism on these indexed families of presheaves. For

I

the lambda abstraction case we employ the coproduct structure on Cong.

Lemma 8.1.2. The rules of Figure give rise to natural transformations, as follows:

var(—; Ai) £ V(—; Ai) = M(—; Ay)
inc(—; B) : M(—; B) = N(—; B) (B a base type)
proj(—: Au) s M(—5TT,(Ar, ..., An)) = M(—; Ag) (k=1,....n)
app(—; A4, B) : M(—; A=>B) x N(—; A) = M(—; B)
tuple(—: A4) ¢ [Ty N (=i A4g) = N(— L, (A1, .., An))
lam(—; A= B) : N(— +[A]; B) = N(—; A=>B)

Proof. The mappings are just the operations on terms. In each case naturality follows

from the definition of the meta-operation of capture-avoiding substitution, in particular
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the fact that substitution passes through the various constructors, and that it respects

a-equivalence. ]

Returning to the development described by the diagram (8.2), and noting that (h)(h[A]) =
X(h(=), h[A]) = X(h[—], h[A]) for every type A, one obtains the following glued objects in
gl((h) for every A € B:

Vai=(V(—A), V(= A) = (hy(h[A]), h[A]) = y([A])

My = (M(—; A), M(—; A) = (hy(h[A]), [A]) (8.4)
Ny = (N(—A), N(—; A) = {y(h[A]), h[A])

Ly = (L(—; A), L(—; A) = {hy(h[A]), h[A])

In each case, the natural transformation is the canonical interpretation of A*™(B)-terms
in X. Moreover, extending the natural transformations induced from the rules of Figure [8.2

in a similar fashion, one obtains a morphism in gl({(h)) for each rule.

Normalisation-by-evaluation. We paste together the various elements seen thus far.
Since gl(¢h)) is cartesian closed, one may consider the interpretation B — M p of base
types in gl(¢(h)). This extends to an interpretation h[—] : F(B) — gl((h)). Write h[A] :=
(Ga,va,h[A]) and AT -t : A] := (B'[T ¢t : A],h[T ¢ : A])). Since the forgetful functor
Tdom : El((hY) — X is strictly cartesian closed, the final component in each case is exactly
the interpretation in X extending h.

One then employs the cartesian closed structure of gl((h)), and the 1-cells in gl(¢(h))
induced from the rules of Figure to inductively define quote and unquote as B-indexed
maps of the following type:

unquote 4 : M 4, — h[A]
quote 4 : h[A] — N4
For every A7 (B)-term I' - ¢t : A (where I' := (x; : A;)i—1,.. ), one thereby obtains

the following commutative diagram in P(Cong®?), in which the unlabelled arrows are the

canonical interpretations of terms inside X:

1_[?:1 M(—;Ai) w Hi=1 GAZ. R [THt:A] G quote 4 N(—;A)
\ H?:l’YAil
[Tizy X (R[=], R[Ai]) A
USRIy p— N
(8.5)

Chasing the n-ary variable-projection tuple (I' - z; : A;)i=1, .. » through this diagram, one

obtains a normal term nf(¢) for which the semantic interpretation h[nf(¢)] is equal to A[t].
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Moreover, for every type A the projections mqom(quote 4) and mqom(unquote 4) are both
the identity. It follows that, for X = F (%) the syntactic model of A*"7(8), one obtains a
normal form nf(t) for ¢ such that ¢t =g, nf(¢). Hence, every A*"~(B)-term has a long-£n
normal form, which can be explicitly calculated. This yields a normalisation algorithm.
Our aim in what follows is to leverage as much of this proof as possible as we lift it
to the bicategorical setting. We follow the strategy just outlined stage-by-stage, with the
aim of building up a version of in which each of the commuting shapes is filled by a

witnessing 2-cell. Throughout we shall assume that B is a fixed set of base types.

8.2 Syntax as pseudofunctors

The locally discrete 2-category of contexts. The notion of context in Ap¢ is the
same as that in the simply-typed lambda calculus. We therefore require the same categorical
structure on the category of contexts Cong, which we now wish to treat as a degenerate
2-category. Keeping track of such degeneracies will help identify instances where we can

apply the 1-categorical theory.

Notation 8.2.1.

1. For S a set, write 0.5 for the discrete category with objects the elements of S. Similarly,
write df for the discrete functor 05 — 05’ induced by the set map f: S — 5.

2. a) For C a category, write dC for the locally discrete 2-category with objects those
of C and hom-categories (dC)(X,Y) := (C(X,Y)).
b) Write dF for the locally discrete 2-functor dC — dD induced from the functor
F :C — D by setting (dF)X := FX and (dF)x)y := 0(Fx,y).
c) Write du for the locally discrete 2-natural transformation dF' = dG induced
from the natural transformation p: F = G : C — D by setting (du)c := pc for
every C' e C. <

The 0(—) and d(—) constructions will be our main technical tool for constructing
(degenerate) bicategorical structure from 1-categorical data. The next lemma collects
together some of their important properties. The proofs are not especially difficult, but
stating all the details precisely requires some care. Since we employ the notation — => = for

exponentials in Hom (B, Cat) we denote the usual categorical functor category by Fun(C, D).
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Lemma 8.2.2. Let C and D be 1-categories. Then:
1. (dC)°? = d(C°P).
2. There exists an isomorphism of 2-categories d(Fun(C, D)) ~ Hom(dC, dD).

3. There exists an injective-on-objects, locally isomorphic 2-functor ¢ : dFun(C, Set) —

Hom(dC, Cat), which induces a commutative diagram

d(Fun(C, Set)) —— Hom(dC, Cat)

In particular, Y(C) = (dy)C for all C' € C.

4. If C is cartesian (resp. cartesian closed) as a 1-category, then dC has finite products

(resp. is cartesian closed) as a 2-category.

5. Let P,@ : C — Set. The exponential [¢P,:Q] in Hom(dC, Cat) is given up to
equivalence by ¢(Fun(C, Set) (y(—) x P,Q)), for y : C — Fun(C, Set) the 1-categorical
Yoneda embedding.

Proof. is immediate from the definitions.

For , consider the mapping d(—) : d(Fun(C, D)) — Hom(dC, dD) taking F': C — D
to the locally discrete 2-functor dF and p : F — G to the locally discrete pseudonatural
transformation du. Since d(Fun(C, D)) is locally discrete, this extends canonically to a
2-functor.

Now suppose that F' : dC — dD is a pseudofunctor. By definition, this is a set
map F' : ob(dC) — ob(dD) with functors Fyy : (dC)(X,Y) — (dD)(FX, FY) for every
X,Y e dC. Since every (dC)(X,Y) is a discrete category, every Fx y is discrete, and so
F = dH for a unique functor H : C — D. So d(—) is bijective on objects.

Next fix functors F,G : C — D and consider the hom-category Hom(dC, dD)(dF,dG).
A pseudonatural transformation (k,k) : dF = dG consists of a family of 1-cells kx : FX —
GX (X €dC), together with a 2-cell ks : ky o Ff = Gfokx in dD for every f: X — Y in
dC. Since dD is locally discrete, the only choice of such a 2-cell is the identity. So (k, k)
is a 2-natural transformation, and is of the form du for a unique natural transformation
p: F = G. Similarly, every modification = : (k,k) — (j,j) : dF = dG consists of a family of
2-cells, and must therefore be the identity. It follows that d(—)z : d(Fun(C,D))(F,G) —
Hom(dC,dD)(dF,dG) is an isomorphism for every F' and G, as required.

For 1' we define ¢ by setting (P to be the composite C P, Set 20, Cat, so that
LP := \C.9(PC) and (up)c := d(uc) for every p: P = @ and C € C. Tt is clear that ¢ is
injective on objects. To see that tpg : d(Fun(C, Set)) (P, Q) — Hom(dC, Cat)(:P, Q) is an
isomorphism for every P and @), one reasons as above: since (.P)C' is a discrete category
for every C € C, every pseudonatural transformation ¢P = 1) must be of the form ¢(u) for
a unique natural transformation p : P = @, and there can be no non-identity modifications

between such transformations.
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To relate the 1-categorical and bicategorical Yoneda embeddings, one notes that

(tody)(C) = L(C(C’, —))
= \XC.o(Cc(C, X))
= AXC .(dC)(C, X)
=YC
as claimed.

For , one simply observes that the natural isomorphisms C(X, [ |7, 4i) = [ i, C(X, 4;)

immediately provide 2-natural isomorphisms of hom-categories

(dC) (X, T Ty ) = TTiZ, (dC) (X, Ay)

and similarly for exponentials.

For , recall from Theorem that for pseudofunctors G, H : dC — Cat, the
exponential [G, H| may be given by the pseudofunctor Hom(dC, Cat)(Y(—) x G, H) : dC —
Cat. Next observe that the embedding ¢ of preserves products:

(P x Q)C = o((P x Q)(C))
=0(PC x QQC)
= 0(PC) x 2(QC)
= (0P x 0Q)C
= ((P) x uU@))C
Hence:

Hom(dC, Cat)(YX x ¢P, Q)

= Hom(dC, Cat)((t o dy)X x dP,dQ) by diagram
~ Hom(dC, Cat)(u(yX) x «(P), (Q))

= Hom(dC, Cat)(«(yX x P),:(Q))

~ (dFun(C, Set)) (yX x P, Q) by
= J(Fun(C, Set)(yX x P,Q)) by definition of d(—)

completing the proof. O

The preceding lemma provides a framework for treating the category of contexts Cong
as a 2-category. Next we show how to extend from an interpretation of (base) types to
an interpretation of all contexts, that is, to an fp-pseudofunctor out of dCong°". In the
categorical setting, one merely uses the fact that Cong°P is the free strict cartesian category
on B. The pseudo nature of bicategorical products and exponentials entails a little more
work, but the construction is essentially the same.

Note that any interpretation s : 8 — X of base types in a cc-bicategory (X, IL,,(—), =)
extends canonically to an interpretation B> X by the cartesian closed structure, which

we also denote by s.
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Lemma 8.2.3. For any set of base types B, cc-bicategory (X,II,(—),=>), and set map
s : B — X, there exists an fp-pseudofunctor s : dCong® — X making the following

diagram commute:

dCOH%Op

[-] \\\\\\f\\j
/\X

Proof. We define s on types by sA := sA and extend to contexts in the usual manner:
§((;1:Z cAj)iz1, n) = [ Tiz, sA; and s(¢) := [[,(). In particular, for a unary context (x : A)
we define s(x : A) = sA, so that s[A] = sA.

The action on 1-cells is the following. For contexts I' := (x; : A;)i=1,...n and A :=

B — 5

(yj : Bj)j=1,....m and a context renaming r : I' — A, we define sr : H?:1§Bj — [i,s4; to
be (T (1); - -+ Tp(n) > Where we write (i) to indicate the index of r(z;) within (y1, ... , ym).
The action on 2-cells is trivial since dCong°P is locally discrete.

For the 2-cell gbl% : Idgr = s(Idr) we take

>~

~ Sidgp
Sidyp = ldsr == <71'1 oldgr, ... ,m, 0 Id§p> = (T, oo, Tpy
For a composable pair of context renamings ¥ — I' = A, we define qﬁf, , to be the composite

<7Tr(1), ,ﬂr(n)>o<7rT/(1), 77T7“’(m)>

S
b,
pos{L

<7Tr(1) ° <7Tr’(o)>’ <o Tp(n) © <7Tr’(o)>> — <7Tr’r(1)7 s 77Tr’r(n)>
<w(r(1))7 7w(r(n))>

The three axioms to check are diagram chases using the product structure, along with
the properties of Lemma [4.1.7] For the associativity law one uses naturality and the

commutativity of the following diagram, in which we abbreviate (m,(1), ... , 7)) by {m;):

{7y 0 (my o ()

post
posto(m,.n >l \

(T 0 (¥ 0 (ony —— {0 (myey 0 {mpy)

post

For the left and right unit laws, one respectively uses the diagrams on the left and right

below:

Id,y; o (my) (my) o Idgr

Sldo(mr) =
§IdO<WT>l’ \\\\\\\\\\\\\\\\\j Postl \\\\\\\\\\\\\\\\\\j

(me 0 Idgs; ) 0 (mr) —ot (me0ldgs o (myy  (mpuyoldsr, ... Ty 0 lder ) —— (mp)
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It remains to show that s preserves products. For n contexts I'y, ... ,I';, (n € N) of the

(@) . 2@
;A )j=17-~7\F¢\’ note that

form T'; := (z
s(I[izale) = s @--- @) = [[j-1,...pry15(Ai)

noo(T) =TT Til g4

H’L:1§( Z) szlﬂ]:ls( j )

and that s(m;) = s(Ty —T1@---@QT,) is the 1-cell <7r1+2'?:11|1“i|’ ’WZ"ilIFi|>' One
therefore obtains the required equivalence [ [}, H‘fjl s(AZ(j )) ~ [Tz, s(AZ(j )) by taking

i=1,...,n
qr, to be the 1-cell [T, Hﬁ‘l s(Ay)) — [Tty s(AjZ)) given by
i=1,...,n
(mom, ... STDY| © Ty« e e s TLO They v 5 D, © They+++ 5 T O Ty + oo, L, | omny  (8.7)

This defines an equivalence with witnessing 2-cells defined by the commutativity of the

following two diagrams:

(10T, oot WD, © Tp) © (ST Idy(p, o)
Postl Tel_dlé(l_[i T'y)
<‘..77T107Tko<§77.>’ ’W‘Fk|O7TkO<§7T.>,...> <7T1; 77rZZL:1Z|Jr‘:1{J>

<...,7r10w<k),...,7rpkow”“%...)l H

el - > o . —
< R S KRR v > Gy, < P+ Il >

(s(me)yo{m omy, ... s T, © T Id(Hi§r‘i)
POSt\L Tfiil(l_li sI';)
<...,§(7Tk) O(ML O, v, WD, O7Tn>,...> (T1y vy Tn)

<...,<7T1, 77T\Fk|>o77k7~-'> > <Id(§pl) O,y «-- ,Id(ﬁpn) O7Tn>

1
<§Id(§rn) ome

The downwards arrow labelled = is the n-ary tupling of

_ EE— ce
<7T1+Zf:11|1“i|’ ,WZ§:1|Fi|>O<7T1 OMY, vv s M0, | © Tn) (1, s 04| © Tk
posti Tpost*1
ooy Tyl © (TLOTL, e s, © Ty et Dy| 7 Koo TG O Ty oo )iy ]
JCED i DN

for k=1, ... ,n. Hence s is an fp-pseudofunctor, as claimed. O
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Remark 8.2.4. We shall need the following special case of the fact that the pseudofunctor s
preserves products. For a context I' = (z; : 4;)i=1, .. » and type A, the 1-cell (8.7) becomes
simply {(mj omy, ... ,mpom, o) : sI' x s[A] — s(T @[A]). <

One also obtains the following version of Proposition [5.3.22| by taking the context
extension product structure of the syntactic model instead of the type-theoretic product
structure (recall Section [4.3.3)).

Proposition 8.2.5. For any A}~ -signature S, cc-bicategory (X,IL,(—),=>), and Apg -
signature homomorphism s : § — X, there exists a cc-pseudofunctor s[—] : Tps' =~ (S) — X
with respect to the context extension product structure, such that s[—] ot = s, for

L:8 < Tps " (8S) the inclusion.

Proof. Define s[—] as in Proposition [5.3.22] except that for preservation of products one
takes q* as in the preceding lemma. Preservation of exponentials then takes the following
form. For I' := (z; : A;j)i=1,..n and A := (y; : Bj)j=1,.. m, the evaluation map is the

m-tuple with components
fill,Ae =11,,Be,21: A1, ... ,zn : Ay F mi{eval{f,tup(z1, ... ,zn)}} : B;
for j =1, ... ,m. One then obtains the following chain of natural isomorphisms:

s[evalr A] o qf AT

Tle O eVals[[HnA.]Ls[[nm B.] © <7T1,<7T2, ce ,7['n+1>>> o <7T1,7T1 0T, ... ,Ty O 7r2>

lle

Te 0 evalg[[] AJs[[],, Ba] © (m,{m oM, ... , Ty 0 7r2>>>

Te O evals[mn AdsIIT,, Be] © (my, e, oo TR0 7TZ>>

lle

Te O evalsmn Ad,s[TT,, Be] © (m1, 7T2>>

lle

[l
IO TN T T

e O evals[mn Al 1,0, B-]]>

7T17 e 77Tm> © evals[[nn A']]’SIH_["" B.H

~ evals[mn Ad,s[T1,, Bel

lle
S

It follows that mp A = A(s[evalra]) = /\<eVals[[]‘[nA.]],s[[1‘[mB.]}) >~ idgr—ap, so s[-]
preserves exponentials. ]

While the interpretation of Proposition [5.3.22]is useful for proving uniqueness properties,
the interpretation of the preceding proposition is the natural choice when working with
the (2-)category of contexts. Of course, the two pseudofunctors are canonically equivalent.

Throughout this chapter, we shall work with the version just defined.
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For any interpretation of base types s: 8 — X in a cc-bicategory (X, II,,(—),=>), one
therefore obtains the following diagram lifting (8.2) to the bicategorical setting:

~

To ()
/ w‘
dCon%OlD 5 X
-]
B f
]
B

Note in particular that, just as in the 1-categorical case, the equality s[I'] = sI" holds for

every context I'.

Syntactic presheaves for Ap,s . Lemma provides a way to interpret contexts
whenever one has an interpretation of base types, while Lemma [8.2.2] guarantees that, in
order to interpret the syntax of Ay~ as a pseudofunctor dCong — Cat, it suffices to a
define a presheaf Cong — Set on the underlying category. There remains the question of
what it means to be a neutral or normal term in A;S’_). The answer is provided by the
embedding of A*" into Ay~ constructed in Section Thus, for every A € B we define

four presheaves V(—; A), M(—; A), N(—; A), L(—; A) : Cong — Set by setting

V(T;A) = {(t) | te V(T; A)}

M(T;A) = {(t) | t e M(T; A)} (8.8)
N(T;A) == {(t) | te N(T; A)} |
L(T;A) == {(t) | t e L(T'; A)}

where (— | is defined in Construction [5.4.3|on page and the presheaves V(; A), M (—; A),
N(—;A) and L(—; A) are defined in on page Since (— | respects a-equivalence
(Lemma , these definitions are well-defined on a-equivalence classes. To see that these
definitions are invariant under variable renamings, recall from Construction that the

following rule is admissible in Apd:

'+~ (t):B r:T— A
At cont(t;r) : (t){xs — r(zi)} = (t[r(x;)/x;]) : B

Since a rewrite 7 : t = t’ is typeable in context I" only if both ¢ and ¢’ are also typeable in
I, it follows that the following rule is admissible:
'+ (t):B r:T— A
A+ (t[r(x;)/x;]) : B
Since the presheaves (8.3) are invariant under renamings, it follows that those of (8.8)) are

too, as required.
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The functorial action is the unique choice such that the following diagram commutes,
where K(—; A) e {V(—;A),M(—;A), N(—; A)} and K(—; A) denotes the image of K(—; A)
under (—):

KT 4) K0 k(A 4)

-15] li-02 (8.9)

Explicitly, for a context renaming 7 : T' — A we define K(—; A)(r)((t)Y) := (t[r(z:)/zi])5-
This formulation is particularly convenient as it allows one to make use of standard facts
about the simply-typed lambda calculus. Moreover, we can employ many of the details of

Fiore’s proof via the following observation.

Lemma 8.2.6. For any type A € B, let K(—; A) € {V(—; A), M(—; A), N(—; A), L(—; A)}
and let K(—;A) € {V(—; A), M(—; A),N(—;A),L(—; A)} denote the image of K, under

(—). Then the mappings (— [)54:) : K4 = K4 form a natural isomorphism.

Proof. Since (| — [)f) respects the typings, it is clear from the definition that it is an injection,
hence a bijection onto its image. Naturality is exactly . O

For example, one may immediately extend the natural transformations of Lemma [8.1.2]

to Aps~ . One therefore obtains the following natural transformations:

var(—; A;) : V(—; 4;) = M(—; A))
inc(—; B) : M(—; B) = N(—; B) (B a base type)
proj,.(—; As) : M(— T 1,(A1, ..., Ap)) = M(—; Ay) (k=1,...,n)
app(—; 4, B) : M(—; A=>B) x N(—; A) = M(—; B)
tuple(—; Aa) : [T N (= 4i) = N(—T1,(A1, ..., Ap))
lam(—; A, B) : N(— +[A]; B) = N(—; A= B)
(8.10)

(g oo ytny) = tup((t1), -, (tn))

The presheaves and natural transformations —Viewed as locally discrete
pseudofunctors and locally discrete pseudonatural transformations—describe the syntax of
Aps” within Hom(dCong°P, Cat). As we saw in Chapter |§|7 this bicategory shares many of
the important features of the presheaf category P(Cong?). Our next task, therefore, is to

construct the bicategorical correlate to the category of intensional Kripke relations.
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8.2.1 Bicategorical intensional Kripke relations

The relative hom-pseudofunctor. We start by constructing the pseudo correlate of the
relative hom-functor and establishing its key properties. Precisely, we show that diagram
on page lifts to the bicategorical setting, and that the relative hom-pseudofunctor
preserves bilimits.

The construction is the natural bicategorification of Definition

Construction 8.2.7. For any pseudofunctor Jj : B — X one obtains a relative hom-
pseudofunctor (J) : X — Hom(B°P, Cat) as follows.

On objects, we set (J)X := X(J(—),X). On morphisms, we define a pseudonatural
transformation (J)f : (J)X = (J)X' for every f: X — X' in X. The 1-cell components
are

(D) = X8, X) L5 x3B, x7)

and for g : B’ — B in B the witnessing 2-cell ((3)f), filling

X(3B.x) @00, om0
fo(=)] @, |7
XGB.X) —— X(3B'. X'
(B X) e YO X)

1
h,3g°
define a modification (J)f — (J)f’ by setting (J)7 := 7 o (—). The modification axiom

is the structural isomorphism Ah¥E5-X) -ay Finally, for a 2-cell 7: f = f" in X, we
holds by the naturality of the associator a.
It remains to give the extra data witnessing preservation of units and composition. For

w§g> :1dggyx = (3)(Idx) we take the modification with components given by the structural

isomorphisms idy (35, x) = Idy o (=). Similarly, for a composable pair X % X’ ENS'C

in X, the modification qﬁfg S O(f) o F)(g) = F)(f o g) has components fo(go(—)) =
(fog)o(=) «

The preceding construction leads us to the following definition (c.f. Definition [8.1.1]).

Definition 8.2.8. For a category B and pseudofunctor J : B — X, the bicategory of
B-intensional Kripke relations of arity J is the glueing bicategory gl({(J)) associated to the

relative hom-pseudofunctor. <

To bicategorify (8.1) we employ the canonical equivalences Hom(C x B,V) ~ Hom(B x
C,V) ~ Hom(B,Hom(C, V)) of [Stx80, §1.34].
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Lemma 8.2.9. For any pseudofunctor J : B — X there exists a pseudonatural transforma-

tion (1,1) as in the diagram

B°P x B Hom(=.=) Cat
\ D) (8.11)
3P Hom (—,=)
XP x X

where

I := 3 1 0b(B°P) — ob(X°P)

Jo,B

(IB,c)? :=B®(B,C) = B(C,B) — X(C,B) = X°°(C, B)

Proof. For the functors /(g ¢y : B(B,C) — X(JB,JC) we take Jp . For f: B' — B and

g : C — (', the witnessing isomorphism Z( f,9) in the diagram below

B(B,C) — 29 g )

JB,cl Iy lJB/,c/

~ ~ ~ !~/
X(3B,30) W X(JB',3C"

is defined to be the composite natural isomorphism

- Gono) ™t Aa)o(on )7t o
J(go(hof)) === 3(g) o J(ho f) === 3(g9) o (Jho3f) (8.12)
This composite is natural in g and f; the unit and associativity laws follow from the

corresponding laws of a pseudofunctor. O

Corollary 8.2.10. For any pseudofunctor J : B — X there exists a pseudonatural trans-
formation (I,1) : Y = (J) 0 J : B — Hom(B°P, Cat), which is given by the functorial action

of J on hom-categories.

Proof. Passing (8.11)) through the equivalences Hom(B°P x B, Cat) ~ Hom(B x B°?, Cat) ~
Hom (B, Hom(B°P, Cat)) at an arbitrary P : B°? x B — Cat yields the following:

ANB,C)P"*B p(B,C) — \C, BB P(B,C) — A\C® .\BF” . P(B,C)

so that Hom(—, =) — ACB.YC and Hom(J(—),J(=)) — ACB.(I)(C). By the preceding
lemma, these are related by the pseudonatural transformation with components lo :=

Jo),c: B(=,C) — X (J(-),3JC) and witnessing 2-cells given as in 1} O
We may now extend the Yoneda pseudofunctor Y to its glued counterpart Y.

Construction 8.2.11. For any pseudofunctor J : B — X, define the extended Yoneda
pseudofunctor Y : B — gl((J)) as follows.
On objects, we set
YB:= (YB, (l,i)(_,B),JB) (8.13)
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where (I ,Z)(_7 B) is pseudonatural since (1,1) is pseudonatural in both arguments.
For a 1-cell f: B — B’ in B, we define Y f to be the 1-cell (Y £, (¢° f)*l,fjf) as in the

diagram

B(—B) — I, B(—, B
Gi’BJ, (d’ié)il lgin,

Y@()IB) 5y ¥ (().3B)
On 2-cells, we set Y(7 : f = f': B — B’) to be the pair (Y7,J7), which satisfies the
cylinder condition by the naturality of ¢v.

Finally we need to define 1Y and ¢Y. Since YIdx = (YIdx, JIdy), we may take simply
¥ = (1Y, 4pY). This forms a 2-cell in gl((3J)) by the unit law on (I,1). Similarly, for ¢¥ we
take (¥, ¢%), which satisfies the cylinder condition by the associativity law on (I,1). The

three axioms to check then hold pointwise. <

In the next section we shall provide an explicit presentation of exponentials YB => X in
the glueing bicategory, which will provide a bicategorical, glued correlate of the identification
[yB, P] ~ P(— x X) for presheaves. First, however, we finish our examination of the relative

hom-pseudofunctor by showing that it preserves bilimits.

Lemma 8.2.12. For any pseudofunctor J : B — X the relative hom-pseudofunctor {(J) :
X — Hom(B°P, Cat) preserves all bilimits that exist in X'.

Proof. Let H : J — X be a pseudofunctor and suppose the bilimit (bilimje 7 Hj, A;) exists
in X. By Proposition the bilimit bilim({J) o H) exists in Hom(B°P, Cat) and is given
pointwise.

Now, since representable pseudofunctors preserve bilimits (Lemma , the canonical
map ep : bilimjes X(JB, Hj) — X(JB,bilimjes Hj) is an equivalence for every B €
B. These extend canonically to a pseudonatural transformation, yielding the required
equivalence bilim((J) o H) = () (bilim H). O

It will be useful to have an explicit description of how (J) preserves products. For this

we rely on the post 2-cells.

Lemma 8.2.13. For any fp-bicategory (B,1I,,(—)), the n-ary tupling operation and 2-cells
post together form a pseudonatural transformation [ [, B(—, B;) = B(—, [ [i=,Bi), and
hence an equivalence of pseudofunctors [ [;_; B(—, B;) ~ B(—,[ [, Bi) in Hom(B°P, Cat).

Proof. For every X € B the n-ary tupling operation defines a functor (—, ... ,=) :
[l B(X,B;) — B(X,[[i., Bi) which, by the definition of an fp-bicategory (Defini-
tion , is an equivalence in Cat. For these functors to be the components of a
pseudonatural transformation, we need to provide an invertible 2-cell filling the diagram

below for every f:Y — X:
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n ?: B(va’b) n
[Ti=: B(X, Bi) 1 [Ti=: B(Y, Bi)

ey < [

B(X, [~ B:) w B(Y, -, B:)

Thus, we require a natural isomorphism (hj o f, ... ,h, 0 fy=<hy, ... hyyo f, for which
we take post(he, f)~!. The two axioms are exercises in using Lemma O

Corollary 8.2.14. For any pseudofunctor J : B — X, the relative hom-pseudofunctor {(J)
extends to an fp-pseudofunctor ({(J), q*) with qXX. given by the pseudonatural transformation

((—, ... ,=),post) defined in the preceding lemma. O

Remark 8.2.15. From the perspective of biuniversal arrows, Lemma [8.2.13]is an instance
of Lemma [2.4.4] “

8.2.2 Exponentiating by glued representables

In order to emulate Fiore’s construction of the 1-cells quote and unquote in the glueing

bicategory, we require a correlate of the following categorical fact:

Lemma 8.2.16 ([Fio02]). For any cartesian category B, cartesian closed category X and
cartesian functor J : B — X, the exponential [yB, (P,p,X)] in gl((J)) may be described
explicitly as

[yB, P) 225, [y B (3)(X)] 2 (3) (3B = X)

Here the unlabelled isomorphism is the composite

[y B, (D(X)] = X(@(= x B),X) = X(@(=) x IB,X) = X(3(-).3B=X)
arising from the canonical isomorphism [yB, P] = P(— x X), the product-preservation of

J, and the cartesian closed structure on X. ]

For the bicategorical version of this lemma we note that, since products in Cat are
strict, one obtains idp x idg = idpxg for every P,Q : B°® — Cat, so that [idp, (k,E)] :
[P,Q] = [P, Q'] is equal to A((k,k) o (e,€)) (recall from Section |6.1] that (e,€) denotes the
evaluation 1-cell in Hom(B°P, Cat)). With our (locally discrete) use-case in mind, we shall

simplify what follows by assuming the bicategory B to be a 2-category.

Proposition 8.2.17. For any 2-category B with pseudo-products, cc-bicategory (X, IL,(—), =>)
and fp-pseudofunctor (J,q*) : (B,1I,(—)) — (X, II,(—)), the exponential Y B == (K, (k, k), X)
in gl({J)) may be given explicitly by the following composite in Hom(B°P, Cat):

[Y B,(k,k)]

[YB, K] [YB,(3HX] 25 (3(FB = X) (8.14)

where up x is the composite of equivalences

[YB,{J)X] =, X(J(— x B),X) 2 X(J(=) xIB, X) 2, X(3(-),3B=X) (8.15)

arising from the following, respectively:
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1. The canonical equivalence arising from the identification of ((J)X)(—xB) as [Y B, (J)X]
(Theorem 6.2.7)),

2. The fact that J preserves products,

3. The definition of exponentials in X. OJ

Our strategy is to show that the composite (8.14]) is the left-hand leg of a pullback
diagram in Hom(B°P, Cat); by Lemma this is sufficient to prove an equivalence in the

glueing bicategory. We prove this using the following fact, which generalises the 1-categorical

situation.

Lemma 8.2.18. Let B be a bicategory and e : B < (' : f be any adjoint equivalence in
B, with witnessing invertible 2-cells v : Id¢ = eo fandw: foe = Idg. Then for any

r: A — C the pullback of the cospan (B 5 C <~ A) exists and is given by
A
C
d

B ——C

Id
_SAA

for (816)

where the top isomorphism is a composite of structural isomorphisms.

Proof. Suppose given any other iso-commuting square

X -2sA

qlé lr

B ——C

We take the mediating map X — A to be p. For the 2-cells we take I' :=Id4 o p = p and
A to be defined by the following diagram:

(for)op —2— ¢

=| [E

fo(rop) Idgogq

o e

foleoq) —=— (foe)oq
A short diagram chase using the triangle law relating v and w shows this is a fill-in.
Next we claim that (p,T'; A) is universal. To this end, let (v, 31, ¥9) be any other fill-in,

so that the following diagram commutes:

(roldyg)ov —=— ro(Idsov) o, rop

l Jp (8.17)

(eo(for)ov —s—+eo((for)ou) g eoq
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The unlabelled arrow is the composite (8.16|) given in the claim.
We define $f := v = Id AOU ZL p, and claim that both the following equations hold:

Idgoxt (for)oxt

Idgow Idgop (for)o (for)o

k ) / \ / (8.18)

The right-hand diagram is an relatively easy check. The left-hand diagram follows by
naturality, the triangle law relating v and w, and the assumption .

It remains to check the uniqueness condition for 1. For any other © : v = p satisfying
the two diagrams of , one sees that

U—>p
\

Idgow IdAop
l
I
p

where the bottom triangle commutes by the right-hand diagram of (8.18]), and the left-hand
leg is exactly the definition of £f. Hence © = X as required. Finally we observe that id' is

certainly invertible. O

The requirement for an adjoint equivalence in the preceding lemma is, by the usual
argument, no stronger than requiring just an equivalence (e.g. [Lei04, Proposition 1.5.7]).
Importantly, the adjoint equivalence one constructs from an equivalence has the same 1-cells.

In the light of the lemma, if we can show that the equivalence up x defined in (8.15))
has a pseudo-inverse given by the composite [(1,1)_ gy, (J)X | o mzp x, then the following

is a pullback diagram:

ldiy B,k

[YB, K] » [YB, K]
(VB0 N
[YB,{J3)X] 1y 5 —o(35x A((kR)o(e2)

lie

upx | \

QB =X) —mr— DB, HX] ——— [YB,()X]
A((2)o([DEB) D X]x (LD))

It will then follow that for any K := (K, (k,k), X) the composite —the left-hand
leg of the above diagram—is an explicit description of the exponential (Y X => K). The
difficulty, therefore, is not in showing that up x is an equivalence, but in checking whether
it has a pseudo-inverse of the form we require. We turn to this next. (The cartesian closed

structures we employ are summarised in Appendix .
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The equivalence [YB,(J)X] ~ (J)(JB => X): calculating the 1-cells

In this section we shall calculate the action of the maps up, x and [(I,1)— p),(3)X]omyp,x;
in the next section we shall show these form an equivalence. To shorten notation, let us

introduce the following abbreviation:

[wl x = [(I,1)(~,p), X ] omyp x
Our first task is to unfold each of the equivalences in the definition of up x to determine

the action of the whole composite.

Calculating the composite up x. If [X,Y] and X =Y are both the exponential of X

and Y in a bicategory B, with associated currying operation and evaluation maps A, evalx y

and A, evalyy, respectively, then X(([X, Y]) x X Y) C[X,Y] - (X=Y) is

evalx y

canonically an equivalence.
Now let (B,11,,(—)) be a 2-category with pseudo-products, B € B, and P : B°?» — Cat

be any pseudofunctor. We calculate the equivalence
[YB, P] = Hom(B°, Cat) (Y(—) x YB, P) = P(— x B)

arising from Theorem . The evaluation 1-cell evalyp p : [YB,P] x YB — P is the

pseudonatural transformation (e, €) with components

Hom(B°P, Cat)(YC x YB, P) x B(C, B) <% PC
((k,k),h) = ke(Ide, h)

On the other hand, the currying operation
A : Hom(B°?, Cat)(R x Y B, P) — Hom(B°, Cat)(R, P(— x B))

witnessing P(— x X) as an exponential takes a pseudonatural transformation (j,]) to the
pseudonatural transformation with components RC fm, R(C x B) Jexp(tm), P(C x B).
Using the assumption that B is a 2-category, the component of the canonical equivalence

[YB,P] = P(— x B) at C € B is therefore

Hom(B°, Cat)(YC x YB, P) — P(C x B)

~ (8.19)
(k, k) — kexp(m1,m2)
It follows that up x(C) is the following composite:
[YB,(3)X](C) 2 X(3(C x B), X) = X(3C x 3B, X) = X(3C,3B = X) 520

(k;K) = koxp(m1,m2) = kexp(m,m2) 0 af g = Akoxp(m1, m2) © dF p)

Next we turn to calculating [w]p x := [(l,f)(_vB),<3>X] omyp x.
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Calculating [(l,f)(_7 B), (I)X ] We begin by calculating the composite

[(HAB)@ =D (—, By (e7)
[(DEB), X)) x YB ——— [(J)H@B), NX)] x I)IB ———— I(X)
(8.21)
Applying the definition of (e, €) again, the component of the composite at C e Bis

Hom(B%, Cat) (B(—,C) x X(3(—),3B), X(3(—), X)) x B(C, B) — X(3IC, X)
((k, k), B) — k(C,1d¢, 3h)

Naturality in C' is witnessed by the following 2-cell, where r : C! — C'is any 1-cell in B:

|<(C", Ideror, J(ho r)) — k(C,1d¢, Jh) o Jr
I<(C’,Idc/or,(¢,3w)*1)l TE(T,Ichh)
k(C",Id¢r o r,Jh o Jr) k(C',roldg,JhoJr)

Instantiating this with the cartesian closed structure constructed in Section [6.1] one may

identify [(1,1)(— 5y, (X] : [(DHEB),I(X)] = [YB,{J)(X)] as in the following lemma.

Lemma 8.2.19. For any 2-category with pseudo-products (B, II,,(—)), cc-bicategory (X, IL,(—), =),
and fp-pseudofunctor (J,q*) : (B,1I,(—)) — (X,II,(—)), the pseudonatural transforma-
tion [(1, 1)~ By, (DHX] : [(IAB), G)(X)] = [YB,{I)(X)] (where B € B and X € X) has

functorial components

(1D (—, ) HX](C)

[YB, 3 (X)](C)
(k, k) — AAB ARAC ApAB k(A h, 3p)

For s : A’ — A, the witnessing 2-cell of [(I,1)_ g),F)X](C)((k,k)) as in the diagram

B(A,C) x B(A, B) 2EEEB gy 0y« B(A', B)

(A-3=) | z |k =30
X34, X) . X(3A’, X)

is given by

k(A', (=)os,J(=0s))
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Calculating mjp x. By Lemma(8.2.13] the pseudonatural transformation (J)(evalyp x) o
d3p x has components defined by ACB ARIC—QEB=2X) \GIC=IB evalyp x o (h,g) and

witnessing 2-cells of the form
X(QfIB=>X)xX(3fIB)
X(JIC,JB=X) x X(JC,IB) —— X(IJC",JB=X) x X(JIC',IB)
evalaB’Xo<—,:>l
X(3C, X)

levalaB,X o{—,=)
» X(3C", X)

e

XJf.X)
given by

evalyp x opost_1

evalyp x 0 (hoJf,goJf) === evalyp x o ((h,9) 0 If) = (evalyp x 0 (h, g)) 0 If

for every f : C' — C in B. Applying the currying operation defined in Section one
obtains the following characterisation of myp x.

Lemma 8.2.20. For any 2-category with pseudo-products (B, I1,,(—)), cc-bicategory (X, I1,,(—), =),
and fp-pseudofunctor (J,q*) : (B,1I,(—)) — (&, II,(—)), the pseudonatural transformation
myp x has components mzp x(C') given by the functors

X(JC,IB =+ X) — Hom(B°?, Cat) (YC x (J)(IB),{IX)
f s )\AB ) )\(hAﬁC’gJA—»JB) ) (JA {foJh,g) (3B=|>X) % 3B evalyp, x X)

Moreover, for every r : A’ — A the pseudonatural transformation myp x(C)(f) has

witnessing 2-cell

B(r,C)x X (Jr,3B)
B(A,C) x X(3A,3B) —— B(A',C) x X(3A',3B)
evalaB,XO<fOJ(—)7=>i mas OV, leValaB,X0<fOJ(*)7:>
~ . ~ Al

defined by

m;5 x(C)(f)
evalyp x o (foJ(hor),goJr) 15.x( Q). (evalyp x o {f o Jh,g)) o Jr
evalaB’Xo<fo(¢>‘zhr)_1,go3r>l T;

evalyp x o {(fo(FhoJr),goJr) evalyp x o ((foJh,gyoJr)

= M\'B’Xopost_1

evalyp x o {(foJh)oJr,goJr)
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Calculating [w]p x. Combining Lemma [8.2.19| with Lemma [8.2.20, one obtains the
following identification of [w]p x.

Lemma 8.2.21. For any 2-category with pseudo-products (B, I1,,(—)), cc-bicategory (X, I1,,(—), =),
and fp-pseudofunctor (J,q*) : (B,II,(—)) — (X,1I,(—)), the composite pseudonatural
transformation [w]p x : (N(FB = X) — [YB,{J)X] has components

Hom(B°P, Cat)(YC x YB, X(J(—), X))
{fo3h,Ip)

evalyp x
—

fo AAB ARATC B (34 (JB=>X) x 3B X)

The witnessing 2-cells for the pseudonatural transformation [w]p x(C)(f) are defined by

the following commutative diagram, where r : A’ — A is any 1-cell:

[w]B,x (C)(f),

evalﬁB,X o <f o 3(h o 7’),3(]? o T)> > eval3B,X o <f th,3p> oJgr
evalgB,X0<fO(¢gM)7l7(¢g,r)71>l T N
evalyp x o (f o (JhoJr),JpoJr) evalyp x o ({f o Jh,Ip) o Jr)

= /evaljgyxopostfl

evalyp x o <(f oJh)oJr,Jpo 3T>
(8.22)

The equivalence [YB,(J)X] ~ (3)(IJB = X)

We are finally in a position to prove that ux : [YB,(J)X]| < (J)(IJB = X) : [w]p,x defines
an equivalence of pseudofunctors in Hom(B°P, Cat). By Lemma it suffices to construct
an equivalence of categories up x (C) : [YB,(J)X](C) S JF)@FB = X)(C) : [w]p,x(C) for
each C' € B. We deal with this in the following lemma.

Lemma 8.2.22. For any 2-category with pseudo-products (B, I1,,(—)), cc-bicategory (X, I1,,(—), =),
and fp-pseudofunctor (J,q*) : (B,II,(—)) — (X,II,(—)), the following composites are nat-
urally isomorphic to the identity functor for every B,C € B and X € X:

1.

[w]B,x (C)

X(3C,3B=X) Hom (B, Cat)(YCxY B, (3)X) “2X9, x(C,3B = X)

Hom (B, Cat)(YC x YB,(3)X) — Hom(B°, Cat)(YC x YB,{(3)X)

um % ©)

X(3C,3B = X)

Hence, [w]p x is pseudo-inverse to up x : [YB,{J)X]| — (J)(IJB =>X) in Hom(B°P, Cat).
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Proof. For , we begin by calculating

(uB.x(C) o [w]px(C))(f) = upx(C)(AAP . ARA™C AP evalyp x o (f o Jh, Ip))

X
dc,B A

:/\(JCXJB—>\5(C><B

) evalyp xo{foJmi,Jma)

x)

Jne

for f : JC — (JB == X). For each such f, one obtains an invertible 2-cell (up x o [w]s,x(C))(f)

f as the composite

A((evalyp x o (f o Jm1,Im)) 0 qf; ) f
A(evalaB’Xofusefloqxc,B) 77/:1
A(evalyp x o ((f x IB) o (Jm1,Ima))) o qé,B) AMevalyp x o (f x IB))

A~

~ ~

M(evalyzx o (f x 3B))  ((Im1,3m2)) © 4%, p) ——— A(evalypx o (f x IB)) o lye)
)\(evalgByxo(fXaB)O(ué‘,B)il)

where the bottom isomorphism arises from the equivalence
(Im1,3m2) 1 I(B x C) S IB x IC: ¢

witnessing (J,q*) as an fp-pseudofunctor. This composite is clearly natural in f, so one
obtains the required natural isomorphism.

For one must work a little harder. We are required to construct an invertible modifica-
tion 2N ([wlp,x(C)oupx(C))((k,k)) = (k, k) for every pseudonatural transformation
(k,k) : YC x YB = X(J(—), X), and this family which must be natural in the sense that,

for any modification ¥ : (k,k) — (j,j), the following diagram commutes:

([M]B,X(C) o UB,X(C)) ((k,E)) ([M]B,X(C)OuB,X(C))(‘If) ([M]ByX(C) o UB,X(C)) ((J,D)

=| I

(k.8 . (D)

(8.23)
To this end, let us first unwind the data we are given. Applying the work of the preceding
section, one sees that for (k,k) : YC x YB — X (J(—), X) one has

([wlz x(C) oup x(C))((k,k))

= [w]p,x(O) (Mkoxn(m,m) 0 G )

— AB ARA=C 2pAB evalyp x o <)\(kCXB(7T1, 72) 0 Q) © 3h,3p>

Moreover, writing L := kox (71, m2) © qf g, the 2-cell required for the diagram below (in
which r : A’ — A) is the composite defined in (8.22]) with f := AL:
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B(A,C) x B(A, B) —E0BEE)poar o) x B(AY, B)
evalaB,xo<ALos<—>,s<=>>l (il x (C)oup x @), levalm,xo<uoa<),s<—)>
~ /

X(JA, X) o XA, X)

We now turn to defining the modification 2&K) . For A € B and (h,p) € B(A,C)xB(A, B)

there exists an evident choice of isomorphism

=09 (A, hyp)  ([w]x (C) 0w x (C)) ((k,K)) (A, b, p) = K(A4, b, p)

namely
evalyp x o (AL 0 3h, 3p) =i ) » ka(h, p)
= ka(whl0,w50)
evalyp x o (AL o Jh,Id3p o Jp) ka(mi{p, @), m2{p, q))
evaly s, x ofuse ™! Kooy (1,72)
evalyp x o (AL ><VGIdB) o (Jh,JIp)) kex (w1, m2) o J¢h, p)
evalyp, x o(AL X (¥) ~1)o(3h,Ip) ~
evalyp x o (AL x IB) o (Jh, Ip)) (kex (71, m2) 0 Idzewan) © 3Ch, p
- ke (m1,m2)0c, 5odCh.p)
(evalys.x o (AL x 3B)) 0 (3h, 3p) (k(;xB(wl, 72) 0 (qng o <3m,3772>)) o 3¢h, p)
epo(Jh,Ip) T;

(kewp(m1,m2) 0 G ) © (3R, 3p) ——— (kew(m,m2) 0 G ) © (1, Im2) 0 IR p))
kox B (m1,m2)odg, gounpack™*
It is clear from the definition that ng’k) 1= E(k’E)(A, —, =) is natural in its two arguments
and so a 2-cell ([w]p,x(C)oupx(C))((k,k))(4,—,=) = k(A,—,=) in Cat. Moreover,
the naturality condition holds by naturality of each of the components defining =(kk)
and the modification axiom on ¥ : (k,k) — (j,]), which requires that the following diagram
commutes for every r : A" — A in B and (p, h) € B(A,C) x B(4, B):

kar(pr, hr) kr(phy ka(p,h) o Jr
‘If’A(pr,hr)l l\I/A(p,h)OTJr
jar(pr,hr) —— ja(p, h) o Jr
ir(p,h)

It therefore remains to show that the family of 2-cells (E(k’E)) AeB satisfies the following

instance of the modification axiom for every r : A" — A in B:
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(lwls x(C) oup x(C))((k,k)) (A, pr, hr)

([wls.x (C)Ous,x(c))((k»k)){

([w]BrX(C) © uB,X(C)) ((k7 E)) (A7p7 h)

2K (A,pr,hr)
—

265

k(A,pr, hr)

Jkr (p,h)

oJr ———  k(A,p,h) o Jr
20 (A,p,h)oFr

Unfolding the definitions around the anticlockwise composite and applying the lemma

relating fuse and post (Lemma [4.1.7)), the problem reduces to the following two lemmas:

Kep, h>(7r1,V

(kpxc(m1,m2) 0 J(p, h)) o Jr

~

~

|<A 7Tl<p7 h> 7T2<pa h> Oljr

I

kpxc(m,m2) o (J(p, h) o Jr)

I<B><C(77117r2)o¢gp,h>m

~

kxc(mi,m2)

kg xc(m1,m2)oJpost

kpxc(m1,m2) o J{pr, hr)

and

a6 p © Ip, Ihy o Jr

d¢. popost

qé’,B o(JpoJr,JhoJr)
593 r Oh,r)
a4 © S(pr), I(hr))

X —1
[¢]
do,p unpack

~

de g © (1, Ime) o Jpr, hr))

°J(p,hyor)

X
do,B

—1
{pr,hr) (7T1 771'2)

o (1, Ima) 0 Ip, hy) o Jr)

do BOLLW

(1)

™ D, h
kA p7 h’) o \JT
K (p,h) (8.24)
kas(pr, hr)
kA' (w;(rlr?h'r’wij‘),hv‘)

> kar (m1{pr, hr), molpr, hr))

12

I, hyoJr
¢gp,h>,r

J({p, hyor)

Jpost

Ipr, hr)

X
cC’Boh

I1e

Here the top unlabelled isomorphism is the composite

dc, g © (1, Ima) o Ip, hy) o Jr)

|

(qé’,B © <37T1737T2>> o (J{p, hyoJr)

(a8 0 @A) ) 0 3 )
(8.25)

Ip, hy o Jr

%

5 oK podr d3Bxc) © (3p, hy o Jr)
CC,BO ,)OJT
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applying the isomorphism Cé, p Witnessing that qxa p JC xJB S J(C x B) : (Jmi, Jma)
forms an equivalence.

For , one applies the associativity law for (k, k) along with the definition of post
as part of a short diagram chase. For , one unwinds the definition of unpack in each

of the two given composites and repeatedly applies naturality. ]

This lemma, together with Lemma [8.2.18] completes the proof of Proposition

8.3 Glueing syntax and semantics

Our aim now is to show how the structure of Ay, together with the identification of
neutral and normal terms in Section determines data in the bicategory of intensional
Kripke relations (c.f. on page [244)). Fix a cc-bicategory (X, 11, (—),=>) and consider
an interpretation 8 — X’ of base types in X with canonical extension s : B — X. We show
that the terms of A} determine objects in the glueing bicategory, and that the typing

rules determine 1-cells.

From terms to glued objects. On neutral and normal terms, the key observation is

that the interpretation of A)¢ -terms in X is pseudonatural.

Construction 8.3.1. Let B be a set of base types, (X,II,(—),=>) be a cc-bicategory,
and s : B — X the canonical extension of a set map B — X. By Proposition
there exists a cc-pseudofunctor s[—] : Tpe " 7(B) — X interpreting A~ (B) in X (see
Construction “ 2| for the full definition). We define a pseudonatural transformation
(s[=1,s[=]) : dL(—; A) = X (s[-]. s[A]) : dCong — Cat for every A€ B.

For the component at I' € Cong we take the functor
4L (r; 4) S X ([T, s[A])
(t) — s[T = (t) : A]
Next, for every context renaming r : I' - A we need to provide a 2-cell—i.e. natural
isomorphism—as in

dL(T; A) LED L ao(a; A)

sHl (@)r lSH

X(s[0D, s1AD) —zpgapap ™ ¥ 1AL s1AD)

Thus, for every (t) € L(I'; A) we need to provide an isomorphism in X" of type s[A - (t[r(z;)/zi]) : A] —

s[T + (t) : A] o s[r]. Calculating, one sees that

sIT = () : ADJ o s[r] = s[(T = () = AD] o {mrays - v s o))

= s[(T = (t) : AD] o (s[(A = 2y - Ari)])),
= s[(T = (t): AD o s[(A b 20y Argi))i=t, .. ]
= s[A+ (t){r}: A]
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Now recall from Construction that we have already constructed a rewrite typed by
the rule
L (t): A r:I'— A
A= cont(t;r) : (){zi = r(zi)} = (tr(z:)/z]) - A

We therefore define (s[—]), to be the interpretation of cont:

(s[=])r(t) := s[A - cont(t;r) : (t){x; — r(x5)} = (t[r(x)/z:]) : A]

To see that this is a pseudonatural transformation, observe first that it is certainly natural:

there are no non-trivial 2-cells in dL(T'; A). For the unit law, we need to show that

[T+ () = AJ o Idgpry = S[A - (t[xi/zi]) : A]
SIIFF(ItD:AHOEIds[F]]i ‘ (826)
s[CH(t) : A] olm, ... 70 s[AF (t) - 4]

s[Tcont(t;idp):t{xs—x; }=(t[zs /2] ): A]
~ gIds[F]] ~
where Sldgpry = Idyr) == <7r1 oldgpry, -+ 50 oIdsm> = (71, ... ,mp). To see this
commutes, note that s[I" - ¢(4) : (t) = (t){x; — ;} : A] is, by definition, the composite

~ s[[F}—(]t[):A]]o’g\Ids[[F]]
s[I' (t) : Al = s[[' = () : A] o Idgpry s[CH(t): AJolm, ... ,mny

Hence (8.26) commutes by Lemma and Lemma [5.4.9|(T)).

For the associativity law we need to show that, for any contexts I' := (z; : A;)i=1, .. n

and A := (y; : A;)j=1,.. m, and any context renamings I' > A LN Y, the following diagram

commutes:
sIT = () : Al o ({0 () () Alopost » [T+ (¢) : A o (0 ()
=~ S[TH(t):AJodw (™
(sIT b= (£) = A 0 (mr) o (e SIT - () : A o ()
s[cont((t);r)]olm,.) sfcont((t]);r'r)]
SIA b (¢[r(i)/i]) - Ao (myd SIS b (4r(e0)/zi]) - A]

s[cont((t[r(z:)/zi] );r")] /

s[X = (#lr(i)/zil[r' (y;) /w51« Al

We suppress the full typing judgement in the vertical arrows for reasons of space. By

Lemma this diagram is exactly the image of Lemma under s[—], and so it
comimutes. «
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The preceding construction restricts to neutral and normal terms, giving pseudonatural

transformations

(s[-1,5[-D)
) S et
[-150D)

AN (= A) =——= X (s[-], s[4])

One thereby obtains the following glued objects for every type A € B:
pa = (AM(= A), (s[-], s[-D1 ;- s[AD)
na = (AN (= A), (s[-]. s[-1)] . s[A])

Finally, for variables, we take
va = Y([A]) = (dCong(—; A), (I,1)(- 4y, s[A])

where (I,1)(_ 4) is the pseudonatural transformation of Corollary (8.2.10

(8.27)

From typing rules to glued 1-cells. We also lift the natural transformations of —
viewed as locally discrete pseudonatural transformations—to morphisms in gl({s)).

For the lambda abstraction case we will use the following observation. For types A, B €
B the exponential [dV(—; A),dN(—; B)] = [d(y[A]),dN(—; B)] = [Y[A],dN(—;B)] in
Hom(dCong, Cat) is, by Theorem equivalent to AN (— @ [A]; B). One thereby obtains

a composite

~

[dV(—; A),dN(—; B)] = dN(— @ [A]; B) 2B, gar(—; A= B) (8.28)

We put this to work in the next result, which is the bicategorical version of Fiore’s [Fio02]

Proposition 7 and Proposition §].

Remark 8.3.2. Examining the equivalence [dV(—; A), dN(—; B)] ~ dN(—@[A]; B), one

sees that it is in fact an isomorphism. Since NV (I'@Q[A]; B) is a set for every context I, the

composite N(I'Q[A]; B) — [dV(—; A),dN(—; B)](T') — N (I'@Q[A]; B) must be equal to

the identity. On the other hand, by Lemma [8.2.2|(5), the exponential [dV(—; A),dN (—; B)]

may be given by d(Fun(C, Set) (y(—) x V(=; A), N(=; B))). But Cat(dC, Set) (yI' x V(=; A),N(=; B))
is also a set for every context I'. Hence, the composite [dV(—; A),dN (—; B)] — [dV(—; A),dN(—; B)]

must also be the identity. <

Proposition 8.3.3. For every set of base types 9B, cc-bicategory (X, II,(—), =), and set
map s : B X canonically induced from an interpretation of base types B — X,
1. For every type A; € QNS, the triple var := (dvar(—; Aj), ;7Ids[[Ai}]) is a 1-cell v4, — pa,
in gl({(s)), where the 2-cell ~ filling

dvar(—;A;) d,/\/l(—; AZ)

= Jst1
X (s[-], s[A]) —— X(s[-],s[A])
X(s[[f]],lds[[Ai]])

dV(—; 4;)
11
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is the structural isomorphism s[I" - x; : A;] = Idgpa,p © s[C = x; : Ay

. For any base type B € B, the triple inc := (inc(—;B), ;,Ids[[B]]), in which =~ is a

structural isomorphism, is an isomorphism pg — np in gl({s)).

. For every sequence of types Ay, ..., A, € B (n € N), the triple proj, := (dprojk(—; A,),id, wk)

is a 1-cell pry (ay,...4,) = Ha, In gl({s)) fork=1,...,n

. For every pair of types A, B € 9B, the triple app := (dapp(—; A, B),id, evals[[Aﬂ,s[[Bﬂ)

is a l-cell 14 —p x na — pp in gl((s)).

. For every sequence of types A1, ... ,A, € B (n € N), the triple

tuple := (dtuple(—; A,), =, Idyry,, A.]]) is a l-cell [ [, na, — M, (A, ..., A,) 0 gl((s)),

where the isomorphism filling

dtuple(—;A.)

Hz ldN ) dN(_7Hn(A1> aAn))
[Ty sl- ]]l
Hi=1X( [[—Hvs[[Ai]]) = s[-]

)]

X(s[-], [ TizislA]) ———————— X(s[-1,s[I [.(A1, -, An)])
X (s[-1.1dsfp1,, aa1)

is the structural isomorphism

S[T = tup((t1), ..., (tn)) s [ 1, 4] = ([T (ta]) = Al = Id(ry, s4) 08T (te) = Ad])

. For any pair of types A, B € %, write Ly p for the composite

[AV(—; A),dN (=; B)] = dN( — +[A], B) 22254, g (— A= B)

of (8.28). Then, where =~ denotes a structural isomorphism, lam := (Lap,=

Adgpa) —spy) 18 @ 1-cell (va =>np) = a_sp in gl((s)).

Proof. is immediate. For , observe first that the only way to construct normal

terms of base type is via the inc rule. Hence the natural transformation inc is a natural

isomorphism. Next consider the diagram

inc(—;B)

dM(—; B)

11

¥ (501 s1B]) <gigmagy X -1 s0B0)

e
,<7
=
|

For a context I'" and term ¢t € M(I'; B), the clockwise route returns s[I" - ¢ : B] while
the anticlockwise route returns Idgpp o s[I' = ¢ : B]. Hence the diagram is filled by a

structural isomorphism, and (inc(—; B), =, Idypq) is a 1-cell in gl({(s)). To see that it is an

isomorphism in gl({s)), observe that the diagram
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inc(—;B) 7!

dN(—; B) dM(—; B)
s[-1 = H—H
X(s[[—]], s[[B]]) XL Tage) X (s[[—]], s[[B]])

is also filled by a structural isomorphism, giving a 1-cell ('an(—; B) 1 =, Idgg B]). Then, by

the coherence theorem for bicategories, the composite

ldarm(-:p)

X (s[-], s[B]) m X (s[-],s[B]) m X (s[-].s[B])
| =
X(s[[_]]vlds[[B]])
is equal to the identity 1-cell Id,, in gl((s)), and similarly for the other composite.

For one needs to check that the following diagram commutes on the nose:

AM (=TT, (A1, .., Ap)) —P ) g ag(— Ap)

s[[—}]l H_H

X (s[-],s[[T.(A1, ..., An)]) FTR TN X (s[-], s[Ax])
For a fixed context I" and term (t¢) € M(T'; B),
S[proiy (T3 A (] = sl m(®))] = slrl£D}] = w0 $IT - 14D : TTo(As, - » 4]

as required.
For one observes that the product pa—sp x 74 in gl({s)) is the pseudonatural

transformation x4 g defined by the diagram below.

X(s[[—ﬂ, s[A = B]]) X X(s[[—]], s[[A]])

dM(—; A=>B) x AN (—; A) » X(s[—], s[A=>B] x s[A])

KA,B

Hence, the composite X(s[[—]], evalsA’SB) o k4,p instantiated at a context I' and a pair of

terms ((t),(u)) returns

evalsasp o (s[I' = (t) : A=>B], s[I' - (u)) : A]) = s[eval{(t), (u)}]
= s[dapp(T'; 4, B)((t), (u))]

as required. The calculation for is similar.
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For @ some calculations are required. Since v4 = Y[A], the exponential v4 =>np may,
by Proposition [8.2.17] be given by the composite

[Y[A] AN (= B)] DALCELEDL 1y g (5[], s[B])] 22120 (5[], s[A] = s[B])

We therefore calculate the two routes around the diagram

[Y[A],dN(—; B)] ——=—— dN(— + [A]; B) M

[Y[A]v(é’[[*ﬂ:ﬂ)]l
[Y[A],X(S[[—H,S[[B]])] s[-1
U[A]»SHB]]\L

X (s[-], s[A] == s[B])

dN(—; A= B)

X (s[-], s[A] = s[B])

X (s[-1,1dspa] =>s1B])
We begin with the anticlockwise route, instantiated at a context I'. For (j,j) : YI' x Y[A] =
dN (—; B) the pseudonatural transformation [Y[A], (s[—], s[—])](j,j) is simply the composite

()

89 an(—; By LD

YT x Y[A] X (s[-1, s[B]) (8.29)

Moreover, from (8.20]) on page we know that, at I', the equivalence u,4) s[5] takes a
pseudonatural transformation (k,k) : YI' x Y[A] = X (s[—], s[B]) to the 1-cell

arap(tie)

A(s[T] x s[A] — S, srafa]) = s[B])

in X, where ¢; and ¢2 denote the two inclusions I' < I'+[A] and [A] < I'+[A]. Instantiating
in the case where (k,k) is given by (8.29)), one obtains

(ugay,spmy © [YLAL s[=11) G,1) = A(slir@pa)(er, 2)]) o af
It follows that the value of the whole anticlockwise route is Ids4 —sp © A(s[jir4[a1(e1,¢2)] ©
I [4))-
Next we calculate the clockwise route. For a context I and pseudonatural transformation
(j,j) as above, the unlabelled equivalence returns the 1-cell jrafa)(ta,te) (recall 1 on
page [259). This is a normal term of type B in context I'Q [A] = (', 2|41 : A); let us write

j for this term. The clockwise composite therefore returns

s[C=Azj: A= B] = A(s[T 211 : A j:Blod{mom, ... ,m, 0w, m2))

= A(slivsray(er, )] o {momi, oy 011, 72))

Since the tupling of projections on the right is exactly q;{ A] (Remark [8.2.4)), the required

2-cell is a structural isomorphism:
s o5 © Mslira pag(1,12)] © €8 ) = Mol pag e 2)] © @5 )
=\ (S[UF@[A](Ll, )] olmomy, ... , o0 7'['1,7'('2>)

O
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8.4 A}~ is locally coherent

We are finally in a position to prove the main result. To this end, let 8 be a set of base
types, (X,II,(—),=>) be a cc-bicategory, and s : % — X be the canonical extension of a
set map B — X. This extends in turn to an interpretation s[—] : 7;,@3“’_)(%) — X. From
this interpretation one obtains the glued objects of (page and hence a set map
B — gl({s)) sending B — pup. This extends via the cartesian closed structure of gl({s))
to an interpretation s[—] : 7; @’X’_)(%) — gl({s)). Since the forgetful functor gl({s)) —» X
strictly preserves the cc-bicategorical structure, we may write S[A] := (Ga, B, s[A])
for every type A € B, Moreover, for every context I' := (z; : Aj)i—1,.. n and term
[\ t: Bin AX 7 (B), one obtains a I-cell [T  t : B] = [[",5[A:] — s[B]. Write
(F[C +t: B],a[l + t: B],s[l + t : B]) for this 1-cell, which is described pictorially
by the following pseudo-commutative diagram in Hom(dCong, Cat) (note that, since s is

contravariant on Cong, the composite X'(s(—), X) = X (s[—], X) is covariant):

H?:l Ga, “iresl » Gp
[T mli
[T X(s[=D slAd) - oIrs”] (8.30)
)
X (s[-]. T2y s[4D) W (s[-1,s[B])

Finally, for every rewrite I' - 7 : t = ¢ : B one obtains a pair of 2-cells
S[l+7:t=t:B):d[l+—t:B]=73[+t:B]

sff=7:t=t:B]):s[C+t:B]=s[[+t:B]

which, by the cylinder condition, satisfy the diagram below. Since Hom(dCong, Cat) is a

2-category, there is no need to distinguish between bracketings.

vpos [CT:t=t":B]

vyp oS [+ t: BJ vp oS+t : B]
U[[F}—t:B]]l lcr[[FPt’:B]]
slC=t:B]ol(—, ...,=yolliL;va, —— s[L =t :B]ol—, ..., =)o[[iL;va,
s[Crit=t":B]o(—, ...,=)o[ [{_1 74,
(8.31)
We now use Proposition to define 1-cells unquote 4 : a4 — S[A] and quote 4 : S[A] —
n4 by induction on types. On base types B, we take
unquotep :=1Id,, : up — pp = 5[B]

quotey := (inc(—; B) ™!, =, 1dsp) : 3[B] — 05

where (dinc(—; B)™!, ~,1d,p) is defined in Proposition [8.3.3|[2).
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On product types [ [, (A1, ..., An), the 1-cell unquote 4,y : (7, 4.) = [T, 5[A]

is the n-ary tupling of the composite

(dproj,id,mx) unquote 4,
BT, A — > HAy b, 5[ Ag]

for k =1, ... ,n, where the first 1-cell is defined in Proposition . For quote(ry 4,),
we define

T, quote 4. (dtuple,g,Idsm—[n Ae])

[T 1ma, (T, As)

quote(y 4,) = [T, s[A]

where the second 1-cell is defined in Proposition |8.3.3)(5)).

Finally, for exponential types we define unquote 4 _, ;5 to be the currying of (unquote ; o app)o

(1A —>p % quote 4), thus:

_ WA =B X quote (dapp(—;4,B),id,evalsa),s[B]) unquoteg  _
A(MHB X A EAZEXA, () x g pp 0, 1]

where we use Proposition for the second arrow. For quote 4, _, 5 we define

) (La,B,=1dg a7 =>sB])

quote 4 . 5 := (S[A] ==3[B]) — (va=>np NA=>B

where the second arrow is defined in Proposition @ and the first arrow is the currying
of (quotep o evalgaspay) © (((S[A] =>5[B]) x unquote 4) o ((S[A] =>5[B]) x var)); that
is, the currying of the following composite:
(5[A] =5[B]) x va
(5141 =150 xvar |
(5[A] =5[B]) x pa
(5141 15D xunquote |
(s[A] =5[B]) x 5[A]

L

evalspay si5] 5151 quote; B

quote g o evalgy 47 515]

The morphism var := (dvar(—; Aj), ;7Ids[[Ai]]) is defined in Proposition . Let us
denote unquotey := (up,up,up) and quotey := (4B, qp,qB), so that mgom(unquotey) =

up and Tgom (quotey) = ¢p.
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Lemma 8.4.1. For every type B € %, there exist natural isomorphisms 7gom (unquotez) =

Id,py and Tgom(quote) = Idppy-

Proof. We proceed inductively. On base types the claim holds trivially. For product types,
we observe that, where A1, ..., A, € B (neN):

ﬂdom(unquote(Hn Ay)) = U, 0T, Lo uA, O TR

lle

(H?:luAi) © <7Tl> s ,7Tn>

2 (12 1day) o G, o )
; Ids[[nn A.]]

=

ﬂdom(quote(l—[n A.)) = Ids[[nn Al © H?Zlqj%
= H?zlin

H_
= [ i 1dgpay
= Tdgqry, Au]

Finally, for exponentials, one sees that

Tdom(Unquote 4 . )

Tdom(quote 4 . )

= A((up o evalpap py) © (Idspa 5] X qa))
=~ \((Idgppy o evalspapsgpy) © (Idspa =gy % Idspap))

A(evalspap sppy © (Idspa = gy % Idspap))
Idspa =By
A(gB o evalgpaypay) © ((Idgpa 5] x ua) © (Idga 5] * Idgpap)))
)\( I, © evalgpapppy) © ((Adspa s gy X wa) © (Idgpa = g1 % Idgpag)))
= A((Idgpy © evalspap, ) © ((Idspa -] x 1dsap))
)‘(evals[[A}H[B]] ° (dspa =5 x 1dsgay))

In each case the isomorphisms are composites of structural isomorphisms or canonical

isomorphisms for the cartesian closed structure, hence natural. ]

The definitions of unquote and quote, together with the preceding lemma and the 2-cells

[[ J , give rise to diagrams of the following form for every type B € B:

dM(—; B)

SHHJ

uB » Gp Gp 1z dN(—; B)

2 (s[-1, s[B]) 28 (5[], s[B]) 2 (s[-1, s[B]) ZE08) x (5[], s[B])

~

\;/ ~_ =

ldx (s-1,s[B1) ldx (s-1,s[B1)
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Thus, for any sequence of types A1, ..., A, € B (n € N), one obtains a diagram of shape

[Tizy dM(=: 4)) [Ty s

H?:l GAi

[T SH_HJV = lny—l YA,

[T, X (s[=], s[Add) —=r o) g (-], sfad])

Iy, e (s[-1,50441)

by composing with the fuse 2-cells. Pasting these diagrams together with (8.30]), one
obtains the following diagram in Hom(dCong, Cat) for every rewrite (I' - 7: ¢t = t': B) in
A7 (B). We write §'[7] for §'[T 7 : ¢ =t : B] and s[r] for s[T - 7 : t = ¢’ : B]. Since

. X 4 . . . .
there are no constants in Ay~ (B), these rewrites are necessarily invertible.

s [THt':B]

. Y T ;
[T, dM(— A4) — =2 e Gy, W e —" )
§'[+t:B]

fe

[Tz s[-] [Tioy va,

" -1 X(S[[*]LUAZ-)TL B

Hi:]. X(S[[_]]? s[[AZ]]) - Hi:]_ X(S[[_]], SIIAZII) UHFEZBH

— = =
ldpy; x(s[-1,504,D)

B

A
vy
T

(==

s[THt:Blo(—)

no AT e X(s[-1.ar)
X(s[=], TTizislA]) 2™ X(s[]. s[B]) ——— X (s[-]. s[B])
e ¢ \2/
s[THt":BJo(—)
Idx (s[-1,s18D)
(8.32)
The proof now hinges on two facts. Firstly, since N'(—; B) is a set, the composite 2-cell

obtained by whiskering across the top row of the diagram above must be the identity.
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Secondly, the middle part of the diagram satisfies the cylinder condition. Precisely,
writing tup for (—, ..., =), let k; be the invertible 2-cell obtained from the front face:

t s[C'+t:Blotupo [, s[—]

sl=Tegpos[l'-t: Blo [ ua,

Gpos'[Tt:Blo[ [{_, Ua, | =

N

X(s[-],qB) oy oS [ +t:B]o[[i ta,

A~

~

s[I' =t : Bl o tup o Idx(sp—J.u,, ) © [ TiZ1 s[-]

A~

>~

Iy (sf-1.a08]) © 7B 0 5[t : Bl o]

~

ypoS[Lt:B]o[[i g,

FIC-t:Blo] [, iia, | =

~

n
=1

s[C+t:Blotupo ],

4

Ua,

~

~

X(S[[_H7 uAi) © H?:l 3[[_]]

s[[t: B]otupofuse ™!

s[l' = ¢: Bl otup o [T (X(s[—],ua,) 0 s[=])

~

s[Tt:B]otupol [{'_ U4,

n

ST - ¢ Bl o tup o [Ty 7, 0 [Tyia, — > s[T k¢ : Bl o tupo [T, (va, o ia,)

s[Cit: B]otupofuse

(8.33)

The cylinder condition (8.31)) and the functorality of horizontal composition imply that sy
satisfies the following property in Hom(dCong, Cat):

s[—]egpos [T+T:t=t":B]o 1_[?=11’1\,Ai
s[-10dsoFIT k- t: Blo[Iyia, — > s[-[odp 0¥ - ¢ : Blo [T, a4,

Rtl;

s[C'+t:B]otupo [, s[—]

;IW

s[T'+¢:Blotupo ]’ s[—]

s[C7:t=t":B]otupo] [ ; s[—]

Applying the first fact, this diagram degenerates to the following:

s[-]ogpoS[I'+t:B]o]]i ta,

Rtlg

—— s[-Jogpod [+t :B]o]]_ ua,

(8.34)

;Int/

sl =t:B]otupo [l s[-] ———— s[C'+t :Blotupo ]’ s[-]
s[Cr:t=t":B]otupo] [ ; s[—]

Instantiating the bottom row of this diagram at the context I' := (z; : A;);—1, .. » and the

n-tuple of terms (I" - x; : A;)i—1, .. n, One sees that

(s[T=t:B]otupo [l s[-]) (T o : Ai)iz1,..n=8[C =t : Blo(s['F x; : Ai] )i

=s['+t:B]olm, ..., )

We may now extend (8.34)) downwards. Writing 7} := s[—]ogp o3[’ —t: B] o[ [ ua,



8.4. Ap~ IS LOCALLY COHERENT 277

and instantiating at (I' - 2; : A;)i—1, .. », one obtains the following diagram.
Ti(T - A)imt,op ——= Ty (T i Ai)i=1,..n

Kt | = x> | Ry
s[l+t:B]olm, ... ,mpy ——— s[T =t :B]olm, ... ,m)
s[Cr:it=t":B]o{m1, ... ,Tn)
ot ~ ~ ot (835)

lsry | = Tdsqry

N

S[[F =t B]] o Ids[[p]] SHF (S B]] o Ids[[p]]
s[Crr:t=t":Bloldry

N

~ ~

v

. R »
s[T' +—t: B] p—— » s[I' 1t : B]

The bottom two squares commute by naturality. Hence, since each component is invertible,
it must be the case that s[[' - 7 : ¢ = ¢ : B] is equal to the clockwise composite around

this diagram. We record this result as the following proposition.

Proposition 8.4.2. For any set of base types B, cc-bicategory (X, II,,(—), =>) and inter-
pretation s : B — X, the induced interpretation s[I' + 7 : t = t' : B] of any rewrite
(T'+ 7:¢t=1t": B)in X is equal to the 2-cell obtained by composing clockwise around .
Moreover, this 2-cell depends only on the context I', the type B, and the terms ¢ and ¢'. [

Hence, any pair of parallel rewrites (I' - 7:¢t =t : B)and (' -7 :t =t : B)
must be interpreted by the same 2-cell, namely the 2-cell obtained by composing clockwise

around (|8.35)).

Theorem 8.4.3. For any parallel pair of rewrites ' 7:t=t:Band'+7:t=1t:B
in AJS”(B), the interpretations s[I' - 7 : ¢t = ¢ : B] and [l 7 : t = t' : B] are
equal. O

We wish to instantiate this theorem in the syntactic bicategory to see that any par-
allel pair of rewrites must be equal in the equational theory of Ap~. However, the
ce-pseudofunctor [—] : Tpe " (B) — Ty (V) extending the inclusion 1 : B —

ps’x’_’(%) is not the identity: the definition for lambda abstractions requires an ex-

tra equivalence. Nonetheless, one can leverage the universal property to show that ([—] is
equivalent to the identity (c.f. Corollary |5.3.30)).

Lemma 8.4.4. For any set of base types B, the cc-pseudofunctor ¢[—] : 7£’X’_’(%) —
ps’x’ﬂ(%) extending the inclusion ¢ : B > pS’X’H(%) is equivalent to the identity. Hence,

t[—] is a biequivalence.

Proof. By Proposition [5.3.28] the canonical cc-pseudofunctor 1#(—) : FBet*~(B) —
Tg’xﬁ(%) (defined in Lemma |5.2.19)) is part of a biequivalence; write V, for its pseudo-

inverse. Moreover, considering the diagram



278 CHAPTER 8. NORMALISATION-BY-EVALUATION FOR Ay~

L#(_)T 4)

FBct* ™ (B)

and applying Lemma [5.2.20} one sees that there exists an equivalence t[—] o 17 (—) ~ /7 ().

One therefore obtains a chain of equivalences

idT@,X,H(%) x>~ L#(_) o -‘/L

pPs

12
—
~
=
L
(@]
~

I
—
L
N—

(e}
=

as required. ]
We can finally prove our theorem.

Theorem 8.4.5. For any set of base types B and any rewrites (I' - 7 : ¢t = ¢ : B) and
(T+7 :t=t:B)in AJ"(B), the judgement ([ - 7=7":t = t': B) is derivable in
A7 (B). Hence, Ajs™ (B) is locally coherent.

Proof. Consider the interpretation in the syntactic model ¢[—] : %?’X’_’(%) — R?’X’_’(%)
extending the inclusion of base types. Instantiating Proposition [8.4.2] one sees that
'=7:t=1t:B] =T+ 7 :t=1t: B] for every parallel pair of rewrites 7 and 7. But
biequivalences are locally fully faithful, so by the preceding lemma ([I' -7 :¢t =t : B] =

T 7' : ¢t = t': B] holds if and only if 7 and 7/ are equal 2-cells in Tpe " ~(B); that is,
Cr7r=7:t=1t:B). O

Theorem 8.4.6. Let B be any set and 7,0 : t = t/ be a parallel pair of 2-cells in the free

cc-bicategory on B. Then 7 = 0.

Proof. By Proposition|5.3.25], the syntactic bicategory R?’X H(%) is biequivalent to FBct* (%),
the free cc-bicategory on B. By the preceding theorem, the images of the 2-cells 7 and o

in p?’x’ﬂ(%) must be equal. Since biequivalences are locally fully faithful, it follows that
T=o0. ]

We can express this informally as follows. For any cc-bicategory (B,1I,(—),=>) and
pair of parallel 2-cells o, 7 : f = ¢ in B, if 0 and 7 are constructed from the cartesian closed
structure using solely structural isomorphisms and the operations of vertical composition
and horizontal composition, then o = 7. As a slogan: all pasting diagrams in the free

cc-bicategory commudte.
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8.4.1 Evaluating the proof

It is worth examining where the proof of Theorem would fail if Ay~ were not locally
coherent. Our reasoning here is only informal, but it should provide a measure of confidence
that the many pages of proof do not contain a fatal error, as well as throwing light on what
makes the argument work.

The normalisation-by-evaluation proof hinges crucially on two facts: (1) that any
interpretation of Aj¢~ induces an interpretation in the glueing bicategory, and (2) that
the canonical interpretation of Ay in the syntactic model is biequivalent to the identity.
The first fact entails that, whenever 7 and o are parallel rewrites of type ¢t = t, their
interpretations s[7] and s[o]] must coincide in every model. Then, writing | for the inverse
to ((([~]ra)ey : Tos (B (D3 A)(E, 1) — Toe7(B)(T; A)([t], oJt']), the second fact

allows one to construct the chain of equalities

o =)(ulo]) = Julr]) =7

witnessing local coherence. We give a small example showing how (1) fails if one adds extra
structure that is not locally coherent.

Consider the Ay~ -signature S consisting of a set of base types and a single constant
rewrite  : B k:x = x : B at a base type B. Since we add no extra equations, Ay (S)
is clearly not locally coherent. Now let (X, II,,(—),=>) be any cc-bicategory and s : B8 — X
an interpretation of base types. Since variables are normal terms, the interpretation of our
additional rewrite in the glueing bicategory as in on page yields the diagram
below, for which we use the fact that the interpretation of the judgement (z: B - x : B) is
the identity:

idgam(—;B)
—_— T
dM(—; B) V3 [x] dM(—; B)
\/)
idgam(—;B)
o[- z s[-]

s[aw: Br2:B]o(—)
X (s[-].s[BD) T hldlo () X (s[-],s[B])
Since dM(—; B) is locally discrete, the 2-cell §'[x : B + k : © = x : B] can only be

the identity. Now consider a context I' and evaluate at a neutral term (t|) € M(T; B).

s[t]
The isomorphism filling the central shape is the structural isomorphism s[I" - ¢ : B] ~
Idggpy o s[I' -t : B], so the cylinder condition requires that

sfJt:Brr:z=x:B]= ls[[t]]‘ididdM(_;B)‘ls_[ﬁﬂ =idspy) = s[r: Bt id; : 2= x: B]

Now, following the argument employed to prove Theorem [8.4.5] one sees that this equation

~

is satisfied for the interpretation extending ¢ : B — p?’x’a(‘B) if and only if the judgement

(x: B k=idy : ® = z : B) is derivable. Since we assumed this not to be the case, the
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cylinder condition cannot hold. Thus, the constant rewrite £ may not be soundly interpreted
in every glueing bicategory gl({s)), so one cannot rerun the normalisation-by-evaluation

proof.

8.5 Another Yoneda-style proof of coherence

Proposition [5.1.10| proved a form of coherence for cc-bicategories. It turns out that this
can be extended to an alternative proof of the main result just presented. The strategy is
similar to that presented in Section but only relies on the universal property of the free
cc-bicategory F. Bctx’”(%) (defined in Construction . Nonetheless, the development
highlights the core of the normalisation-by-evaluation argument as just described.

Fix a set of base types % and an interpretation h : 8 — X in a cc-bicategory
(X,M,(—),=>). This extends to an interpretation B — X we also denote by h. Now
let (C,11,(—), =) be a 2-category with strict products and exponentials and (F,q*,q™) :
(X, 10, (-),=) — (C,I1,(—), =>) be any cc-pseudofunctor. Writing Fy for the underlying
set map ob(X) — 0b(C), one obtains an interpretation Fyoh : B — C. One thereby obtains
a weak interpretation in A and a strict interpretation in C. The situation is described by

the following commutative diagram:

C
Fooh TF (Foh)#
X

I

7_>(%) W) FBCtX’_)(%)

0

Now, the composite F o h# is a cc-pseudofunctor, so by Lemma [5.2.20] there exists an
equivalence (Fyoh)* ~ Foh# : FBct*~(B) — C. Denote this by (k,k) : F o h# =
(Fy o h)*. For any 1-cell t : T — A in FBct*~(B), one therefore obtains an iso-commuting

square

oh#
(Foh#)r — M0 (pop#ya

Iqﬂi ke ik A
~

(FO O h)#l—‘ W} (FO o h>#A

Moreover, the naturality condition on k; requires that, for any 2-cell 7:t = ¢ : ' > A in

~

FBct*(B), the following commutes:

kao(Foh#)(t)

ka o (F oh#)(t) kg o (Foh#)(t)

% Ft, (8.36)

(Fy o h)#(t) o kp s (Fyoh)* () okp

(Fooh)¥ (r)okp
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But the cartesian closed structure of C is strict and the definition of the pseudofunctor
(Fy o h)* only employs the canonical 2-cells of the cc-bicategory structure, so (Fy o h)¥ (1)
is the identity for every 2-cell 7. To see this, one argues by induction on the definition of
the cc-pseudofunctor k# extending a map k interpreting base types (Lemma [5.2.19)). It
follows that degenerates to the following:

o [e] # T
ka o (F oh#)(t) Kao(FonT) @) kao (Foh#)(t')

Etl lr (8.37)
(Fo o h)*(t) o kp (Fo o h)* (') o kp

Now, since (k, k) is an equivalence, every component kx has a pseudoinverse. Let us denote
this by k%. From (8.37), one sees that the following commutes:

(F o h#)(t) (o)) s (F o h#)(t)

~ ~

* # N * #
(k% o ka) o (F o h¥)(t) RNy (k% oka) o (F o h¥)(t)

~

k% o (kao ((F o h#)(t))

k% o (kao (} o h#)(t'))

Vv

kzo(kAo(Foh#)(‘r))
k* oke k* oky

k* o ((FO o h)#(t) o kp) k* o ((FO o h)#(t) o kp)

One thereby sees that (F o h#)7 is completely determined by a composite of 2-cells, none

of which depend on 7.

Proposition 8.5.1. Let (X, II,,(—), =>) be a cc-bicategory , (C,II,,(—), =>) be a 2-category
with strict products and exponentials, and (F,q*,q™) : (X, IL,(—),=>) — (C,I,,(—),=>)
be any cc-pseudofunctor. Then if A : B — X is the canonical extension of an interpretation
B — X and 7:t =t is any 2-cell in FBct*(B), the 2-cell (F o h#)(7) in C is completely

determined by ¢ and ¢’. Hence, for any parallel pair of 2-cells 7,0 : t = t' in FBct*~(B),
one has the equality (F o h#)(7) = (F o h"")(0). O

Together with Proposition [5.1.10| one obtains the local coherence of FBct*~(B), which

completes our alternative proof of Theorem [8.4.6

Theorem 8.5.2. For any set of base types 98 and any pair of parallel 2-cells 7,0 : t =t in

chtX’”(%), the equality 7 = o holds.

Proof. Instantiate the preceding proposition with A := ¢ : B — FB ctxﬁ(%) the inclusion
and F' the biequivalence between a cc-bicategory and a 2-category with strict products and
exponentials arising from Proposition|5.1.10L Note that /7 ~ id]-‘BctX’—*(%) by Lemma [5.2.20
so that F o /¥ is a biequivalence. Then F o % is locally fully faithful, so (F o /#)(7) =
(Fou#)(0) if and only if 7 = 0. The result then follows from the preceding proposition. [
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Since FBct* ™ (B) ~ R?’X’H(%), this entails the local coherence of %?’X’H(S). One
therefore recovers Theorem [8.4.5

We end with some comments on the argument just presented. First, as it stands it is not
constructive. We make use of the coherence theorem for fp-bicategories (Proposition ,
for which one chooses a pseudoinverse to the inclusion of a bicategory into its image under
the Yoneda embedding. This choice is only determined up to equivalence, so one does not
obtain an explicit witness for the product structure. Second, the argument relies crucially on
the interplay between weak and strict structure. We use the strictness of Hom(B, Cat) to
obtain a strict cc-bicategory biequivalent to our original one, and then we use the strictness
of this bicategory to degenerate (8.36)) into (8.37). It is, therefore, a strategy that is only

available in the higher-categorical setting.




Chapter 9

Conclusions

We leave a full investigation of the applications of the development in this thesis for future
work. We do note, however, that the problem we posed in the introduction now disappears.

Consider a structure definable in any cartesian closed category. Examples include
the canonical comonoid structure on any object, or the monoid structure on any endo-
exponential. This definition is witnessed by a A*°”-term up to 8n-equality, and hence—by
Proposition by a Affs’_)—term over the same signature, with Sn-equalities replaced
by rewrites. (Since we explicitly construct the correspondence between A*~-terms and
Aps” -terms, this construction can be done via a terminating decision procedure.) These
rewrites will provide the data required to define a bicategorical version of the structure
under consideration. Theorem then entails that the required coherence axioms must
hold. One thereby obtains the following principle.

Principle 9.1. To show that a pseudo structure may be constructed in any cartesian closed
bicategory, it suffices to show that its strict version—that is, the image of the corresponding

Aps” -term in A*»~—may be constructed in any cartesian closed category. <
Applying this principle immediately entails the following results.

Definition 9.2. For any cc-bicategory,

1. Every object has a canonical commutative pseudo-comonoid structure, and

2. Every endo-exponential has a canonical pseudomonoid structure. O

Further work

There are many interesting avenues for further work; we mention a few here.

Extensions to Ajg . It is natural to consider incorporating further type-theoretic con-
structions into Ap¢ . One example would be sum types, corresponding to bicategorical
coproducts. Extending the local coherence proof to this type theory would likely require
a bicategorical development of Groethendieck logical relations [FS99], with possible con-

nections to the theory of stacks. A more ambitious development would be the inclusion
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of Martin-Lof style dependent types [ML84]. This would be particularly intriguing as
the interpretation of these constructions in locally cartesian closed categories is, properly
speaking, bicategorical [CD14].

From a different perspective, Pitts has suggested considering the theory of fixpoints. In
an unpublished manuscript [Pit87], Pitts considered a calculus for initial fixpoint categories
(IFP-categories): 2-categories equipped with finite products and a notion of ‘initial algebra’
on every endomorphism of the form A Sdae), Ax B ER B, representing a formal fixpoint
construction. Other important examples in a similar vein include algebraically complete
categories [Fred1], or iteration (2-)theories [E99, BELMO1]. The fact that bicategories
represent a natural setting for ‘formal category theory’ suggests considering constructions
of type-theoretic interest (such as fixpoints) as well as constructions of category-theoretic

bicl
ps

interest (such as monads) as particular constructions within A

An orthogonal line of development would be towards higher levels of categorical structure.
One might, for example, extend to tricategories; restricting to unary contexts would recover
a type theory for monoidal bicategories. (An alternative approach to the same result would
be to introduce a linear version of Agisd). It may even be possible to inductively generate
higher levels of structure to recover some form of co-category. For these developments to be

principled, the first consideration ought to be the appropriate correlate of biclones.

Applications to higher category theory. FEach extension to the type theory raises the
question of its coherence. As outlined in the introduction to Chapter [§] there is a wealth
of literature studying various forms of normalisation-by-evaluation for extensions to the
simply-typed lambda calculus. It is plausible that their bicategorical correlates would lift
to extensions of Ap¢~ . More speculatively, one might hope that by constructing higher-
dimensional type theories and examining their relationship to well-understood classical type
theories (in the style of Section for instance), one may gain a better understanding of
where coherence can be expected and—in the cases it cannot—why it fails.

This thesis also lays the groundwork for bicategorifying further category theoretic
results. For instance, the conservative extension result of [FDCB02] §3] shares many tools
with the normalisation-by-evaluation argument of [Fio02], such as glueing and the relative
hom-functor. It should be possible, therefore, to extend the bicategorical theory presented

here to show that cc-bicategories are a conservative extension of fp-bicategories.

Higher-dimensional universal algebra. Moving away from type-theoretic concerns,
there remains the question of the universal algebra associated to (mono-sorted) biclones.
In the classical setting, it is well-known that the three components of the monad—Lawvere
theory—clone triad are all equivalent. Biclones appear to represent one corner of the
bicategorical version of this triad: whether pseudomonads and some bicategorical notion of

Lawvere theory complete the picture remains to be seen.
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Appendix A

An index of free structures and

syntactic models

In Table summarise the various bicategorical free constructions and syntactic models
employed throughout this thesis. As a rule of thumb, we use Syn to denote biclones (and

their nuclei, i.e. restrictions to unary contexts) and 7ps to denote bicategories.
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Chapter
FCI(G)
FBct(G)
Syn(@)
Syn(9)|,
H(G)

Chapter|§|
FCI*(S)
FBct*(S)
Syn’(S)

Syn*(S)|,

Tos (S)

Chapter
FCI™(S)

FBet*(S)

Syn*(S)
Syn*(S)

s (S)

free biclone on a 2-multigraph
free bicategory on a 2-graph
syntactic biclone of Agisd on a 2-multigraph
syntactic bicategory of Agiscat on a 2-graph

syntactic biclone of H' on a 2-multigraph

free cartesian biclone on a Ajg

-signature
free fp-bicategory on a unary Aj -signature
syntactic biclone of A, on a A’ -signature

syntactic model of type theory obtained by
restricting A to unary contexts

extension of Syn*(S)|, with
context extension product structure

. . X .
free cartesian closed biclone on a Ay~ -signature

. X .
free cc-bicategory on a Apd -signature

. . X X .
syntactic biclone of Apd™ on a AjJ -signature

nucleus of Syn*"7(S)

extension of Syn*7(S) with
context extension product structure

Construction

3.1.16

Lemma|3.1.18

Construction

3.2.11

Construction

3.2.15

Construction

3.3.7

Construction

4.2.58

Lemma |4.2.62

Construction

4.3.6

Theorem 4.3.10

Construction

4.3.15

Construction

5.2.16

Construction

5.2.18

Construction

0.3.8

Construction

5.3.11

Construction

0.3.20

BRI S

v v Y9 T T

. [118

. (119

. [123

. [125

. 1130

149

151

162

163

170

Table A.1: An index of free constructions and syntactic models




Appendix B

Cartesian closed structures

We summarise the cartesian closed structures of Hom(B, Cat) and gl(F).

Cartesian closed structure on Hom(B,Cat). Let B be any 2-category. Then the
2-category Hom(B, Cat) has finite products given pointwise and exponentials given as in

the following table:

Exponential [P, Q] AXB Hom(B,Cat)(YX x P,Q)
Evaluation 1-cell evalp AXB Ak, k)YXXP=Q \pPX (X, Idx,p)
A(j,j)BxP=0 AXB A BX NAB A(h, p)Y XAXPA (X (B, p)
with naturality witnessed by by Lemmas [6.1.4] and [6.1.5
Counit Epg(j, j) AXB A(r, p)BX*PX (X, (T) 7 (r), p)
ef(2) defined by diagram @

Table B.1: Exponential structure in Hom(B, Cat), from Section

Moreover, for a pseudofunctor P : B°? — Cat and object X € B the exponential [Y X, P]
in Hom(B°P, Cat) is given by P(— x X), with structure summarised in Table
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Evaluation 1-cell evalp

ABB A(p, h)P(BxX)xB(BX)  p((1dg, h)

Lo
\F)

with naturality witnessed by Lemma [6.2.1

A(k E)RXYX:P

)\BB . )\T’RB . kB><X (R(m)(r), 7T2)
with naturality witnessed by Corollary [6.2.3

Counit E(k, k)

defined by diagram (|6.15

ef(®)

defined by diagram (|6.17

Table B.2: Exponential structure in Hom(B, Cat), from Section

Cartesian closed structure on gl(J).

APPENDIX B. CARTESIAN CLOSED STRUCTURES

Let (3,q%) : (B,II,(=)) — (C,IL,(—)) be an

fp-pseudofunctor between cc-bicategories and suppose that C has all pullbacks. Then gl(J)

is cartesian closed, with structure given as in the following two tables.

Product Hi(0i7 ci, Bi)i

(Hz Ci,q* o Hz Cis Hz Bi)

Projection 1-cells m;,

(g, pog, g ) for pg defined in (7.5

n-ary tupling (¢;,...

7§n> for tz = (ti7ai78i)

((tey, {te},{se)) for {ce} defined in

Counit @w

(k) (k))

kth component is (wf. ) TWge

pT(zl, ooy 1,,) for T, =

(i=1,...,n)

(15,0:) : T ou=1

7Un))

(pT(Tl, ey Th)s pT(al, ...

Table B.3: Product structure in gl(J), from Section

Exponential (C, ¢, B) =>(C",d,B") | (C 2 C’',p., B=>B’) defined by the pullback (7.11
Evaluation 1-cell eval o (evale,cr 0 (e, % C), Epom eval p )
T for E¢ ¢ defined in ([7.12)) and (7.13

A, ) (lam(t),I'c o, As) for lam(t) and I, g—defined by
- UMP of pullback applied to L, (7.15
Counit ¢ (e,¢) for e defined in (7.17

el(z) for 7 := (,0) (7%, ef(0)) for 7% defined by UMP-pf pullback

o applied to fill-in defined in (7.20

Table B.4: Exponential structure in gl(J), from Section




Appendix C

The type theory and its semantic

interpretation

C.1 The type theory Aj;™~

Fix a Ap¢~ -signature S = (B,G) (Definition [5.2.13 on page . We give the rules for
the full type theory Aps~ . The type theories Agisd and AJ; are fragments of Aps™, and the

type theories Agécat and A[|, are respectively obtained by restricting Agisd and A, to unary

contexts.

[ ctx x ¢ dom(T") N
o ctx I'ax: Actx (ae

)

Figure C.1: Rules for contexts
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var (1 <k <n)

1AL, T A oy A

ceG(Ai,...,Ay;B)
const
Tn Ap b c(x1,...,2,) : B

.1‘1:A1,...,

Tp:Apn-t:B (At A)i=t,n
horiz-comp

.1‘1:A1,...,
, Ty — Up}: B

Al—t{xlr—>u1,...

k-proj (1 <k <n)

p: Hn(Al,,An) [ ﬂk(p) D Ayg

't1:4 ... Trt,:A,
n-tuple
L' tup(ty, ... tn) : [[,,(A1,. .., Ay)
'z:A+t:B 1 oval
T-Mrt:A=B f:A=B,z: Al eval(f,z): B
Figure C.2: Introduction rules for terms
x1: A1, ...,k Ay -t B )
t-intro
x1: A, xn Ay it = t{a; > x5} B
1 :Al,...,xn:Anl—Lt_l:t{xini}ﬁt:B
X1 - Al, R 7 An  xg - Ak (A = wg Ai)i=1,...,n
) o®)-intro (1 < k < n)
At 0uy,un TR > Uy = ug Ay,
—k
AR qu,..).,un sugp = xp{x; > ub o Ag
(At uj:Aj)jmt1,m
(x1: A1, T A 02 Bi)iz1,.
Yi:Bi,yn i Ba b ¢ assoc-intro
A - assoc; y, v, Hyi — vi{z; — u;} = tH{y — vi{z; — u;}}: C
A+ assoct_ﬂ}_’u‘ ct{y = videy o it = Hy - vt ooyt C

Figure C.3: Introduction rules for structural rewrites
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I'—t¢:A
'id;:t=¢: A

K€ g(Ab .. 'aATL;B)(Cv C/)

id-intro

7 2-const
x1: Al xn  Ap b R(T, ) (T, xn) = (T, )
r l(—k)t1 t Ay e 'ty Ay w®)intro (1< k < n)
'y, me{tup(ty, ... tn)} =t + Ak
Cw: [, (AL An) (' o mfu} =t 0 Ai)imi,n )
pi(ai,...,an)-intro

LFpllar,...;an) tu=tup(ts,....tn) : [[,(41,..., A,)

I'Ne:A+-t: B
Dz : A g eval{(Az.t){inc, }, 2} =t : B

e-intro

x:A+t: B '-u:A=10B
Ix: AR a:eval{u{inc,},z} =1t: B
I'-el(z.a):u=\zt: A=B

ef(x . a)-intro

Figure C.4: Introduction rules for basic rewrites

F'7:t=¢t:A F'7:¢=+¢:A4
Trer:t=1t": A

vert-comp

1A, Ay Tit=t: B (A oiu=u,: Aij)icin

horiz-comp

A 1{z; — o} H{xy - i} = {z; — ul} B

Figure C.5: Composition operations for rewrites

't A 't,: A4,
' wgl_ﬁ)% Dt = me{tup(te, ... tn) ) Ag

w(~F)intro (1 < k < n)

Tt ], (AL .., Ay)

1 ¢~ Lintro
I'Eo " ctup(mi{t), ... ,mpft}) =t ][, (A1,..., Ap)
I'ru:A=1B .
7N~ “-intro
I+ n,t: Az.eval{u{inc,}, 2} = u: A= B
Nz:A+t:B L.
g~ “-intro

D,z: Al et it = eval{(\x.t){inc,},z} : B

Figure C.6: Introduction rules for pseudo cartesian closed structure
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. . . /.
Fe1:t=t:A «_right-unit IEr:t=t:4 o-left-unit

Freidi=r:t=t: A F'r=idperT:t=t:A4

T t"=¢t":A F'7:t'=¢t:4 THr:t=t:A
T ("ot )er=7"e(T"eT):t=1t":A

0-aSS0C

Figure C.7: Categorical structure of vertical composition

x1: A1, ...,k Ayt B (Akui:Ai)zﬁl,...,n
A b idi{m; = ui} = idygg,n,y  HE = wi = Hag— w0 B

id-preservation

21 : A1, T ATt =>1t B (A oy :iu =) Azt
1AL, .. Tn AT it =t B (Ao u;=ul: A)iz1,..n

""" interchange
At r{zi— o} em{wi > o} = (7 e7){wi = gieoi}  t{wi > ui} = t"{xi > ui} : B
Figure C.8: Preservation rules
(A oiiu=ul: Azt n
") ") (L<ks<n)
— !/
A+ N o xp{T; > 05} = 0k @ 0uy,.uy ¢ TuiTi = Ui} = Uy 2 Ay,

x1: A, Ay -Tit=t:B
x1 Ay, Ap e r=T1{x; > xitey it =t'{x; > x;}: B

(A pyuy = u): Aj)j=1,..m
(1 : A1, @ Ay 04 v = V) Bi)iz1,.
y:B1,...,yn:Ba-71:t=>t:C

A b assocy y, u, @ T{Yi > oil{z; — i} = T{yi = oi{z; — p;}} e assoce,v, u,

sy = vy o oug} = Py o vifz; > ugly O

Figure C.9: Naturality rules for structural rewrites

:BliAl,...,xn:Anl—tZB (Akui:Ai)i:L...,n

A+ t{z; — Qq(f.)} ® ass0C; g, uy ® L{Ti — Ui} = idt{miHui} sz - uit = t{z; — u;} 0 B

(Abuy:Aj)j=1,..m (y1: Bi,.. oy yn : Bn b wj i Ci)k=1,...0
(1 : A1,y Zm A vt Bi)iz1,.on z21:C1,...,21:Ci=t:D

A b t{zk — assOCuw, ,ve,ue } ® ASSOC

= assoct’w.’v.{IjHUi} ® ASSOCt{z; >wy},ve ;e

st{ze = weHys = viH{z; o us} = e > welys & vi{z; > ugbt i D

Figure C.10: Biclone laws
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F'-ap:mfu=t1: A1 ... Thoa,:miu=1t:4,

' a= wzgf,)...,t" emp{pllan,...,on)} : me{u} =ty ¢ A4y,

Ul(1<k<n)

I'Ey:u=tup(ty,... . tn) : [[,,(A1,..., Ay)
I'~= pT(wS) e {7},... ,wgfb) e {7}) ru=tup(ts,...,tn) : [[,(A1,..., 4y)

U2

(Fl—Oéi Eagiﬂ'l‘{u} =1;: Az)

i=1,....,n

[ pllag,...,0n) =pi(ad,...;al) s u=tup(ty, ..., tn) : [, (A1, ..., Ap)

cong

Figure C.11: Universal property of pf(c)

Nx: A a:eval{u{inc,},z} =t: B

Iz:AF a=¢eeval{el(z.a){inc,},z} : eval{ufinc,},z} = t: B

't~v:u= Mzt: A=1B
[+~ =el(z.e 0eval{y{inc,},z}) :u= Iz.t: A= B

U2

z: Ak a=d :eval{u{inc,}, 2} =1t: B
I'+efz.a)=el(z.a/):u=Iot: A=B

cong

Figure C.12: Universal property of ef(a)

FFtliAl FFtnAn

'+ wt(l_k) b owt(f) b, = 1dr, ftup(te,tn)} me{tup(ty, ..., tn)} = me{tup(ty, ... tn)} : Ag

..........

't : A 't,: A,

T ~ wgi)m’tn .wgik)t = idtk : tk = tk : Ak

vn

I'—t: Hn(Al,...,An)
I leg =id ct=t: [, (A1, Ap)
r Ht: Hn(Al,,An)
Do ' = ideup(r (1), mnfty) © tUP(me{t}) = tup(me{t}) : [, (A1, ..., An)

I'u:A=B
Ly eny, ! =idygevalfufine, },2} © Az-eval{uf{inc, }, 2} = Az.eval{u{inc, }, 2} : A=> B

I'u:A=DB x:A+t: B
F'n,len,=id,:u=u: A=>B D,x:AFeee;l=id:t=1:B

I'z:A+t: B

Lo Ak e oy = ideval{(aat) {inca )2} © @Val{(Az.t){inc, }, 2} = eval{(Az.t){inc, }, 2} : B

Figure C.13: Invertibility rules for pseudo cartesian closed structure
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I'-t:B
Fl-L;lOLtEidt:tﬁtlB

x1: A, ., xn Ayt B

,azn:AnI—LtOL;lEidt:t{xir—»xi}ﬁt{xi»ﬁxi}:B

l‘liAl,...

zlsAl,...,xn:iz)ku(lk):Al cee XA A g Ay (1 <k<n)
AL T A Oue @ 0u) =1y () TRT > uiE = 2 {E o ug) s Ay

vy Ay, Ay u B (1<k<n)

xl:Al,...,xn:AnI—lef)oggfk)zidu:u:u:A

(At uj: Aj)j=1,.m
(1 : A1, 2 A vt Bi)ic1,. y1:B1,.. .y : Bp—t:C
idiquyfuyy - Hy = vil{ry = ) = Hy - vil{r; > u} O

A+ assoc{ihu. ® ass0C; y, u, =

(At ujtAj)j=1,.m
(xl : A17 ey Iy - Am ;o Bi)i:l,...,n
A assoc; y, yu. ® assoc;ﬁhu. = idyqy, (u;}} tHy; — vi{z; — u;}} = t{y; — vi{z; — u;}}: C

y1:B1,. 3 Yn Byt C

Figure C.14: Invertibility of structural rewrites

F'7:t=¢t:A FI—TET’:t:>t’:ASymm

refl
Tr=r:t=t:A4 I'—7=7:t=1t:A4

Fr=7":t=>t:A Trr=7:t=>t:A
IW_TET//.t:>t/.A trans

T—7=0:t=t": A I'7=0:t=t:4A4
F|—(7"o7‘)5(0‘/00‘):t=>t”2A

1A, AgT=7t=t:B (Aroi=0)u; = ul: Aj)ic1,..n

A 1{z; — 05} = m{x; — ol}  t{x; — u;} = t'{x; > Ui} - B

Figure C.15: Congruence rules
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C.2 The semantic interpretation of Aj;™~

We employ the same notation as Example [5.2.12| (page [146]).

Notation C.2.1. For any A;, ... ,A,, B € B (n € N) in an fp-bicategory (B,II,(—)) there

exists a canonical equivalence

eaun [ Toi(An o A B) S [T ([u(Ar - An). B) s e, g

where ea, g 1= ({71, ... , ), Tpt1) and eZ.,B :={mom, ...,mom,m2). We denote the

witnessing 2-cells by

*
va,B tId[] (ay, .. A4,)xB = €4,BO €4, B
WA,B €4, 30€A,B = Id[] (a1, A,.B)

<

Construction C.2.2 (Semantic interpretation of Ap¢ ). For any unary Ay~ -signature S,
ce-bicategory (B,1I1,,(—), =>) and A}¢  -signature morphism h : S — B, the interpretation
h[—] of the syntax of A}~ (S) is defined by induction.

h[B] := hB for B a base type

R L, (A1, ..., AR)] = Hn(h[[Al]], ,h[[An]])
h[A => B] := (h[A] => h[B])

On contexts, we set hzy : Ay, ...,z Ap] =T, (R[A1], ..., h[4n]).

Let T' := (z : A;)i=1,... n be any context.

T ;s A = m;
RIT - e(xy, ... ,xy) : B] := h(c)
hp: 11, (B, .. . Bm) = mip) : Bi] == m;
AT - tup(ts, - stm) s [1,,(B1, -« s Bm)] :=<h[D = t1: Bi], ... ,h[D =t : Bl
hlf : (A== B),z: A eval(f, ) : B] := evalypa) n15]
WD Azt : B=>C]:= A(h[T,a: B t:Cloeh, p)
h[A - t{x; — w;} : B] := h[[' +t : Bl o (h[A F u; = Ai])i

We omit easily-recovered typing information for the purpose of readability.
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For composition, constants and products the definition is direct:

AT idg : t =t : B] := idpq
h[D 7' e7:t=1t":B] :=h[r'] eh[r]
h[[A Fr{z; — o} t{x; > u} = t/{:c,- — u;} : B]] := h[r] o (hfoi]))i
AT = ki c(ze) = ¢ (x4) : B] := h(k)
h[[F O o cme{tup(ty, ... S tm)} =tk Bk]] = wlgl?[w)tl]],...,h[[tm}]

t1, ..., tm

AT+ pfled, ... o) s u=tup(te, ... ,tw) : [1,,(B1, - s Bw)] := pl(h[aa], ... , hlawm])

The structural rewrites are interpreted by composites of structural isomorphisms. For o)

and ¢ one has:

(k)
“hlue]

hlolf) .1 =m0 (hwi])i === hlu]

Bl o= hlt] 2 ht] o Idygry =222 p[t] o (e o AIC]) S Al o (ma)

For assoc one has

h[assoct, ue,ve ]

hlt{ui}{v;}] h[t{ui{ve}}]

(At o <luil);) o Plvs Iy —=— Rl o (Clwl); o hlosD;) sy, PIED o Chluill o Chlva));

Finally we come to the exponential rewrites e; and eT(x .a). Suppose that I' - u : B=>C.
Then

R,z : B + eval{u{inc, }, z} : C] = evalyp) njeg © AT, @ : B = u{ine,} : B=>C], mp41)

= evaly gy apey © AT Fu: B=>Cllolmy, .., Tn), Tny1)

The interpretation A",z : B | &; : eval{(Ax.t){inc;}, x} = t : C] is the following composite,
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in which we abbreviate A",z : B It : C] by ht]"*5:

evalh[[B]]ﬁ[[Cﬂ o <)\(h[[t]]F,x:B o e;;[[A.]],h[[B]]) oM, v s Ty, 7Tn+1> - h[[t]]F,x:B

~

12

hIE]5" 5 o Tdp(npang) xh[B]

evalh[[B]]vh[[Cﬂ ¢} <)\(h[[t]]F7x:A ] e;L[[A.]],h[[B]]) o <7T1, e ,7’[‘n>, Idh[[B]] o 7Tn+1> h[[t]]r’w:Bowh[[A.]]’h[[B]]

evalofuse ™! h[[t]]nx:B © (QZHA.]]JL[[B]] © eh[[A.ﬂ,h[[Bﬂ)

12

evalh[[B]]’h[[C]] o ((A(h[[t]]nx:B ] e;l[[A.]LhﬂBﬂ) X h[[B]]) ] eh[[A.]Lh[[BH)

12

(h[[t]]FmB °© 62[[A.]],h[[3]]> © €h[A.],R[B]

A’e*)oe

(evalh[[B]]’h[[C]] e} (/\(h[[t]]r’x:B e} e;z[[A.]],h[[B]]) X hﬂB]])) e} eh[[A.]Lh[[B]]

On the other hand, for a judgement (I';z : B  « : eval{u{inc,},x} = t : C), the

interpretation of « has type
evalyppnjcg ©CPIC Fu: B=>Clolm, ...\, Tny1) = h[[Lo: Bt:C]  (C1)

To interpret (I' - ef(z. ) : uw = Ax.t : A=> B) using the universal property of exponentials,
we distort (C.1]) into a composite h[a]° as in the diagram below. We suppress the subscripts
on ey, B and 6;1.,3 to fit the diagram better onto the page.

hla]° _ .
evaly gy aicy © (h[ul” x A[B]) le] BT o e
(evalh[[B]],h[[C]] o (h[[u]]r X h[[B]])) o IdHQ((Hn h[A]) LB
evalo(h[[u]]Txh[[B]])ovl—[z((l—[n h[ASD),RLB])
(evalygayafep © (h[ul" x h[B])) o (e o e”) ha]" e Boet

~

(evalpppynper © ((R[u]" x A[B])) oe) o e*

evalofuseoe*

(evalh[[B]],h[[Q] o <h[[u]]F CRG TR Sp% Idyppy © 7rn+1>) oe* —» (evalh[[B]],h[[q] o <h[[u]]F 0 (e ), 7rn+1>) oe*
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The unlabelled arrow is evaly[pn[cy © (hu]" 0w, Idypp) © w0 SZHA.]] hBl" Finally,

then, one has

AL - ef(@.a):u= et : B=C]:= ([T, 2 : B a: eval{ufinc,},z} =t : C]°)



Appendix D

The universal property of a
bipullback

Recall the following definition of a pullback (Definition on page [224)).

Definition D.1. Let C (for ‘cospan’) denote the category (1 LN S 2) and B be any
bicategory. A pullback of the cospan (X EiN Xo %Ll Xs) in B is a bilimit for the strict

pseudofunctor C — B determined by this cospan. <

We translate this into a presentation closer to that for categorical pullbacks—namely,

that given by Lemma [7.3.6| (page [224)—by showing that, for any F' : C — B, there exists

an equivalence of categories Hom(C, B)(AB, F') ~ B/F, where each category B/F consists

of iso-commuting squares and fill-ins.

Definition D.2. Let B be any bicategory, B € B and F : C — B be a pseudofunctor.
The category B/F has objects triples (y1,72,7), where v; : B — Fi (i = 1,2) and 7 is an

invertible 2-cell as in the diagram

o B Y2
N
F1 1  F2
Fhl\‘ '/th
FO

Morphisms (y1,72,7) — (01, 92,0) are pairs of 2-cells E; : ; = 0; (¢ = 1,2) such that

F(h2)oZs

F(hg) oyg ———— F(h3) 0y

gl |5

The identity on (v1,72,7) is (id,,,id,,) and composition is as in B. “«

301
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The next lemma provides the components of the required equivalence.

Lemma D.3. Let B be a bicategory, C be the category (1 I, g 2 2), and F : C —

B a pseudofunctor. Then, for any B € B there exists an equivalence of categories
Hom(C, B)(AB, F) ~ B/F, where A : B — Hom(C, B) denotes the diagonal pseudofunctor.

Proof. We begin by defining functors K : Hom(C, B)(AB, F) < B/F : L. Take K first.

For a pseudonatural transformation (k,k) : AB = F with components as in the square

B-M5.p

kil <ké lko

FZTFO

we define K (k, k) := (kq, kg,i(k@), where
[ K
V(k,E) = F(hg) @) k2 — |(0 @) IdB = F(hl) @) kl (Dl)
For morphisms, suppose = : (k,k) — (j,]j) is a modification. One thereby obtains 2-cells
=i ki=j; (1=1,2), and

F(hs) o ko =222 pipo) o

— 1 . —
Ky modlzf. law i
W(kﬁﬁ) ko O IdB —>EOOIdB jo o IdB 7(]7])

Ky modif. law

So we may define K(2) := (51, E2).
Going the other way, for a triple (71, v2,7) we define L(71,72,7) to be the pseudonatural

transformation with components

ji:=B X Fi fori=1,2

jo:= B 2 2 £, g

and witnessing 2-cells

Id
p__ Y . p B—F4 B
|
Y2
= +
i i Fhaoya V2 ~ F92 | Fhaoys
|
/_\ J/
Fi v Fi

FQWFO
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The naturality condition is trivial—there are no non-identity 2-cells in C—and the unit law
holds by definition, so the only thing to check is the associativity law. For this one must
verify the axiom for each of the possible composites in C, namely Id; o Id;, Idg o h;, and
h; o Id;. This is a long exercise.

On morphisms, for any (¥, Uy) in B/F, we define L(¥1, ¥sy) to be the modification

with components

v, = klil}h (i:172)

F(hg)oW
T = Fhy) o ko —22"2 Bhg) o
The only thing to check is the modification axiom, which we need to verify for the maps
h1, ho and Idg,Id1,Ids. Each of these is a simple calculation.
It remains to show that K and L form an equivalence. The composite KoL is the identity.
On the other hand, LK (k,k) has components k; for i = 1,2 and Fhaoks for i = 0. One may

— _ |771 ~
then check that setting EZ(-k’k) = idy, for i = 1,2 and E(()k’k) = (Fh2 o ko =2, kooldg = ko)
defines a modification LK (k,k) — (k, k). It remains to show that the modifications Z(¥)

are natural in (k,k). The i = 1 and 7 = 2 cases are trivial, and for i = 0 one sees that, for
any ¥ : (k,k) — (j,j),

:.(k,E)

=0

——1
KL(k, K)o Fhyoks =25 kyoldp —= ko

(KL\I/)()\L thQO\IIQ l\l/()

KL(j,j)o === Fhyojs —— jooldp —= o
I2

=)
=0
as required. It follows that L o K = idyom(c,8)(aB,F), Which completes the proof. O

The mapping B — B/F extends to a pseudofunctor as follows. For f : B — B, we
define f/F : B/F — B'/F by setting (f/F)(y1,72,7) := (m1 0 f,720 f,70 f). Then for
a: f = f’, the natural transformation «/F has components v; o a: ;0 f — ;0 f'. This
defines a pseudofunctor with unit and associativity witnessed by structural isomorphisms.
In fact this pseudofunctor is equivalent to Hom(C, B)(A(—), F).

Lemma D.4. Let B be a bicategory, C be the category (1 LN S 2),and F:C— Ba
pseudofunctor. Then, writing Kp : Hom(C, B)(AB, F)) — B/F for the functor constructed
in Lemma the diagram below commutes for any f : B’ — B in B:

Hom(C,B)(Af,F)
Hom(C, B)(AB,F) —— Hom(C, B)(AB', F)

K| |%e

B/F B'/F

fIr
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Proof. For a pseudonatural transformation (k,k) : AB = F, (f/F o Kg)(k, k) is the triple
with 1-cells ky o f and ke o f and 2-cell

Fhyo(keo f) S (Fhaoke)o f —% (Fhy oke)o f S Fhy o (ke o f)

Here V(kk) is the composite defined in 1|
On the other hand, writing f. := Hom(C,B)(Af, F'), one has that f.(k,k) is the
pseudonatural transformation with components k; o f and witnessing 2-cells given by

composing k with the evident structural isomorphism:

’ IdB/

~

ﬂ?ﬂ

ﬁj<—b:1<—b:1

Z
£k

A short calculation shows that applying K g to this pseudonatural transformation yields
exactly (f/F o Kg)(k, k). O

It follows that the functors K are the components of a pseudonatural transformation.

Since each Kp is an equivalence, one obtains the following.

Corollary D.5. Let B be a bicategory, C be the category (1 LN P2 2),and F: C— B
a pseudofunctor. Then Hom(C, B)(A(—), F') ~ (—)/F in Hom(B°P, Cat). O

We can now use the fact that biequivalences preserve biuniversal arrows to rephrase the
universal property of a bicategorical pullback. For any bicategory B, let (X EiN Xo L Xs)
be any cospan and let F' be the strict pseudofunctor C — B it determines. The pullback of
this cospan, when it exists, is a biuniversal arrow (P, A : AP = F) consisting of an object
P € B and a pseudonatural transformation A : AP = F. The universal property then
requires that, for any other pseudonatural transformation v : AQ = F there exists a 1-cell
u: ) — P and a universal modification € : A o Au = +, such that both the unit and the
counit ¢ are invertible.

We pass this data through the equivalence K. The pseudonatural transformations A

and v become iso-commuting squares:

A1 P A2 Y1 Q Y2
/ 2 o
F1 F2 F1 il F2
Fh\‘ '/th Fhl\‘ 0 ‘/th

The pseudonatural transformation A o Au then becomes
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- O

A1ou Agou
2N

F1 Py F2

Fﬁ Ag

FO

and the counit € becomes a pair of 2-cells €; : A\; o u = ; which is universal among 2-cells

satisfying the following:

Fhyo(Ayou) _ fhacez Fhy oy

>~

(tho)\g)ou

2

Ao
L

(FhioAi)ou

~

hg

Fhyo (A ou) BT Fhyoy

Starting this diagram from (F'hg o A2) o u and inverting the isomorphisms, one obtains the
fill-in requirement from Lemma [7:3.6] One may now see that the remaining conditions of
Lemma are exactly those making ¢ universal.






Index of notation

With typing signature and page of first definition

ch A 2-cell qffB omy p = ldp(a — p), part of the data of a cc-pseudofunctor
(F.a*,q7), page 136

C:x, A 2-cell qz. olFrmy, ... ,Frp) = Id(F1y, 4,), part of the data of an
fp-pseudofunctor (F,q*), page 78

€t The counit for exponential structure, of type evaly g o (At x A) = t,
page 134

w,gi)” tn The kth component of the counit for product structure, of type myo(te) =
ti, page 74

i The unit for exponential structure, of type ¢ =\ (evalg g o (t x A)),
page 134

St The unit for product structure, of type ¢ = {myot,...,m oty page 74

ma B The canonical map F(A=>B) — (FA=>FB) for an fp-pseudofunctor
(F,q*), defined as the transpose of F'(evala,g) o ¢’y _. 5 4, Page 136

a1 B An equivalence (FA=>FB) — F (A => B) forming part of the data of
a cc-pseudofunctor, page 136

fuse(he; ge) The canonical 2-cell ([ hi) 0 {g1, ... ,gn) = (h10og1, ... ,hyp0gn),
page 76

fh:fuige The canonical 2-cell fy,. ¢,.q, : R[f1 X === % fu]l g1, -« 9n) = Rl f1lg1], - - -, fulgn]]
in a biclone, page 47

naty, The 2-cells ¢’y o] [7=; F'fi = F([[;=, fi)oqy, witnessing that [ [;_; (F(—), ..., F(=)) 3
(Foll,) (-, ...,=) for every fp-pseudofunctor (F,q*), page 79

Dp. g The canonical 2-cell ([T, ki) o (172, 9i) = [T, (higi) witnessing the
pseudofunctorality of [ [, (—, ... ,=), page 76
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post(he; g)

Ay,

push(f, g)

swapy, ¢

=
Uxp

unpack ,

X
LIA.
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The canonical 2-cell hy, ... ,hpyog=<hiog, ... hy,og), page 75

An equivalence [ [/, (FA;) — F ([ ]/, 4;) forming part of the data of
an fp-pseudofunctor, page 78

The canonical 2-cell A(f)og = )\(f o(g % A)), page 135

The 2-cell of type (f x X) o Idp,hf) = {Idp/, h) o f, defined as the

fuse post™!

composite (f x X)oIdp,hf) = {(f,hf) == {Idp,hyo f , page 206

The unique mediating 2-cell u = At corresponding to o : evaly g o (u x
A) = t, page 134

The unique mediating 2-cell u = (t1, ... ,t,) corresponding to «; :

mou=1t; (i=1,...,n), page 74

A 2-cellId(pg = pp) = ma B oqj%B, part of the data of a cc-pseudofunctor
(F,q*,q7"), page 136

The 2-cell (Frry, ... ,Frp)oF{f1, ..., foy = {(Ff1, ..., fn) ‘unpacking’
an n-ary tupling, page 80

A 2-cell Id([7, ra,) = (P71, ..., Fmp) o ¢y, part of the data of an
fp-pseudofunctor (F,q*), page 78
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