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Abstract

Index coding studies the efficient broadcast problem where a server broadcasts multiple mes-

sages to a group of receivers with side information. Through exploiting the receiver side infor-

mation, the amount of required communication from the server can be significantly reduced.

Thanks to its basic yet highly nontrivial model, index coding has been recognized as a canoni-

cal problem in network information theory, which is fundamentally connected with many other

problems such as network coding, distributed storage, coded computation, and coded caching.

In this thesis, we study the index coding problem both in its classic setting where the mes-

sages are stored at a centralized server, and also in a more general and practical setting where

different subsets of messages are stored at multiple servers. In both scenarios the ultimate goal

is to establish the capacity region, which contains all the communication rates simultaneously

achievable for all the messages. While finding the index coding capacity region remains open

in general, we characterize it through developing various inner and outer bounds. The inner

bounds we propose on the capacity region are achievable rate regions, each associated with

a concrete coding scheme. Our proposed coding schemes are built upon a two-layer random

coding scheme referred to as composite coding, introduced by Arbabjolfaei et al. in 2013 for

the classic centralized index coding problem. We first propose a series of simplifications for

the composite coding scheme, and then enhance it through utilizing more flexible fractional

allocation of the broadcast channel capacity. We also show that one can strictly improve com-

posite coding by adding one more layer of random coding into the coding scheme. For the

multi-server scenario, we generalize composite coding to a distributed version.

The outer bounds characterize the fundamental performance limits enforced by the prob-

lem setup that hold generally for any valid coding scheme. The performance bounds we pro-

pose are based on Shannon-type inequalities. For the centralized index coding problem, we

define a series of interfering message structures based on the receiver side information. Such

structures lead to nontrivial generalizations of the alignment chain model in the literature,

based upon which we propose a series of novel iterative performance bounds. For the multi-

server scenario, our main result is a general outer bound built upon the polymatroidal axioms of

the entropy function. This outer bound utilizes general groupings of servers of different levels

of granularity, allowing a natural tradeoff between tightness and computational complexity.

The security aspect of the index coding problem is also studied, for which a number of

achievability and performance bounds on the optimal secure communication rate are estab-

lished. To conclude this thesis, we investigate a privacy-preserving data publishing problem,

whose model is inspired by index coding, and characterize its optimal privacy-utility tradeoff.

ix



x



List of Publications

Almost all work in this thesis has been published or is to be submitted for publication as journal

articles or conference papers. These papers are:

J1. Y. Liu, P. Sadeghi, F. Arbabjolfaei, and Y.-H. Kim, “Capacity theorems for distributed

index coding,” IEEE Trans. Inf. Theory, vol. 66, no. 8, pp. 4653–4680, Mar. 2020.

J2. Y. Liu and P. Sadeghi “Performance bounds for index coding based on acyclic chains,” to

be submitted to IEEE Trans. Inf. Theory.

C1. Y. Liu, P. Sadeghi, F. Arbabjolfaei, and Y.-H. Kim, “On the capacity for distributed index

coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, June 2017, pp.

3055–3059.

C2. Y. Liu, P. Sadeghi, F. Arbabjolfaei, and Y.-H. Kim, “Simplified composite coding for

index coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO, June 2018, pp.

456–460.

C3. Y. Liu, P. Sadeghi, and Y.-H. Kim, “Three-layer composite coding for index coding,” in

Proc. IEEE Inf. Theory Workshop (ITW), Guangzhou, China, Nov. 2018, pp. 170–174.

C4. Y. Liu and P. Sadeghi, “Generalized alignment chain: improved converse results for index

coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France, Jul. 2019, pp. 1242–

1246.

C5. Y. Liu and P. Sadeghi, “From alignment to acyclic chains: lexicographic performance

bounds for index coding,” in Proc. 57th Ann. Allerton Conf. Comm. Control Comput.,

Monticello, IL, Sep. 2019, pp. 260–267.

C6. Y. Liu, N. Ding, P. Sadeghi, and T. Rakotoarivelo, “Privacy-utility tradeoff in a guessing

framework inspired by index coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Los

Angeles, CA, June 2020.1

C7. Y. Liu, P. Sadeghi, N. Aboutorab, and A. Sharififar, “Secure index coding with security

constraints on receivers,” in Proc. Int. Symp. on Inf. Theory and its Applications (ISITA),

Kapolei, HI, Oct. 2020.
1This work was produced during my internship at Data61, Commonwealth Scientific and Industrial Research

Organisation (CSIRO).

xi



xii

The following publication was also produced during my PhD program but is not directly

related to nor included in this thesis:

C8. A. Sharififar, N. Aboutorab, Y. Liu, and P. Sadeghi, “Independent user partition multicast

scheme for the groupcast index coding problem,” in Proc. Int. Symp. on Inf. Theory and

its Applications (ISITA), Kapolei, HI, Oct. 2020.



Acronyms

CIC centralized index coding

DIC distributed index coding

NP nondeterministic polynomial time

MAIS maximum acyclic induced subgraph

PM polymatroidal

AWGN additive white Gaussian noise

CC composite coding

ECC enhanced composite coding

TLCC three-layer composite coding

DCC distributed composite coding

GPM grouping polymatroidal

MDS maximum distance separable

FLPCC fractional local partial clique covering

FME Fourier-Motzkin elimination

LP linear programming

CCC cooperative composite coding

S-FLPCC secure fractional local partial clique covering

S-PM secure polymatroidal

S-MAIS secure maximum acyclic induced subgraph

xiii





Contents

Acknowledgments vii

Abstract ix

List of Publications xi

Acronyms xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Existing Achievable Coding Schemes . . . . . . . . . . . . . . . . . . 3

1.2.2 Existing Performance Bounds . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Other Related Results . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis Contributions, Organization, and Notation . . . . . . . . . . . . . . . . 9

1.3.1 Proposed Achievable Schemes . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Proposed Performance Bounds . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Security and Privacy Investigation . . . . . . . . . . . . . . . . . . . . 12

1.3.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 System Model and Preliminaries 15
2.1 System Model and Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Graph-Theoretic Terms and Notions . . . . . . . . . . . . . . . . . . . 18

2.2.2 Information Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Touch Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Review of Some Existing Results . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Existing Coding Schemes for the CIC problem . . . . . . . . . . . . . 26

2.3.1.1 Existing Linear CIC Coding Schemes . . . . . . . . . . . . . 26

2.3.1.2 Existing Non-linear CIC Coding Schemes . . . . . . . . . . 27

2.3.2 Existing Coding Schemes for the DIC problem . . . . . . . . . . . . . 30

2.3.3 Existing Performance Bounds for the CIC problem . . . . . . . . . . . 31

2.3.4 Existing Performance Bounds for the DIC problem . . . . . . . . . . . 34

xv



xvi Contents

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Achievability and Coding Schemes 37
3.1 Simplified Composite Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Reducing Composite Indices for a Fixed Decoding Configuration . . . 38

3.1.2 Reducing Decoding Configurations . . . . . . . . . . . . . . . . . . . 41

3.1.3 Numerical Results for the Simplified Composite Coding . . . . . . . . 45

3.2 Enhanced Composite Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Three-Layer Composite Coding . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 The Three-Layer Composite Coding Scheme and Achievability Bound 50

3.3.2 Simplifications for the Three-Layer Composite Coding . . . . . . . . . 54

3.3.2.1 Limiting the Choice of Decoding Configuration . . . . . . . 54

3.3.2.2 Reducing Doubly Composite Indices . . . . . . . . . . . . . 55

3.3.2.3 Simplified TLCC Subsumes Composite Coding . . . . . . . 57

3.4 Distributed Composite Coding for a Fixed Decoding Configuration . . . . . . . 59

3.5 Distributed Composite Coding with Varying Decoding Configurations . . . . . 69

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Performance Bounds 77
4.1 The Basic Acyclic Chain Bound . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 The Regular Acyclic Chain Bound . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Properties of the Acyclic Chain Bounds . . . . . . . . . . . . . . . . . . . . . 91

4.4 Acyclic Chain Bounds for DIC . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Grouping Polymatroidal Bound for DIC . . . . . . . . . . . . . . . . . . . . . 98

4.6 Outer Bounds Based on Server Groupings Utilizing the Touch Structure . . . . 101

4.7 Outer Bounds Based on Server Groupings Utilizing fd-separation . . . . . . . 106

4.8 A Hierarchy of Server Groupings . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.9 Summary of the Speical Forms of the Grouping PM Bound . . . . . . . . . . . 113

4.10 Numerical Results for the Grouping PM Bound . . . . . . . . . . . . . . . . . 113

4.11 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Security and Privacy 117
5.1 Index Coding with Security Constraints on Receivers . . . . . . . . . . . . . . 118

5.1.1 A Secure Linear Coding Scheme . . . . . . . . . . . . . . . . . . . . . 119

5.1.2 Performance Bounds and Necessary Conditions for Feasibility . . . . . 121

5.1.2.1 An Outer Bound on the Secure Capacity Region . . . . . . . 121

5.1.2.2 A Partition of N Based on the Security Constraints . . . . . 123

5.1.2.3 A Lower Bound on the Secure Broadcast Rate . . . . . . . . 125

5.2 Privacy-Utility Tradeoff in a Guessing Framework Inspired by Index Coding . . 131



Contents xvii

5.2.1 System Model and Problem Formulation . . . . . . . . . . . . . . . . 132

5.2.2 Performance Bounds on the Privacy Leakage . . . . . . . . . . . . . . 135

5.2.2.1 Lower Bound Based on the Confusion Graph . . . . . . . . . 135

5.2.2.2 Lower Bound Based on Polymatroidal Functions . . . . . . . 137

5.2.3 Privacy-Preserving Mechanism Design . . . . . . . . . . . . . . . . . 141

5.2.4 Numerical Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Conclusion 145

A Appendix A 149
A.1 Proof of Theorem 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.2 Proof of Proposition 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B Appendix B 153
B.1 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.1.1 A Number of Useful Definitions . . . . . . . . . . . . . . . . . . . . . 153

B.1.2 Lemmas and Intermediate Results . . . . . . . . . . . . . . . . . . . . 156

B.1.3 Proof of Lemma B.2 utilizing Lemmas B.3-B.6 . . . . . . . . . . . . . 170

B.1.4 Proof of Theorem 4.2 utilizing Lemma B.2 . . . . . . . . . . . . . . . 172

B.2 Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

B.3 Proof of Theorem 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.4 Remainder of Proof of Theorem 4.7 . . . . . . . . . . . . . . . . . . . . . . . 184

B.5 Functional Dependence Graph and fd-separation for Distributed Index Coding . 190

B.6 Proof of Theorem 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.7 Remainder of Proof of Corollary 4.2 . . . . . . . . . . . . . . . . . . . . . . . 196

B.8 Proof of Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.9 Proof of Proposition 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



xviii Contents



List of Figures

1.1 An index coding example with 3 messages and 3 receivers. Each receiver

wants to know one unique message and may know some other messages as

side information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Centralized and distributed index coding problems with n = 3 messages. . . . 19

2.2 The side information graph G corresponds to the side information availability

sequence (1|3), (2|3), (3|2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Three CIC problems where (a) message set {1, 2, 3} is acyclic, (b) message

sets {5, 6}, {3, 4}, {1, 2} are acyclic at the set level, and (c) message sets

{1, 2}, {3}, {4, 5, 6}, {7} are acyclic at the set level. . . . . . . . . . . . . . . 22

2.4 An example of the lexicographic product of two directed graphs. If G0 rep-

resents the 3-message CIC problem (1|3), (2|1), (3|−) and G1 represents the

2-message CIC problem (1|−), (2|1), then G = G0 ◦ G1 represents the 6-

message CIC problem (1|3, 6), (2|1, 4), (3|−), (4|1, 3, 6), (5|1, 2, 4), (6|3), which

is the lexicographic product of G0 and G1. Note that according to Definition

2.1, the vertex set of G is {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}. We re-

label these vertices as (1, 1) = 1, (1, 2) = 4, (2, 1) = 2, (2, 2) = 5,

(3, 1) = 3, (3, 2) = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Summary of the performance bounds for the CIC problem. Bound A being

contained within bound B means that bound A is a special case of bound B. . . 78

4.2 Summary of the performance bounds for the DIC problem. A directed path

from bound A to B means that bound A is a special case of bound B. Note

that the bounds in Corollary 4.2-4.5 are all special forms of the grouping PM

bound in Theorem 4.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Schematic graphs for (a) Definition 4.1 and (b) Definition 4.2. To help with

understanding, we draw blue dashed arrows such that if there is a directed path

formed by dashed arrows of the same color from message set Q to P, then

P ⊆ BQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xix



xx LIST OF FIGURES

4.4 (a) The side information graph of G0 in (4.3). (b) A simplified version of the

side information graph of G = G◦20 . We only draw G|V1 in detail. An edge

from a dashed circle Vi to another dashed circle Vj means that there is an edge

from every node in Vi to every node in Vj. . . . . . . . . . . . . . . . . . . . . 83

4.5 A visualization example for the regular tower in Definition 4.3. To help with

understanding, we draw blue and purple dashed arrows. If there is a directed

path formed by dashed arrows of the same color from message set Q to P, then

P ⊆ BQ. Note that for the positions of the I(s`,j) and I(t`,j) message sets on

the horizontal chain for any ` ∈ [hj], we do not impose any symmetric distance

requirements such as j− s`,j = t`,j − (j + 1). They only need to satisfy the

regularity conditions, i.e., Conditions 2b and 2c, in Definition 4.3. . . . . . . . 85

4.6 A visualization example for the regular acyclic chain in Definition 4.4. To

help with understanding, we draw blue and purple dashed arrows. If there is a

directed path formed by dashed arrows of the same color from message set Q
to P, then P ⊆ BQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 A schematic graph for the singleton ordered tower in Definition 4.7. A directed

path that contains arrows of only one color (either blue or purple) from message

a to b indicates that b ∈ Ba. According to Condition 2b of Definition 4.7, two

purple arrows do not criss-cross. . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.8 A visualization example for the singleton ordered acyclic chain in Definition

4.8. To help with understanding, we draw blue and purple dashed arrows.

If there is a directed path formed by dashed arrows of the same color from

message a to b, then b ∈ Ba. Definitions 4.7 and 4.8 jointly ensure that purple

arrows can never criss-cross. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 The side information graphs for the six 4-message problems given in (4.57).

In Figures (a), (b) and (c), there is one isolated vertex, vertex 1, which has no

incoming edges. In Figures (d), (e), and (f), there is a pair of disjoint cycles,

{1, 4} and {2, 3}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 The confusion graph Γ when there are three binary sources, W = ({1}, {2}, {3}),
and A = (∅, {3}, {2}). For example, the two vertices corresponding to real-

izations x1
[n] = (0, 0, 0) and x2

[n] = (0, 0, 1) are confusable and thus connected

in Γ, because at user i = 3, we have x1
W3

= 0 6= x2
W3

= 1 and x1
A3

= x2
A3

= 0. 136

5.2 The confusion graph Γ when there are three binary sources, W = ({1}, {2}, {3}),
and A = (∅, {3}, {2}) (repeated from Figure 5.1). To help with understand-

ing, we color-code the vertices of Γ such that to ensure (5.45), two codewords

y 6= y′ ∈ Y can be possibly merged if and only if their corresponding groups

of source realizations X[n](y) and X[n](y′) all belong to the same color class. . 142



LIST OF FIGURES xxi

B.1 A visualization for the regular tower Xj in (B.25). To help with understanding,

we draw blue and purple dashed arrows. If there is a directed path formed by

dashed arrows of the same color from message set Q to P, then P ⊆ BQ. . . . 160

B.2 The DIC-FDG for the 4-message problem: (1|−), (2|4), (3|2), (4|3), with all

24 − 1 = 15 servers. For simplicity, only four output variables, Y{1}, Y{1,2},

Y{1,2,3}, and Y{1,2,3,4}, and their corresponding links are shown. To avoid clut-

ter, whenever there exist directed edges in both directions between any two

vertices, we simply draw an edge with arrows at both ends between the ver-

tices, instead of drawing two separate directed edges. Note that the edges

defined in item 2 of Definition B.3 are shown as blue, while all the other edges

defined in items 1 and 3 are shown in black. . . . . . . . . . . . . . . . . . . . 191

B.3 The ancestral graph GAn(U∪W∪Z) is shown on the left. And the remaining of

GAn(U∪W∪Z) after removing all edges outgoing from vertices in U is shown

on the right, where X2 becomes disconnected from both X3 and X4. . . . . . . 192



xxii LIST OF FIGURES



List of Tables

3.1 Results for all CIC problems with n = 4 and 5 messages. . . . . . . . . . . . . 46

3.2 Results for 259 β-critical CIC problems with n = 6 messages. . . . . . . . . . 47

3.3 Simplification techniques and whether they retain optimality . . . . . . . . . . 57

4.1 Special cases of the grouping PM bound and their indicative computational

complexities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Sum capacity for all 218 non-isomorphic 4-message DIC problems with equal

link capacities CJ = 1, J ∈ N \ {∅}. . . . . . . . . . . . . . . . . . . . . . . 115

5.1 Performance of the Lower Bounds versus Algorithm 4. . . . . . . . . . . . . . 144

xxiii



xxiv LIST OF TABLES



Chapter 1

Introduction

1.1 Background

Introduced by Birk and Kol in Birk and Kol [1998, 2006] for satellite communication, the index

coding problem encapsulates the communication problem where a server broadcasts a number

of messages to multiple receivers. Each receiver requests some messages and knows some

other messages a priori as side information. The server knows which messages are requested

and which messages are known by each receiver. Through exploiting the side information

availability at the receivers, the server attempts to minimize the overall amount of information

to be broadcast through the channel to satisfy each receiver’s requests.

Consider a simple motivating toy example as follows. Assume there is one server contain-

ing three same-length binary messages, x1, x2, x3. There are three receivers, receiver 1, 2, 3.

Each receiver requests one unique message. In particular, receiver i wants message xi for any

i ∈ {1, 2, 3}. Each receiver knows some other messages apart from its own requested message

as side information. More specifically, receiver 1 knows nothing, receiver 2 knows message

x3, and receiver 3 knows message x2. Assume that the broadcast channel is noiseless, and that

a codeword of length equal to one message can be transmitted through the channel within each

time slot. Such example can be visualized in Figure 1.1.

To satisfy the three receivers, the server could simply send the uncoded messages x1, x2, x3

one-by-one in total 3 time slots. Nevertheless, such naive transmission scheme is suboptimal

as the receivers can in fact be satisfied in merely 2 time slots. To achieve this, the server could

transmit first the uncoded message x1 in the first time slot and then the coded symbol x2 ⊕ x3

in the second time slot, where ⊕ means bitwise XORing of message bits. Upon receiving such

transmitted codewords (x1, x2 ⊕ x3), one can easily verify that every receiver can decode its

own requested message: receiver 1 can trivially recover x1; receiver 2 can decode x2 utilizing

the received coded symbol x2 ⊕ x3 and its own side information x3 as x2 = (x2 ⊕ x3)⊕ x3;

receiver 3 can decode x3 in a similar manner as receiver 2 since it knows x2 as side information

and x3 = (x2 ⊕ x3)⊕ x2. This example illustrates the key fact that sending coded symbols

can result in reduced number of transmissions to fulfill the receivers’ requests and thus achieve

1
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Figure 1.1: An index coding example with 3 messages and 3 receivers. Each receiver wants to know
one unique message and may know some other messages as side information.

a better communication efficiency. Note that such savings of the number of transmissions will

not be possible if the receivers do not possess any side information.

At first glance, the system model of index coding may seem rather simple as there is only

one shared broadcast link between the server and the receivers. However, quite surprisingly,

it is indeed rich enough to capture any multiple-unicast communication network. This is be-

cause it allows arbitrary side information among the receivers. Such basic yet nontrivial model

not only leads to clear formulation of transmission techniques, but also results in strong con-

nections between index coding and many other important problems such as coded caching,

distributed computing, distributed storage, topological interference management, as well as

the long-lasting network coding problem. Consequently, the index coding problem has been

recognized as one of the canonical problems in network information theory.

As the index coding problem captures the essence of the cache-aided network communi-

cation, it has various real-world applications in diverse areas such as satellite communication,

opportunistic wireless communication, and multimedia distribution. In the classic setting of

the index coding problem there is a central server which contains all the messages. However,

an even more practical and general setup would allow the messages to be distributed among

multiple servers, where each server stores a unique subset of messages and is connected to all

the receivers through its own broadcast channel. Such communication model has clear applica-

tions for practical scenarios, in which the information is geographically distributed and stored

across many locations. We refer to such multi-server index coding problem as the distributed

index coding (DIC) problem, whereas the classic index coding problem with one central server
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is referred to as the centralized index coding (CIC) problem. Throughout the thesis, unless

otherwise specified, we study the CIC and DIC problem while assuming a multiple-unicast

setting where each message is requested by exactly one receiver.

There are two fundamental objectives in studying the index coding problem, whether cen-

tralized or distributed. One is to establish the capacity region, which contains all the communi-

cation rates simultaneously achievable for all the messages. The other is to design an optimal

coding scheme that achieves the capacity region. In particular, we are typically interested in

finding a computable single-letter expression of the capacity region, and we wish to develop

an optimal coding scheme that is implementable in practice.

1.2 Literature Review

Since its introduction by Birk and Kol Birk and Kol [1998] in 1998, the centralized index

coding (CIC) problem has intrigued various research communities and has been extensively

investigated from different perspectives such as algebraic coding theory, graph theory, network

coding, Shannon theory, and interference alignment.

While the fundamental objectives of establishing the capacity region and designing optimal

coding schemes remain open in general, various achievable index coding schemes and perfor-

mance bounds for the CIC problem have been established. Each achievable scheme provides

an achievable communication rate region serving as an inner bound on the capacity region.

And each performance bound serves as a converse result that characterizes the fundamental

performance limits enforced by the problem setup holding generally for any valid index cod-

ing scheme. In contrast to the CIC problem, the distributed index coding problem (DIC) was

recently introduced and thus less literature exists. In the following we first review existing

works on coding scheme design for both the CIC and DIC problems. Then we discuss relevant

works on performance bounds for both problems. To conclude this section, we also provide a

brief overview of some interesting results on the CIC and DIC problems or their variants other

than the achievable schemes and performance bounds. In particular, we discuss the previous

works in the literature with regard to the security aspects of the index coding problem. We also

elucidate the relationship between the index coding problem and other related problems such

as network coding and locally recoverable distributed storage.

1.2.1 Existing Achievable Coding Schemes

All the index coding schemes can be broadly categorized into two classes: linear and non-

linear coding schemes. Any coding scheme is a linear coding scheme if the encoding and

decoding functions are all linear. Otherwise the coding scheme is non-linear. The linear cod-

ing schemes are also called the vector linear coding schemes, which include a special class of
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coding schemes referred to as the scalar linear coding schemes. In the scalar linear coding

schemes, messages are encoded while being treated as an entity, while in the more general

vector linear coding schemes, each message is further divided into a number of smaller size

sub-messages through rate splitting. It has been shown in Bar-Yossef et al. [2011] that for the

CIC problem the optimal binary scalar linear codeword length is equal to a certain algebraic

notion called minrank, which can be found via rank minimization over a group of fitting ma-

trices constructed based on the receiver side information. Such result was generalized to allow

coding to be performed over an arbitrary finite field in Lubetzky and Stav [2009], character-

izing the optimal performance of scalar linear index code for the CIC problem. As shown in

El Rouayheb et al. [2007], computing the minrank even within the binary field is NP-complete.

Nevertheless, the minrank method has been further extended into a general vector linear ver-

sion in Maleki et al. [2014]. Based on the result from Maleki et al. [2014], a multi-letter

characterization of the optimal performance of linear index code for the CIC problem has been

established in [Arbabjolfaei and Kim, 2018, Section 6.7], whose computability remains un-

known in general.

Another line of work which can be dated back to the original paper by Birk and Kol Birk

and Kol [1998] applies graph-theoretic tools to the designing of CIC coding schemes. In Birk

and Kol [1998], the authors introduced the idea of characterizing the receiver side information

through a directed graph, which is later formally named as the side information graph in Bar-

Yossef et al. [2011]. Most of the graph-theoretic coding schemes involve decomposition of

the side information graph based on certain graph-theoretic structures (e.g., cliques or cycles).

See Birk and Kol [2006]; Chaudhry et al. [2011]; Neely et al. [2013]; Blasiak et al. [2013];

Shanmugam et al. [2013]; Arbabjolfaei and Kim [2014]; Thapa et al. [2017]; Agarwal and

Mazumdar [2016] and references therein. Although such graph-theoretic schemes in general

lead to smaller acheivable rate regions (i.e., looser inner bounds on the capacity region) com-

pared to the algebraic minrank approaches, they have the advantage of being more practical

because of their lower complexities and simpler encoding and decoding processes.

The interference alignment method, introduced from the study of the interference manage-

ment for wireless interference networks, has been adapted in Maleki et al. [2014]; Jafar [2014]

to develop scalar and vector linear coding schemes for the CIC problem. In particular, the

optimal symmetric communication rate has been established for several special classes of the

CIC problem in Maleki et al. [2014], including the scenario where the symmetric rate of 1/2
is simultaneously achievable for all the messages and the scenario where the side information

availability at the receivers follows a certain symmetric structure. Notice that the sufficient and

necessary condition for the symmetric rate of 1/2 being achievable was also independently

established in Blasiak et al. [2013], where a polynomial time algorithm to determine whether

such condition is satisfied was also proposed.

In general linear index coding schemes are not sufficient to achieve the capacity region for
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the CIC problem as shown in Lubetzky and Stav [2009]; Blasiak et al. [2011]; Maleki et al.

[2014]. Existing non-linear index coding schemes are designed mainly from two perspectives.

One is to utilize the classic information-theoretic tool: random coding. In Arbabjolfaei et al.

[2013], the authors first introduced the flat coding scheme and then the more general composite

coding scheme. The former is a single-layer random coding scheme, while the latter is a

superpositioned coding scheme that consists of two layers of random coding. It has been

verified in Arbabjolfaei et al. [2013] that the composite coding scheme is able to establish the

capacity region for all the CIC problems with five or fewer messages. Despite the general

good performance of the composite coding scheme, it is still suboptimal as demonstrated in

[Arbabjolfaei et al., 2014, Example 4], [Thapa et al., 2017, Section III].

The other major perspective for designing non-linear CIC coding schemes is based upon

coloring of the confusion graphs for the CIC problem, the notion of which was introduced

in Alon et al. [2008]. Roughly speaking, the confusion graph captures the distinguishability

of any two realizations of the messages at the receivers. In other words, the confusion graph

indicates the groups of message realizations that must not be mapped to the same codeword to

satisfy the decoding requirement at the receivers. Any valid coloring scheme of the confusion

graph corresponds to a valid possibly non-linear CIC coding scheme. Indeed, based on the

(fractional) chromatic number of the confusion graph a multi-letter characterization of the

capacity region for the general CIC problem has been established Arbabjolfaei and Kim [2018],

the computability of which is unknown in general.

Thus far we have listed and discussed a number of existing achievable coding schemes for

the CIC problem that are developed from several most common directions. More details can

be found in Arbabjolfaei and Kim [2018] and references therein. In the following we provide

a brief overview of previous works on the coding scheme design for the DIC problem, most of

which are based upon extending the existing CIC coding schemes.

The DIC problem with the messages being distributed among multiple servers was first

introduced in Ong et al. [2016a] in the special form where each receiver knows only one mes-

sage a priori as side information. Subsequently, the authors in Thapa et al. [2016] considered

another interesting special case with two servers each containing an arbitrary message subset.

In both works linear coding schemes based on graph-theoretic tools have been studied.

The most general setup of the DIC problem where for every subset of messages there

is one corresponding server with an arbitrary finite broadcast channel link capacity was first

introduced and investigated in Sadeghi et al. [2016]. In particular, a distributed version of the

composite coding scheme was developed in Sadeghi et al. [2016], achieving the capacity region

for all the DIC problems with three or fewer messages and equal broadcast link capacities for

all the servers. Improvements upon such DIC composite coding scheme have been proposed

in Li et al. [2017, 2018] under a similar system model.

The minrank approach have also been extended to the general DIC problem in Li et al.
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[2019]; Kim and No [2019]. In particular, the authors of Li et al. [2019] developed a rank-

minimization framework that explicitly takes into account the message availability at the servers

and then checks whether the decoding requirements of the receivers are satisfied for each cod-

ing matrix candidate. To reduce the search space dimension, a number of optimality-preserving

simplification strategies have also been proposed in Li et al. [2019]. In contrast, the authors

of Kim and No [2019] proposed an alternative way of constructing the fitting matrices for the

DIC problem for which the decodability of the messages at their corresponding receivers are

always guaranteed.

1.2.2 Existing Performance Bounds

While each achievability result is induced by a specific coding scheme, performance bounds

for index coding provide converse results, characterizing the fundamental limits that any valid

index coding scheme cannot exceed. Throughout the thesis, whenever we say performance

bounds, we mean converse results. In the context of capacity region, this should be understood

as outer bounds (upper bounds) on capacity region (capacity values). For broadcast rate, which

is the reciprocal of the symmetric capacity, this should be understood as lower bounds on

broadcast rate.

Shannon-type inequalities, also known as the polymatroidal axioms of the entropy func-

tion, have been playing a central role in developing performance bounds in network infor-

mation theory. In particular, an explicit characterization of the minimal set of Shannon-type

inequalities for an arbitrary set of random variables was given in Yeung [2008]. Conse-

quently, most of the existing performance bounds for both the CIC and DIC problems are

based purely on Shannon-type inequalities. Note that for some specific CIC problem instances,

non-Shannon-type inequalities are strictly needed to tightly characterize the capacity region as

shown in Sun and Jafar [2015]; Baber et al. [2013]. As the CIC problem can be seen as a

special case of the DIC problem, it follows automatically that non-Shannon-type inequalities

are also needed for some DIC problem instances.

Within the scope of the CIC performance bounds based on Shannon-type inequalities, one

can form the tightest bound through explicitly including all the Shannon-type inequalities for

the message and codeword random variables according to the minimal set presented in Ye-

ung [2008]. Such bound has been presented in [Arbabjolfaei and Kim, 2018, Section 5.3].

The polymatroidal (PM) bound from Blasiak et al. [2011] is established using only a subset

of Shannon-type inequalities. The PM bound is tight on the capacity region for all the CIC

problem instances with five or fewer messages (as verified in Arbabjolfaei et al. [2013]), as

well as many larger instances with more than five messages. Notably, the PM bound has been

proved in Liu et al. [2018a] to be as tight as the aforementioned tightest bound which explic-

itly includes all Shannon-type inequalities. One common drawback of these two bounds is the
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high computational complexity, which grows exponentially as the number of the messages in

the CIC problem increases.

Despite possible performance loss in terms of tightness, several less computationally in-

tensive performance bounds for the CIC problem have been proposed and proved to be useful

in the literature. The arguably most widely-used performance bound is the maximal acyclic in-

duced subgraph (MAIS) bound proposed in Bar-Yossef et al. [2011], which utilizes the acyclic

structure within the side information graph. Another interesting bound is the internal conflict

bound presented in Maleki et al. [2014]; Jafar [2014], which is based on the alignment chain

model introduced in Maleki et al. [2014] from the interference alignment perspective. The

MAIS bound and the internal conflict can outperform each other for different CIC problem

instances, while both of them are implied by the PM bound.

The MAIS bound and the PM bound have been generalized to the DIC problem in Sadeghi

et al. [2016]. Noticeably, the bound in Sadeghi et al. [2016] based on the polymatroidal axioms

can only effectively capture a subset of Shannon-type inequalities for the DIC problem, and

thus is strictly looser than the tightest possible DIC performance bound based on all Shannon-

type inequalities. The distributed version of the MAIS bound in Sadeghi et al. [2016] has also

been presented in an alternative form in Li et al. [2018].

1.2.3 Other Related Results

Rather than directly characterizing the capacity region for the CIC problem via establishing

tight inner and outer bounds, an alternative “divide-and-conquer” approach has been taken

in Arbabjolfaei and Kim [2020], which studies the structural properties of the receiver side

information availability to decide whether a CIC problem can be decomposed into subproblems

such that its capacity region is characterized in terms of those of the subproblems. A different

but related question is that whether a CIC problem’s capacity region remains unchanged if

some side information at a certain receiver is removed. Partial answers to this question have

been proposed in Tahmasbi et al. [2015]; Arbabjolfaei and Kim [2015a]. Similar techniques

have been investigated for the DIC problem in Thapa et al. [2019]; Arunachala et al. [2019];

Kim and No [2019].

As mentioned earlier the CIC problem has strong connections to many other important

research problems in network information theory. In particular, while the CIC problem can

be seen as a special case of the multiple-unicast network coding problem Ahlswede et al.

[2000]; Yeung [2006, 2008], a code-level equivalence has been established in Effros et al.

[2015] between these two problems, providing a mapping from any network coding instance to

a corresponding CIC problem and vice versa such that a valid coding scheme for one problem

can be translated to a valid (but different) coding scheme for the other problem. A rather

interesting observation is that the DIC problem itself is also a special case of the multiple-
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unicast network coding problem, and thus the code-level equivalence established in Effros

et al. [2015] also holds between the CIC and DIC problems. In addition, there exists a duality

between the CIC problem and the locally recoverable distributed storage problem, which has

been identified in Mazumdar [2014]; Shanmugam and Dimakis [2014] and further investigated

in Arbabjolfaei and Kim [2015b]. The authors of Arbabjolfaei and Kim [2015b] also studied

the complementarity between the guessing game problem on graphs Riis [2007] and the CIC

problem.

Another research direction is to approximate the capacity for the index coding problem

rather than trying to directly establish it. Such approximation problem has been studied in

Blasiak et al. [2013]; Arbabjolfaei and Kim [2016] for the CIC scenario. To the best of our

knowledge, there exists no work considering capacity approximation for the DIC problem.

Variants of the CIC and DIC problems, each of different theoretical or practical signifi-

cance, have been formulated and studied in the literature. We review several interesting direc-

tions in the following.

The CIC problem with a noisy broadcast channel (e.g., AWGN channel) has been investi-

gated in Dau et al. [2013]; Asadi et al. [2015]; Natarajan et al. [2015a,b]; Huang [2017]; Karat

et al. [2018]. Such model has clear value for some practical scenarios where the assumption of

a noiseless channel is unrealistic.

Another practical variant of the CIC problem called pliable index coding was introduced

in Brahma and Fragouli [2015] and subsequently studied in Song and Fragouli [2017]; Song

et al. [2019]; Liu and Tuninetti [2019c]; Ong et al. [2019a,b]; Sasi and Rajan [2019], where

the receivers are “pliable” such that each receiver will be satisfied as long as it can decode any

one of its unknown messages from the transmitted codeword.

Information security and privacy have been receiving growing attention in both communi-

cation and data science. The security aspect of the CIC problem was first studied in Dau et al.

[2012], where in addition to the legitimate receivers there is an eavesdropper with some side

information, and the server must broadcast in a way such that the messages are kept secure

against the eavesdropper while at the same time each receiver can decode its requested mes-

sage. Several extensions of such problem, often collectively termed as secure index coding,

have been studied in Ong et al. [2016c]; Mojahedian et al. [2017]; Ong et al. [2016b, 2018];

Liu et al. [2018a]. An alternative problem setup where there is no eavesdropper and the se-

curity constraints are against the receivers themselves has been briefly discussed in Dau et al.

[2012] and later investigated in Narayanan et al. [2020]. The authors of Karmoose et al. [2019]

considered the CIC problem from a different privacy-preserving perspective, where instead of

trying to protect the content of the messages, their goal was to limit the information that a

receiver can infer about the identities of the requests of other receivers.

A peer-to-peer version of the DIC problem has been studied in Porter and Wootters [2019]

under the name embedded index coding, where each party in the communication system acts as
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both a server and a receiver. That is, each party broadcasts a codeword as a function of its own

side information to other parties, and at the same time, needs to decode some of its unknown

messages from the other receivers’ codewords.

The key features of some CIC and DIC variants can be combined together. See, for exam-

ple, Liu and Tuninetti [2020], where a peer-to-peer, secure, and pliable version of the index

coding problem was investigated; see also Liu and Tuninetti [2019a], which studies peer-to-

peer pliable index coding, and Liu and Tuninetti [2019b], which studies secure pliable index

coding. See, for another example, Byrne and Calderini [2017], where the broadcast channel

is assumed to be noisy and at the same time, the side information at receivers can be linear

combinations of the messages.

The majority of the previous works introduced thus far considered the CIC and DIC prob-

lems or their variants in the multiple-unicast setting. Indeed, most of their results have natural

extensions to the more general multiple-groupcast scenario, where some message can be de-

manded by two or more receivers. See also Alon et al. [2008]; Blasiak et al. [2011]; Tehrani

et al. [2012]; Neely et al. [2013]; Shanmugam et al. [2014]; Unal and Wagner [2016] for exist-

ing studies on such model.

For other existing works on the CIC and DIC problems or their variants, see Dai et al.

[2014]; Lee et al. [2015]; Kim and No [2017]; Thomas and Rajan [2017]; Esfahanizadeh et al.

[2014]; Wan et al. [2017]; Yu and Neely [2014]; Kao et al. [2016]; El Rouayheb et al. [2010];

Haviv and Langberg [2012]; Arbabjolfaei and Kim [2018]; Hsu et al. [2020]; Huang et al.

[2017]; Haviv [2020] and references therein.

1.3 Thesis Contributions, Organization, and Notation

In this thesis our contributions are mainly in three domains. First, in Chapter 3, we investigate

the achievable coding schemes for both the CIC and DIC problems. Then, in Chapter 4, we

develop a number of performance bounds for the CIC and DIC problems. Thirdly, in Chapter

5, we consider the security and privacy issues in index coding. Detailed description and formal

definition of the system model and problem setup are presented in Chapter 2, where we also

provide some useful mathematical preliminaries and review several pertinent existing results.

We conclude the thesis in Chapter 6 with several concluding remarks and a brief discussion on

future directions. In the following we introduce our technical contributions in a more detailed

manner.

1.3.1 Proposed Achievable Schemes

We study the achievable coding scheme design for the CIC and DIC problems from a random

coding perspective in Chapter 3. Generally speaking, we focus on the simplification, improve-
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ment, and generalization (to multi-server scenario) of the composite coding (CC) scheme,

introduced for the CIC problem in Arbabjolfaei et al. [2013]. We list our contributions as

follows.

• As a starting point, in Section 3.1 we address the high computational complexity issue of

the CC scheme by proposing a series of simplification techniques. More specifically, we

propose a sufficient condition to systematically exclude some decoding choices for the

receivers without any performance loss on the achievable rate region. Also, we introduce

a pairwise comparison method to safely remove some intermediate variables involved in

the expression and computation of the achievable rate region. Based on such techniques

a simplified CC scheme is established, leading towards not only reduced complexity, but

also a better understanding of the coding scheme.

• We then improve the performance of the CC scheme to achieve larger achievable rate

regions from two independent directions. One direction is to employ a more flexible

fractional allocation of the broadcast channel capacity to achieve a better convexified

achievable rate region compared to that of the original CC scheme. We formalize this

idea to introduce the enhanced composite coding (ECC) scheme in Section 3.2. The

other direction is motivated by a simple observation: the CC scheme, consisting of

two layers of random coding, subsumes and strictly outperforms the flat coding scheme

Arbabjolfaei et al. [2013], which is a single-layer random coding scheme. Hence, it is

natural to ask whether we can further improve the CC scheme by adding one more layer

of random coding into it. In Section 3.3, we answer this question positively by intro-

ducing the three-layer composite coding (TLCC) scheme and showing that the TLCC

scheme yields strictly larger achievable rate region than the CC scheme through a con-

crete example.

• In Sections 3.4-3.5, we generalize the CC scheme to the multi-server DIC problem. We

build our distributed composite coding (DCC) scheme through combining our enhanced

fractional allocation method of the server link capacities and the cooperative compres-

sion idea from Li et al. [2017, 2018], and, moreover, adding a new dimension of de-

coding flexibility. For gentler presentation, in Section 3.4, we first describe the basic

form of our DCC scheme with fixed decoding choices for the receivers and provide the

achievable rate region and detailed error analysis. Then in Section 3.5, we present our

general DCC scheme with varying decoding choices and its associated achievable rate

region.

Most results in this chapter have been presented in Liu et al. [2020c, 2017, 2018b,c], which

are also listed below for ease of reference:
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Liu et al. [2020c] Y. Liu, P. Sadeghi, F. Arbabjolfaei, and Y.-H. Kim, “Capacity theorems for

distributed index coding,” IEEE Trans. Inf. Theory, vol. 66, no. 8, pp. 4653–4680, Mar. 2020.

Liu et al. [2017] Y. Liu, P. Sadeghi, F. Arbabjolfaei, and Y.-H. Kim, “On the capacity for

distributed index coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, Jun.

2017, pp. 3055–3059.

Liu et al. [2018b] Y. Liu, P. Sadeghi, F. Arbabjolfaei, and Y.-H. Kim, “Simplified composite

coding for index coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO, Jun. 2018,

pp. 456–460.

Liu et al. [2018c] Y. Liu, P. Sadeghi, and Y.-H. Kim, “Three-layer composite coding for index

coding,” in Proc. IEEE Inf. Theory Workshop (ITW), Guangzhou, China, Nov. 2018, pp.

170–174.

1.3.2 Proposed Performance Bounds

In Chapter 4, we study the information-theoretic converse results and establish a series of

performance bounds based on Shannon-type inequalities for the CIC and DIC problems. Our

contributions are summarized as follows.

• First, in Section 4.1, we generalize the alignment chain model Maleki et al. [2014] for

the CIC problem to develop the basic acyclic chain model. Based on such model, we

propose an iterative performance bound on the symmetric capacity for the CIC problem,

namely the basic acyclic chain bound. This new bound subsumes the maximal acyclic

induced subgraph (MAIS) bound Bar-Yossef et al. [2011] based on the acyclic structure

and the internal conflict bound Maleki et al. [2014]; Jafar [2014] based on the alignment

chain model as special cases and can be strictly tighter.

• In Section 4.2, we further generalize the basic acyclic chain model by allowing a more

flexible way of interactions among the segments of the chain. We name such generalized

acyclic chain model as the regular acyclic chain. In a similar manner to the basic acyclic

chain bound, we develop the more general regular acyclic chain bound on the symmetric

capacity for the CIC problem. Note that both the basic and regular acyclic chain bounds

are established purely based on Shannon-type inequalities, which indicates that they are

implied by the polymatroidal (PM) bound Blasiak et al. [2011]. Nevertheless, the acyclic

chain bounds have the merit over the PM bound of lower computational complexity,

especially for large CIC problems where the complexity of computing the PM bound is

forbiddingly high.

• We move on to developing performance bounds for the DIC problem in Section 4.4. The

definitions of the acyclic chain models do not depend on the server setup and thus also

apply to the DIC problem. However, in general it is not clear whether there exist some
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iterative DIC performance bounds as counterparts to the acyclic chain bounds for the

CIC problem introduced above. We reduce the acyclic chain models to certain less gen-

eral variants, and then propose two associated (non-iterative) DIC performance bounds,

which are tight on the symmetrical capacity for some DIC problems.

• In the sequel, we extend the PM bound Blasiak et al. [2011] for the CIC problem to the

DIC scenario in Section 4.5. To do this, we incorporate the most flexible use of server

groups to derive the necessary conditions for the achievable rates, and subsequently

we name our general multi-server performance bound as the grouping polymatroidal

(PM) bound. Through utilizing different server groupings of varied granularities, the

grouping PM bound allows a natural tradeoff between its tightness and computational

complexity. In particular, in Sections 4.6-4.7, we specify a number of useful server

grouping construction techniques and present the corresponding specialized grouping

PM bounds. We also formalize the idea of the hierarchy of server groupings in terms of

the tightness and complexity of the resulted bounds in Section 4.8.

Most results in this chapter have been presented in Liu et al. [2020c, 2017]; Liu and Sadeghi

[2019b,a], which are also listed below for ease of reference:

Liu et al. [2020c] Y. Liu, P. Sadeghi, F. Arbabjolfaei, and Y.-H. Kim, “Capacity theorems for

distributed index coding,” IEEE Trans. Inf. Theory, vol. 66, no. 8, pp. 4653–4680, Mar. 2020.

Liu et al. [2017] Y. Liu, P. Sadeghi, F. Arbabjolfaei, and Y.-H. Kim, “On the capacity for

distributed index coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, Jun.

2017, pp. 3055–3059.

Liu and Sadeghi [2019b] Y. Liu and P. Sadeghi, “Generalized alignment chain: improved

converse results for index coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France,

Jul. 2019, pp. 1242–1246.

Liu and Sadeghi [2019a] Y. Liu and P. Sadeghi, “From alignment to acyclic chains: lexico-

graphic performance bounds for index coding,” in Proc. 57th Ann. Allerton Conf. Comm.

Control Comput., Monticello, IL, Sep. 2019, pp. 260–267.

1.3.3 Security and Privacy Investigation

In Chapter 5, we investigate the security and privacy aspects of the index coding problem.

We restrict our attention to the single-server CIC problem in this chapter. Our contributions

include the following:

• In Section 5.1, we formulate and investigate the secure CIC problem with security con-

straints on the legitimate receivers. That is, there exists a prohibited message set for

each receiver. The server must broadcast in a way such that upon receiving the trans-

mitted codeword, each receiver is able to decode its requested message and, at the same
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time, is not able to decode any single message in its prohibited message set. We first

provide a linear coding scheme to fulfill both the decoding and security requirements at

the receivers, which is an extended version of the fractional local partial clique covering

scheme Arbabjolfaei and Kim [2014] introduced for the normal CIC problem. We then

propose two performance bounds for the secure CIC problem together with two associ-

ated necessary conditions for a given CIC problem to be securely feasible (i.e., to have

nonzero rates for every message).

• In Section 5.2, we study the fundamental privacy-utility tradeoff within a multi-terminal

guessing framework inspired by the CIC problem, where the centralized server broad-

casts a (possibly stochastically coded) codeword to multiple legitimate receivers, which

is also overheard by an adversary. Being a data publishing problem rather than a commu-

nication problem, the goal is to balance the privacy leakage and the data utility instead

of maximizing the communication rate. We propose two information-theoretic perfor-

mance bounds on the privacy leakage given the source distribution and utility constraints.

As for the achievable scheme (i.e., privacy mechanism), we develop a greedy algorithm

based on the agglomerative clustering method that has been used in the information

bottleneck and privacy funnel problems Slonim and Tishby [2000]; Makhdoumi et al.

[2014]; Ding and Sadeghi [2019].

The results in this chapter have been presented in Liu et al. [2020a,b], which are also listed

below for ease of reference:

Liu et al. [2020a] Y. Liu, N. Ding, P. Sadeghi, and T. Rakotoarivelo, “Privacy-utility tradeoff

in a guessing framework inspired by index coding,” in Proc. IEEE Int. Symp. Inf. Theory

(ISIT), Los Angeles, CA, Jun. 2020.

Liu et al. [2020b] Y. Liu, P. Sadeghi, N. Aboutorab, and A. Sharififar, “Secure index coding

with security constraints on receivers,” in Proc. Int. Symp. on Inf. Theory and its Applications

(ISITA), Kapolei, HI, Oct. 2020.

1.3.4 Notation

For non-negative integers a and b, [a] denotes the set {1, 2, . . . , a}, and [a : b] denotes the set

{a, a + 1, . . . , b}. If a > b, [a : b] = ∅.

For a finite set A, |A| denotes its cardinality, and 2A denotes the set of all subsets of A. For

a subset A of a ground set, Ac denotes its complement with respect to the ground set. For two

sets A and B, A \ B .
= {i ∈ A : i /∈ B}. Throughout the thesis, unless otherwise specified,

the base of logarithm is 2.

For any discrete random variable Z with probability distribution PZ, we denote its alphabet

by Z with realizations z ∈ Z . We denote an estimation of Z by Ẑ, whose alphabet is also

Z . The entropy of the discrete random variable Z is denoted by H(Z). For two discrete
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random variables X, Y, their joint entropy and mutual information are denoted by H(X, Y)
and I(X; Y), respectively. The conditional entropy of X given Y is denoted by H(X|Y). For

discrete random variables X, Y, Z, the conditional mutual information between X and Y given

Z is denoted by I(X; Y|Z). A review on the aforementioned information measures is presented

in Section 2.2.



Chapter 2

System Model and Preliminaries

In this chapter we provide a detailed description for the system model and give necessary

mathematical preliminaries. More specifically, in Section 2.1 we describe the system model for

the distributed index coding (DIC) problem, which includes the centralized index coding (CIC)

problem as a special case. We also formally introduce a number of key definitions for both

the DIC and CIC problems, such as the distributed and centralized index codes, the capacity

region, and the symmetric capacity. In Section 2.2 we recall some basic graph-theoretic terms

and notions. We also define a crucial structure, namely the touch structure, which will be used

extensively in later chapters, especially for the DIC problem. In Section 2.3, we review several

existing results that are pertinent to our work.

2.1 System Model and Problem Setup

We describe the system model for the distributed index coding (DIC) problem, noting that the

centralized index coding (CIC) problem is a special case of the DIC problem where there is

only one server that contains every message.

Consider the DIC problem with n messages, xi ∈ {0, 1}ti , i ∈ [n], each of length ti bits.

For brevity, when we say message i, we mean message xi. Let Xi be the random variable

corresponding to xi. For any set K ⊆ [n], we use the shorthand notation xK and XK to denote

the collection of messages and the collection of message random variables, whose index is

in K, respectively. We use the convention x∅ = X∅ = ∅. We assume that X1, . . . , Xn are

uniformly distributed and independent of each other.

There are 2n servers, one per each subset of the messages. The server indexed by J ∈
N .

= 2[n] has access to messages xJ . For brevity, when we say server J, we mean the server

indexed by J. Server J is connected to all receivers via a noiseless broadcast link of finite

capacity CJ ≥ 0. Note that this model allows for all possible servers containing any subset

of messages to be present in the system. If CJ = 1 for J = [n] and is zero otherwise, we

recover the CIC problem. Let yJ be the output of server J, which is a deterministic function

of xJ , and YJ be the random variable corresponding to yJ . Note also that for simplicity of

15
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notation, we include a dummy server indexed by J = ∅, which does nothing (C∅ = 0 and

Y∅ = ∅). For a collection P ⊆ N of servers, we use the shorthand notation yP and YP to

denote the corresponding collection of outputs and the collection of output random variables

from servers in P, respectively. In particular, for P = N, YN denotes the collection of output

random variables from all the servers.

There are n receivers, where receiver i ∈ [n] wishes to obtain xi and knows xAi as side

information for some Ai ⊆ [n] \ {i}. The set of messages which receiver i does not know or

want is referred to as the interfering message set of receiver i and denoted by Bi
.
= [n] \ Ai \

{i} = (Ai ∪ {i})c. For any set of receivers K ⊆ [n], define BK as

BK
.
=
⋂
i∈K

Bi, (2.1)

denoting the common interfering message set of the receivers in K. One can easily verify that

BK′ ⊆ BK, ∀K ⊆ K′ ⊆ [n]. (2.2)

Any instance of such DIC problem can be represented by a sequence (i|j ∈ Ai), i ∈ [n]
describing the side information availability at receivers, together with a tuple C .

= (CJ , J ∈ N)

describing the server broadcast link capacities. The side information availability can also be

represented by a directed graph with n vertices, namely the side information graph, denoted

by G. In the side information graph G, vertex i ∈ [n] represents message/receiver i, and a

directed edge from i to j, denoted by (i, j), means that i ∈ Aj
1. Therefore, any DIC problem

instance can also be represented by the tuple (G, C). For the CIC problem where there is only

one central server J = [n] with unit link capacity C[n] = 1, we denote any given instance by

its corresponding G or the sequence (i|j ∈ Ai), i ∈ [n] only.

The central question of the DIC problem is to find the maximum amount of information

that can be communicated to the receivers and the optimal coding scheme that achieves this

maximum. To answer this question formally, we define a (t, r) = ((ti, i ∈ [n]), (rJ , J ∈ N))

distributed index code by

• 2n encoders, one for each server J ∈ N, such that

φJ : ∏
j∈J
{0, 1}tj → {0, 1}rJ

maps the messages xJ in server J to an rJ-bit sequence yJ , and

1Note that in some work (e.g., Bar-Yossef et al. [2011]; Ong [2014]) edge (i, j) in the side information graph
means that j ∈ Ai instead of i ∈ Aj.
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• n decoders, one for each receiver i ∈ [n], such that

ψi : ∏
J∈N
{0, 1}rJ × ∏

k∈Ai

{0, 1}tk → {0, 1}ti

maps the sequences yN and the side information xAi to x̂i.

Given a link capacity tuple C, we say a rate tuple R .
= (Ri, i ∈ [n]) is achievable if for

every ε > 0, there exists a (t, r) code and a common normalization positive integer r such that

the message rates ti
r , i ∈ [n] and codeword rates rJ

r , J ∈ N satisfy

Ri ≤
ti

r
, i ∈ [n], CJ ≥

rJ

r
, J ∈ N, (2.3)

and the average probability of error satisfies

P{(X̂1, . . . , X̂n) 6= (X1, . . . , Xn)} ≤ ε. (2.4)

For the DIC problem G: (i|j ∈ Ai), i ∈ [n] with link capacity tuple C, its capacity region

C (G, C) is the closure of the set of all achievable rate tuples R. Sometimes we consider

the symmetric rate R such that R = (R, R, . . . , R) is achievable. The symmetric capacity is

defined as

Csym(G, C)
.
= max{R : (R, . . . , R) ∈ C (G, C)}. (2.5)

Sometimes we may be interested in the sum capacity of the DIC problem, defined as

Csum(G, C)
.
= max{Csum : ∃R ∈ C (G, C) s.t. Csum = ∑

i∈[n]
Ri}. (2.6)

For the CIC problem G: (i|j ∈ Ai), i ∈ [n], a (t, r) centralized index code, an achievable

rate tuple R, the capacity region C (G), the symmetric capacity Csym(G), and the sum capacity

Csum(G) can be defined accordingly. The broadcast rate β(G) characterizes the minimum

number of transmissions from the server to satisfy all the receivers when the messages are of

the same length, and is defined as the reciprocal of the symmetric capacity as

β(G) .
=

1
Csym(G) . (2.7)

The broadcast rate can be alternatively defined as

β(G) .
= inf

t
inf

((t, t, . . . , t), r) code

r
t
= lim

t→∞
inf

((t, t, . . . , t), r) code

r
t
, (2.8)

where the equality between the infimum and the limit follows by Fekete’s lemma Fekete [1923]
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and the subadditivity

inf
((t1 + t2, . . . , t1 + t2), r) codes

r ≤ inf
((t1, . . . , t1), r1) codes

r1 + inf
((t2, . . . , t,2 ), r2) codes

r2.

Note that the broadcast rate is only defined and to be studied for the CIC problem. For the DIC

problem, we sometimes study the symmetric capacity as defined in (2.5).

Remark 2.1. Zero-error capacity region can be defined for CIC and DIC problems similar

to our definition of the capacity region, which allows vanishing error, by simply requesting

that P{(X̂1, . . . , X̂n) 6= (X1, . . . , Xn)} = 0. For more details please refer to [Arbabjolfaei

and Kim, 2018, Section 1.2]. For the CIC problem it has been shown in Langberg and Effros

[2011] that the capacity region is equal to the zero-error capacity region. See also Chan and

Grant [2010]. However, it is not known whether these two capacity regions are equal for the

more general DIC problem.

We illustrate the system models for the CIC and DIC problems in the following example.

Example 2.1. Figures 2.1(a) and 2.1(b) respectively show the system models for the CIC

problem and the DIC problem with n = 3 messages. Recall that the server indexed by J ∈ N
contains messages xJ = (xj, j ∈ J). The multi-server nature of the DIC problem can lead to

fundamentally different properties compared with the CIC problem. For example, consider the

CIC and DIC problems, both with the same receiver side information (1|3), (2|3), (3|2), i.e.,

A1 = {3}, A2 = {3}, A3 = {2}. Figure 2.2 shows the corresponding side information graph

G. For the centralized problem, the capacity region remains unchanged if the side information

at receiver 1 is removed Tahmasbi et al. [2015], i.e., if A1 becomes ∅. However, in its dis-

tributed counterpart, as long as the broadcast link capacities from the servers J1 = {1, 2} and

J2 = {1, 3} are positive, removing the side information at receiver 1 does result in a strictly

smaller capacity region Sadeghi et al. [2016].

2.2 Mathematical Preliminaries

In this section we introduce a few definitions that will be useful in later sections and chapters.

2.2.1 Graph-Theoretic Terms and Notions

Throughout the thesis, unless otherwise specified, we use G to denote a directed, finite, and

simple graph, and V(G) and E(G) to denote the vertex set and the edge set of the graph,

respectively. Similarly, let U denote an undirected, finite, and simple graph, and V(U ) and

E(U ) denote its corresponding vertex set and edge set, respectively. Recall that the side
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Server {1, 2, 3}
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Receiver 2
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Figure 2.1: Centralized and distributed index coding problems with n = 3 messages.

information graph G for a CIC or DIC problem is a directed graph with V(G) = [n] and

E(G) = {(i, j) : i, j ∈ [n], i ∈ Aj}.
Given a directed graph G, for any set of vertices S ⊆ V(G), the vertex induced subgraph

G|S is generated from G as V(G|S) = {i ∈ V(G) : i ∈ S} and E(G|S) = {(i, j) ∈
E(G) : i ∈ S, j ∈ S}. For the CIC problem G (whose side information graph is G) and a

message/receiver set S ⊆ [n], G|S denotes the subproblem whose side information graph is

G|S. When the context is clear, we simply use S to denote the subproblem G|S. Similarly,

for the DIC problem (G, C), (GS, CS) denotes the subproblem induced by set S, whose side

information graph is G|S and link capacity tuple CS is defined as CS
.
= {CJ : J ⊆ S}.

A group of vertices vi1 , vi2 , . . . , vik form a cycle if there is a directed edge (vij , vij+1) ∈
E(G) for any j ∈ [k − 1], and there is a directed edge (vik , vi1) ∈ E(G). If G|S is acyclic

(i.e., G|S does not contain any cycle), then we say the set S forms an acyclic structure or S
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1

23

Figure 2.2: The side information graph G corresponds to the side information availability sequence
(1|3), (2|3), (3|2).

is acyclic. It can be verified by contradiction that for any directed graph G, set S ⊆ V(G) is

acyclic if and only if there exists an ordering of the vertices in S, say i1, i2, . . . , i|S|, such that

(ij, i|S|) /∈ E(G), ∀j ∈ [|S| − 1],
(ij, i|S|−1) /∈ E(G), ∀j ∈ [|S| − 2],
(ij, i|S|−2) /∈ E(G), ∀j ∈ [|S| − 3],

· · · , · · · ,
(ij, i3) /∈ E(G), ∀j ∈ [2],
(ij, i2) /∈ E(G), j = 1.

(2.9)

Note that (2.9) can be compactly represented as

(ij, i`) /∈ E(G), ∀j ∈ [`− 1], ` ∈ [2 : |S|]. (2.10)

If G is a side information graph for a CIC or DIC problem, then as every directed edge

(i, j) ∈ E(G) denotes i ∈ Aj, for the acyclic set S = {i1, i2, . . . , i|S|} ⊆ [n], (2.10) simplifies

to

ij /∈ Ai` , ∀j ∈ [`− 1], ` ∈ [2 : |S|], (2.11)

which can be equivalently represented using the interfering message sets as

{i1, i2, . . . , i`−1} ⊆ Bi` , ∀` ∈ [2 : |S|]. (2.12)

So far we discussed the sufficient and necessary condition for a set of vertices to be acyclic.

In a similar manner, we can define the notion of being set-level acyclic for a set of vertex

sets. Consider a directed graph G and a group of disjoint vertex sets S1, S2, . . . , Sh ⊆ V(G),
Sk ∩ S` = ∅, ∀k 6= ` ∈ [h]. We say that these vertex sets are acyclic at the set level if and
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only if we have

(i, j) /∈ E(G), ∀i ∈ Sk, j ∈ S`, k ∈ [`− 1], ` ∈ [2 : h]. (2.13)

If G is a side information graph for a CIC or DIC problem, (2.13) simplifies to

i /∈ Aj, ∀i ∈ Sk, j ∈ S`, k ∈ [`− 1], ` ∈ [2 : h], (2.14)

which can be equivalently represented using the common interfering message sets defined in

(2.1) as

S1 ∪ S2 ∪ · · · ∪ S`−1 ⊆ BS`
, ∀` ∈ [2 : h]. (2.15)

Example 2.2. Consider the 4-message CIC problem

(1|4), (2|1), (3|1, 2), (4|1),

whose side information graph is shown in Figure 2.3(a). The message set {1, 2, 3} induces an

acyclic subgraph, and thus is acyclic. One can verify that (2.12) holds as

∅ ⊆ B3, {3} ⊆ B2, {2, 3} ⊆ B1.

Next consider the 6-message CIC problem

(1|2), (2|1), (3|1, 4), (4|3), (5|6), (6|4, 5),

whose side information graph is shown in Figure 2.3(b). Message sets {5, 6}, {3, 4}, {1, 2}
are acyclic at the set level as we have

∅ ⊆ B{5,6}, {5, 6} ⊆ B{3,4}, {3, 4, 5, 6} ⊆ B{1,2}.

Then consider the 8-message CIC problem

(1|2, 3, 7, 8), (2|1, 5, 6), (3|5, 7, 8), (4|6, 8), (5|4, 6), (6|5, 7), (7|8), (8|1, 3, 4),

whose side information graph is shown in Figure 2.3(c). Message sets {1, 2}, {3}, {4, 5, 6},
{7} are acyclic at the set level as we have

∅ ⊆ B{1,2}, {1, 2} ⊆ B{3}, {1, 2, 3} ⊆ B{4,5,6}, {1, 2, 3, 4, 5, 6} ⊆ B{7}.

In the following we review the notion of lexicographic product of two directed graphs
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Figure 2.3: Three CIC problems where (a) message set {1, 2, 3} is acyclic, (b) message sets {5, 6},
{3, 4}, {1, 2} are acyclic at the set level, and (c) message sets {1, 2}, {3}, {4, 5, 6}, {7} are acyclic at
the set level.

Hammack et al. [2011]; Arbabjolfaei and Kim [2018].

Definition 2.1 (Lexicographic product, Hammack et al. [2011]; Arbabjolfaei and Kim [2018]).
For any two directed graphs G0 and G1, the directed graph

G = G0 ◦ G1

is called the lexicographic product of G0 and G1 if and only if

V(G) = V(G0)×V(G1) = {(i1, i2) : i1 ∈ V(G0), i2 ∈ V(G1)},

and

E(G) = {((i1, i2), (j1, j2)) : (i1, j1) ∈ E(G0) or i1 = j1, (i2, j2) ∈ E(G1)}.

That is, to produce G as G0 ◦ G1, every vertex in G0 is replaced by a copy of G1, and all the

vertices of one copy of G1 are connected with all the vertices of another copy according to the

edge connectivity given by E(G0). If G0 and G1 both represent some CIC problems (as their

side information graphs), then by computing the lexicographic product of them we generate a

new CIC problem with side information graph G = G0 ◦ G1. For an example see Figure 2.4.

For a given directed graph G and any positive integer k, define the shorthand notation

G◦k .
= G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸

k times

.

In this thesis, we study the structural properties of the lexicographic product of CIC prob-

lems (i.e., their side information graphs) only, and do not consider that of DIC problems.
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1

3 2

G0

1 2

G1

1 4
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G = G0 ◦ G1

Figure 2.4: An example of the lexicographic product of two directed graphs. If G0

represents the 3-message CIC problem (1|3), (2|1), (3|−) and G1 represents the 2-message
CIC problem (1|−), (2|1), then G = G0 ◦ G1 represents the 6-message CIC problem
(1|3, 6), (2|1, 4), (3|−), (4|1, 3, 6), (5|1, 2, 4), (6|3), which is the lexicographic product of G0 and G1.
Note that according to Definition 2.1, the vertex set of G is {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}.
We re-label these vertices as (1, 1) = 1, (1, 2) = 4, (2, 1) = 2, (2, 2) = 5, (3, 1) = 3, (3, 2) = 6.

2.2.2 Information Measures

We briefly review some of the most basic and classic information measures in the field of

information theory, which were introduced in the seminal paper Shannon [1948] by Claude

Shannon, and thus sometimes referred to as Shannon’s information measures. For more details,

see [Cover, 2006, Chapter 2].

For a discrete random variable Z with alphabet Z and probability distribution PZ, the

entropy of Z is defined as

H(Z) = ∑
z∈Z

PZ(z) log
1

PZ(z)
.

Note that in the above definition, we set by convention that 0 log 1
0 = 0, which can be justified

by continuity as x log 1
x → 0 when x → 0.

Roughly speaking, entropy is average of the uncertainty of the random variable. The en-

tropy is non-negative and upper-bounded by the logarithm of the alphabet size. That is,

0 ≤ H(Z) ≤ log |Z |, (2.16)

where the lower bound is tight if and only if Z is deterministic, and the upper bound is tight if

and only if Z has a uniform distribution.

For two discrete random variables X and Y with alphabet X and Y , respectively, and joint

distribution PX,Y, their joint entropy is defined as

H(X, Y) = ∑
x∈X ,y∈Y

PX,Y(x, y) log
1

PX,Y(x, y)
.
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Note that the random variables X, Y can be collectively viewed as a single vector-valued ran-

dom variable Z = (X, Y). Subsequently, the joint entropy H(X, Y) is simply the entropy of

Z = (X, Y).

As a measure of the average remaining uncertainty of a random variable Y given the knowl-

edge of another random variable X, we define the conditional entropy of Y given X as

H(Y |X) = ∑
x∈X

PX(x) ∑
y∈Y

PY|X(y|x) log
1

PY|X(y|x)
= H(X, Y)− H(X),

where the second equality characterizing the relationship between entropy, joint entropy, and

conditional entropy is often referred to as the chain rule. The conditional entropy H(Y|X) is

non-negative and no larger than the entropy H(Y). That is,

0 ≤ H(Y |X) ≤ H(Y),

where the lower bound is tight if and only if Y is a deterministic function of X, and the upper

bound is tight if and only if X and Y are independent.

The average reduction of uncertainty of Y due to the knowledge of X is defined as the

mutual information between Y and X, denoted as I(Y; X). Clearly, we have

I(Y; X) = H(Y)− H(Y |X) = ∑
x∈X ,y∈Y

PX,Y(x, y) log
PX,Y(x, y)

PX(x)PY(y)
.

The mutual information is symmetric in X and Y, non-negative, and upper-bounded by the

entropies of X and Y. That is,

I(Y; X) = I(X; Y) = H(X) + H(Y)− H(X, Y),

0 ≤ I(X; Y) ≤ min{H(X), H(Y)},

where the lower bound is tight if and only if X and Y are independent, and the upper bound is

tight if and only if one of X or Y is a deterministic function of the other.

The conditional mutual information between X and Y given Z is defined as

I(X; Y |Z) = H(X |Z)− H(X |Y, Z)

= ∑
x∈X ,y∈Y ,z∈Z

PX,Y,Z(x, y, z) log
PX,Y|Z(x, y|z)

PX|Z(x|z)PY|Z(y|z)

= I(X; Y, Z)− I(X; Z),

where the last equality is the chain rule for mutual information and I(X; Y, Z) is simply the

mutual information between X and the vector-valued random variable (Y, Z).
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2.2.3 Touch Structure

Now we define the following touch structure, which will be used extensively when dealing

with multiple servers for the DIC problem.

Definition 2.2 (Touch structure). For any set of messages K ⊆ [n] and a given server J ∈ N,

we say that server J touches K if J ∩ K 6= ∅ and that J does not touch K if J ∩ K = ∅. We

denote by TK the collection of servers that touch K and denote by TK the collection of servers

that do not touch K, that is,

TK = {J ∈ N : J ∩ K 6= ∅},
TK = {J ∈ N : J ∩ K = ∅} = {J ∈ N : J ⊆ [n] \ K} = N \ TK = 2Kc

.

And furthermore, for two sets of messages K and L,

TK,L = TL,K = {J ∈ N : J ∩ K 6= ∅, J ∩ L 6= ∅},
TK,L = TL,K = {J ∈ N : J ∩ K 6= ∅, J ∩ L = ∅}.

Example 2.3. If n = 4, then

T{1} = {{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}},
T{1},{2} = {{1}, {1, 3}, {1, 4}, {1, 3, 4}}.

Remark 2.2. Any set TK can be broken into two disjoint subsets TK,L and TK,L. Thus, TK,L ⊆
TK, TK,L ⊆ TK in general and TK,L = TK if K ⊆ L. It is also easy to verify that TK ∪ TL =

TK∪L and TK∩L ⊆ TK,L = TK ∩ TL. Definition 2.2 can be naturally extended to three or more

message sets. For example, if n = 5, then

T{1,4},{3},{4,5} = {{4}, {1, 4}, {1, 5}, {1, 4, 5}, {2, 4}, {1, 2, 4}, {1, 2, 5}, {1, 2, 4, 5}}.

In our usual notation, YTK thus denotes the output random variables from servers that have

at least one message from the message set K, e.g., YT[n] = YN . When the context is clear, we

shall use the shorthand notation TK for YTK , e.g., H(TK) means H(YTK).

2.3 Review of Some Existing Results

We briefly review some existing results on both the achievable coding schemes and the perfor-

mance bounds for the CIC and DIC problems that are pertinent to this thesis.
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2.3.1 Existing Coding Schemes for the CIC problem

We begin with several well-known CIC coding schemes, which can be broadly categorized

into two classes: linear CIC coding schemes and non-linear CIC coding schemes. Every cod-

ing scheme leads to an inner bound on the capacity region C and/or an upper bound on the

broadcast rate β.

2.3.1.1 Existing Linear CIC Coding Schemes

Consider the CIC problem G: (i|j ∈ Ai), i ∈ [n]. Let amin
.
= mini∈[n] |Ai| denote the

minimum number of side information messages across the receivers. Obviously 0 ≤ amin < n.

Over sufficiently large fields, there always exists some systematic (n + n − amin, n − amin)

MDS code with total n + n− amin code symbols, including n message symbols and n− amin

parity symbols, such that given any n of these total n + n− amin symbols, one can recover the

rest of them. Therefore by broadcasting the n− amin parity symbols from the central server

to the receivers, receiver j has |Aj|+ n− amin = |Aj|+ n−mini∈[n] |Ai| ≥ n MDS code

symbols and hence is capable of recovering all the remaining symbols. That is, broadcasting

the n− amin parity symbols will enable every receiver to decode every message not in its side

information. Such coding schemes leads to the following achievability bound on β.

Proposition 2.1 (MDS bound, Birk and Kol [1998]). Consider the CIC problem G: (i|j ∈ Ai),

i ∈ [n]. The broadcast rate β(G) is upper bounded by βMDS(G) as

β(G) ≤ βMDS(G) .
= n− amin = n−min

i∈[n]
|Ai |. (2.17)

Note that for the CIC problem G the MDS coding scheme requires βMDS(G) transmissions

and thus a symmetric rate of 1
βMDS(G) is achieved.

To generalize the above MDS coding scheme for the CIC problem, consider time sharing

among a number of induced subproblems G|L for some L ⊆ [n]. Each subproblem G|L is

assigned with a certain fraction of the unit channel link capacity λL. Any message xi that

appears in multiple subproblems is split into sub-messages xi,L, i ∈ L, λL > 0. For each

subproblem G|L we apply the MDS coding scheme. That is, for each subproblem G|L, a

systematic (|L| + βMDS(G|L), |L|) MDS code is used such that every receiver i ∈ L can

decode sub-message xi,L at rate λL
βMDS(G|L) . Moreover, to exploit the fact that each receiver can

recover some MDS code symbols from its own side information, an MDS code is applied at the

subproblem level to the MDS code symbols for subproblems. In this way, the channel capacity

is shared only among the MDS code symbols not available locally at each receiver.

The above coding scheme is called the fractional local partial clique covering (FLPCC)

scheme Arbabjolfaei and Kim [2014]. The following theorem presents the achievable rate

region given by the FLPCC scheme.
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Proposition 2.2 (Fractional local partial clique covering (FLPCC) bound, Arbabjolfaei and

Kim [2014]). Consider the CIC problem G: (i|j ∈ Ai), i ∈ [n]. The capacity region C (G) is

inner bounded by the rate region RFLPCC(G) that consists of all rate tuples R satisfying

Ri ≤ ∑
L⊆[n]:i∈L

λL

βMDS(G|L)
, ∀i ∈ [n] (2.18)

for some λL, L ⊆ [n] such that

λL ∈ [0, 1], ∀L ⊆ [n], (2.19)

∑
L⊆[n]:L 6⊆Ai

λL ≤ 1, ∀i ∈ [n]. (2.20)

In particular, the broadcast rate β(G) is upper bounded by βFLPCC(G), which is the solution to

the optimization problem

minimize max
i∈[n] ∑

L⊆[n]:L 6⊆Ai

κL · βMDS(G |L) (2.21)

subject to κL ∈ [0, 1], ∀L ⊆ [n], (2.22)

∑
L⊆[n]:i∈L

κL ≥ 1, ∀i ∈ [n]. (2.23)

To compute the FLPCC bound, one can use an optimization tool such as Fourier Motzkin

Elimination (FME) [El Gamal and Kim, 2011, Appendix D] or linear programming (LP) to

eliminate the intermediate variables in Proposition 2.2. The FLPCC scheme leads to tight

inner bounds for a number of CIC problems. Nevertheless, it is always outperformed by (i.e.,

no tighter than) the recursive coding scheme in Arbabjolfaei and Kim [2014]. We do not go

through the recursive coding scheme or other existing linear CIC coding schemes in detail as

we are not going to study or use them in later chapters.

2.3.1.2 Existing Non-linear CIC Coding Schemes

Next we introduce several existing non-linear coding schemes, which are based on the classic

random coding method.

We begin with the flat coding scheme Arbabjolfaei et al. [2013], a single-layer random cod-

ing scheme for the CIC problem2. The codebook generation is as follows. For each realization

of messages x[n], a codeword y(x[n]) is drawn uniformly at random from [2r]. Such codebook

is revealed to all parties. To communicate messages x[n], the server transmits y(x[n]). Since the

2The codebook generation for flat coding is “flat" over all messages, in contrast to any “layered" superposition
coding scheme. In other words, the codeword y is directly generated according to the messages x1, . . . , xn without
any intermediate steps.
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encoding is flat, receiver i must decode all messages not in its side information. Such coding

scheme yields the following achievable rate region.

Proposition 2.3 (Flat coding bound, Arbabjolfaei et al. [2013]). Consider the CIC problem G:

(i|j ∈ Ai), i ∈ [n]. The capacity region C (G) is inner bounded by the rate region Rflat(G)
that consists of all rate tuples R satisfying

Ri + ∑
j∈Bi

Rj < 1, ∀i ∈ [n]. (2.24)

In particular, the broadcast rate β(G) is upper bounded by βFLAT(G) as

β(G) ≤ βFLAT(G) .
= 1 + max

i∈[n]
|Bi | = n−min

i∈[n]
|Ai |. (2.25)

Note that the flat coding upper bound βflat(G) is identical to the MDS upper bound βMDS(G).
As pointed out in [Arbabjolfaei and Kim, 2018, Remark 6.11], the flat coding scheme can be

seen as a random construction of an approximate MDS code, which achieves βMDS(G) asymp-

totically.

Composite Coding Arbabjolfaei et al. [2013]: For the CIC problem (1|4), (2|3, 4),
(3|1, 2), (4|2, 3), flat coding (or more generally time sharing of flat coding over subprob-

lems) gives a suboptimal achievable rate region as R1 + R2 + R3 < 1, R1 + R4 < 1,

and R3 + R4 < 1. However, using the two-layer random coding scheme described below,

namely, the composite coding (CC) scheme Arbabjolfaei et al. [2013], the capacity region as

R1 + R2 < 1, R1 + R3 < 1, R1 + R4 < 1, and R3 + R4 < 1 can be achieved.

We review the CC scheme in detail as follows.

Codebook generation.

Step 1. For each message set K ⊆ [n] and each realization of messages xK, generate a

composite index wK = wK(xK) drawn uniformly at random from [2sK ], where sK = drSKe
and SK is the rate of the composite index wK. That is, the composite index wK is generated

according to the random mapping wK as

wK : ∏
i∈K

[2ti ]→ [2sK ].

Step 2. For each realization of the composite index tuple (wK, K ⊆ [n]), generate a code-

word y = y((wK, K ⊆ [n])) drawn uniformly at random from [2r]. That is, the codeword y is

generated according to the random mapping y as

y : ∏
K⊆[n]

[2sK ]→ [2r].
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The codebook is revealed to all parties.3

Encoding. To communicate messages x[n], the server first encodes the composite in-

dex wK = wK(xK) for each K ⊆ [n], and then encodes and transmits the codeword y =

y((wK, K ⊆ [n])).
Decoding. Decoding takes place in the reverse order of stages as follows.

Step 1. Receiver i finds the unique composite index tuple (ŵK, K ⊆ [n]) such that y =

y(ŵK, K ⊆ [n]). If there is more than one such tuple it declares an error.

Step 2. Assuming (ŵK, K ⊆ [n]) is correct, receiver i decodes for a subset of messages

indexed by Di ⊆ [n] \ Ai, such that i ∈ Di. That is, receiver i finds the unique message tuple

x̂Di such that ŵK = wK(x̂K) for all K ⊆ Di ∪ Ai. If there is more than one such tuple it

declares an error.

The tuple of decoding message sets is denoted by D .
= (Di, i ∈ [n]) and referred to as the

decoding configuration for composite coding. Let Di(G) .
= {Di ⊆ [n] \ Ai : i ∈ Di} denote

the set of all possible decoding message sets at receiver i, and thus D(G) .
= ∏i∈[n]Di(G)

denotes the collection of all possible decoding configurations for the given CIC problem.

The achievable rate region of the CC scheme is summarized below. Note that time sharing

is applied over all possible decoding configurations.

Proposition 2.4 (Composite coding (CC) bound, Arbabjolfaei et al. [2013]; Arbabjolfaei and

Kim [2018]). Consider the CIC problem G: (i|j ∈ Ai), i ∈ [n]. The capacity region C (G) is

inner bounded by the rate region RCC(G) as

RCC(G) .
= co

( ⋃
D∈D(G)

RCC(G, D)
)
, (2.26)

where co(·) denotes the convex hull, and RCC(G, D) consists of all the rate tuples R satisfying

∑
K⊆[n],K*Ai

SK(D) < 1, ∀i ∈ [n], (2.27)

∑
j∈L

Rj < ∑
K⊆Di∪Ai ,

K∩L 6=∅

SK(D), ∀L ⊆ Di, i ∈ [n], (2.28)

for some SK(D) ≥ 0, K ⊆ [n].

Here the collection of inequalities in (2.27) signify the first-step decoding constraints for

the composite indices to be recovered by each receiver. The collection of inequalities in (2.28)

3It is worth contrasting single-layer flat coding of messages into random codewords versus two-layer composite
coding of messages into random composite indices and then composite indices into random codewords. In other
words, composite coding can be viewed as random construction of an approximate MDS code for composite in-
dices, rather than messages themselves. This adds flexibility in decoding conditions and can enhance the achievable
rate region. For more details see Arbabjolfaei et al. [2013]; Arbabjolfaei and Kim [2018].
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signify the second-step decoding constraints for recovering messages in each receiver’s decod-

ing message set given the decoding configuration D.

To compute an explicit achievable rate region or rate tuple from (2.27) and (2.28), one has

to eliminate the intermediate variables (SK(D), K ⊆ [n]) using optimization tools such as

FME or LP. It has been verified that the CC scheme can give tight inner bounds on the capacity

region for all CIC problems with five or fewer messages Arbabjolfaei et al. [2013], as well as

many larger problems with six or more messages.

2.3.2 Existing Coding Schemes for the DIC problem

In this section, we briefly discuss the existing coding schemes and their corresponding achiev-

ability results for the DIC problem.

There is a series of useful graph-theoretic coding schemes for the CIC problem such as

the FLPCC scheme (for more details see [Arbabjolfaei and Kim, 2018, Sections 6.2-6.5]).

In contrast, to the best of our knowledge, there has been no existing graph-theoretic coding

schemes holding generally for any DIC problem beyond trivial extensions of the CIC graph-

theoretic coding schemes (e.g., every server employs its own coding scheme with no cooper-

ation between each other). Several graph-theoretic results have been proposed under certain

constraints, such as the cyclic codes for the single-uniprior multi-sender index coding problem

where each receiver knows one message as side information Ong et al. [2016a], and the graph

theoretic approaches for the two-sender index coding problem Thapa et al. [2016].

The minrank approach for the CIC problem has been extended to the DIC problem in Kim

and No [2019]; Li et al. [2019], providing nontrivial coding techniques. However, despite sim-

plification techniques proposed, the code construction can still be computationally expensive.

Also the suboptimality of minrank based codes compared to non-linear codes naturally carries

over from the CIC to the DIC problem.

As for the non-linear coding schemes for the DIC problem, the CC scheme has been ex-

tended to the multi-server scenario in Sadeghi et al. [2016], and then further generalized in Li

et al. [2017, 2018]. In Chapter 3, we will propose a new coding scheme, namely the distributed

composite coding (DCC) scheme, which is more general than all those existing schemes based

on composite coding. More specifically, the DCC scheme adopts the key technique introduced

by the cooperative composite coding (CCC) scheme in Li et al. [2018] as a baseline, which is

then combined with our own improvements to jointly lead to a more advanced coding scheme.

The achievable rate region of the CCC scheme is rather involved and bear a resemblance to

that of our DCC scheme. Given such fact, we postpone the details about the CCC scheme’s

achievability results till after the introduction of the DCC scheme in Sections 3.4 and 3.5.
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2.3.3 Existing Performance Bounds for the CIC problem

In the following we review a series of performance bounds for the CIC problem, namely, the

maximal acyclic induced subgraph (MAIS) bound Bar-Yossef et al. [2011], the internal conflict

bound Maleki et al. [2014]; Jafar [2014], and the polymatroidal (PM) bound Arbabjolfaei et al.

[2013]. Every performance bound essentially serves as an outer bound on the capacity region

C , which can be specified to a lower bound on the broadcast rate β.

Proposition 2.5 (Maximal acyclic induced subgraph (MAIS) bound, Bar-Yossef et al. [2011]).
Consider the CIC problem G: (i|j ∈ Ai), i ∈ [n]. The capacity region C (G) is outer bounded

by the rate region RMAIS(G) that consists of all rate tuples R satisfying

∑
i ∈ S: S ⊆ [n] is acyclic

Ri ≤ 1. (2.29)

In particular, the broadcast rate β(G) is lower bounded by βMAIS(G) as

β(G) ≥ βMAIS(G) .
= max

S ⊆ [n] is acyclic
|S|. (2.30)

It has been verified in [Arbabjolfaei and Kim, 2018, Section 8.6] that for every CIC prob-

lem instance with n = 4 or fewer messages, the MAIS outer bound is tight as it coincides with

the fractional local partial clique covering (FLPCC) inner bound Arbabjolfaei and Kim [2014]

(Proposition 2.2 in Section 2.3.1), thus establishing the capacity region. In general however,

the MAIS bound is loose.

Example 2.4. Consider the 5-message CIC problem G:

(1|2, 5), (2|1, 3), (3|2, 4), (4|3, 5), (5|1, 4).

The MAIS bound yields β(G) ≥ βMAIS(G) = 2. Yet the actual broadcast rate β(G) for this

problem is 2.5 (see Example 2.5 to be presented shortly).

For the internal conflict bound, we first recall the definition of the alignment chain model

from Maleki et al. [2014].

Definition 2.3 (Alignment chain, Maleki et al. [2014]). Consider the CIC problem G: (i|j ∈
Ai), i ∈ [n]. Messages i(1), i(2), · · · , i(m), i(m + 1) and k(1), k(2), · · · , k(m) constitute an

alignment chain, ChAC, of length m as

ChAC : i(1)
k(1)←−−→ i(2)

k(2)←−−→ i(3) · · · k(m)←−−→ i(m + 1), (2.31)

if the conditions listed below are satisfied:
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1. i(1) ∈ Bi(m+1) or i(m + 1) ∈ Bi(1);

2. for any j ∈ [m], we have {i(j), i(j + 1)} ⊆ Bk(j).

For any alignment chain we call the edge between i(j) and i(j + 1) edge j. In Definition

2.3, the two terminals i(1) and i(m+ 1) of the chain are underlined to indicate that the message

set {i(1), i(m + 1)} is acyclic. We call the i-labeled and k-labeled messages the components

of the alignment chain ChAC. The chain becomes trivial when m = 0 as it contains only one

component i(1). To avoid such trivial case, we always require that m ≥ 1.

Remark 2.3. For the CIC problem G, let CAC(G) denote the collection of its alignment chains.

If there exits at least one alignment chain, then we say that there is an internal conflict between

the two terminal messages i(1) and i(m + 1) of the alignment chain and that the problem is

internally conflicted. The broadcast rate for the CIC problems that are not internally conflicted

(i.e., CAC(G) = ∅) is known to be either β(G) = 1 or β(G) = 2 Maleki et al. [2014]; Blasiak

et al. [2013]. Moreover, the broadcast rate is strictly larger than 2 if the problem is internally

conflicted. In other words, a problem is not internally conflicted if and only if a symmetric rate

R = 1/β(G) of at least 0.5 can be achieved, and thus we also call such problem a half-rate-

feasible problem. The internally conflicted problems with CAC(G) 6= ∅ are also referred to as

half-rate-infeasible problems.

Proposition 2.6 (Internal conflict bound, Maleki et al. [2014]; Jafar [2014]). Consider the

internally conflicted (i.e., half-rate-infeasible) CIC problem G: (i|j ∈ Ai), i ∈ [n]. The

capacity region C (G) is outer bounded by the rate region RAC(G) that consists of all rate

tuples R such that for every alignment chain ChAC ∈ CAC(G) as shown in (2.31),

∑
j∈[m+1]

Ri(j) + ∑
j∈[m]

Rk(j) ≤ m. (2.32)

In particular, the broadcast rate β(G) is lower bounded by βAC(G) as

β(G) ≥ βAC(G) .
= max

m ∈ Z+: ∃ChAC ∈ CAC(G) of length m

1 + 2m
m

. (2.33)

The MAIS bound in Proposition 2.5 and the internal conflict bound in Proposition 2.6 can

outperform each other for some CIC problem instances.

Example 2.5. Consider the 5-message CIC problem G in Example 2.4, for which we have the

following alignment chain of length m = 2,

ChAC : 1 4←→ 2 5←→ 3. (2.34)
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According to the internal conflict bound in Proposition 2.6, we have

β(G) ≥ βAC(G) ≥
1 + 2 ∗ 2

2
= 2.5.

This upper bound is tight as it coincides with the FLPCC bound Arbabjolfaei and Kim [2014]

(Proposition 2.2 in Section 2.3.1) on the broadcast rate. More specifically, the optimal linear

code given by the FLPCC scheme can be written as

y = (x1,1 ⊕ x2,1, x2,2 ⊕ x3,1, x3,2 ⊕ x4,1, x4,2 ⊕ x5,1, x5,2 ⊕ x1,2),

where the codeword length r = 5 and message length ti = 2 for every i ∈ [5]. With such

linear code, every receiver can decode 2 bits of its wanted message in every 5 channel uses,

and thus β(G) = 5/2 = 2.5 is achieved. Recall that the MAIS bound gives a loose result as

βMAIS(G) = 2 < 2.5 for this problem.

Remark 2.4. One may notice that the MAIS bound is loose for any CIC problem whose

broadcast rate is not an integer as βMAIS(G) is always an integer. As for the internal conflict

bound, by (2.33) one can see that βAC(G) is always no larger than 1+2m
m |m=1 = 3. Hence for

those CIC problems whose broadcast rate is larger than 3, the internal conflict bound is always

loose. For a simple example, consider the CIC problem G: (1|−), (2|−), (3|−), (4|−) where

there are 4 receivers and no one knows anything as side information. Quite obviously for this

problem β(G) = βMAIS(G) = 4. However, one can verify that the internal conflict bound

gives only βAC(G) = 3.

In the following we review the more general PM bound Blasiak et al. [2011], which implies

both the MAIS bound and the internal conflict bound.

Proposition 2.7 (Polymatroidal (PM) bound, Blasiak et al. [2011]). Consider the CIC problem

G: (i|j ∈ Ai), i ∈ [n]. The capacity region C (G) is outer bounded by the rate region RPM(G)
that consists of all rate tuples R satisfying

Ri ≤ g(Bi ∪ {i})− g(Bi), ∀i ∈ [n], (2.35)

for at least one set function g : 2[n] → [0, 1] such that

g(∅) = 0, (2.36)

g([n]) ≤ 1, (2.37)

g(K) ≤ g(K′), if K ⊆ K′, (2.38)

g(K ∩ K′) + g(K ∪ K′) ≤ g(K) + g(K′), (2.39)

g(Bi ∪ {i})− g(Bi) = g({i}), ∀i ∈ [n]. (2.40)
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In particular, the broadcast rate β(G) is lower bounded by βPM(G) as

β(G) ≥ βPM(G) .
= min

g : 2[n] → [0, 1] satisfying (2.36)-(2.40)
max
i∈[n]

1
g(Bi ∪ {i})− g(Bi)

(2.41)

Remark 2.5. Properties (2.36), (2.38), and (2.39) capture standard PM axioms of the entropy

function. Property (2.37) captures the unit channel capacity constraint. The inequality (2.35)

and property (2.40) are based on the system assumptions and conditions such as message in-

dependence and decoding requirement at receivers. For more details, also see Appendix B.1.1.

It has been shown in Liu et al. [2018a] that the PM bound in Proposition 2.7 is the tightest

bound one can get using all Shannon-type inequalities. The PM bound is tight on the capacity

region for all CIC problems with less than or equal to 5 messages Arbabjolfaei et al. [2013],

as well as many larger problems. The smallest CIC problem known so far, for which non-

Shannon-type inequalities are strictly needed for capacity region characterization, is of n = 9
messages [Liu and Sadeghi, 2019b, Section IV-C]. Several other larger problems for which

non-Shannon-type inequalities are necessary have been identified in Sun and Jafar [2015];

Baber et al. [2013].

2.3.4 Existing Performance Bounds for the DIC problem

Now we move on to the existing performance bounds for the DIC problem. To the best of our

knowledge, the only two information-theoretical performance bounds in the literature holding

generally for any DIC problem are those proposed in Sadeghi et al. [2016], which are presented

in the following.

Proposition 2.8 (Distributed maximal acyclic induced subgraph (MAIS) bound, Sadeghi et al.

[2016]). Consider the DIC problem (i|j ∈ Ai), i ∈ [n] with link capacity tuple C. The

capacity region C (G, C) is outer bounded by the rate region RDMAIS(G, C) that consists of all

rate tuples R satisfying

∑
i ∈ S: S ⊆ [n] is acyclic

Ri ≤ ∑
J∈TS

CJ , (2.42)

where TS = {J ∈ N : J ∩ S 6= ∅} as defined in Definition 2.2. In particular, if any symmetric

rate R is achievable, then

R ≤ min
S ⊆ [n] is acyclic

1
|S| ∑

J∈TS

CJ . (2.43)

Proposition 2.9 (All-server distributed polymatroidal (PM) bound, Sadeghi et al. [2016]).
Consider the DIC problem G: (i|j ∈ Ai), i ∈ [n] with link capacity tuple C. The capac-

ity region C (G, C) is outer bounded by the rate region RADPM(G, C) that consists of all rate
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tuples R such that for any L ⊆ [n],

Ri ≤ fL((Bi ∪ {i}) ∩ L)− fL(Bi ∩ L), ∀i ∈ L, (2.44)

for at least one set function fL : 2L → [0, 1] such that

fL(∅) = 0, (2.45)

fL(L) ≤ ∑
J∈TL

CJ , (2.46)

fL(K) ≤ fL(K′), if K ⊆ K′, (2.47)

fL(K ∩ K′) + fL(K ∪ K′) ≤ fL(K) + fL(K′). (2.48)

In particular, if any symmetric rate R is achievable, then

R ≤ min
L⊆[n]

max
fL : 2L → [0, 1] satisfying (2.45)-(2.48)

min
i∈L

(
fL((Bi ∪ {i}) ∩ L)− fL(Bi ∩ L)

)
. (2.49)

The distributed MAIS bound in Proposition 2.8 can be seen as a generalized version of the

MAIS bound for the CIC problem, and is implied by the all-server distributed PM bound in

Proposition 2.9.

Proposition 2.9 is capable of giving tight results on the sum capacity Csum for 145 of 218
non-isomorphic 4-message DIC problems with equal link capacities CJ = 1, J ∈ N \ {∅}.
Nevertheless, for all these 218 problems tight upper bounds on the sum capacity Csum can

indeed be established using Shannon-type inequalities. That is to say, unlike the PM bound in

Proposition 2.7 which is the tightest bound for the CIC problem one can get using Shannon-

type inequalities, the all-server distributed PM bound in Proposition 2.9 only captures a subset

of Shannon-type inequalities for the DIC problem. In Chapter 4, we will propose a more

general performance bound also based on the PM axioms of the entropy function for the DIC

problem. Our bound strictly outperforms the all-server distributed PM bound in Proposition

2.9 and indeed captures all Shannon-type inequalities.

2.4 Chapter Summary

In this chapter, we formulated and rigorously defined the centralized index coding (CIC) and

the distributed index coding (DIC) problems, as well as their capacity region and other related

notions. We illustrated that the CIC problem is a special case of the more general DIC prob-

lem, and that the multi-server nature of the DIC problem can lead to fundamentally different

properties compared with the CIC scenario. We provided mathematical preliminaries for the

whole thesis. In particular, we reviewed and defined a number of graph-theoretic terms includ-
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ing the notions of a vertex set being acyclic and a set of vertex sets being set-level acyclic. We

also reviewed the concept of lexicographic product of directed graphs, and defined the touch

structure for the multi-server scenario. We reviewed a number of existing linear and non-linear

coding schemes, as well as several performance bounds for the CIC and DIC problems. Our

results to be presented in the next three chapters will be nontrivially built upon these existing

works.



Chapter 3

Achievability and Coding Schemes

In this chapter, we investigate the coding schemes and corresponding achievability results for

index coding. Our results are built upon the two-layer random coding scheme, composite

coding (CC) Arbabjolfaei et al. [2013] (cf. Proposition 2.4), where the messages are mapped

to composite indices and composite indices are then mapped to the codeword to be transmitted.

In Sections 3.1-3.3 we focus on the CIC problem. First in Section 3.1, we simplify the orig-

inal CC scheme through a number of simplification techniques, leading to a great reduction in

the computational complexity. We then improve the CC scheme in two independent directions.

In Section 3.2, we improve the CC scheme by employing a more flexible enhanced fractional

allocation of the centralized channel capacity. In Section 3.3, we extend the CC scheme by

adding one more layer of random coding into it. That is, instead of directly mapping the

composite indices to the codeword, we map them to a number of doubly composite indices,

which are then mapped to the codeword for transmission. We name such coding scheme as

three-layer composite coding (TLCC) and show that it can strictly outperform the CC scheme.

In Sections 3.4-3.5, we propose a distributed version of the CC scheme, namely distributed

composite coding (DCC). The DCC scheme is built upon combining the idea of cooperative

compression of composite indices across all servers introduced in Li et al. [2018] and our

aforementioned enhanced fractional allocation of server link capacities, together with a new

dimension of decoding flexibility: each receiver can choose their own group of server outputs

for decoding. We also present the resulting achievable rate region of the DCC scheme in a

series of equivalent or simplified forms that can help better understand the coding scheme or

reduce the computational complexity.

Detailed examples are provided to showcase the use and efficacy of our results throughout

the chapter. Some technical proofs are presented in Appendices A.1-A.2.

3.1 Simplified Composite Coding

The composite coding (CC) scheme is a two-layer coding scheme for the CIC problem, which

is based on the classic idea of random coding by Claude Shannon. See Section 2.3.1 for

37



38 Achievability and Coding Schemes

a detailed description of the CC scheme and its corresponding achievability bound, the CC

bound in Proposition 2.4.

One practical concern about the CC scheme is its computational complexity. As the prob-

lem size n grows, the number of composite indices WK, K ⊆ [n] grows exponentially, and

the number of possible decoding configurations grows super exponentially. These two facts

together lead to considerably high computational complexity.

In this section we propose several simplification techniques to address both complexity

issues mentioned above. Removing composite indices is achieved by pairwise comparison of

any two indices and removing one if its corresponding rate can be transferred without perfor-

mance (tightness) loss to the other in the expressions of the achievable rate region. A heuristic

method is also proposed for reducing the number of composite indices even further, but pos-

sibly with some performance loss. Decoding configurations are reduced by establishing a suf-

ficient condition for a specific decoding configuration to be safely excluded without affecting

the performance of the scheme.

We first show in Subsection 3.1.1 how the CC scheme can be simplified for a fixed decoding

configuration via removing some unnecessary composite indices. Then we show in Subsection

3.1.2 how one can ignore some decoding configurations without affecting the achievable rate

region.

3.1.1 Reducing Composite Indices for a Fixed Decoding Configuration

Consider the CIC problem G: (i|j ∈ Ai), i ∈ [n]. For easier reference, we repeat the CC

bound in Proposition 2.4 as

RCC(G) = co
( ⋃

D∈D(G)
RCC(G, D)

)
, (3.1)

where for each D ∈ D(G), RCC(G, D) consists of all the rate tuples R satisfying

∑
K⊆[n],K*Ai

SK(D) < 1, ∀i ∈ [n], (3.2)

∑
j∈L

Rj < ∑
K⊆Di∪Ai ,

K∩L 6=∅

SK(D), ∀L ⊆ Di, i ∈ [n], (3.3)

for some SK(D) ≥ 0, K ⊆ [n]. Recall that the inequalities in (3.2) signify the first-step decod-

ing constraints for the composite indices to be recovered for each receiver, and the inequalities

in (3.3) signify the second-step decoding constraints for recovering messages in each receiver’s

decoding message set specified by the decoding configuration D. When the context is clear,

we simply call the inequalities in (3.2) and (3.3) the first-step inequalities and second-step

inequalities, respectively.
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The goal is to determine whether it is possible to remove SK(D) for some K ⊆ [n] in (3.2)

and (3.3) without affecting the rate region RCC(G, D) for a given decoding configuration D.

Our proposed simplification involves pairwise comparison of any two composite index rates,

say SK(D) and SK′(D), K, K′ ⊆ [n]. Roughly speaking, if SK(D) appears in every first-step

inequality in (3.2) in which SK′(D) appears, and at the same time, SK(D) does not appear in

any second-step inequality in (3.3) in which SK′(D) does not appear, then SK(D) can be safely

removed from computations.

More formally, fix an ordering for all inequalities identified in (3.2) and (3.3). Enumerate

all inequalities in (3.2) by indices `1 ∈ [m1] and all inequalities in (3.3) by indices `2 ∈ [m2],

where m1, m2 denote the number of first-step and second-step inequalities, respectively. Note

that including possibly inactive inequalities, there is one first-step inequality and 2|Di | − 1
second-step inequalities for each receiver. Now, assume SK(D) respectively appears in first-

step and second-step inequalities that are identified by indices Q1(K) ⊆ [m1] and Q2(K) ⊆
[m2]. Similarly, assume SK′(D) respectively appears in first-step and second-step inequalities

identified by Q1(K′) ⊆ [m1] and Q2(K′) ⊆ [m2]. We establish a sufficient condition for

removing SK(D) without performance loss as follows.

Theorem 3.1 (Composite index removing condition). If Q2(K) ⊆ Q2(K′) and Q1(K′) ⊆
Q1(K), then SK(D) can be removed from the inequalities in (3.2) and (3.3) without affecting

the resulting rate region RCC(G, D).

Proof. Assume that SK(D) = a and SK′(D) = b in the full set of expressions in (3.2) and

(3.3). Since Q2(K) ⊆ Q2(K′), whenever SK(D) appears in any second-step inequality, so

does SK′(D). Therefore, transferring the rate of SK(D) to SK′(D), that is setting SK(D) = 0
and SK′(D) = a + b, cannot decrease message rates. Since Q1(K′) ⊆ Q1(K), whenever

SK′(D) appears in any first-step inequality, so does SK(D). Hence, transferring the rate of

SK(D) to SK′(D) cannot result in an invalid composite index rate assignment in (3.2). There-

fore, one can remove SK(D) from (3.2) and (3.3) without affecting RCC(G, D).

Note that for the CIC problem G with n messages, simplification via Theorem 3.1 requires

no more than (2n−1
2 ) pairwise comparisons.

Example 3.1. Consider the 4-message CIC problem (1|4), (2|3, 4), (3|1, 2), (4|2, 3). Set D
as Di = [n] \ Ai, i = 2, 3, 4, and D1 = {1}. For brevity, for any SK(D), K ⊆ [n] we simply

write SK. We compare the relative presence of S{1,3} and S{1,2,3} in the decoding inequalities in

(3.2) and (3.3). Since for any i ∈ [n], {1, 3} 6⊆ Ai and {1, 2, 3} 6⊆ Ai, S{1,3} and S{1,2,3} are
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present in all first-step inequalities. Writing second-step decoding inequalities in (3.3) yields

R1 < S{1} + S{1,4},

R1 < S{1} + S{1,2} + S{1,3} + S{1,2,3} + S{1,4} + S{1,2,4} + S{1,3,4} + S[n],

R2
(a)
< S{2} + S{1,2} + S{2,3} + S{1,2,3} + S{2,4} + S{1,2,4} + S{2,3,4} + S[n],

R1 + R2 < S{1} + S{2} + S{1,2} + S{1,3} + S{2,3}

+ S{1,2,3} + S{1,4} + S{2,4} + S{1,2,4} + S{1,3,4} + S{2,3,4} + S[n],

R3 < S{3} + S{1,3} + S{2,3} + S{1,2,3} + S{3,4} + S{1,3,4} + S{2,3,4} + S[n],

R4 < S{4} + S{1,4} + S{2,4} + S{1,2,4} + S{3,4} + S{1,3,4} + S{2,3,4} + S[n],

R3 + R4 < S{3} + S{1,3} + S{2,3} + S{1,2,3} + S{4}
+ S{1,4} + S{2,4} + S{1,2,4} + S{3,4} + S{1,3,4} + S{2,3,4} + S[n],

R1 + R4 < S{1} + S{1,2} + S{1,3} + S{1,2,3} + S{4}
+ S{1,4} + S{2,4} + S{1,2,4} + S{3,4} + S{1,3,4} + S{2,3,4} + S[n],

Now we observe that S{1,2,3} is present in one more second-step decoding inequality compared

with S{1,3} (in the inequality (a) above, S{1,2,3} is present, but S{1,3} is not). Hence, S{1,3}
can be removed without affecting the achievable rate performance RCC(G, D). Continuing

this procedure for all distinct K, K′ ⊆ [n], the only remaining composite index rates are SK,

K ∈ {{1}, {2}, {1, 2}, {3}, {2, 3}, {4}, {1, 4}, {3, 4}, {1, 2, 3, 4}}, reducing the number of

rate variables from 15 to 9. Note that in general further reductions may be possible if we

first remove inactive inequalities from the inequalities given by (3.2) and (3.3), and then apply

Theorem 3.1. For the problem in this example, the second inequality of first-step decoding (for

i = 2) is inactive. If this inequality is removed first, one can further remove S{3,4} relative to

S[n] using Theorem 3.1.

In the following we present a heuristic algorithm that can result in further reductions in

the number of composite index rates, albeit with possible performance loss. It is based upon

Theorem 3.1 and allows reduction of some composite index rates even when some of the

conditions are violated in a controlled manner.

Specifically, to remove SK(D) given the decoding configuration D, we still require that

Q2(K) ⊆ Q2(K′), which will ensure that the corresponding composite index wK′(D) is

at least as useful as wK(D) in the second-step decoding for all receivers. Now, note that

Q1(K′) ⊆ Q1(K) in Theorem 3.1 implies that there does not exist any receiver for which

SK′(D) appears in their first-step decoding inequalities while SK(D) does not. We define the
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subset of receivers who know all messages in xK, but not all messages in xK′ as follows,

M(K, K′) = {j ∈ [n] : K ⊆ Aj, K′ * Aj}. (3.4)

The condition Q1(K′) ⊆ Q1(K) of Theorem 3.1 implies M(K, K′) is empty. In the heuristic,

we allow SK(D) to be removed in comparison to SK′(D) even when M(K, K′) 6= ∅, provided

that wK′(D) is useful in the second-step decoding for all receivers in M(K, K′). Intuitively,

although wK′(D) has to be decoded in the first-step decoding at those receivers, it is not an

interference and is useful in their second-step decoding.

Simplification via Algorithm 1 can be implemented in such a way that no more than (2n−1
2 )

pairwise comparisons (same as Theorem 3.1) are required for any n-message CIC problem.

The algorithm is shown below.

Algorithm 1: Heuristic composite index rate reduction
Input : Two composite index rates SK(D) and SK′(D) that appear respectively in

(3.2) and (3.3) indexed by Q1(K), Q2(K) and by Q1(K′), Q2(K′). Receiver
subset M(K, K′) in (3.4).

Output: A flag indicating whether SK(D) can be removed from the inequalities in
(3.2) and (3.3).

1 If Theorem 3.1 holds (i.e., Q2(K) ⊆ Q2(K′) and M(K, K′) = ∅), then flag = TRUE.
2 Else if Q2(K) ⊆ Q2(K′), M(K, K′) 6= ∅, and K′ ⊆ Dj ∪ Aj, ∀j ∈ M(K, K′), then

flag = TRUE.
3 Else flag = FALSE.

Applying Algorithm 1 to the problem in Example 3.1 with the same D, all composite

index rates, but S{1,4}(D) and S{1,2,3,4}(D) can be eliminated. The achievable rate region

RCC(G, D) using only S{1,4}(D) and S{1,2,3,4}(D) coincides with the MAIS bound βMAIS(G),
which establishes the capacity region and confirms efficacy of Algorithm 1 for this problem.

3.1.2 Reducing Decoding Configurations

The main idea behind ruling out some decoding configurations is as follows. Given the CIC

problem G : (i|j ∈ Ai), i ∈ [n] and a decoding configuration D, if Aj ⊆ Ai ∪ Di for some

j 6= i, then receiver i already knows or will know more than receiver j does. Therefore, re-

ceiver i can mimic the behavior of receiver j to decode whichever messages receiver j decodes

without leading to any extra constraints on the achievable rate region. That is, one can update

Di ← Di ∪ Dj at no cost to the achievable rate region. Based on such idea, we can establish

the following sufficient condition for excluding some decoding configurations without perfor-

mance loss.
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Theorem 3.2 (Decoding configuration removing condition). Let D be a decoding configu-

ration satisfying the condition that there exists some receivers i, j ∈ [n], Aj ⊆ Ai ∪ Di,

Dj \ (Ai ∪ Di) 6= ∅. Then D can be removed from (3.1) without affecting the resulting rate

region RCC(G).

To prove the above theorem, we first show the following lemma.

Lemma 3.1. Let D be a decoding configuration satisfying the condition in Theorem 3.2 (i.e.,

there exists some receivers i, j ∈ [n], Aj ⊆ Ai ∪Di, Dj \ (Ai ∪Di) 6= ∅). Then there always

exists some D′ = (D′k, k ∈ [n]) such that RCC(G, D) ⊆ RCC(G, D′).

Proof. Set D′ = (D′k, k ∈ [n]) as

D′k =

Dk, k 6= i,

Di ∪ (Dj \ (Ai ∪ Di)) = Di ∪ Dj \ Ai, k = i.
(3.5)

Consider an arbitrary achievable rate tuple R ∈ RCC(G, D). There exists some (SK, K ⊆
[n]) satisfying (3.2) and (3.3) under the decoding configuration D. That is, we have

∑
K⊆[n],K*Ak

SK < 1, ∀k ∈ [n], (3.6)

∑
`∈L

R` < ∑
K⊆Dk∪Ak ,K∩L 6=∅

SK, ∀L ⊆ Dk, k ∈ [n]. (3.7)

In the following we show that R ∈ RCC(G, D′) by proving that R and (SK, K ⊆ [n]) satisfy

(3.2) and (3.3) under the decoding configuration D′.
Note that the first-step inequalities in (3.2) do not depend on the decoding configuration.

Also, since D′k = Dk for any k ∈ {i}c, the second-step inequalities in (3.3) for receivers other

than i are the same for D and D′. Therefore, it suffices to show that for receiver i,

∑
`∈L

R` < ∑
K⊆D′i∪Ai ,K∩L 6=∅

SK, ∀L ⊆ D′i . (3.8)

Consider any L ⊆ D′i . Note that D′i as constructed in (3.5) can be partitioned into two

disjoint parts Di and Dj \ (Ai ∪ Di). Partition L as L = L1 ∪ L2 where L1 ⊆ Di and L2 ⊆
Dj \ (Ai ∪ Di). Hence, L1 ∩ L2 = ∅, L2 ∩ (Ai ∪ Di) = ∅, and L2 ⊆ Dj.

Given L1 ⊆ Di, L2 ⊆ Dj, by (3.7), we have

∑
`∈L1

R` < ∑
K⊆Di∪Ai ,K∩L1 6=∅

SK, (3.9)

∑
`∈L2

R` < ∑
K⊆Dj∪Aj,K∩L2 6=∅

SK. (3.10)
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Therefore, we have

∑
`∈L

R` = ∑
`∈L1

R` + ∑
`∈L2

R` < ∑
K⊆Di∪Ai ,
K∩L1 6=∅

SK + ∑
K⊆Dj∪Aj,
K∩L2 6=∅

SK (3.11)

≤ ∑
K⊆Di∪Ai ,
K∩L1 6=∅

SK + ∑
K⊆Dj∪(Ai∪Di),

K∩L2 6=∅

SK (3.12)

= ∑
K⊆Di∪Ai ,
K∩L1 6=∅

SK + ∑
K⊆Dj∪(Ai∪Di),

K 6⊆Ai∪Di ,
K∩L2 6=∅

SK (3.13)

≤ ∑
K⊆Di∪Ai ,

K∩L 6=∅

SK + ∑
K⊆Dj∪(Ai∪Di),

K 6⊆Ai∪Di ,
K∩L 6=∅

SK (3.14)

= ∑
K⊆D′i∪Ai ,K∩L 6=∅

SK, (3.15)

where (3.11) is due to (3.9) and (3.10), (3.12) is due to the fact that Aj ⊆ Ai ∪ Di, (3.13) is

due to the fact that L2 ∩ (Ai ∪ Di) = ∅ and thus any K ∩ L2 6= ∅ must not be a subset of

Ai ∪ Di, (3.14) simply follows from the fact that L1 ⊆ L, L2 ⊆ L, and (3.15) is due to the

fact that D′i = Di ∪ Dj \ Ai as constructed in (3.5) and thus D′i ∪ Ai = Dj ∪ (Ai ∪ Di). This

concludes the proof of (3.8).

So far we have shown that for any R ∈ RCC(G, D), we have R ∈ RCC(G, D′). Therefore,

RCC(G, D) ⊆ RCC(G, D′).

With the help of Lemma 3.1, Theorem 3.2 can be shown as follows.

Proof. We prove Theorem 3.2 by showing that for any D satisfying the condition in Theorem

3.2 (i.e., there exists some receivers i, j ∈ [n], Aj ⊆ Ai ∪ D′i , D′j \ (Ai ∪ D′i) 6= ∅), there

exists some D′, which does not satisfy that condition, such that RCC(G, D) ⊆ RCC(G, D′).
Given any D satisfying the condition in Theorem 3.2, we can generate D′ according to (3.5)

and by Lemma 3.1 we have RCC(G, D) ⊆ RCC(G, D′). If D′ still satisfies that condition,

then we treat D′ as D and generate a new D′ based on this new D according to (3.5) again.

Repeating such procedure until we reach some D′ for which there exists no two receivers

i, j ∈ [n] such that Aj ⊆ Ai ∪ D′i , D′j \ (Ai ∪ D′i) 6= ∅. It remains to show that such

terminating point D′ always exists.

Notice that every time we generate a new D′ = (D′k, k ∈ [n]) from a D = (Di, i ∈ [n])
according to (3.5), the sum of the size of the decoding message set for each receiver is increased

by at least 1. That is, ∑k∈[n] |D′k| − ∑i∈[n] |Di| ≥ 1. Recall the minimal decoding message

set for each receiver i ∈ [n] is the singleton message set {i}, and the maximal decoding

message set for each receiver i ∈ [n] is the complement of its side information, Ac
i . Also
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notice that the maximal decoding configuration D∗ = (D∗i = Ac
i , i ∈ [n]) itself does not

satisfy the condition in Theorem 3.2. Therefore, by repeating the aforementioned procedure at

most ∑i∈[n] |Ac
i | −∑i∈[n] |{i}| = ∑i∈[n] |Bi| times, we can always reach some D′ which does

not satisfy the condition in Theorem 3.2.

Example 3.2. Consider the 5-message CIC problem (1|5), (2|4, 5), (3|1, 4), (4|1, 2, 3), (5|1, 3).
For this problem, there exists in total |D(G)| = 210 = 1024 decoding configurations. How-

ever, after excluding all D satisfying the condition in Theorem 3.2, only the following 5 de-

coding configurations remain:

D1 : D1 = {1}, D2 = {1, 2, 3}, D3 = {2, 3, 5}, D4 = {4, 5}, D5 = {5};
D2 : D1 = {1, 3}, D2 = {1, 2, 3}, D3 = {2, 3, 5}, D4 = {4, 5}, D5 = {5};
D3 : D1 = {1}, D2 = {1, 2, 3}, D3 = {2, 3, 5}, D4 = {4, 5}, D5 = {5};
D4 : D1 = {1, 2}, D2 = {1, 2, 3}, D3 = {2, 3, 5}, D4 = {4, 5}, D5 = {5};
D5 : D1 = {1, 2, 3, 4}, D2 = {1, 2, 3}, D3 = {2, 3, 5}, D4 = {4, 5}, D5 = {5}.

One can verify that for any decoding configuration Di, i = 1, 2, 3, 4, 5 presented above, there

exists no two receivers i, j such that Aj ⊆ Ai ∪ Di, Dj \ (Ai ∪ Di) 6= ∅.

Despite the usefulness of the decoding configuration removing condition in Theorem 3.2,

sometimes even checking whether this condition holds or not for every D ∈ D(G) is rather

computationally expensive due to the considerably large number of all possible decoding con-

figurations in D(G). Consider the CIC problem G: (i|j ∈ Ai), i ∈ [n]. The number of

decoding configurations to consider for this problem grows on average super-exponentially in

n as

|D(G)| = | ∏
i∈[n]
Di(G)| = 2n2−∑i∈[n] |Ai |−n = 2∑i∈[n] |Bi |. (3.16)

As a partial solution to such issue, we iteratively build a decoding configuration in Algorithm 2,

namely the natural decoding configuration, denoted by D. The natural decoding configuration

D serves as a baseline such that it suffices to consider only the decoding configurations that

are element-wisely no smaller than it.1

Excluding any D that is not element-wisely no smaller than D from (3.1) does not affect

the achievable rate region RCC(G), as illustrated by the following proposition.

Proposition 3.1. Consider the CIC problem G: (i|j ∈ Ai), i ∈ [n] with natural decoding

configuration D = (Di, i ∈ [n]) given by Algorithm 2. Let D = (Di, i ∈ [n]) be a decoding

1The notion of natural decoding configuration has also been presented in another PhD thesis Arbabjolfaei
[2017], as this result is an outcome of collaboration Liu et al. [2017]. We have chosen to present Algorithm 2
and Proposition 3.1 in this chapter because it helps with application of our original Theorem 3.2.
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Algorithm 2: Natural decoding configuration
Input : CIC problem G: (i|j ∈ Ai), i ∈ [n].
Output: Natural decoding configuration D = (Di, i ∈ [n]).

1 Initialize Di = {i}, i ∈ [n].
2 For as long as there exists i, j ∈ [n] such that Aj ⊆ Ai ∪ Di, Dj \ (Ai ∪ Di) 6= ∅,

update Di ← Di ∪ (Dj \ (Ai ∪ Di)). If no such i, j exist, terminate the algorithm.

configuration such that Dk 6⊆ Dk for some k ∈ [n]. Then there exists another decoding

configuration D′ = (D′i , i ∈ [n]), for which Di ⊆ D′i for all i ∈ [n], such that RCC(G, D) ⊆
RCC(G, D′).

Proposition 3.1 can be proved using similar techniques to Theorem 3.2.

For any CIC problem with a large number of decoding configurations, our proposed ap-

proach is to first compute the natural decoding configuration D according to Algorithm 2,

and then apply Theorem 3.2 to the set of decoding configurations that are element-wisely no

smaller than D. See the following example.

Example 3.3. Consider the 6-message CIC problem

(1|3, 4), (2|4, 6), (3|5, 6), (4|2, 6), (5|1, 2, 6), (6|1, 2, 3).

For this problem, there exists in total |D(G)| = 216 = 65536. The natural decoding con-

figuration D can be computed via Algorithm 2 as Di = {i}, i = 1, 2, 3, 4, D5 = {3, 4, 5},
and D6 = {4, 5, 6}. Among the 65536 decoding configurations, there are only 212 = 4096
of them that are element-wisely no smaller than D. Hence according to Proposition 3.1, it

suffices to consider only these 4096 decoding configurations. Applying Theorem 3.2 to these

4096 decoding configurations, only 18 remain. That is, it suffices to consider only these 18
remaining decoding configurations to compute the achievable rate region RCC(G) of the CC

scheme for this problem G.

3.1.3 Numerical Results for the Simplified Composite Coding

To show the efficacy of our proposed simplifications, we first consider all 218 and 9,608 non-

isomorphic CIC problems with n = 4 and 5 messages, respectively. For each problem, we

only use the natural decoding configuration D obtained through Algorithm 2. Hence for each

problem, the reduction in the number of decoding configurations is (100− 100
|D(G)| )%, where

|D(G)| was given in (3.16). We then apply Algorithm 1 to all possible rate pairs SK and SK′ in

Proposition 3.7. If for a given problem, Algorithm 1 only retains m out of 2n− 1 such rates, the

reduction rate for that problem is (100− 100m
2n−1 )%. Finally, we use FME to eliminate the only m

remaining SK′ variables and compute the rate region of Proposition 2.4. For comparison with
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the obtained achievable rate region for each problem, we compute corresponding outer bound

on the capacity region using the polymatroidal (PM) bound in Proposition 2.7 introduced from

Blasiak et al. [2011]. The tests for all the CIC problems with n = 4 and 5 messages were run

on an Apple iMac 4GHz Intel Core i7 with 16 GB memory and using Matlab® R2017b and the

FME software Gattegno et al. [2015].

According to the test results, the natural decoding configuration D together with Algorithm

1 are sufficient to match the PM outer bound and thus establish the capacity region for all

problems with n = 4 and 5 messages. Table 4.1 indicates the average computational savings.

Although not strictly needed, the average reduction using the more conservative Theorem 3.1

is shown for comparison. As shown in the last column, it takes on average 5.6 and 11.63 times

longer to eliminate all (2n − 1) SK variables in the non-reduced problems with n = 4 and 5
messages, respectively, as compared to eliminating only the few rates retained by Algorithm 1.

Finally, the distribution of composite rate reduction among problems is quite good. For n = 4,

only in 7 of 218 problems a maximum of m = 3 rates were retained, where for all other

problems, m ≤ 2. For n = 5, in only 31 of 9,608 problems, m = 7 to at most m = 10
composite rates were used.

Table 3.1: Results for all CIC problems with n = 4 and 5 messages.

Problem
Size

Ave. dec.
config.

reduction

Ave. SK
reduction by

Alg. 1

Ave. SK
reduction by

Thm. 3.1

Not-reduced time
Alg. 1 time

n = 4 96.13% 89.6% 63.06% 560%
n = 5 99.64% 92.36% 71.42% 1163%

Next, we consider the 259 β-critical CIC problems with n = 6 messages as described in

[Arbabjolfaei and Kim, 2018, Section 8.6]. Note that among all 1,540,944 non-isomorphic

6-message CIC problems, any problem G that is not β-critical can be transformed to some

β-critical problem G ′ by removing certain receiver side information, such that the transformed

problem shares the same broadcast rate as the original problem (i.e., β(G) = β(G ′)). For these

259 β-critical problems, lower bounds on β are computed using the PM bound for comparison

with the achievability results. Note that the PM lower bound on β is tight for any 6-message

CIC problem [Arbabjolfaei and Kim, 2018, Section 8.6].

As shown by Table 3.2, for a vast majority of problems (230 out of 259), the natural

decoding configuration D given by Algorithm 2 together with the heuristic composite index

reduction method in Algorithm 1 are sufficient to obtain β. In 2 problems, D is still sufficient

yet Theorem 3.1 was required. For the remaining 27 problems, D is not sufficient to achieve

the broadcast rate β. Instead, we consider all the decoding configurations that do not satisfy the

condition specified in Theorem 3.2. The decoding configuration reduction for each problem G
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is thus computed as

(100− 100× |{D ∈ D(G) : D does not satisfy the condition in Thm. 3.2}|
|D(G)| )%.

According to the numerical results, for these 27 problems, the composite index reduction meth-

ods in Algorithm 1 and Theorem 3.1 make no difference in terms of the tightness of the re-

sulting upper bounds on β. Therefore, Algorithm 1 is sufficient. For 14 out of 27 problems,

the composite coding upper bound matches the PM lower bound, thus establishing β. For the

other 13 problems, we are not able to achieve β using composite coding.

Table 3.2: Results for 259 β-critical CIC problems with n = 6 messages.

Number of
Problems

Ave. dec.
config.

reduction

Ave. SK
reduction by

Alg. 1

Ave. SK
reduction by

Thm. 3.1
How β can be obtained

230 99.55% 92.32% 76.66% D & Alg.1

2 99.99% 90.48% 81.75% D & Thm. 3.1

14 99.93% 91.59% 75.43% Thm. 3.2 & Alg.1

13 - - - Unable to achieve β
using composite coding

Remark 3.1. We list the 13 β-critical 6-message CIC problems for which composite coding

cannot achieve the broadcast rate. For these 13 problems, the PM lower bound βPM matches

the upper bound given by the minrank approach Bar-Yossef et al. [2011], thus establishing the

broadcast rate. These 13 problems are listed below, where each line represents one problem:

(1|4, 5, 6), (2|4, 5), (3|4, 6), (4|1, 2, 3), (5|1, 3), (6|1, 2);
(1|4, 5, 6), (2|4, 6), (3|5, 6), (4|1, 3), (5|1, 2), (6|2, 4);
(1|4, 5, 6), (2|4, 6), (3|5, 6), (4|1, 3), (5|1, 2), (6|1, 4, 5);
(1|3, 4), (2|4, 6), (3|5, 6), (4|2, 6), (5|1, 2), (6|1, 2, 3);
(1|4, 6), (2|4, 5), (3|1, 5), (4|1, 6), (5|1, 3), (6|2, 3);
(1|3, 4), (2|4, 6), (3|5, 6), (4|2, 6), (5|1, 2), (6|1, 4, 5);
(1|4, 5, 6), (2|5, 6), (3|1, 5), (4|1, 2), (5|2, 6), (6|3, 4);
(1|3, 4), (2|4, 5), (3|5, 6), (4|1, 5, 6), (5|1, 4, 6), (6|1, 2);
(1|3, 4), (2|4, 5), (3|5, 6), (4|2, 3, 6), (5|1, 4, 6), (6|1, 2);
(1|3, 4, 5), (2|3, 4), (3|5, 6), (4|1, 6), (5|1, 2), (6|1, 2, 3);
(1|3, 4, 6), (2|3, 4, 5), (3|2, 6), (4|1, 2), (5|1, 3), (6|4, 5);
(1|3, 5), (2|3, 4), (3|1, 5), (4|1, 6), (5|2, 6), (6|1, 2, 3);
(1|3, 5), (2|4, 5), (3|2, 6), (4|1, 6), (5|3, 4, 6), (6|1, 2, 5).
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3.2 Enhanced Composite Coding

In this section, we extend the original CC scheme for the CIC problem by employing a more

flexible enhanced fractional allocation of the centralized channel capacity.

Consider the CIC problem G: (i|j ∈ Ai), i ∈ [n]. Splitting the rate of each message, we

represent the message xi by independent parts xi(D) at rate Ri(D), where each sub-message

is associated with a decoding configuration D ∈ D(G). Thus,

Ri = ∑
D∈D(G)

Ri(D), ∀i ∈ [n]. (3.17)

To send (xi(D), i ∈ [n]), the server generates composite indices wK(D) at composite rate

SK(D) for any K ⊆ [n] via random coding. Then it encodes all the composite indices

(wK(D), K ⊆ [n], D ∈ D(G)) together to a codeword y again via random coding. Upon

receiving y, each receiver first recovers all composite indices (wK(D), K ⊆ [n], D ∈ D(G)).
This is successful with vanishing probability of error if

∑
D∈D(G)

∑
K⊆[n],K 6⊆Ai

SK(D) < 1, ∀i ∈ [n]. (3.18)

For a given D ∈ D(G), receiver i can successfully recover messages xDi(D), with vanishing

probability of error if

∑
j∈L

Rj(D) < ∑
K⊆Di∪Ai ,K∩L 6=∅

SK(D), ∀L ⊆ Di. (3.19)

We refer to the above coding scheme as the enhanced composite coding (ECC) scheme, whose

achievable rate region RECC(G) is summarized by the following theorem.

Theorem 3.3 (Enhanced composite coding (ECC) bound). Consider the CIC problem G:

(i|j ∈ Ai), i ∈ [n]. The capacity region C (G) is inner bounded by the rate region RECC(G)
that consists of all rate tuple R such that

Ri = ∑
D∈D(G)

Ri(D), ∀i ∈ [n], (3.20)

for some Ri(D) ≥ 0, i ∈ [n], D ∈ D(G) and some SK(D) ≥ 0, K ⊆ [n], D ∈ D(G)
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satisfying

∑
D∈D(G)

∑
K⊆[n],K 6⊆Ai

SK(D) < 1, ∀i ∈ [n], (3.21)

∑
j∈L

Rj(D) < ∑
K⊆Di∪Ai ,

K∩L 6=∅

SK(D), ∀L ⊆ Di, i ∈ [n], D ∈ D(G). (3.22)

It can be verified that the ECC achievable rate region RECC(G) is convex. One can com-

pute RECC(G) by projecting out (SK(D), K ⊆ [n], D ∈ D(G)) and (Ri(D), i ∈ [n], D ∈
D(G)) in (3.20)-(3.22) through certain optimization tools such as Fourier-Motzkin elimination

(FME). Note that linear programing (LP) can be used to solve for a desired weighted sum-rate

subject to (3.20)-(3.22) if one is not interested in the whole rate region, which results in a lower

computational complexity.

The ECC bound in Theorem 3.3 is always no looser than the original CC bound in Propo-

sition 2.4 due to a larger degrees of freedom in choosing the composite index rates for different

decoding choices D. That is, for any CIC problem G,

RCC(G) ⊆ RECC(G). (3.23)

Such relationship can be strict, as illustrated by the following example.

Example 3.4. Consider the 6-message CIC problem G:

(1|3, 4), (2|4, 5), (3|5, 6), (4|2, 3, 6), (5|1, 4, 6), (6|1, 2).

The largest symmetric rate in RCC(G) is 8/27, while the largest symmetric rate in RECC(G) is

23/77, and thus RCC(G) ⊂ RECC(G). Note that a strictly larger symmetric rate of R = 1/3
can be achieved by the following scalar linear coding scheme (where r = 1 and ti = 1 for

every i ∈ [n]):

y = (x1 ⊕ x3 ⊕ x4, x2 ⊕ x4 ⊕ x5, x1 ⊕ x2 ⊕ x6),

which matches the MAIS bound in Proposition 2.5, thus establishing the symmetric capacity

Csym(G) to be 1/3.

The simplification techniques presented in Section 3.1 can be readily extended to the ECC

scheme, but will not be detailed here.
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3.3 Three-Layer Composite Coding

In this section we take a different approach to extend the CC scheme. Recall that the flat

coding Arbabjolfaei et al. [2013] (cf. Proposition 2.3) is a single-layer random coding scheme

while the CC scheme is also based on the random coding technique, but is two-layer. A natural

question that arises is whether one can benefit from adding more layers of random coding

into the CC scheme. Towards answering this question, in this section we design a three-layer

composite coding scheme or the TLCC scheme by adding one more layer of random coding

into the CC scheme.

3.3.1 The Three-Layer Composite Coding Scheme and Achievability Bound

We describe the TLCC scheme in a detailed manner, present its corresponding achievable

rate region, and then show that it can strictly outperform the CC scheme through a concrete

example.

Codebook generation.
Step 1. For each K ⊆ [n] and each realization of messages xK, generate a composite index

wK = wK(xK) drawn uniformly at random from [2sK ], where sK = drSKe and SK is the rate of

the composite index wK. That is, the composite index wK is generated according to the random

mapping wK as

wK : ∏
i∈K

[2ti ]→ [2sK ].

Step 2. For each M ⊆ N and each realization of composite indices (wK, K ∈ M), generate

a doubly composite index vM = vM(wK, K ∈ M) drawn uniformly at random from [2zM ],

where zM = drZMe and ZM is the rate for the doubly composite index vM. That is, the

doubly composite index vM is generated according to the random mapping VM as

vM : ∏
K∈M

[2sK ]→ [2zM ].

Step 3. For each realization of the doubly composite index tuple (vM, M ⊆ N), generate a

codeword y = y((vM, M ⊆ N)) drawn uniformly at random from [2r]. That is, the codeword

y is generated according to the random mapping y as

y : ∏
M⊆N

[2zM ]→ [2r].

The codebook is revealed to all parties.

Encoding. To communicate messages x[n], the server first encodes the composite index

wK = wK(xK) for each K ⊆ [n], then encodes the doubly composite index vM = vM(wK, K ∈
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M) for each M ⊆ N, and finally encodes and transmits the codeword y = y((vM, M ⊆ N)).

Decoding. Decoding takes place in the reverse order of stages.

Step 1. Receiver i finds the unique doubly composite index tuple (v̂M, M ⊆ N) such that

y = y((v̂M, M ⊆ N)). If there is more than one such tuple, it declares an error.

Step 2. Assuming that (v̂M, M ⊆ N) is correct, receiver i decodes for a subset of compos-

ite indices indexed by Pi ⊆ N \ 2Ai . That is, receiver i finds the unique composite index tuple

(ŵK, K ∈ Pi) such that v̂M = vM(ŵK, K ∈ M) for every M ⊆ Pi ∪ 2Ai . If there is more than

one such tuple, it declares an error.

Step 3. Assuming that (ŵK, K ∈ Pi) is correct, receiver i decodes for a subset of messages

indexed by Di ⊆ [n] \ Ai. That is, receiver i finds the unique message tuple x̂Di such that

ŵK = wK(x̂K) for every K ⊆ Di ∪ Ai, K ∈ Pi. If there is more than one such tuple, it declares

an error.

Remark 3.2. Recall that for the CC scheme, each receiver i can choose a subset of messages

to decode. The tuple of decoding message sets is denoted by D = (Di, i ∈ [n]) and referred

to as the decoding configuration for the CC scheme. For the TLCC scheme, after successfully

decoding all the doubly composite indices, each receiver i can choose both the subset of com-

posite indices and the subset of messages to decode. Hence, the decoding configuration for the

TLCC scheme is the 2-tuple (P, D), where P .
= (Pi, i ∈ [n]) denotes the tuple of decoding

composite index sets. Let Pi(G) .
= {Pi ⊆ N \ 2Ai : i ∈ ∪K∈Pi K} denote the set of all pos-

sible decoding composite index set at receiver i, and thus P(G) .
= ∏i∈[n] Pi(G) denotes the

collection of all possible tuples of decoding composite index sets for the CIC problem G.

Remark 3.3. Note that in the third step of decoding, receiver i can only possibly recover

messages in set ∪K∈Pi K, because only composite indices (ŵK, K ∈ Pi) = (wK, K ∈ Pi) are

available at receiver i as the result of the second step of decoding. Hence, without loss of

generality, we always require that Di ⊆ ∪K∈Pi K and do not consider any (P, D) violating this

condition.

We summarize the achievable rate region of the TLCC scheme below. Time sharing over

all possible decoding configurations is applied. Note that we can also apply the more flexible

enhanced fractional allocation of the broadcast channel capacity as in the ECC scheme, the

details of which are not given here.

Theorem 3.4 (Three-layer composite coding (TLCC) bound). Consider the CIC problem G:

(i|j ∈ Ai), i ∈ [n]. The capacity region C (G) is inner bounded by the rate region RTLCC(G)
as

RTLCC(G) .
= co

( ⋃
P∈P(G),D∈D(G)

RTLCC(G, P, D)
)
, (3.24)
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where co(·) denotes the convex hull, and RTLCC(G, P, D) consists of all the rate tuples R
satisfying

∑
M⊆N,M*2Ai

ZM(P, D) < 1, ∀i ∈ [n], (3.25)

∑
K∈Q

SK(P, D) < ∑
M⊆Pi∪2Ai ,
M∩Q 6=∅

ZM(P, D), ∀Q ⊆ Pi, i ∈ [n], (3.26)

∑
j∈L

Rj < ∑
K⊆Di∪Ai ,
K∩L 6=∅,

K∈Pi

SK(P, D), ∀L ⊆ Di, i ∈ [n], (3.27)

for some ZM(P, D) ≥ 0, M ⊆ N and SK(P, D) ≥ 0, K ⊆ [n].

Proof. We only present the error analysis for the second step decoding of the TLCC scheme,

as the analysis for other steps is quite similar to the error analysis for the CC scheme (which

can be found in Arbabjolfaei et al. [2014], [Arbabjolfaei and Kim, 2018, Section 6.10]).

Towards this end, assume that the doubly composite indices (v̂M, M ⊆ N) have been

correctly decoded. For receiver i, we partition the error event according to the collection

Q ⊆ Pi for erroneous composite indices. That is, ŵK 6= wK iff K ∈ Q. Hence, for the

second step decoding error probability Pe, we have

Pe =P{v̂M = vM(ŵK, K ∈ M) for all M ⊆ 2Ai ∪ Pi for some ŵK 6= wK, K ∈ Pi}

≤ ∑
Q⊆Pi

∑
(ŵK ,K∈Pi):

ŵK 6=wK ,K∈Q
ŵK=wK ,K 6∈Q

P


⋂

M⊆Pi∪2Ai
M∩Q 6=∅

{v̂M=vM(ŵK ,K∈M)}


< ∑

Q⊆Pi

2∑K∈Q sK /2∑
M⊆P∪2Ai ,M∩Q 6=∅

zM

< ∑
Q⊆Pi

2
r(∑K∈Q SK−∑

M⊆P∪2Ai ,M∩Q 6=∅
ZM)+|Q|

, (3.28)

where the first inequality is due to the union bound, the second inequality holds since for each

Q, the number of erroneous tuples is ∏K∈Q(2sK − 1) < 2∑K∈Q sK , and the probability for any

two distinct composite index tuples being mapped to the same doubly composite index vM for

all M ⊆ P ∪ 2Ai , M ∩ Q 6= ∅ is 2
−∑

M⊆P∪2Ai ,M∩Q 6=∅
zM , and the last inequality simply follows

from that sK = drSKe < rSK + 1 and zM = drZMe ≥ rZM.

Given (3.28), one can see that the second step decoding error probability Pe tends to zero

as r → ∞ if (3.26) is satisfied.

The inequalities in (3.25), (3.26), and (3.27) signify the first-step, second-step, and third-
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step decoding constraints for the TLCC scheme.

When there is no ambiguity, we simply refer to the doubly composite index rate variables

and the composite index rate variables in (3.25)-(3.27) as ZM or Z variables and SK or S
variables, respectively.

The TLCC scheme subsumes the CC scheme in general. A rigorous proof is presented in

Section 3.3.2.3. For some problems, it can give strictly better results as demonstrated below.

Example 3.5. Consider the 7-message CIC problem G:

(1|5), (2|3, 5, 6), (3|4, 6, 7), (4|1, 2, 7), (5|2, 3, 4, 7), (6|3, 4, 7), (7|1, 2, 4).

The ECC bound in Theorem 3.3 indicates that any symmetric rate R < 1
3.25 is achievable.

Nevertheless, a strictly better result R < 1
3 can be obtained according to the TLCC scheme in

Theorem 3.4 as follows. Set (P, D) such that Di = {i}, ∀i ∈ [n], and

P1 = {{1}}, P2 = {{2}, {4, 7}}, P5 = {{5}},
P3 = P6 = {{3, 6}}, P4 = P7 = {{5}, {4, 7}}.

Then set ZM = 0, ∀M ⊆ N except for Z{{1},{5}}, Z{{2},{4,7},{5}} and Z{{3,6},{4,7}}. Also

set SK = 0, ∀K ⊆ [n] except for S{1}, S{2}, S{5}, S{3,6}, and S{4,7}. Writing all the active

decoding inequalities of Theorem 3.4 yields

Z{{1},{5}}+Z{{2},{4,7},{5}} + Z{{3,6},{4,7}} < 1,

and

S{1} < Z{{1},{5}},

S{2} + S{4,7} < Z{{2},{4,7},{5}} + Z{{3,6},{4,7}},

S{2} < Z{{2},{4,7},{5}},

S{3,6} < Z{{3,6},{4,7}},

S{5} + S{4,7} < Z{{1},{5}} + Z{{2},{4,7},{5}},

S{4,7} < Z{{2},{4,7},{5}},

S{5} < Z{{2},{4,7},{5}},

and

Rsym < SK, ∀K ∈ {{1}, {2}, {5}, {3, 6}, {4, 7}}.

For an arbitrary ε ∈ (0, 1
3 ], assigning R = 1

3 − ε, S{1} = S{2} = S{5} = S{3,6} = S{4,7} =
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1
3 − ε

2 , Z{{1},{5}} = Z{{2},{4,7},{5}} = Z{{3,6},{4,7}} = 1
3 − ε

4 satisfies all the inequalities

above. Hence any symmetric rate R < 1
3 is achievable by the TLCC scheme, which matches

the MAIS bound in Proposition 2.5, thus establishing the symmetric capacity Csym(G) to be

1/3. Note that the optimal symmetric rate R = 1/3 can also be achieved by the following

scalar linear coding scheme:

y = (x1 ⊕ x5, x1 ⊕ x2 ⊕ x3 ⊕ x6, x1 ⊕ x2 ⊕ x4 ⊕ x7).

3.3.2 Simplifications for the Three-Layer Composite Coding

The main challenges for the TLCC’s computation are the overwhelming number of ZM vari-

ables, which grows doubly exponentially with n, and the choice of decoding configuration

(P, D). To circumvent these, we now present a series of simplifications.

3.3.2.1 Limiting the Choice of Decoding Configuration

First, it can be shown that Theorem 3.2 and Proposition 3.1 also apply to the TLCC scheme.

That is, we have

RTLCC(G) = co
( ⋃

P∈P(G),D∈D(G)
RTLCC(G, P, D)

)
= co

( ⋃
P∈P(G),D∈∆(G)

RTLCC(G, P, D)
)

(3.29)

= co
( ⋃

P∈P(G),D∈∆natural(G)
RTLCC(G, P, D)

)
, (3.30)

where ∆(G) denotes the collection of D for which the condition in Theorem 3.2 is not satisfied

(i.e., there exists no two receivers i, j ∈ [n] such that Aj ⊆ Ai ∪ Di, Dj \ (Ai ∪ Di) 6= ∅),

and ∆natural(G) denotes the collection of D that is element-wisely no smaller than the natural

decoding message set tuple D as generated in Algorithm 2.

In the following we propose a heuristic baseline decoding composite index set tuple PD

for a given D. Note that removing some P that is not element-wisely no smaller than PD may

affect the performance of the TLCC scheme. The idea is as follows. For a given D, the starting

set PD
i for receiver i contains all subsets K ⊆ [n] that intersects with Di and does not intersect

with the interfering messages Bi = (Ai ∪ Di)
c. Then, following similar lines of thought as

in Algorithm 2, we iteratively add missing elements from PD
j to PD

i if 2Aj ⊆ 2Ai ∪ PD
i and

PD
j 6⊆ 2Ai ∪ PD

i . This is summarized in Algorithm 3, which makes use of the touch structure
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defined in Definition 2.2.
Algorithm 3: Heuristic baseline decoding index set.

Input : CIC problem G: (i|j ∈ Ai), i ∈ [n], and decoding message set tuple

D = (Di, i ∈ [n])
Output: Heuristic baseline decoding composite index set tuple PD = (PD

i , i ∈ [n]).
1 Initialize PD

i = TDi ,(Ai∪Di)c , i ∈ [n].

2 If there exists i, j ∈ [n] such that 2Aj ⊆ 2Ai ∪ PD
i and PD

j 6⊆ 2Ai ∪ PD
i , update

PD
i ← PD

i ∪ (PD
j \ 2Ai). If no such i, j exist, terminate the algorithm.

One may only consider the supersets of PD computed by Algorithm 3 in the second-step

decoding of the TLCC scheme. This can lead to great reduction in the number of possible

decoding configurations, albeit with possible performance loss.

For any collection of composite indices M ⊆ N, we set

Γ∗(M) =
⋃

K∈M

{L ∈ N : L ⊆ K} =
⋃

K∈M

2K (3.31)

to be the subset completion of M. Note 2K = Γ∗({K}). The set M ⊆ N is subset complete if

M = Γ∗(M).

For any P, if Pi ∪ 2Ai is subset complete for any i ∈ [n], we simply say that P is subset

complete. Then we have the following lemma.

Lemma 3.2. For any D, its corresponding PD given by Algorithm 3 is subset complete.

Proof. For any i ∈ [n], consider the initial set PD
i = TDi ,(Ai∪Di)c . As 2Ai ∪ PD

i = 2Ai∪Di , we

have Γ∗(2Ai ∪ PD
i ) = Γ∗(2Ai∪Di) = 2Ai∪Di = 2Ai ∪ PD

i . Since the union of any two subset

complete sets is also subset complete, for the final PD
i , 2Ai ∪ PD

i must be subset complete as

well.

For a given D, despite possible performance loss, we may further narrow down the range of

P to consider by enforcing that P is element-wisely no smaller than PD and is subset complete.

3.3.2.2 Reducing Doubly Composite Indices

In the following theorem, we adopt and modify the composite index rate removal techniques

from Section 3.1.1 to exclude some doubly composite index rates ZM, M ⊆ N.

Theorem 3.5 (Doubly composite index removing condition). For a given decoding configura-

tion and arbitrary M 6= M′ ⊆ N, compare the relative presence for ZM, ZM′ in the inequalities

identified by Theorem 3.4.

1. If ZM′ appears in any first-step decoding inequality in (3.25) then so does ZM, AND
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2. If ZM appears in any second-step decoding inequality in (3.26) then so does ZM′ ,

then ZM can be removed from the rate expressions without affecting the resulting rate region.

The proof is similar to that of Theorem 3.1 and thus omitted.

The number of ZM variables remaining after applying Theorem 3.5 to every M, M′ pairs

can be much smaller than its original amount, leading to considerably lower computational

complexity. However, as the original number of ZM variables is extremely large for large n,

even applying Theorem 3.5 for every possible M, M′ can be computationally unaffordable.

Hence, we propose to systematically exclude some ZM variables even before applying The-

orem 3.5. This can be done if P is subset-complete, such as PD at the output of Algorithm

3.

Corollary 3.1. For any decoding configuration (P, D) such that P is subset complete, it suf-

fices to only consider ZM such that M is subset complete.

Proof. Consider an arbitrary M ⊆ N such that M 6= Γ∗(M), set M′ = Γ∗(M). Then M′

is subset complete and M ⊂ M′. Since
⋃

K∈M K =
⋃

K∈M′ K, whenever ZM appears in

a first-step decoding inequality in (3.25), so does ZM′ and vice versa. Consider the relative

presence for ZM, ZM′ in the second-stage inequalities. For any i ∈ [n], since 2Ai ∪ Pi is

subset-complete, if M ⊆ 2Ai ∪ Pi, we must have M′ ⊆ 2Ai ∪ Pi. Also, as M ⊂ M′, if

M ∩ L 6= ∅ for any L ⊆ Di, we must also have M′ ∩ L 6= ∅. Therefore, whenever ZM

appears in a second-step decoding inequality in (3.26) so does ZM′ . According to Theorem 3.5

any such ZM can be removed.

For the CIC problem G and decoding message set tuple D, use NK(G, D) and N′K(G, D)

to denote the collection of K such that SK remains after applying Theorem 3.1 and Algorithm

1, respectively. When the context is clear, we simply use the shorthand notation NK and N′K.

Note that N′K ⊆ NK ⊆ N.

Example 3.6. Consider the 7-message problem in Example 3.5, setting D to be the natural

decoding configuration D and applying Theorem 3.1 and Algorithm 1, we find |NK| = 16 and

|N′K| = 7, respectively. Note that the original number of SK variables (excluding the dummy

S∅) is 27 − 1 = 127.

Remark 3.4. For the TLCC scheme, one can remove any composite index wK, K 6∈ NK or

K 6∈ N′K from the coding scheme. Since doubly composite indices vM are generated from

composite indices wK, this will naturally narrow down the range of vM from M ⊆ N to

M ⊆ NK or M ⊆ N′K, which can lead to a huge reduction in the number of ZM variables

from 2|N| − 1 = 22n−1 − 1 to 2|NK | − 1 or 2|N
′
K | − 1. Note that such reduction may lead to

performance loss.

The simplification techniques for the TLCC scheme discussed so far are summarized in

Table 3.3.
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Table 3.3: Simplification techniques and whether they retain optimality

Simplification References
Optimality

Preservation
Limiting D such that

D ∈ ∆(G) or
D ∈ ∆natural(G)

(3.29) and (3.30) Yes

Limiting P to be
supersets of PD such

that P is subset complete
Alg. 3, Lem. 3.2 Unknown

Removing Z variables
by pairwise comparison Thm. 3.5 Yes

Removing
ZM, M 6= Γ∗(M) when

P is subset complete
Cor. 3.1 Yes

Removing SK and ZM
not fully embedded in

NK or N′K
Rmk. 3.4 Unknown

3.3.2.3 Simplified TLCC Subsumes Composite Coding

In this section, we prove that even with some of the simplifications discussed so far, the TLCC

scheme is guaranteed to perform at least as well as the CC scheme.

Consider the CIC problem G: (i|j ∈ Ai), i ∈ [n] and an arbitrary D ∈ D(G).
Within this section we slightly abuse the notation as follows. For any K ∈ NK and M ⊆

NK, let 2K denote the collection of subsets of K with respect to NK, 2K = {L ∈ NK : L ⊆ K},
and let Γ∗(M) denote the subset completion of M with respect to NK, Γ∗(M) =

⋃
K∈M{L ∈

NK : L ⊆ K} = ⋃
K∈M 2K. Also, set TK,L = {J ∈ NK : J ∩ K 6= ∅, J ∩ L = ∅}, and hence

the heuristic baseline decoding index set PD = (PD
i , i ∈ [n]) given by Algorithm 3 is within

the range of NK. Let R
simplified
TLCC (G, P, D) denote the achievable rate region of the TLCC with

decoding configuration (P, D) with the following simplifications:

1. any SK, K 6∈ NK and ZM, M 6⊆ NK are removed from the decoding inequalities (3.25)-

(3.27), and

2. P = (Pi, i ∈ [n]) is a decoding composite index set such that for any i ∈ [n], PD
i ⊆

Pi ⊆ NK \ 2Ai and that 2Ai ∪ Pi is subset complete with respect to NK.

Theorem 3.6. RCC(G, D) ⊆ R
simplified
TLCC (G, P, D).

Proof. Let R ∈ RCC(G, D) be an achievable rate tuple of the CC scheme. According to

Theorem 3.1, removing any SK that K 6∈ NK does not affect the achievable rate region of the
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CC, hence there exists some (SK, K ∈ NK) such that R and (SK, K ∈ NK) satisfy (3.2) and

(3.3) with D. Set ZM, M ⊆ NK as

ZM =

SK, if M = 2K for some K ∈ NK,

0, otherwise.

Now we show that R, (SK, K ∈ NK) and (ZM, M ⊆ NK) satisfy the decoding inequalities

of the TLCC scheme, (3.25)-(3.27), with (P, D) defined above.

First, for any i ∈ [n], we have

∑
M⊆NK :M 6⊆2Ai

ZM = ∑
2K⊆NK :2K 6⊆2Ai

Z2K = ∑
K∈NK :K 6⊆Ai

SK < 1.

Second, for any Q ⊆ Pi, i ∈ [n], as 2Ai ∪ Pi is subset complete with respect to NK, we

know that for any K ∈ Q, K ∈ 2Ai ∪ Pi and thus 2K = Γ∗({K}) ⊆ 2Ai ∪ Pi. Also, for any

K ∈ Q, 2K ∩Q 6= ∅. Hence, we have

∑
M⊆NK :

M⊆2Ai∪Pi
M∩Q 6=∅

ZM = ∑
2K⊆NK :

2K⊆2Ai∪Pi
2K∩Q 6=∅

Z2K ≥ ∑
K∈NK :
K∈Q

SK. (3.32)

Third, for any L ⊆ Di, i ∈ [n], note that TL,(Ai∪Di)c ⊆ TDi ,(Ai∪Di)c ⊆ PD
i ⊆ Pi. Therefore,

if K ∈ NK, K ⊆ Ai ∪ Di and K ∩ L 6= ∅ then K must be in set Pi. Hence,

∑
j∈L

Rj < ∑
K∈NK :K⊆Ai∪Di ,K∩L 6=∅

SK (3.33)

= ∑
K∈NK :K⊆Ai∪Di ,K∩L 6=∅,K∈Pi

SK. (3.34)

So far we have proven that R, (SK, K ∈ NK) and (ZM, M ⊆ NK) satisfy (3.25)-(3.27)

with (P, D), which means that R ∈ R
simplified
TLCC (G, P, D).

In summary, RCC(G, D) ⊆ R
simplified
TLCC (G, P, D).

The simplified TLCC bound R
simplified
TLCC (G, P, D) can be strictly larger than RCC(G, D).

In fact, R
simplified
TLCC (G, P, D) can even strictly outperform the ECC scheme for some cases, as

shown by the following example.

Example 3.7. Consider the 7-message CIC problem from Example 3.5 again. Time sharing of

the ECC scheme over subproblems gives that any symmetric achievable rate R < 1/3.25.
For the TLCC scheme, we apply the following simplifications. Fix D to be D. Apply

Theorem 3.1 to obtain NK, where |NK| = 16. Remove any SK, K /∈ NK and ZM, M 6⊆ NK.

Thus the number of ZM variables is hugely reduced from 2127 − 1 to 216 − 1. Find the output
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of Algorithm 3, PD, and then we set P as Pi = PD
i ∩ NK, ∀i ∈ {1, 3, 5, 6}, P2 = (PD

2 ∪
2{4,7}) ∩ NK and Pi = (PD

i ∪ 2{5}) ∩ NK, ∀i ∈ {4, 7}. Use Theorem 3.5 to further remove

unnecessary ZM variables. Applying Theorem 3.4 we obtain that any symmetric rate R < 1/3
can be achieved, strictly outperforming the ECC result.

Moreover, R < 1/3 can be obtained with even much lower computational complexity via

using N′K given by Algorithm 1 instead of NK for the entire simplifying process. Note that

|N′K| = 7, and thus the number of ZM variables is only 27 − 1. We can simply set P such that

Pi = PD
i ∩ N′K, ∀i ∈ [n]. Applying Theorem 3.5 to further remove unnecessary ZM variables,

the final number of remaining ZM variables is merely 6.

3.4 Distributed Composite Coding for a Fixed Decoding Con-
figuration

In this and the next section, we extend the composite coding (CC) scheme to the DIC problem

through combining and generalizing the key ideas of cooperative composite coding (CCC)

from Li et al. [2018] and our enhanced fractional allocation in Section 3.2. We also add another

degree of freedom into the coding scheme by allowing receiver-dependent decoding choices.

The extended coding scheme is referred to as the distributed composite coding (DCC) scheme.

For gentler presentation, in this section we focus on the DCC scheme for a fixed decoding

configuration (to be defined shortly), while the general DCC scheme incorporating varying

decoding configurations is to be presented in Section 3.5.

Let ti = drRie, i ∈ [n]. Recall that ti is the length and Ri is the rate of message i.
The DCC scheme is a two-stage nonlinear coding scheme based on random coding. In the

first stage of encoding, each nonempty subset of messages K ⊆ [n] is mapped via random

coding to a corresponding composite index, denoted by wK ∈ {0, 1}sK , with rate SK and

length sK = drSKe. By convention, s∅ = S∅ = 0. In the second stage, composite indices

wK, K ⊆ J that are available at server J are mapped together to a codeword yJ ∈ {0, 1}rJ ,

again via random coding, where rJ = brCJc, J ∈ N.

Decoding takes place in the reverse order of stages. For each receiver i ∈ [n], fix a de-

coding server group Pi ⊆ N \ 2Ai and a decoding message set Di ⊆ [n] \ Ai such that

i ∈ Di. In the first stage of decoding, receiver i decodes all the composite indices to which

some servers in Pi have access. In the second stage, receiver i decodes the messages in Di

according to the decoded composite indices from the first stage. The tuples P = (Pi, i ∈ [n])
and D = (Di, i ∈ [n]) are collectively referred to as the decoding configuration for the DCC

scheme.

Remark 3.5. Note that the same notation P = (Pi, i ∈ [n]) that appears in both the decoding

configuration definitions for the TLCC scheme (cf. Remark 3.2) and the DCC scheme has
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different meanings. For the TLCC scheme, P denotes the tuple of decoding composite index

sets such that each receiver i decodes all the composite indices wK, K ∈ Pi. In contrast for the

DCC scheme, P denotes the tuple of decoding server groups, and each receiver i decodes all

the composite indices wK such that there exists some J ∈ Pi, K ⊆ J.

Remark 3.6. Note that
⋃

J∈Pi
J is the set of message indices that is collectively available to

servers in Pi. In the second step of decoding receiver i can only possibly recover messages

contained by the servers J in the decoding server group Pi. Hence, we always require that

Di ⊆ ∪J∈Pi J, which is similar to the TLCC scheme (cf. Remark 3.3).

As stated above, in this section we provide an achievable rate region for the DCC scheme

for a fixed (P, D). For any P ⊆ N, Γ∗(P) =
⋃

J∈P{K : K ⊆ J} =
⋃

J∈P 2J is the subset

completion of P (cf. (3.31)). Similarly, for any M ⊆ N, Γ∗(M) =
⋃

K∈M{J ∈ N : K ⊆ J} is

the superset completion of M (with respect to N). One can think of Γ∗(P) as denoting the set

of all composite indices that the servers in P can collectively access. One can think of Γ∗(M)

as the set of all servers that have access to at least one composite index in M.

Theorem 3.7 (Distributed composite coding (DCC) bound for a fixed decoding configuration).
Consider the DIC problem G: (i|j ∈ Ai), i ∈ [n] with link capacity tuple C and a given

decoding configuration (P, D). The capacity region C (G, C) is inner bounded by the rate

region RDCC(G, C, P, D) that consists of all rate tuples R satisfying

∑
j∈L

Rj < ∑
K⊆Di∪Ai ,
K∈Γ∗(Pi),
K∩L 6=∅

SK, ∀L ⊆ Di, i ∈ [n], (3.35)

∑
K∈M

SK < ∑
J∈Γ∗(M)∩ Pi

CJ , ∀M ⊆ Γ∗(Pi) \ 2Ai , i ∈ [n], (3.36)

for some SK ≥ 0, K ⊆ [n].

Before outlining the coding scheme corresponding to Theorem 3.7, we showcase its use

via the following example.

Example 3.8. Consider the DIC problem (1|−), (2|3), (3|2) with n = 3 messages and non-

negative, but otherwise arbitrary link capacities CJ ≥ 0, J ∈ N \ {∅} and C∅ = 0. Note that

the set N = {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}} is subset complete and hence,

Γ∗(N) = N.

We fix P1 = {{1}}, P2 = {{2}, {1, 2}, {2, 3}}, and P3 = {{3}, {1, 3}, {1, 2, 3}}. We

fix D1 = {1}, D2 = {1, 2}, and D3 = {1, 3}. Hence, D1 ∪ A1 = {1}, and Di ∪ Ai =

{1, 2, 3}, i = 2, 3. Note that Γ∗(P1) = {∅, {1}}, Γ∗(P2) = {∅, {1}, {2}, {1, 2}, {3}, {2, 3}}
and Γ∗(P3) = N. Inequality (3.35) (including active and inactive inequalities) gives (3.37).

Inequality (3.36) (excluding inactive inequalities) yields (3.38).
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R1 < S{1}, i = 1, L = D1,
R1 < S{1} + S{1,2}, i = 2, L = {1} ⊂ D2,
R2 < S{2} + S{1,2} + S{2,3}, i = 2, L = {2} ⊂ D2,
R1 + R2 < S{1} + S{2} + S{1,2} + S{2,3}, i = 2, L = D2,
R1 < S{1} + S{1,2} + S{1,3} + S{1,2,3}, i = 3, L = {1} ⊂ D3,
R3 < S{3} + S{1,3} + S{2,3} + S{1,2,3}, i = 3, L = {3} ⊂ D3,
R1 + R3 < S{1} + S{1,2} + S{3} + S{1,3} + S{2,3} + S{1,2,3}, i = 3, L = D3.

(3.37)

S{1} < C{1}, i = 1, M1 = Γ∗(P1), Γ∗(M1) ∩ P1 = P1,
S{1} + S{1,2} < C{1,2}, i = 2, M2 = {{1}, {1, 2}}, Γ∗(M2) ∩ P2 = {{1, 2}},
S{2,3} < C{2,3}, i = 2, M3 = {{2, 3}}, Γ∗(M3) ∩ P2 = {{2, 3}},
S{1} + S{1,2} + S{2,3} < C{1,2} + C{2,3}, i = 2, M4 = {{1}, {1, 2}, {2, 3}},
S{1} + S{2} + S{1,2} + S{2,3}

< C{2} + C{1,2} + C{2,3}, i = 2, M5 = {{1}, {2}, {1, 2}, {2, 3}},
S{1,2} + S{2,3} + S{1,2,3} < C{1,2,3}, i = 3, M6 = {{1, 2}, {2, 3} {1, 2, 3}},
S{1} + S{1,2} + S{1,3} + S{2,3} + S{1,2,3}

< C{1,3} + C{1,2,3}, i = 3, M7 = {{1}, {1, 2}, {1, 3}, {2, 3} {1, 2, 3}},
∑K∈M8

SK < C{3} + C{1,3} + C{1,2,3}, i = 3, M8 = Γ∗(P3) \ {{2}}, Γ∗(M8) ∩ P3 = P3.

(3.38)

We apply FME to eliminate all present SK and find the achievable rate region as

R1 < min{C{1}, C{1,2}, C{1,3} + C{1,2,3}},
R1 + R2 < C{2} + C{1,2} + C{2,3},

R1 + R3 < C{3} + C{1,3} + C{1,2,3}.

Note that we are not claiming that the choice of (P, D) is optimal for this toy example.

The chosen D is indeed optimal, but for a more compact exposition, we chose different and

smaller suboptimal sets Pi ⊂ N, instead of the optimal Pi = N, i ∈ [n].

Outline of Coding Scheme for Theorem 3.7. Codebook generation. Step 1. For each message

set K ⊆ [n] and each realization of xK, generate a composite index wK = wK(xK) drawn in-

dependently and uniformly at random from [2sK ]. That is, the composite index wK is generated

according to the random mapping wK as

wK : ∏
j∈K

[2tj ]→ [2sK ].
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For brevity, when we say composite index K, we mean composite index wK.

Step 2. For each server J ∈ N and each realization of composite index tuple (wK, K ∈ 2J),

generate a codeword yJ = yJ((wK, K ∈ 2J)) drawn independently and uniformly at random

from [2rJ ]. That is, the codeword yJ is generated according to the random mapping yJ as

yJ : ∏
K∈2J

[2sK ]→ [2rJ ].

The codebook {(wK = wK(xK), K ⊆ [n]), (yJ = yJ((wK, K ∈ 2J)), J ∈ N)} is revealed to

all corresponding parties.2

Encoding. To communicate messages x[n], each server J ∈ N computes wK = wK(xK)

for each K ∈ 2J and transmits yJ = yJ((wK, K ∈ 2J)).

Decoding. Step 1. For i ∈ [n], receiver i finds the unique composite index tuple (ŵK, K ∈
Γ∗(Pi)) such that yJ = yJ((ŵK, K ∈ 2J)) for every J ∈ Pi. If there is more than one such

tuple, it declares an error.

Step 2. Assuming that (ŵK, K ∈ Γ∗(Pi)) is correct, receiver i finds the unique message

tuple x̂Di such that ŵK = wK(x̂K) for every K ∈ Γ∗(Pi) with K ⊆ Di ∪ Ai. If there is more

than one such tuple, it declares an error.

The inequalities in (3.35) signify the second-step decoding constraints for the messages in

Di to be recovered with vanishingly small probability of error from all composite indices K in

Γ∗(Pi), with the help of side information Ai. The inequalities in (3.36) signify the first-step

decoding constraints for the composite indices that the servers in Pi have access to (except

those that can be generated from side information) to be recovered with vanishingly small

probability of error from the outputs yJ from the servers J in Pi. The details of error analysis

of Theorem 3.7 is provided in Appendix A.1.

To help with understanding of Theorem 3.7, we also present the error analysis for a specific

example as follows.

Example 3.9. Let us revisit Example 3.8 and consider decoding for receiver 2 with P2 =

{{2}, {1, 2}, {2, 3}}, D2 = {1, 2}.
In the first step of decoding, receiver 2 tries to decode composite indices ŵK, K ∈ Γ∗(P2)

from the received codewords yJ , J ∈ P2 and its side information xA2 . The decoding er-

ror probability Pe is the probability that there exists some composite index tuple (ŵK, K ∈
Γ∗(P2)) = (ŵ{1}, ŵ{2}, ŵ{1,2}, ŵ{3}, ŵ{2,3}) other than the correct (actually transmitted) tu-

ple (w{1}, w{2}, w{1,2}, w{3}, w{2,3}) such that they are mapped to the same codeword yJ for

every J ∈ P2 = {{2}, {1, 2}, {2, 3}}. To utilize the union bound for upper bounding Pe, we

2One of the servers must act as a representative or a central processing unit to generate the codebook and reveal
the codebook to all corresponding servers and all users. This is because the random mapping of xK to composite
index wK should be identical among all servers that can generate wK . For composite index K, the corresponding
servers are indexed by the superset of K with respect to the set of all servers N, Γ∗(K).
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partition the error event according to the erroneous composite index set M ⊆ Γ∗(P2) \ 2A2 =

{{1}, {2}, {1, 2}, {2, 3}}. That is, ŵK 6= wK iff K ∈ M. Note that 2A2 is always excluded

from M for the reason that ŵ{3} can be generated by receiver 2 from xA2 = x{3} and thus will

never be erroneous. Therefore, by the union bound, we have Pe ≤ ∑M⊆{{1},{2},{1,2},{2,3}} PM
e ,

where

PM
e

.
= ∑

(ŵ{1},ŵ{2},ŵ{1,2},w{3},ŵ{2,3}):
ŵK 6=wK ,K∈M,
ŵK=wK ,K/∈M

P


⋂

J∈{{2},{1,2},{2,3}},
J∈Γ∗(M)

{
yJ = yJ(ŵK, K ∈ 2J)

} .

To ensure vanishingly small decoding error probability Pe, each PM
e has to be vanishingly

small. In particular, we present detailed analysis for PM
e with M = M4 = {{1}, {1, 2}, {2, 3}}

as specified in Example 3.8, while other PM
e can be analyzed similarly. Since P2 ∩ Γ∗(M) =

{{2}, {1, 2}, {2, 3}} ∩ Γ∗({{1}, {1, 2}, {2, 3}}) = {{1, 2}, {2, 3}}, we have

PM4
e = ∑

(ŵ{1},w{2},ŵ{1,2},w{3},ŵ{2,3}):
ŵK 6=wK ,K∈{{1},{1,2},{2,3}}

P

 ⋂
J∈{{1,2},{2,3}}

{
yJ = yJ(ŵK, K ∈ 2J)

}
=

(2s{1} − 1) · (2s{1,2} − 1) · (2s{2,3} − 1)
2r{1,2} · 2r{2,3} (3.39)

< 2s{1} · 2s{1,2} · 2s{2,3} · 2−r{1,2} · 2−r{2,3}

< 2rS{1}+1+rS{1,2}+1+rS{2,3}+1−(rC{1,2}−1)−(rC{2,3}−1)

= 25 · 2r(S{1}+S{1,2}+S{2,3}−C{1,2}−C{2,3}), (3.40)

where (3.39) holds since there are (2s{1} − 1) · (2s{1,2} − 1) · (2s{2,3} − 1) erroneous tuples

(ŵ{1}, w{2}, ŵ{1,2}, w{3}, ŵ{2,3}) where ŵK 6= wK, K ∈ M4, and for each erroneous com-

posite index tuple, it is mapped to the same codeword yJ as the correct tuple for all J ∈
{{1, 2}, {2, 3}} with probability 1/(2r{1,2} · 2r{2,3}) due to the uniform random codebook gen-

eration. According to (3.40), PM4
e tends to 0 as r → ∞, provided that

S{1} + S{1,2} + S{2,3} < C{1,2} + C{2,3}.

Note that the above constraint has appeared in the system of inequalities given by (3.36) in

Example 3.8. Other inequalities given by (3.36) with i = 2 in Example 3.8 are required to

ensure vanishingly small PM
e for other M ⊆ {{1}, {2}, {1, 2}, {2, 3}}. All these inequalities

are to be satisfied to ensure a vanishingly small first-step decoding error probability Pe for

receiver 2.

The error analysis for the second step of decoding can be done in a similar way. As-
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sume that all the composite indices ŵK, K ∈ Γ∗(P2) have been correctly decoded. In the

second step of decoding, receiver 2 tries to decode messages x̂D2 = x̂{1,2} from the de-

coded composite indices ŵK, K ∈ Γ∗(P2) and its side information xA2 = x{3}. The decod-

ing error probability Pe is the probability that there exists some message tuple (x̂1, x̂2, x3)

other than the correct tuple (x1, x2, x3) such that they are mapped to the same composite

index wK for every K ∈ 2D2∪A2 ∩ Γ∗(P2) = 2{1,2,3} ∩ {{1}, {2}, {1, 2}, {3}, {2, 3}} =

{{1}, {2}, {1, 2}, {3}, {2, 3}}. We partition this error event according to the erroneous mes-

sage set L ⊆ D2 = {1, 2}. That is, x̂j 6= xj iff j ∈ L. Therefore, by the union bound, we have

Pe ≤ ∑L⊆{1,2} PL
e , where

PL
e

.
= ∑

(x̂1,x̂2):
x̂j 6=xj,j∈L,
x̂j=xj,j/∈L

P


⋂

K∈{{1},{2},{1,2},{3},{2,3}},
K∩L 6=∅

{ŵK = wK(x̂K)}

 .

To ensure vanishingly small Pe, each PL
e has to be vanishingly small. In particular, we present

detailed analysis for PL
e with L = D2 = {1, 2}, while other PL

e can be analyzed similarly. We

have

PL
e = ∑

(x̂1,x̂2):
x̂1 6=x1,x̂2 6=x2

P

 ⋂
K∈{{1},{2},{1,2},{2,3}}

{ŵK = wK(x̂K)}


=

(2t1 − 1) · (2t2 − 1)
2s{1} · 2s{2} · 2s{1,2} · 2s{2,3} (3.41)

< 2t1 · 2t2 · 2−s{1} · 2−s{2} · 2−s{1,2} · 2−s{2,3}

< 2rR1+1+rR2+1−rS{1}−rS{2}−rS{1,2}−rS{2,3}

= 22 · 2r(R1+R2−S{1}−S{2}−S{1,2}−S{2,3}), (3.42)

where (3.41) holds since there are (2t1 − 1) · (2t2 − 1) erroneous message tuples, and for

each erroneous tuple, it is mapped to the same composite index wK as the correct tuple for

all K ∈ {{1}, {2}, {1, 2}, {2, 3}} with probability 1/(2s{1} · 2s{2} · 2s{1,2} · 2s{2,3}) due to the

uniform random codebook generation. According to (3.42), PL
e tends to 0 as r → ∞, provided

that

R1 + R2 < S{1} + S{2} + S{1,2} + S{2,3}.

Note that the above constraint appears in the system of inequalities given by (3.35) in Example

3.8. Other inequalities given by (3.35) with i = 2 in Example 3.8 are required to ensure

vanishingly small PL
e for other L ⊆ {1, 2}. All these inequalities are to be satisfied to have a
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vanishingly small second-step decoding error probability Pe for receiver 2.

The achievable rate region RDCC(G, C, P, D) in Theorem 3.7 can be represented equiva-

lently as follows.

Proposition 3.2. Consider the DIC problem G: (i|j ∈ Ai), i ∈ [n] with link capacity tuple C
and a given decoding configuration (P, D). The capacity region C (G, C) is inner bounded by

the rate region RDCC(G, C, P, D) that consists of all rate tuples R satisfying (3.35) and

∑
K∈Γ∗(Q)\Γ∗(Pi\Q)\2Ai

SK < ∑
J∈Q

CJ , ∀Q ⊆ Pi, i ∈ [n]. (3.43)

Here, the summand on the LHS of (3.43) signifies the set of composite indices that can be

accessed only by the servers in Q (and not by the servers in Pi \Q), and that are not generated

freely from the side information Ai. The proof of Proposition 3.2 is provided in Appendix A.2.

Remark 3.7. In Sadeghi et al. [2016], composite index rates had been split across servers,

where server-specific rates, SK,J , K ⊆ J, were limited by the corresponding server capacity,

CJ . However, as demonstrated by Li et al. [2017, 2018] such rate splitting can be suboptimal,

and cooperative composite coding (CCC) (see Proposition 3.3 in Section 3.5) can generally

achieve tighter inner bounds on the capacity region of the DIC problems, where the same

subset of messages are mapped to the same composite index at different servers. Subsequently,

composite indices wK and their corresponding rates SK are not server-specific. In this chapter,

we have adopted cooperative compression of composite indices as baseline.

Remark 3.8. Compared to the previous works Sadeghi et al. [2016]; Li et al. [2017, 2018],

we have introduced user-specific decoding server groups, Pi ⊆ N, i ∈ [n]. Compared to Li

et al. [2017, 2018] we use a more flexible enhanced fractional allocation of link capacities over

decoding configurations (see Section 3.5). See Remark3.11, as well as Examples 3.13 and 3.15

for more details on how these improvements can lead to generally tighter inner bounds on the

capacity region.

Remark 3.9. If CJ = 0 for some J ∈ N, we can limit our attention to the set of active servers

J with positive capacity, denoted by NA
.
= {J ∈ N : CJ > 0}. Our results in Theorem 3.7

and Proposition 3.2 can easily incorporate the set of active servers NA, which can reduce the

computational complexity of characterizing the rate region. Example 3.10 in the following

illustrates how the rate region is easily specialized when active servers NA is a strict subset of

N. Example 3.10 also shows an instance of equivalence of Theorem 3.7 and Proposition 3.2.

Note that the results in Li et al. [2017, 2018] are presented based on the set of active servers.

Example 3.10. Consider the 4-message DIC problem G: (1|4), (2|1, 3), (3|1, 2), (4|2, 3) with

two active servers NA = {{1, 2, 3}, {2, 3, 4}} with positive link capacities CJ > 0, J ∈ NA
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and CJ = 0, J ∈ N \ NA. Note that

Γ∗(NA) =
⋃

J∈NA

2J

= {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}
∪ {∅, {2}, {3}, {2, 3}, {4}, {2, 4}, {3, 4}, {2, 3, 4}}

= {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3},
{4}, {2, 4}, {3, 4}, {2, 3, 4}}.

We choose Pi = NA, i ∈ [n], D1 = {1}, D2 = {2, 4}, D3 = {3, 4} and D4 = {1, 4}.
Hence, D1 ∪ A1 = {1, 4}, and Di ∪ Ai = [n], i = 2, 3, 4. Active inequalities from (3.35) are

given in (3.44).

R1 < S{1}, i = 1, L = D1,
R2 < S{2} + S{1,2} + S{2,3} + S{1,2,3}

+S{2,4} + S{2,3,4}, i = 2, L = {2} ⊂ D2,
R4 < S{4} + S{2,4} + S{3,4} + S{2,3,4}, i = 2, 3, 4, L = {4} ⊂ Di,
R2 + R4 < S{2} + S{1,2} + S{1,3} + S{2,3} + S{1,2,3}

+S{4} + S{2,4} + S{2,3,4}, i = 2, L = D2,
R3 < S{3} + S{1,3} + S{2,3} + S{1,2,3}

+S{3,4} + S{2,3,4}, i = 3, L = {3} ⊂ D3,
R3 + R4 < S{3} + S{1,3} + S{2,3} + S{1,2,3} + S{4}

+S{2,4} + S{3,4} + S{2,3,4}, i = 3, L = D3

R1 + R4 < S{1} + S{1,2} + S{1,3} + S{1,2,3} + S{4}
+S{2,4} + S{3,4} + S{2,3,4}, i = 4, L = D4.

(3.44)

S{1} + S{1,2} + S{1,3} + S{1,2,3} < C{1,2,3}, i = 1, 4, M = M1,
S{4} + S{2,4} + S{3,4} + S{2,3,4} < C{2,3,4}, i = 2, 3, 4, M = M2,

∑K∈N,K 6={4} SK < C{1,2,3} + C{2,3,4}, i = 1, M = M3 \ {{4}},
∑K∈{{2},{1,2},{2,3},{1,2,3},{4},{2,4},{3,4},{2,3,4}} SK

< C{1,2,3} + C{2,3,4}, i = 2, M = M3 \ 2{1,3},

∑K∈{{3},{1,3},{2,3},{1,2,3},{4},{2,4},{3,4},{2,3,4}} SK

< C{1,2,3} + C{2,3,4}, i = 3, M = M3 \ 2{1,2},

∑K∈{{1},{1,2},{1,3},{1,2,3},{4},{2,4},{3,4},{2,3,4}} SK

< C{1,2,3} + C{2,3,4}, i = 4, M = M3 \ 2{2,3}.

(3.45)
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Note that with respect to NA, for M1 = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}, we have Γ∗(M1) =

{{1, 2, 3}}, for M2 = {{4}, {2, 4}, {3, 4}, {2, 3, 4}}, we have Γ∗(M2) = {{2, 3, 4}}, and

for M3 = Γ∗(NA), we have Γ∗(M3) = NA. With this in mind, we write the active inequalities

(3.36) as (3.45).

We apply FME to eliminate all present SK variables in (3.44) and (3.45) and find the achiev-

able rate region as

R1 < C{1,2,3},

R4 < C{2,3,4},

R1 + R2 < C{1,2,3} + C{2,3,4},

R1 + R3 < C{1,2,3} + C{2,3,4},

R2 + R4 < C{1,2,3} + C{2,3,4},

R3 + R4 < C{1,2,3} + C{2,3,4}.

It can be verified that the above rate region matches the all-server grouping PM bound R∗(G)
in Corollary 4.5 to be presented in Section 4.8, and thus establishes the capacity region for the

problem.

We can rewrite active first-step decoding inequalities in the form of (3.43) in Proposition

3.2. Recall that Pi = NA = {{1, 2, 3}, {2, 3, 4}}, i ∈ [n]. For Q1 = {{1, 2, 3}}, we

have Γ∗(Q1) \ Γ∗(Pi \Q1) = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}, for Q2 = {{2, 3, 4}}, we have

Γ∗(Q2) \ Γ∗(Pi \Q2) = {{4}, {2, 4}, {3, 4}, {2, 3, 4}}, and for Q3 = Pi = NA, we have

Γ∗(Q3) \ Γ∗(Pi \Q3)

= {{1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {4}, {2, 4}, {3, 4}, {2, 3, 4}}.

Inequality (3.43) (excluding inactive inequalities) gives (3.45), which showcases the equiva-

lence of (3.36) and (3.43) as claimed by Proposition 3.2.

We now present a few simplifications of Theorem 3.7. First, setting Pi = N, i ∈ [n] (that

is, all receivers access all server outputs for decoding) yields the following.

Corollary 3.2. Consider the DIC problem G: (i|j ∈ Ai), i ∈ [n] with link capacity tuple C
and a given decoding message set tuple D. The capacity region C (G, C) is inner bounded by

the rate region RDCC(G, C, (N, N, . . . , N), D) that consists of all rate tuples R satisfying

∑
j∈L

Rj < ∑
K⊆Di∪Ai ,

K∩L 6=∅

SK, ∀L ⊆ Di, i ∈ [n], (3.46)

∑
K∈M

SK < ∑
J∈Γ∗(M)

CJ , ∀M ⊆ N \ 2Ai , i ∈ [n]. (3.47)
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Corollary 3.2 can still result in a tight bound on the sum capacity.

Example 3.11. Consider the 4-message DIC problem (1|−), (2|4), (3|4), (4|3) with equal

link capacities CJ = 1 for all J ∈ N \ {∅}. Choose Pi = N, i ∈ [n]. Choose D1 = {1} and

Di = [n] \ Ai for i = 2, 3, 4. Maximizing the sum-rate under the constraints (3.46) and (3.47)

results in R1 + R2 + R3 + R4 < 21, which is the sum capacity of this DIC problem; see

Example 4.10 for the matching upper bound. Note that the sum capacity of 21 can also be

achieved by some linear coding scheme as follows. Set the codeword length rJ = 1 for every

server J ∈ N \ {∅} and message length t1 = 4, t2 = 3, t3 = t4 = 7. Thus message x1 can be

written as x1 = (x1,1, x1,2, x1,3, x1,4). Similarly, x2 = (x2,1, x2,2, x2,3), x3 = (x3,1, . . . , x3,7),

and x4 = (x4,1, . . . , x4,7). Then we generate the codewords yJ , J ∈ N \ {∅} as

y{1} = (x1,1), y{2} = (x2,1), y{3} = (x3,1), y{4} = (x4,1),

y{1,2} = (x1,2), y{1,3} = (x1,3), y{1,4} = (x1,4),

y{2,3} = (x2,2 ⊕ x3,2), y{2,4} = (x2,2 ⊕ x4,2),

y{1,2,3} = (x2,3 ⊕ x3,3), y{1,2,4} = (x2,3 ⊕ x4,3),

y{3,4} = (x3,4 ⊕ x4,4), y{1,3,4} = (x3,5 ⊕ x4,5),

y{2,3,4} = (x3,6 ⊕ x4,6), y{1,2,3,4} = (x3,7 ⊕ x4,7).

It can be verified that upon receiving the above codewords, every receiver i can decode xi with

the help of its side information xAi . For the above linear coding scheme, rate tuple R = t =
(4, 3, 7, 7) is achievable, thus achieving a sum-rate of 4 + 3 + 7 + 7 = 21.

We now further simplify Corollary 3.2 by choosing the composite rates explicitly (and

potentially suboptimally) as SK = CK, K ∈ N, which essentially prevents cooperation among

the servers and forces server J to transmit the composite index wJ by a one-to-one mapping

yJ(wJ(xJ)).

Corollary 3.3. Consider the DIC problem G: (i|j ∈ Ai), i ∈ [n] with link capacity tuple C
and a given decoding message set tuple D. A rate tuple R is achievable if

∑
j∈L

Rj < ∑
J⊆Di∪Ai ,

J∩L 6=∅

CJ , ∀L ⊆ Di, i ∈ [n]. (3.48)

With no need for Fourier–Motzkin elimination of the composite index rates, the rate region

in Corollary 3.3 can be easily evaluated.

Example 3.12. Consider the 4-message DIC problem (1|4), (2|4), (3|2), (4|3) with equal link

capacities CJ = 1 for all J ∈ N \ {∅}. Choose Di = [n] \ Ai, i ∈ [n]. Corollary 3.3

then simplifies to the set of inequalities Ri < 8, i ∈ [n], Ri + Rj < 12, i 6= j ∈ [n],
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R1 + R2 + R3 < 14, R1 + R2 + R4 < 14, and R1 + R3 + R4 < 14. For this problem,

Theorem 3.7 (with no pre-specified restriction on SK) yields the same rate region under equal

link capacities, which indeed matches the touch grouping PM bound in Corollary 4.2 in Section

4.6 and thus establishes the capacity region.

3.5 Distributed Composite Coding with Varying Decoding
Configurations

In this section we allow message rates Ri, i ∈ [n], and composite index rates SK, K ⊆ [n], to

be a function of the decoding configuration (P, D) at the receivers.

More formally, consider the DIC problem G with link capacity tuple C. Let Pi(G) .
=

{Pi ⊆ N \ 2Ai : i ∈ ∪J∈Pi J} denote the set of all possible decoding server groups at receiver

i, and thus P(G) .
= ∏i∈[n] Pi(G) denotes the collection of all possible decoding server group

tuples among all receivers. Note that such decoding server group tuples does not depend on

the link capacity tuple C. Similarly, Di(G) = {Di ⊆ [n] \ Ai : i ∈ Di} denotes the set

of all possible decoding message sets at receiver i, and thus D(G) .
= ∏i∈[n]Di(G) denotes

the collection of all possible decoding message set tuples among all receivers for the DIC

problem. Whenever we refer to a decoding configuration (P, D), we refer to a decoding server

group tuple P ∈ P(G) = ∏i∈[n]{Pi ⊆ N \ 2Ai : i ∈ ∪J∈Pi J} and a decoding message set

tuple D ∈ D(G) = ∏i∈[n]{Di ⊆ [n] \ Ai : i ∈ Di}, such that for any receiver i ∈ [n],
Di ⊆ ∪J∈Pi J.

Let for each (P, D) and i ∈ [n], ti(P, D) = drRi(P, D)e, where Ri(P, D) is the rate

of message i communicated via decoding configuration (P, D). Let xi(P, D) ∈ [2ti(P,D)] be

the part of message i communicated via decoding configuration (P, D). Denote sK(P, D) =

drSK(P, D)e, K ⊆ [n], where SK(P, D) is the rate of composite index K and configuration

(P, D). Denote rJ(P) = brCJ(P)c, where CJ(P) is the fractional capacity of server J for

decoding server group P. By convention, s∅(P, D) = S∅(P, D) = 0 for each (P, D).

Theorem 3.8 (Distributed composite coding (DCC) bound). Consider the DIC problem G:

(i|j ∈ Ai), i ∈ [n] with link capacity tuple C. The capacity region C (G, C) is inner bounded

by the rate region RDCC(G, C) that consists of all rate tuples R such that

Ri = ∑
P∈P(G),D∈D(G)

Ri(P, D), ∀i ∈ [n], (3.49)

CJ = ∑
P∈P(G)

CJ(P), ∀J ∈ N, (3.50)
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for some Ri(P, D), CJ(P), and SK(P, D) ≥ 0 that satisfy

∑
j∈L

Rj(P, D) < ∑
K⊆Di∪Ai ,
K∈Γ∗(Pi),
K∩L 6=∅

SK(P, D), ∀L ⊆ Di, i ∈ [n], (3.51)

and

∑
D

∑
K∈M

SK(P, D) < ∑
J∈Γ∗(M)∩ Pi

CJ(P), ∀M ⊆ Γ∗(Pi) \ 2Ai , i ∈ [n]. (3.52)

We now outline the coding scheme corresponding to the achievable rate region RDCC(G, C)

in Theorem 3.8. The corresponding error analysis follows similar steps as in the proof of The-

orem 3.7 and thus is omitted for brevity.

Codebook generation: Step 1. For each message set K ⊆ [n], decoding configura-

tion (P, D), and each realization of xK(P, D), a corresponding composite index wK,P,D =

wK,P,D(xK(P, D)) is drawn independently and uniformly at random from [2sK(P,D)]. That is,

the composite index wK,P,D is generated according to the random mapping wK,P,D as

wK,P,D : ∏
j∈K

[2tj(P,D)]→ [2sK(P,D)].

Step 2. For each server J ∈ N, decoding server group tuple P ∈ P(G), and each re-

alization of composite index tuple (wK,P,D, (K, D) ∈ 2J × D(G)), a fractional server index

yJ,P((wK,P,D, (K, D) ∈ 2J ×D(G))) is drawn independently and uniformly at random from

[2rJ(P)]. That is, the fractional server index yJ,P is generated according to the random mapping

function yJ,P as

yJ,P : ∏
K∈2J

∏
D∈D(G)

[2sK(P,D)]→ [2rJ(P)].

For each J ∈ N, the final codeword yJ is the deterministic concatenation of the fractional

server index tuples, (yJ,P, P ∈ P(G)). The random codebook

{(wK,P,D = wK,P,D(xK(P, D)), K ⊆ [n], P ∈ P(G), D ∈ D(G)),
(yJ,P = yJ,P((wK,P,D,(K, D) ∈ 2J×D(G))),J ∈ N, P∈P(G))}

is revealed to all corresponding parties. See Footnote 2.

Encoding: To communicate messages x[n], each server J ∈ N computes the composite

index wK,P,D = wK,P,D(xK(P, D)) for each K ∈ 2J and (P, D), as well as the server index

yJ,P = yJ,P((wK,P,D, (K, D) ∈ 2J ×D(G))) for each P, and then transmits the final codeword

yJ = (yJ,P, P ∈ P(G)).
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Decoding: Step 1. For each i ∈ [n] and each P ∈ P(G), receiver i finds the unique tuple

(ŵK,P,D, (K, D) ∈ Γ∗(Pi) × D(G)) such that yJ,P = yJ,P((ŵK,P,D, (K, D) ∈ 2J × D(G)))
for every J ∈ Pi. If there is more than one such tuple, it declares an error.

Step 2. Assuming Step 1 is correctly executed and for each i ∈ [n] and each (P, D),

receiver i finds the unique message tuple x̂Di(P, D) such that ŵK,P,D = wK,P,D(x̂K(P, D)) for

every K ∈ Γ∗(Pi) with K ⊆ Di ∪ Ai. If there is more than one such tuple, it declares an error.

Remark 3.10. Computing the DCC bound RDCC(G, C) in Theorem 3.8 over all decoding

configurations (P, D) can be rather expensive, but a few simplifications are possible. First,

if J /∈ ∪i∈[n]Pi, then we can simply set CJ(P) = 0 without loss of generality. Second, as

mentioned in Remark 3.9, we can focus on active servers and consider Pi ⊆ NA = {J ∈
N : CJ > 0}. Third, it suffices to consider subset complete decoding server groups, such that

Pi ∪ 2Ai = Γ∗(Pi ∪ 2Ai). This is because, all subsets of composite indices that can be generated

by the servers in Pi (except those that are already known) appear on the LHS of (3.52). That is,

composite indices K in M ⊆ Γ∗(Pi) \ 2Ai appear on the LHS of (3.52). However, on the RHS

of (3.52), the contributing server capacities are “cut" by Pi. Therefore, the region becomes no

smaller if we use subset completion of Pi instead of Pi itself. Finally, it can be shown that the

reduction method for decoding message set tuple D in Theorem 3.2 and Proposition 3.1 hold

even for the DCC scheme. Thus we can safely limit the choices of D to be the tuples that are

element-wisely no smaller than the natural decoding configuration D (cf. Algorithm 2) and, at

the same time, not satisfying the removing condition in Theorem 3.2.

As mentioned in Section 2.3.2, a less general version of the fractional coding over different

decoding configurations was proposed in the cooperative composite coding (CCC) scheme Li

et al. [2018]. We present the achievable rate region given by the CCC scheme in our notation

as follows. Note that the CCC scheme uses the same decoding server group Pi = P ⊆ N for

all the receivers. For a given (P, D), define ∆i = Di ∩ (∪J∈P J), ∀i ∈ [n].

Proposition 3.3 (Cooperative composite coding (CCC) bound, Li et al. [2018]). Consider the

DIC problem G: (i|j ∈ Ai), i ∈ [n] with link capacity tuple C. The capacity region C (G, C)

is inner bounded by the rate region RCCC(G, C) as

RCCC(G, C) = co
( ⋃

D∈D(G)
RCCC(G, C, D)

)
(3.53)

where co(·) denotes the convex hull, and RCCC(G, C, D) consists of all the rate tuples R such
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that

Ri = ∑
P⊆N

Ri(P), ∀i ∈ [n], (3.54)

CJ = ∑
P⊆N

CJ(P), ∀J ∈ N, (3.55)

for some Ri(P), SK(P), and CJ(P) ≥ 0 such that

∑
j∈L

Rj(P) < ∑
K⊆∆i∪Ai ,
K∈Γ∗(P),
K∩L 6=∅

SK(P), ∀L ⊆ ∆i, (3.56)

∑
K∈M

SK(P) < ∑
J∈Γ∗(M)∩ P

CJ(P), ∀M ⊆ Γ∗(P) \ 2Ai , (3.57)

for i ∈ [n] such that i ∈ ∆i and for J ∈ N such that J ∈ P. Otherwise, set Ri(P) = 0 for

i /∈ ∆i and set CJ(P) = 0 for J /∈ P.

Remark 3.11. Compared with the CCC bound in Proposition 3.3, the DCC bound in Theo-

rem 3.8 is more general in two aspects. First, as mentioned earlier in Remark 3.8, our coding

scheme allows more degrees of freedom in choosing the decoding server groups Pi ⊆ N
that are receiver-dependent. Second, more subtly, our coding scheme requires the fractional

link capacity constraints to be satisfied on average over D (cf. (3.52)), whereas CCC in Li

et al. [2018] requires the link capacity constraints to be satisfied for each D (cf. (3.57)). As

illustrated by Examples 3.13 and 3.15, respectively, flexibility in choosing different decoding

server groups or averaging fractional link capacities over different decoding configurations can

strictly increase the achievable rates.

Example 3.13. Consider the 5-message DIC problem G:

(1|2, 5), (2|3, 4), (3|−), (4|2, 5), (5|1, 2, 4)

with CJ = 1 for J = J1 = {1, 2, 3} and J = J2 = {1, 4}, CJ = 2 for J = J3 = {1, 3, 4, 5},
and CJ = 0 otherwise. Hence, the set of active servers is NA = {J1, J2, J3}. We use a single

decoding message set tuple D with D2 = {2}, D3 = {3}, and Di = [n] \ Ai for i = 1, 4, 5.

The sum-rate achievable by the CCC bound in Proposition 3.3, which is computed using (3.54)-

(3.57) across all 23 − 1 = 7 decoding server group tuples P, Pi = P ⊆ NA, i ∈ [n], satisfies

R1 + R2 + R3 + R4 + R5 < 6. The sum-rate achievable by the DCC bound in Theorem 3.8,

which is computed with variable Pi as a function of i ∈ [n] using the following 7 randomly

found decoding server group tuples, satisfies R1 + R2 + R3 + R4 + R5 < 7. Therefore, there

can be a benefit in allowing Pi to vary across i.
In P1, we set P1 = {J1, J2}, P2 = {J3}, P3 = {J2}, P4 = {J2, J3}, and P5 = NA.
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In P2, we set P1 = P2 = P4 = {J1, J2}, P3 = {J2}, and P5 = {J2, J3}.
In P3, we set P1 = {J2, J3}, P2 = P5 = {J3}, P3 = {J1, J2}, and P4 = {J2}.
In P4, we set P1 = {J1, J3}, P2 = {J1, J2}, P3 = {J2}, P4 = {J3}, and P5 = {J1}.
In P5, we set P1 = {J2, J3}, P2 = NA, P3 = {J2}, P4 = {J1, J3}, and P5 = {J2}.
In P6, we set P1 = {J2}, P2 = {J1, J2}, P3 = {J2, J3}, P4 = {J1, J3}, and P5 = NA.

In P7, we set P1 = {J1, J3}, P2 = {J2}, P3 = P4 = {J1, J3}, and P5 = NA.

We note that even with slight variations in the above 7 decoding server group tuples, one

can still obtain R1 + R2 + R3 + R4 + R5 < 7 with the DCC bound RDCC(G). For example, if

we keep P2 to P7 unchanged and in P1 we set P1 = {J3}, P2 = NA, P3 = {J1}, P4 = {J2, J3},
and P5 = {J1, J2}, we still obtain the same sum-rate lower bound. Applying the touch grouping

PM bound in Corollary 4.2 (to be presented in Section 4.6) with the touch grouping Pt =

{T{2,5} ∩ NA, T{1,3,4} ∩ NA} gives a matching upper bound on the sum capacity Csum(G),
thus establishing the sum capacity to be 7. Also note that the sum-rate of 7 can indeed be

achieved by the following linear coding scheme. Set the codeword length rJ1 = rJ2 = 1,

rJ3 = 2 and message length t1 = t2 = 1, t3 = 0 (i.e., R3 will be zero in this linear coding

scheme), t4 = 3, and t5 = 2. We generate the codewords yJ , J ∈ NA as

yJ1 = (x1 ⊕ x2), yJ2 = (x1 ⊕ x4,1) yJ3 = (x4,2 ⊕ x5,1, x4,3 ⊕ x5,2).

It can be verified that upon receiving the above codewords, every receiver i can decode xi with

the help of xAi . For the above coding scheme, rate tuple R = t = (1, 1, 0, 3, 2) is achievable,

thus achieving a sum-rate of 1 + 1 + 0 + 3 + 2 = 7.

Example 3.14. In Example 3.13, we can compute the whole achievable rate region of DCC

using FME. In our programs, there were 181 variables to eliminate, which was completed in

a few minutes on an Apple iMac 4GHz Intel Core i7 with 16 GB memory and using Matlab®

R2017b and the FME software Gattegno et al. [2015]. The achievable rate region is

R2 < 1, R4 < 3, R5 < 2,

R1 + R2 + R3 < 4, R1 + R3 + R4 < 4,

R2 + R3 + R4 < 4, R2 + R3 + R5 < 3.

Comparison of the DCC achievable rate region with that obtained using the single-server

grouping PM bound in Corollary 4.4 (see Section 4.8 for details) shows the region is tight,

thus establishing the capacity region for this problem.

Example 3.15. Consider the 5-message DIC problem G:

(1|4), (2|1, 3, 4), (3|1, 2, 4), (4|1, 3), (5|3)
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with CJ = 1 for J = {1, 2, 5}, {1, 2, 3, 5}, and {2, 4, 5}, and CJ = 0 otherwise. The sum-

rate achievable by the CCC bound in Proposition 3.3, after taking the convex hull over all

possible decoding server groups P ⊆ NA = {{1, 2, 5}, {1, 2, 3, 5}, {2, 4, 5}} (23 − 1 = 7
possibilities) and D ∈ D(G) (2∑i∈[n] |Bi | = 210 = 1024 possibilities according to (3.16))

satisfies R1 + R2 + R3 + R4 + R5 < 4.

In contrast, if we set Ri(P, D), CJ(P, D), and SK(P, D) to zero in the DCC bound in

Theorem 3.8 except one decoding server group tuple P with Pi = NA, i ∈ [n] and two

decoding message set tuples D with D1 = {1}, D5 = {5}, and Di = [n] \ Ai for i = 2, 3, 4,

and D′ with D1 = {1, 2}, D5 = {5}, and Di = [n] \ Ai for i = 2, 3, 4, then the achievable

sum-rate satisfies R1 + R2 + R3 + R4 + R5 < 5. This is strictly larger than that of the CCC

bound. Applying the touch grouping PM bound in Corollary 4.2 (see Section 4.6) with the

touch grouping Pt = {T{1,3} ∩ NA, T{2,4,5} ∩ NA} gives a matching upper bound on the sum

capacity C (G), thus establishing the sum capacity to be 5. Also note that the sum-rate of 5 can

indeed be achieved by the following linear coding scheme. Set the codeword length rJ = 1 for

every J ∈ NA and message length t1 = t3 = t4 = 1, t2 = 2, t5 = 0 (i.e., R5 will be zero in

this linear coding scheme). We generate the codewords yJ , J ∈ NA as

y{1,2,5} = (x1 ⊕ x2,1), y{1,2,3,5} = (x2,2 ⊕ x3), y{2,4,5} = (x2,1 ⊕ x4).

It can be verified that upon receiving the above codewords, every receiver i can decode xi with

the help of xAi . For the above linear coding scheme, rate tuple R = t = (1, 2, 1, 1, 0) is

achievable, thus achieving a sum-rate of 1 + 2 + 1 + 1 + 0 = 5.

Just like Theorem 3.7, Proposition 3.2 and Corollaries 3.2 and 3.3 can be extended by

fractional allocation of rates over decoding configurations. In the following, we present the

extension of Corollary 3.3 as an illustration. Fix a single decoding server group tuple P with

Pi = N for all i ∈ [n]. Let SK(P, D) = SK(D) = CK(D), K ∈ N, where CK(D) is to

be determined. This essentially prevents cooperation among the servers and turns the coding

scheme to

wJ,D : ∏
j∈J

[2tj(D)]→ [2CJ(D)], ∀J ∈ N, D ∈ D(G),

where the final codeword yJ is the deterministic concatenation of composite index tuples,

(wJ,D, D ∈ ∏n
i=1Di).

Corollary 3.4. Consider the DIC problem G: (i|j ∈ Ai), i ∈ [n] with link capacity tuple C.
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A rate tuple R is achievable if

Ri = ∑
D∈D(G)

Ri(D), ∀i ∈ [n], (3.58)

CJ = ∑
D∈D(G)

CJ(D), ∀J ∈ N, (3.59)

for some Rj(D) and CJ(D) ≥ 0 such that

∑
j∈L

Rj(D) < ∑
J⊆Di∪Ai ,

J∩L 6=∅

CJ(D), ∀L ⊆ Di, i ∈ [n]. (3.60)

3.6 Chapter Summary

In this chapter, we investigated the coding schemes based on the two-layer random-coding-

based composite coding scheme Arbabjolfaei et al. [2013] and characterized their correspond-

ing achievable rate regions. For the CIC problem, we started with simplifying the composite

coding scheme from two perspectives: reducing the number of composite indices for the each

decoding configuration, and reducing the number of decoding configurations. Next, we moved

on to extending the composite coding scheme to more general versions. Again we took two

approaches. First, we introduced a more flexible fractional rate splitting method compared to

standard time sharing, based on which we proposed the enhanced composite coding scheme.

Second, we developed the three-layer composite coding scheme by adding one more layer of

random coding into the original two-layer composite coding scheme. For the DIC problem, we

generalized the centralized composite coding scheme to its distributed version. In particular,

we combined our enhanced fractional rate splitting method with the key idea of cooperatively

generating composite indices among all the servers introduced in Li et al. [2018]. We even

added another degree of freedom into the distributed composite coding scheme by allowing

the receivers to choose different groups of server outputs used for decoding.
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Chapter 4

Performance Bounds

In this chapter, we study the information-theoretic performance bounds for index coding. Such

bounds serve as converse results for the index coding problem, characterizing the fundamental

limits on its broadcast rate and capacity region.

In Sections 4.1-4.3, we generalize the alignment chain model Maleki et al. [2014] (Def-

inition 2.3) to derive a series of new performance bounds for the CIC problem, which are

strictly tighter than the MAIS bound Bar-Yossef et al. [2011] (Proposition 2.5) and the internal

conflict bound Maleki et al. [2014]; Jafar [2014] (Proposition 2.6), and at the same time, less

computationally intensive than the PM bound Blasiak et al. [2011]; Arbabjolfaei et al. [2013]

(Proposition 2.7). See Figure 4.1 for a visualized summary.

In Sections 4.4-4.9, we extend the acyclic chain bounds and the PM bound for the CIC

problem to the multi-server scenario. We pay particular attention to the computational com-

plexity of such extended performance bounds since they can grow very quickly as the number

of servers involved in the system increases. The DIC performance bounds are summarized in

Figure 4.2.

Some of the technical proofs are presented in Appendices B.1-B.8.

4.1 The Basic Acyclic Chain Bound

To motivate the acyclic chain bounds to be developed henceforth, consider the following ob-

servation on the MAIS bound βMAIS.

As can be seen from Proposition 2.5, the MAIS bound βMAIS depends on the acyclic struc-

ture among receivers’ side information (cf. (2.11)), or equivalently, receivers’ interfering mes-

sages (cf. (2.12)). For a given CIC problem G whose side information graph G is acyclic,

βMAIS(G) coincides with the broadcast rate β(G) and thus is tight. Otherwise, when there are

multiple maximal acyclic sets within G, βMAIS(G) depends only on one such acyclic structure

with the largest size and may be loose for the problem.

Hence, a natural question arises: is it possible to develop certain performance bound that

not only depends on the largest acyclic set, but can take the internal structure among multiple

77
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Maximum Acyclic
Induced Subgraph

(MAIS) Bound
(Prop. 2.5)

Internal
Conflict Bound

(Prop. 2.6)

Basic Acyclic Chain Bound (Thm. 4.1)

Regular Acyclic Chain Bound (Thm. 4.2)

Polymatroidal (PM) Bound
i.e., Shannon-type inequalities (Prop. 2.7)

Entropic Bound i.e., non-Shannon-type inequalities (Open)

Figure 4.1: Summary of the performance bounds for the CIC problem. Bound A being contained
within bound B means that bound A is a special case of bound B.

acyclic structures into account. In the following, we answer such question positively by show-

ing that converse results more stringent than the MAIS bound can be achieved if the multiple

acyclic structures jointly satisfy certain concatenative relationship. That is, we define a se-

ries of chain models, namely acyclic chains, formed via the concatenation of multiple acyclic

structures.

We start by defining the basic building block of the acyclic chains, the basic tower.

Definition 4.1 (Basic tower). For the CIC problem G : (i|j ∈ Ai), i ∈ [n], nonempty message

sets I, I′, K1, K2, . . . , Kh ⊆ [n], constitute the following basic tower B,

B : I

Kh···
K2
K1←−→b I′,

if I ∪ I′ ∪ K1 ∪ K2 ∪ · · · ∪ K`−1 ⊆ BK`
for any ` ∈ [h].

See Fig. 4.3(a) for a visualization of Definition 4.1. In the basic tower B, message sets I
and I′ are placed horizontally at the ground level of the tower, and message set K` is placed
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Distributed MAIS

Bound (Prop. 2.8)

All-Server

Distributed PM

Bound (Prop. 2.9)

All-Server Grouping

PM Bound (Cor. 4.5)

Singleton Basic

Acyclic Chain

Bound (Thm. 4.5)

Singleton Ordered

Acyclic Chain

Bound (Thm. 4.6)

Augmentation Group

Bound (Thm. 4.8)

Touch Grouping PM Bound (Cor. 4.2)
Fd Grouping PM

Bound (Cor. 4.3)

Single-Server Grouping PM Bound i.e.,

Shannon-type inequalities (Cor. 4.4)

Entropic Bound i.e.,

non-Shannon-type

inequalities (Open)

Figure 4.2: Summary of the performance bounds for the DIC problem. A directed path from bound A
to B means that bound A is a special case of bound B. Note that the bounds in Corollary 4.2-4.5 are all
special forms of the grouping PM bound in Theorem 4.7.

on the `-th floor for any ` ∈ [h], where h is called the height of the tower. The receivers

corresponding to the message set on a higher floor must have all messages in the message sets

located on lower floors, including the ground level, in their common interfering message set

(cf. (2.1)). As a result, the message sets I, K1, K2, . . . , Kh form an acyclic structure at the set

level as defined in (2.15), and so do the message sets I′, K1, K2, . . . , Kh.

For some nonempty message sets I, I′, K1, K2, . . . , Kh, when there is no ambiguity, we

simply say that they form a basic tower if for any ` ∈ [h], I ∪ I′ ∪ K1 ∪ · · · ∪ K`−1 ⊆ BK`
.

For any basic tower B, we also use B to denote the union of all the message sets within it.

Example 4.1. Consider the 5-message CIC problem G:

(1|2, 5), (2|1, 3), (3|2, 4), (4|3, 5), (5|1, 4),

which has previously been discussed in Examples 2.4 and 2.5. The problem can be equivalently
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I I ′
b

Kh

Kh−1

···

K2

K1

(a)

I(1) I(2) I(3) · · · · · · I(m + 1)
b b b

Kh1(1)

···

K2(1)

K1(1)

Kh2(2)

···

K2(2)

K1(2)

Khm(m)

···

K2(m)

K1(m)

(b)

Figure 4.3: Schematic graphs for (a) Definition 4.1 and (b) Definition 4.2. To help with understanding,
we draw blue dashed arrows such that if there is a directed path formed by dashed arrows of the same
color from message set Q to P, then P ⊆ BQ.

represented in the format of (i‖j ∈ Bi)
1, i ∈ [n] based on the receivers’ interfering message

sets as

(1‖3, 4), (2‖4, 5), (3‖1, 5), (4‖1, 2), (5‖2, 3).

According to Definition 4.1, we have the following five basic towers,

{3} {1}←→b {4}, {4} {2}←→b {5}, {5} {3}←→b {1},

{1} {4}←→b {2}, {2} {5}←→b {3}.

In the following we present the basic acyclic chain model built upon the basic tower in

Definition 4.1.

Definition 4.2 (Basic acyclic chain). For the CIC problem G : (i|j ∈ Ai), i ∈ [n], we have the

basic acyclic chain, Chb, of length m, constituted by nonempty message sets as

Chb : I(1)

Kh1
(1)
···

K2(1)
K1(1)←−−−→b I(2)

Kh2 (2)···
K2(2)
K1(2)←−−−→b · · ·

Khm (m)
···

K2(m)
K1(m)←−−−→b I(m + 1),

if the conditions listed below are satisfied:

1. I(1) ⊆ BI(m+1) or I(m + 1) ⊆ BI(1);

2. For any j ∈ [m], message sets I(j), I(j+ 1), K1(j), K2(j), . . . , Khj(j) form a basic tower

Bj, i.e., for any ` ∈ [hj], I(j) ∪ I(j + 1) ∪ K1(j) ∪ K2(j) ∪ · · · ∪ K`−1(j) ⊆ BK`(j).
1Note the difference between the two notations (i|j ∈ Ai) and (i‖j ∈ Bi) to avoid ambiguity.
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In the above definition, the two terminal message sets I(1) and I(m + 1) of the horizontal

chain are underlined to indicate that they are acyclic at the set level as specified in Condition

1. We call the edge between message sets I(j) and I(j + 1) edge j. A basic acyclic chain of

length m has m edges, and can be seen as a horizontal concatenation (with overlapping) of m
basic towers, B1, · · · ,Bm, such that the terminal message sets I(1) and I(m + 1) are acyclic

at the set level. For the basic acyclic chain and any other acyclic chain models to be developed

later, to avoid trivial cases, we always require that the length m is no less than 1.

For the CIC problem G, let Cb(G) denote the collection of its basic acyclic chains. Obvi-

ously any alignment chain as defined in Definition 2.3 can be viewed as a special basic acyclic

chain constituted by basic towers of height 1, each of which is formed by singleton message

sets. It can be easily shown that for a given problem G there exists no valid basic acyclic chain

if and only if there exists no alignment chain. That is, Cb(G) = ∅ if and only if CAC(G) = ∅,

or equivalently, the problem G is half-rate-feasible (cf. Remark 2.3).

We present the following iterative lower bound on the broadcast rate for the CIC problem.

Theorem 4.1 (Basic acyclic chain bound). For the CIC problem G : (i|j ∈ Ai), i ∈ [n], we

have

β(G) ≥ Γb(G) .
= max

Chb∈Cb(G)
Γb(Chb),

where for any basic acyclic chain Chb ∈ Cb(G),

Γb(Chb)
.
=

1
m
( ∑

j∈[m]
∑

`∈[hj]

Γb(G |K`(j)) + ∑
j∈[m+1]

Γb(G | I(j))),

with the following recursion termination condition:

Γb(G |S) .
= βMAIS(G |S), if S is acyclic or half-rate-feasible.

We omit Theorem 4.1’s proof since it can be seen a special case of Theorem 4.2 to be

presented in Section 4.2 and proved in Appendix B.1.

It can be verified that the basic acyclic chain bound on the broadcast rate β is always no

looser than the MAIS bound βMAIS in Proposition 2.5 or the internal conflict bound on βAC in

Proposition 2.6. We formalize such relationships in the following proposition.

Proposition 4.1. For the CIC problem G, we have

Γb(G) ≥ max{βMAIS(G), βAC(G)}.

Proof. Since any alignment chain is a special basic acyclic chain, it is clear that Γb(G) ≥
βAC(G). It remains to show that Γb(G) ≥ βMAIS(G). Set s = βMAIS(G), then there exists an
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acyclic message set with cardinality of s, say {i1, i2, · · · , is}. In other words (cf. (2.12)),

{i1, · · · , i`−1} ⊆ Bi` , ∀` ∈ [s]. (4.1)

Therefore, we have the following one-edge basic acyclic chain,

Chb : {i1}

{is}
{is−1}···
{i3}←−−−−−→b {i2}, (4.2)

and thus by Theorem 4.1, we have Γb(G) ≥ Γb(Chb) = s = βMAIS(G). Indeed, any acyclic

set forms a one-edge basic acyclic chain, from which it is clear that the basic acyclic chain

bound on the broadcast rate is always no looser than the MAIS bound.

The relationships in Proposition 4.1 can be strict.

Example 4.2. Consider the 6-message CIC problem G:

(1|2, 3, 4, 6), (2|4, 5, 6), (3|1, 2, 4, 5, 6)
(4|1, 2, 6), (5|2, 3, 4, 6), (6|−).

For this problem, βAC(G) = βMAIS(G) = 3. However, we have the following basic acyclic

chain of length m = 2,

Chb : {1}
{6}
{2}←−−−→b {3}

{6}
{4}←−−−→b {5},

and thus by Theorem 4.1 we have β(G) ≥ Γb(G) ≥ Γ(Chb) where

Γ(Chb) =
1
2
( ∑

j∈[2]
∑

`∈[hj]

Γb(G |K`(j)) + ∑
j∈[3]

Γb(G | I`(j)))

=
1
2
(Γb({2}) + Γb({6}) + Γb({4}) + Γb({6}) + Γb({1}) + Γb({3}) + Γb({5}))

=
1
2
(1 + 1 + 1 + 1 + 1 + 1 + 1) = 3.5,

which matches the composite coding (CC) bound in Proposition 2.4. Therefore, for this prob-

lem, we have

β(G) = Γb(G) = 3.5 > βAC(G) = βMAIS(G) = 3.

Note that in Chb, message set {6} appears twice in two different basic towers, which is allowed

by Definition 4.2.
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Example 4.3. First consider the following 5-message CIC problem G0:

(1|2, 5), (2|1, 3), (3|2, 4), (4|3, 5), (5|1, 4), (4.3)

whose side information graph is shown in Figure 4.4(a). Note that this problem has been

studied in Examples 2.4, 2.5, and 4.1. We have βMAIS(G0) = 2, which is strictly looser than

β(G0) = βAC(G0) = Γb(G0) = 2.5 given by the basic acyclic chain

Chb : {1} {4}←−−→b {2}
{5}←−−→b {3}. (4.4)

Now consider the 25-message CIC problem G whose side information graph is the lexico-

graphic square of G0, i.e., G = G◦20 = G ◦ G (cf. Definition 2.1). For easier reference, set

Vi = {5i− 4, 5i− 3, 5i− 2, 5i− 1, 5i, }, ∀i ∈ [5].

and hence for G, [n] =
⋃

j∈[i] Vi. Note that for any i ∈ [5], the subproblem G|Vi can be

seen as just a copy of the 5-message problem G0. A simplified version of G is shown in

Figure 4.4(b). Since both the MAIS bound and the broadcast rate are multiplicative under the

4 3

5 2

1

(a)

V4 16, 17, 18, 19, 20 V311, 12, 13, 14, 15

V5 21, 22, 23, 24, 25 V26, 7, 8, 9, 10

V1

4 3

5 2

1

(b)

Figure 4.4: (a) The side information graph of G0 in (4.3). (b) A simplified version of the side infor-
mation graph of G = G◦20 . We only draw G|V1 in detail. An edge from a dashed circle Vi to another
dashed circle Vj means that there is an edge from every node in Vi to every node in Vj.

lexicographic product of CIC side information graphs (see Blasiak et al. [2011],[Arbabjolfaei

and Kim, 2018, Sections 4.3 and 5.1]), we have βMAIS(G) = (βMAIS(G0))2 = 4 strictly

smaller than β(G) = (β(G0))2 = 6.25. It can also be verified via exhaustive search that the



84 Performance Bounds

internal conflict bound gives βAC(G) = 4.5 which is also loose. Nevertheless, the broadcast

rate of 6.25 can indeed be obtained using the basic acyclic chain bound given that we have

Ch◦b : {V1}
{V4}←−−→b {V2}

{V5}←−−→b {V3}, (4.5)

and thus we have

Γb(G) ≥ Γb(Ch◦b) =
1
2 ∑

i∈[5]
Γb(Vi) =

1
2
∗ 5 ∗ Γb(G0) = 6.25.

4.2 The Regular Acyclic Chain Bound

To present a more general acyclic chain model and its corresponding performance bound, we

first build the regular tower as follows.

Definition 4.3 (Regular tower). For the CIC problem G : (i|j ∈ Ai), i ∈ [n], we have the

following regular tower, Xj, constituted by nonempty message sets as

Xj : I(1)

Kh1
(1)
···

K2(1)
K1(1)←−−→b · · ·

Khj−1
(j−1)
···

K2(j−1)
K1(j−1)←−−−−→b I(j)

Khj
(j)
···

K2(j)
K1(j)←−→c I(j + 1)

Khj+1
(j+1)
···

K2(j+1)
K1(j+1)←−−−−→b · · ·

Khq (q)···
K2(q)
K1(q)←−−→b I(q + 1),

if the conditions listed below are satisfied:

1. for any j′ ∈ [q] \ {j}, message sets I(j′), I(j′ + 1), K1(j′), K2(j′), . . . , Khj′ (j′) form a

basic tower Bj′ .

2. for any ` ∈ [hj] there exist two integers s`,j ∈ [j] and t`,j ∈ [j + 1 : q + 1] such that

(a) K1(j) ∪ K2(j) ∪ · · · ∪ K`−1(j) ∪ I(s`,j) ∪ I(t`,j) ⊆ BK`(j);

(b) for any `1 6= `2 ∈ [hj], if s`1,j ≤ s`2,j then t`1,j ≥ t`2,j;

(c) there exists some θj, ιj ∈ [hj] such that sθj,j = 1, tθj,j = q + 1, and sιj,j = j,
tιj,j = j + 1.

For the regular tower Xj defined above, it has q = q + 1 − 1 = tθj,j − sθj,j edges.

We call edge j the central edge, and the collection of message sets I(j), I(j + 1), K1(j),
K2(j), . . . , Khj(j) the core. Every other edge j′ ∈ [q] \ {j} corresponds to a collection of

message sets I(j′), I(j′ + 1), K1(j′), K2(j′), . . . , Khj′ (j′) that form a basic tower Bj′ . Note that

we use different subscripts for the edges (c for the central edge and b for the other edges) in

the horizontal chain in Definition 4.3 to distinguish the two different types of edges.

Conditions 2b and 2c in Definition 4.3 are described as follows. In the core, message

set K`(j) on floor ` has message sets I(s`,j) and I(t`,j) to start and terminate its coverage
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G`,j
.
= [s`,j : t`,j − 1], respectively. For any two message sets in the core on different floors

`1 6= `2 ∈ [hj], we must have G`1,j ⊆ G`2,j or G`2,j ⊆ G`1,j, i.e., one coverage is contained

within the other. For any regular tower Xj with central edge j, all of its edges are within its

total coverage Gj
.
= Gθj,j = [sθj,j : tθj,j − 1].2

Note that any basic tower Bj′ can be seen as a special regular tower with only the central

edge j′ and the core, for which s`,j′ = j′, t`,j′ = j′ + 1 for any ` ∈ [hj′ ]. For any basic tower

Bj′ , |Gj′ | = 1, and for any regular tower that is not a basic tower Xj, |Gj| ≥ 2. In the rest of

the thesis, unless otherwise specified, whenever we say regular tower we assume that it is not

a basic tower.

Similar to basic tower, for any regular tower Xj we simply use Xj to denote the union of

all the message sets within it.

For visualization of Definition 4.3, see Figure 4.5. To avoid clutter, we only draw B1 and

the core of central edge j.

I(1) · · · · · · I(shj,j
) · · ·I(s1,j) · · · I(j) I(j + 1) · · · I(t1,j) · · · I(thj,j

)· · · I(q + 1)
b b b c bbb

Khj
(j)

···
Kιj(j)

···
Kθj

(j)

···
K1(j)

Kh1
(1)

···

K2(1)

K1(1)

Figure 4.5: A visualization example for the regular tower in Definition 4.3. To help with understanding,
we draw blue and purple dashed arrows. If there is a directed path formed by dashed arrows of the same
color from message set Q to P, then P ⊆ BQ. Note that for the positions of the I(s`,j) and I(t`,j)

message sets on the horizontal chain for any ` ∈ [hj], we do not impose any symmetric distance
requirements such as j− s`,j = t`,j − (j + 1). They only need to satisfy the regularity conditions, i.e.,
Conditions 2b and 2c, in Definition 4.3.

Below we present our most general acyclic chain model, namely, the regular acyclic chain,

which is built upon the basic and regular towers.

Definition 4.4 (Regular acyclic chain). For the CIC problem G : (i|j ∈ Ai), i ∈ [n], we have

2We call Xj a “regular" (in contrast to “irregular") tower as it has to satisfy the balanced requirements on the
relative positions of I(s`,j) and I(t`,j) in the horizontal chain as specified in Conditions 2b and 2c in Definition 4.3
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the regular acyclic chain, Ch, of length m, constituted by nonempty message sets as

Ch : I(1)

Kh1
(1)
···

K2(1)
K1(1)←−−−→ I(2)

Kh2 (2)···
K2(2)
K1(2)←−−−→ · · ·

Khm (m)
···

K2(m)
K1(m)←−−−→ I(m + 1), (4.6)

if the conditions listed below are satisfied:

1. I(1) ⊆ BI(m+1) or I(m + 1) ⊆ BI(1);

2. For every j ∈ [m], message sets I(j), I(j + 1), K1(j), K2(j), . . . , K[hj](j) constitute ei-

ther a basic tower Bj or the core of a regular tower Xj;

3. For any j1 6= j2 ∈ M, Gj1 ∩ Gj2 = ∅, where M .
= {j ∈ [m] : |Gj| ≥ 2} denotes the set

of central edges of the regular towers within the chain.

We remove subscripts for the edges in the horizontal chain in the above definition as the

positions of the basic and regular towers are flexible.

Define

M′ .
= [m] \ (

⋃
j∈M

Gj) (4.7)

as the set of edges located outside the coverage of any regular tower. Then the regular acyclic

chain can be seen as a horizontal concatenation of the non-overlapping regular towers Xj,

j ∈ M and the basic towers Bj′ , j′ ∈ M′, such that the terminals of the chain I(1) and

I(m + 1) are acyclic at the set level. For a visualization of Definition 4.4, see Fig. 4.6.

I(1) I(2) I(3) I(4) I(5) · · · I(m + 1)
b c b c b b

Kh2(2)

Kh2−1(2)

···

K1(2)

Kh1(1)

Kh1−1(1)

···

K1(1)

Kh4(4)

Kh4−1(4)

···

K1(4)

Khm(m)

Khm−1(m)

···

K1(m)

Figure 4.6: A visualization example for the regular acyclic chain in Definition 4.4. To help with
understanding, we draw blue and purple dashed arrows. If there is a directed path formed by dashed
arrows of the same color from message set Q to P, then P ⊆ BQ.

For any basic tower, regular tower, basic acyclic chain, or regular acyclic chain, we call the

I-labeled and K-labeled sets within it its components.
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Given a problem G, let C(G) denote the collection of its regular acyclic chains. It can

be verified that C(G) = ∅ if and only if G is half-rate-feasible, in which case we also have

Cb(G) = CAC(G) = ∅. In other words, C(G) = ∅, Cb(G) = ∅, CAC(G) = ∅, and G being

half-rate-feasible imply each other.

Theorem 4.2 (Regular acyclic chain bound). For the CIC problem G : (i|j ∈ Ai), i ∈ [n], we

have

β(G) ≥ Γ(G) .
= max

Ch∈C(G)
Γ(Ch),

where for any regular acyclic chain Ch ∈ C(G),

Γ(Ch) .
=

1
m
( ∑

j∈[m]
∑

`∈[hj]

Γ(G |K`(j)) + ∑
j∈[m+1]

Γ(G | I(j))),

with the following recursion termination condition:

Γ(G |S) .
= βMAIS(G |S), if S is acyclic or half-rate-feasible.

We prove Theorem 4.2 in Appendix B.1 using mathematical induction.

Note that any basic acyclic chain is a special regular acyclic chain constituted by basic

towers only with M = {j ∈ [m] : |Gj| ≥ 2} = ∅. Consequently, the basic acyclic chain

bound in Theorem 4.1 is implied by the regular acyclic chain bound in Theorem 4.2. Recall

that the MAIS bound and the internal conflict bound are outperformed by the basic acyclic

chain bound as shown in Proposition 4.1, and hence we have the following result.

Proposition 4.2. For the CIC problem G, we have

Γ(G) ≥ Γb(G) ≥ max{βMAIS(G), βAC(G)}.

The regular acyclic chain bound Γ(G) in Theorem 4.2 can strictly outperform the basic

acyclic chain bound Γb(G) in Theorem 4.1.

The following examples demonstrate the efficacy of the regular acyclic chain bound Γ(G).

Example 4.4. Consider the 10-message CIC problem G:

(1|3, 4, 5, 6, 7, 8, 9, 10), (2|3, 4, 5, 6, 7, 8, 9, 10)
(3|1, 2, 4, 5, 6, 7, 8, 9, 10), (4|1, 2, 3, 5, 6, 7, 8, 9, 10),
(5|1, 3, 6, 7, 8, 9, 10), (6|2, 4, 5, 7, 8, 9, 10),
(7|1, 2, 5, 6, 8, 9, 10), (8|1, 3, 6, 7, 9, 10),
(9|2, 3, 5, 7, 8, 10), (10|1, 2, 5, 6, 8, 9).
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For this problem, βMAIS(G) = βAC(G) = Γb(G) = 3. However, we have the following

regular acyclic chain of length m = 3,

Ch : {1}
{9}
{6}←−−−→c {3}

{10}
{7}←−−−−→b {4}

{8}
{5}←−−−→b {2}.

Note that the above regular acyclic chain is not a basic acyclic chain due to the existence of

the regular tower X1 whose central edge is edge 1, i.e., the edge between message sets {1}
and {3}. For X1, message set {6} on the first floor of the core has message sets {1} and {3}
to start and terminate its coverage, respectively, and message set {9} on the second floor has

message sets {1} and {4} to start and terminate its coverage, respectively, and thus |G1| = 2.

Given Ch, by Theorem 4.2 we have β(G) ≥ Γ(G) ≥ Γ(Ch) where

Γ(Ch) =
1
3
( ∑

j∈[3]
∑

`∈[hj]

Γ(G |K`(j)) + ∑
j∈[4]

Γ(G | I(j))) =
6 + 4

3
=

10
3

,

which matches the CC bound in Proposition 2.4. Therefore, for this problem, we have

β(G) = Γ(G) = 10
3

> βMAIS(G) = βAC(G) = Γb(G) = 3.

Example 4.5. Consider the 17-message CIC problem G as follows, which is denoted by (i‖j ∈
Bi), i ∈ [n] rather than (i|Ai), i ∈ [n] for brevity,

(1‖6), (2‖7, 8), (3‖8, 11, 17), (4‖−), (5‖−), (6‖1), (7‖1, 2),

(8‖1, 2, 3, 4, 7), (9‖2, 3), (10‖1, 4, 9), (11‖3, 4, 8), (12‖5, 6),

(13‖4, 5), (14‖4, 6, 7, 13, 15, 17), (15‖−), (16‖5, 6, 12), (17‖8).

For this problem, βMAIS(G) = βAC(G) = Γb(G) = 3. However, we have the following

regular acyclic chain of length m = 5,

Ch : {1}
{8}
{7}←−−→b {2}

{10}
{9}←−−→c {3}

{11}
{8}←−−→b {4}

{14}
{13}←−−→c {5}

{16}
{12}←−−→b {6}.

Note that the above chain is not a basic acyclic chain due to the existences of the two regular

towers X2 and X4, whose central edges are edge 2 that is between message sets {2} and {3},
and edge 4 that is between message sets {4} and {5}, respectively. For X2, its total coverage

starts at message set {1} and terminates at message set {4}, and thus |G2| = 3. For X4, its

total coverage starts at message set {4} and terminates at message set {6}, and thus |G4| = 2.
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Given Ch, by Theorem 4.2 we have

β(G) ≥ Γ(G) ≥ Γ(Ch) =
10 + 6

5
=

16
5

,

which matches the CC bound in Proposition 2.4. Therefore, for this problem, we have

β(G) = Γ(G) = 16
5

> βMAIS(G) = βAC(G) = Γb(G) = 3.

Example 4.6. Consider the 34-message CIC problem G as follows, which is denoted by (i‖j ∈
Bi), i ∈ [n] rather than (i|j ∈ Ai), i ∈ [n] for brevity,

(1‖3, 23, 24, 31, 32, 33), (2‖4, 5, 23, 24, 31, 32, 33), (3‖4, 5, 23, 24, 31, 32, 33),

(4‖1, 2, 23, 24, 31, 32, 33), (5‖2, 3, 23, 24, 31, 32, 33), (6‖8, 9, 16, 17, 29, 30),

(7‖9, 10, 16, 17, 29, 30), (8‖6, 10, 16, 17, 29, 30), (9‖6, 7, 16, 17, 29, 30),

(10‖7, 8, 16, 17, 29, 30), (11‖13, 14, 17, 18, 29, 30), (12‖14, 15, 17, 18, 29, 30),

(13‖11, 15, 17, 18, 29, 30), (14‖11, 12, 17, 18, 29, 30), (15‖12, 13, 17, 18, 29, 30),

(16‖18, 29, 30), (17‖29, 30), (18‖16, 29, 30), (19‖20, 21, 30, 31, 32),

(20‖19, 21, 30, 31, 32), (21‖22, 30, 31, 32), (22‖19, 21, 30, 31, 32), (23‖24, 30, 34),

(24‖23, 30, 34), (25‖33, 34), (26‖25, 33, 34), (27‖25, 26, 33, 34), (28‖25, 26, 27, 33, 34),

(29‖34), (30‖−), (31‖32), (32‖31), (33‖−), (34‖29).

For this problem, βAC(G) = 3 (c.f. Remark 2.4), and βMAIS(G) = 5. However, we have the

regular acyclic chain Ch of length m = 4 as:

{29} {6,7,8,...,18}←−−−−−→b {30} {19,20,21,22}←−−−−−→b {31, 32}
{1,2,3,4,5}
{23,24}←−−−−→c {33} {25,26,27,28}←−−−−−→b {34}.

Note that the above chain is not a basic acyclic chain due to the existences of the regular

tower X3, whose central edges is edge 3 that is between message sets {31, 32} and {33}. The

total coverage of X3 starts at message set {30} and terminates at message set {34}, and thus

|G3| = 3. Given Ch, by Theorem 4.2 we have β(G) ≥ Γ(G) ≥ Γ(Ch) where

Γ(Ch) =
1
4
(Γ({29}) + Γ({30}) + Γ({31, 32}) + Γ({33}) + Γ({34}) + Γ({6, 7, . . . , 18})

+ Γ({19, 20, 21, 22}) + Γ({23, 24}) + Γ({1, 2, 3, 4, 5}) + Γ({25, 26, 27, 28}))

=
1
4
(1 + 1 + 2 + 1 + 1 + 4 + 3 + 2 + 4 + 2.5) (4.8)

= 5.375, (4.9)
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where (4.8) follows from the following facts:

• For any subproblem S ∈ {{29}, {30}, {31, 32}, {33}, {34}, {23, 24}, {25, 26, 27, 28}},
as S is acyclic, we simply have Γ(S) = βMAIS(S).

• For the subproblem S = {6, 7, . . . , 18}, by Definition 4.2 we have the following basic

acyclic chain

{16} {6,7,8,9,10}←−−−−→b {17} {11,12,13,14,15}←−−−−−−−→b {18}.

One can verify that the two subproblems {6, 7, 8, 9, 10} and {11, 12, 13, 14, 15} are both

isomorphic to the CIC problem in (4.3) in Example 4.3. Hence, according to the results

in Example 4.3, we have Γ({6, 7, 8, 9, 10}) = Γ({11, 12, 13, 14, 15}) = 2.5. Therefore,

by Theorem 4.1, we have

Γ(S) =
1
2
(1 + 1 + 1 + 2.5 + 2.5) = 4.

It is worth noticing that for this subproblem S = {6, 7, . . . , 18}, we have βMAIS(S) =
βAC(S) = 3, i.e., both the MAIS bound and the internal conflict bound are loose.

• For the subproblem S = {19, 20, 21, 22}, one can verify that

β(S) = Γ(S) = βMAIS(S) = 3.

• For the subproblem S = {1, 2, 3, 4, 5}, by Definition 4.2 we have the following basic

acyclic chain

{1} {4}←−−→b {2}
{5}←−−→b {3}.

Therefore, by Theorem 4.2, we have

Γ(S) =
1
2
(1 + 1 + 1 + 1 + 1) = 2.5.

By (4.9) we know that β(G) ≥ 5.375. It can be verified that this bound is indeed tight accord-

ing to [Arbabjolfaei and Kim, 2018, Theorem 4.1, Remark 4.5]. See also [Arbabjolfaei and

Kim, 2018, Sections 1.2 and 4.1] for more details.

Remark 4.1. Note that the basic and regular acyclic chain bounds are derived purely based on

Shannon-type inequalities, and hence the PM bound in Proposition 2.7 is always no looser than

them. Nevertheless, due to its high computational complexity3, the PM bound is unfeasible for
3The LP for computing the PM bound involves a large number of variables and linear constraints, both growing

exponentially in the problem size n.
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most large CIC problems. In comparison, the complexities of computing Γb(G) and Γ(G) are

lower and thus affordable even for relatively large problems. Generally speaking, Γb(G) and

Γ(G) can be computed through exhaustive search over all possible chains in Cb(G) and C(G),
respectively. Efficient heuristic algorithms for computing or approximating Γb(G) and Γ(G)
remain to be designed in future work.

Remark 4.2. Another merit of the acyclic chain bounds over the PM bound is that the acyclic

chain bounds provide a new way of deriving converse results for a given CIC problem through

observing and exploiting the side information structure at receivers. In contrast, to obtain

converse results using the PM bound one has to solve an LP.

4.3 Properties of the Acyclic Chain Bounds

We identify several important properties of the regular acyclic chain bound Γ(G). Same prop-

erties hold for the less general basic acyclic bound Γb(G). We start with the following theorem.

Theorem 4.3. For the CIC problem G : (i|j ∈ Ai), i ∈ [n], for any sets P, Q ⊆ [n] such that

P ⊆ BQ, we have

Γ(P ∪Q) ≥ Γ(P) + Γ(Q). (4.10)

Proof. Assume that for the subproblem P, the regular acyclic chain Ch ∈ C(P):

I(1)

Kh1
(1)
···

K2(1)
K1(1)←−−−→ I(2)

Kh2 (2)···
K2(2)
K1(2)←−−−→ · · ·

Khm (m)
···

K2(m)
K1(m)←−−−→ I(m + 1),

satisfies that Γ(P) = Γ(Ch). Since P ⊆ BQ, we can construct a regular acyclic chain ChQ

based on Ch as

ChQ : I(1)

Q
Kh1

(1)
···

K1(1)←−−→ I(2)

Q
Kh2 (2)···
K1(2)←−−→ · · ·

Q
Khm (m)
···

K1(m)←−−→ I(m + 1),

such that ChQ ∈ C(P ∪Q). By Theorem 4.2, we have

Γ(ChQ) =
1
m
( ∑

j∈[m]

Γ(Q) + ∑
j∈[m]

∑
`∈[hj]

Γ(K`(j)) + ∑
j∈[m+1]

Γ(I(j)))

=Γ(Q) + Γ(Ch)

=Γ(Q) + Γ(P). (4.11)
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Since ChQ ∈ C(P ∪Q), we have

Γ(P ∪Q) = max
Ch′∈C(P∪Q)

Γ(Ch′) ≥ Γ(ChQ). (4.12)

Combining (4.11) and (4.12) leads to (4.10).

Recall that the MAIS bound and the broadcast rate are multiplicative under the lexico-

graphic product of CIC side information graphs Blasiak et al. [2011]; Arbabjolfaei and Kim

[2018]. That is, for two given CIC problems G0 and G1, we have

βMAIS(G0 ◦ G1) = βMAIS(G0) · βMAIS(G1), (4.13)

β(G0 ◦ G1) = β(G0) · β(G1). (4.14)

A similar albeit weaker property has been shown for the PM bound [Arbabjolfaei and Kim,

2018, Proposition 5.4]: for two given CIC problems G0 and G1, we have

βPM(G0 ◦ G1) ≥ βPM(G0) · βPM(G1). (4.15)

Similar to the PM bound βPM(G), the regular acyclic chain bound Γ(G) has the following

structural property.

Theorem 4.4. For two given problems G0 and G1, we have

Γ(G0 ◦ G1) ≥ Γ(G0) · Γ(G1). (4.16)

The proof of Theorem 4.4 is presented in Appendix B.2.

The corollary below states that the gap between the regular acyclic chain bound Γ(G) and

the MAIS bound βMAIS(G) can be magnified to a multiplicative factor, which grows polyno-

mially in the problem size n.

Corollary 4.1. Let G0 be a CIC problem with n0 = |V(G0)| messages for which Γ(G0)
βMAIS(G0)

=

ρ > 1. Consider the CIC problem G = G◦k with n = |V(G)| = nk
0 messages for any positive

integer k, we have

Γ(G)
βMAIS(G)

≥ nlogn0
(ρ).

Proof. We have

Γ(G)
βMAIS(G)

≥ (Γ(G0))k

(βMAIS(G0))k = ρk = (n
logn0

(ρ)

0 )k = nlogn0
(ρ),

where the first inequality follows from Theorem 4.4 and (4.13)
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4.4 Acyclic Chain Bounds for DIC

Now we move on to the distributed scenario and develop a series of performance bounds

through generalizing the performance bounds for the CIC problem. Recall that the MAIS

bound in Proposition 2.5 has already been extended to the multi-server case as the distributed

MAIS bound in Proposition 2.8. In this section we investigate the converse results based on

the acyclic chain models for the DIC problem.

Note that Definitions 4.1-4.4 do not depend on the server setup and thus also apply to the

DIC problem. However, whether there exist some iterative DIC performance bounds as coun-

terparts to Theorems 4.1-4.2 is unknown and remains to be investigated. In the following, we

reduce the tower and acyclic chain models in Definitions 4.1-4.4 to their less general variants.

Then we propose two DIC performance bounds associated to these less general acyclic chain

models. It should be noted that these two bounds are non-iterative as the elements of the less

general acyclic chain models are individual messages rather than sets of messages.

Definition 4.5 (Singleton basic tower). For the CIC or DIC problem G : (i|j ∈ Ai), i ∈ [n],
messages i, i′, k1, k2, . . . , kh ⊆ [n], constitute the following singleton basic tower Bs,

Bs : i

kh···
k2
k1←−→b i′,

if {i, i′, k1, k2, . . . , k`−1} ⊆ Bk` for any ` ∈ [h].

Definition 4.6 (Singleton basic acyclic chain). For the CIC or DIC problem G : (i|j ∈ Ai),

i ∈ [n], we have the singleton basic acyclic chain, Chs
b, of length m, constituted by individual

messages as

Chs
b : i(1)

kh1
(1)
···

k2(1)
k1(1)←−−−→b i(2)

kh2 (2)···
k2(2)
k1(2)←−−−→b · · ·

khm (m)
···

k2(m)
k1(m)←−−−→b i(m + 1),

if the conditions listed below are satisfied:

1. i(1) ∈ Bi(m+1) or i(m + 1) ∈ Bi(1);

2. For any j ∈ [m], messages i(j), i(j + 1), k1(j), k2(j), . . . , khj(j) form a singleton basic

tower Bs
j , i.e., for any ` ∈ [hj], {i(j), i(j + 1), k1(j), k2(j), . . . , k`−1(j)} ⊆ Bk`(j).

Definition 4.7 (Singleton ordered tower). For the CIC or DIC problem G : (i|j ∈ Ai), i ∈ [n],
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we have the following singleton ordered tower, X s,o
j , constituted by individual messages as

X s
j : i(1)

kh1
(1)
···

k2(1)
k1(1)←−→b · · ·

khj−1
(j−1)
···

k2(j−1)
k1(j−1)←−−−−→b i(j)

khj
(j)
···

k2(j)
k1(j)←−→c i(j + 1)

khj+1
(j+1)
···

k2(j+1)
k1(j+1)←−−−−→b · · ·

khq (q)···
k2(q)
k1(q)←−→b i(q + 1),

if the conditions listed below are satisfied:

1. for any j′ ∈ [q] \ {j}, messages i(j′), i(j′ + 1), k1(j′), k2(j′), . . . , khj′ (j′) form a single-

ton basic tower Bs
j′ .

2. for any ` ∈ [hj] there exist two integers s`,j ∈ [j] and t`,j ∈ [j + 1 : q + 1] such that

(a) {k1(j), k2(j), . . . , k`−1(j), i(s`,j), i(t`,j)} ⊆ Bk`(j);

(b) for any `1 < `2 ∈ [hj], we have j = s1,j ≥ s`1,j ≥ s`2,j ≥ shj,j = 1, and

j + 1 = t1,j ≤ t`1,j ≤ t`2,j ≤ thj,j = q + 1.

For the singleton ordered tower X s,o
j defined above, it has q = q + 1− 1 = thj,j − shj,j

edges. We call edge j the central edge, and the message set {i(j), i(j + 1), k1(j), . . . , khj(j)}
the core of the singleton ordered tower. Every other edge j′ ∈ [q] \ {j} corresponds to a group

of messages i(j′), i(j′ + 1), k1(j′), k2(j′), . . . , khj′ (j′) that form a singleton basic tower Bs
j′ .

Different subscripts for the edges in the horizontal chain in Definition 4.7 are used.

Condition 2 in Definition 4.7 is described as follows. In the core, message k`(j) on the

`-th floor has messages i(s`,j) and i(t`,j) to start and terminate its coverage, respectively. In

particular, for message k1(j) on the first floor, we have i(s`,j) = i(j), and i(t`,j) = i(j + 1).
The coverage of a message on a lower floor is within the range of the coverage of any message

on a higher floor. We call the coverage of the message khj(j) on the top floor the total coverage

of the singleton ordered tower, which is defined as Gj
.
= [shj,j : thj,j − 1].4

Note that any singleton basic tower Bs
j′ can be seen as a special singleton ordered tower

with s`,j′ = j′ and t`,j′ = j′ + 1 for any ` ∈ [hj′ ], and hence Gj′ = {j′}, and |Gj′ | = 1. Unless

otherwise stated, when we say a singleton ordered tower we assume that it is not a singleton

basic tower.

For visualization of Definition 4.3, see Figure 4.7. To avoid clutter, we only draw Bs
1 and

the core of central edge j.

Definition 4.8 (Singleton ordered acyclic chain). For the CIC or DIC problem G : (i|j ∈
Ai), i ∈ [n], we have the singleton ordered acyclic chain, Chs,o, of length m, constituted by

4We can see that the regular tower in Definition 4.3 is more general compared to the singleton ordered tower
in Definition 4.7 in two facets: the regular tower is constructed by message sets while the singleton ordered tower
is constructed by individual messages; the relationship among the coverages of different floors in the core of the
singleton ordered tower can be seen as a special case of that of the regular tower.



§4.4 Acyclic Chain Bounds for DIC 95

i(1) · · · i(s2,j) · · · i(j) i(j + 1) · · · i(t2,j) · · · i(q + 1)
cbb b b

khj(j)

···

k2(j)

k1(j)

kh1(1)

···

k2(1)

k1(1)

Figure 4.7: A schematic graph for the singleton ordered tower in Definition 4.7. A directed path that
contains arrows of only one color (either blue or purple) from message a to b indicates that b ∈ Ba.
According to Condition 2b of Definition 4.7, two purple arrows do not criss-cross.

individual messages as

Chs,o : i(1)

kh1
(1)
···

k2(1)
k1(1)←−−−→ i(2)

kh2 (2)···
k2(2)
k1(2)←−−−→ · · ·

khm (m)
···

k2(m)
k1(m)←−−−→ i(m + 1),

if the conditions listed below are satisfied:

1. i(1) ∈ Bi(m+1) or i(m + 1) ∈ Bi(1);

2. For every j ∈ [m], messages i(j), i(j + 1), k1(j), k2(j), . . . , khj(j) constitute either a

singleton basic tower Bs
j or the core of a singleton ordered tower X s,o

j ;

3. For any j1 6= j2 ∈ M, Gj1 ∩ Gj2 = ∅, where M .
= {j ∈ [m] : |Gj| ≥ 2} denotes the set

of central edges of the singleton ordered towers within the chain.

We remove subscripts for the edges in the horizontal chain in the above definition as the

positions of the singleton basic and singleton ordered towers are flexible.

Similar to the regular acyclic chain in Section 4.2, given a singleton ordered acyclic chain

Chs,o, let M′ = [m] \ (⋃j∈M Gj) denote the set of edges located outside the coverage of any

singleton ordered tower (cf. (4.7)). Then the singleton ordered acyclic chain can be seen as

a horizontal concatenation of the non-overlapping singleton ordered towers X s,o
j , j ∈ M and

the singleton basic towers Bs
j′ , j′ ∈ M′, such that the terminals of the chain i(1) and i(m + 1)

form an acyclic set. For a visualization of Definition 4.8, see Fig. 4.8.

For any singleton basic tower Bs
j , Bs

j also denotes the collection of all the messages within

it. Similarly, for any singleton ordered tower X s,o
j , X s,o

j also denotes the collection of all the

messages within it. For any singleton basic tower, singleton ordered tower, singleton basic
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i(1) i(2) i(3) i(4) i(5) · · · i(m + 1)
b c b c b b

kh2(2)

kh2−1(2)

···
k1(2)

kh1(1)

kh1−1(1)

···
k1(1)

kh4(4)

kh4−1(4)

···
k1(4)

khm(m)

khm−1(m)

···
k1(m)

Figure 4.8: A visualization example for the singleton ordered acyclic chain in Definition 4.8. To help
with understanding, we draw blue and purple dashed arrows. If there is a directed path formed by
dashed arrows of the same color from message a to b, then b ∈ Ba. Definitions 4.7 and 4.8 jointly
ensure that purple arrows can never criss-cross.

acyclic chain, or singleton ordered acyclic chain, we call the i-labeled and k-labeled messages

within it its components.

Given a problem G, let Cs,o(G) and Cs
b(G) denote the collection of its singleton ordered

acyclic chains and the collection of its singleton basic acyclic chains, respectively. Note that

any alignment chain can be viewed as a special singleton basic acyclic chain, and any singleton

basic acyclic chain can be viewed as a special singleton ordered acyclic chain. It can be verified

that Cs
b(G) = ∅ if and only if G is half-rate-feasible. It can also be verified that Cs,o(G) = ∅

if and only if G is half-rate-feasible.

Theorem 4.5 (Singleton basic acyclic chain bound). Consider the DIC problem G: (i|j ∈ Ai),

i ∈ [n] with link capacity tuple C. Let R be any achievable symmetric rate. Then for any of its

singleton basic acyclic chain Chs
b ∈ Cs

b(G), we have

R ≤ 1
1 + m + ∑j∈[m] hj

∑
j∈[m]

∑
J∈N:J∩{i(j),i(j+1),k1(j),...,khj

(j)}6=∅,

J∩{i(j),i(m+1),k1(j),...,khj
(j)}6=∅

CJ . (4.17)

We omit Theorem 4.5’s proof since it can be seen a special case of Theorem 4.6 to be

presented below and proved in Appendix B.3.

Recall that any singleton basic tower Bs
j′ can be seen as a special singleton ordered tower

with s`,j′ = j′ and t`,j′ = j′ + 1 for any ` ∈ [hj′ ]. Also recall that given a singleton ordered

acyclic chain, M′ = [m] \ (⋃j∈M Gj) denotes the set of edges located outside the coverage of

any singleton ordered tower.

Theorem 4.6 (Singleton ordered acyclic chain bound). Consider the DIC problem G: (i|j ∈
Ai), i ∈ [n] with link capacity tuple C. Let R be any achievable symmetric rate. Then for any
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of its singleton ordered acyclic chain Chs,o ∈ Cs,o(G) we have

R ≤ 1
1 + m + ∑j∈[m] hj

(
∑

j∈M∪M′
∑

J∈N:J∩T1(j) 6=∅,J∩T2(j) 6=∅
CJ

+ ∑
j∈M

∑
`∈[2:hj]

( ∑
j′∈[s`,j :s`−1,j−1]

∑
J∈N:J∩T3(j′) 6=∅,

J∩T4(j,`,j′) 6=∅

CJ + ∑
j′∈[t`−1,j :t`,j−1]

∑
J∈N:J∩T3(j′) 6=∅,

J∩T5(j,`,j′) 6=∅

CJ)
)
,

(4.18)

where

T1(j) = {i(shj,j), i(thj,j), k1(j), . . . , khj(j)},
T2(j) = {i(shj,j), i(m + 1), k1(j), . . . , khj(j)},
T3(j′) = {i(j′), i(j′ + 1), k1(j′), . . . , khj′ (j′)},
T4(j, `, j′) = {i(j′), i(s`−1,j), k1(j′), . . . , khj′ (j′)},
T5(j, `, j′) = {i(j′), i(t`,j), k1(j′), . . . , khj′ (j′)}.

The proof for Theorem 4.6 is presented in Appendix B.3.

Remark 4.3. The singleton basic acyclic chain bound in Theorem 4.5 is always no looser

than the distributed MAIS bound in Proposition 2.8, which can be proved in a similar way to

Proposition 4.1.

Theorems 4.5 and 4.6 can give tight bounds for some DIC problems.

Example 4.7. Consider the following 5-message DIC problem G:

(1|2, 3, 4, 5), (2|1, 3, 4, 5), (3|2, 4, 5), (4|3, 5), (5|1, 4),

with equal link capacities CJ = 1, J ∈ N \ {∅}. For this problem, there exists a singleton

basic acyclic chain as

Chs
b : 1 4←→b 2 5←→b 3.

Therefore, by the singleton basic acyclic chain bound in Theorem 4.5, for any symmetric

achievable rate R, we have

R ≤ 1
5
( ∑

J∈N:J∩{1,2,4}6=∅,
J∩{1,3,4}6=∅

1 + ∑
J∈N:J∩{2,3,5}6=∅

1) =
54
5

.

It can be verified that the above upper bound on the symmetric capacity matches the lower

bound given by the distributed composite coding (DCC) scheme in Theorem 3.8. Thus, we

establish the symmetric capacity of this problem to be 54/5.
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4.5 Grouping Polymatroidal Bound for DIC

Thus far, we have been focusing on the performance bounds based on various acyclic chain

structures for the CIC and DIC problems. Despite of their usefulness as we demonstrated

through a number of examples, they only provide bounds on the broadcast rate or symmetric

capacity, and can be loose in general. For the CIC problem we know that the PM bound in

Proposition 2.7 introduced in Blasiak et al. [2011] is the tightest bound on the entire capacity

region one can get based on Shannon-type inequalities. There is no existing counterpart of

such a powerful PM bound for the DIC problem in the literature.

In this section we develop a general performance bound for the DIC problem, which can

potentially capture all the Shannon-type inequalities. The new bound is based on the PM

axioms of the entropy function and server groupings, the latter of which is defined as follows.

Definition 4.9 (Valid server grouping). A server grouping P = {P1, P2, · · · , Pm}, consisting

of m server groups Pi ⊆ N, i ∈ [m], is said to be valid if
⋃

i∈[m] Pi = N. Given a server group-

ing P , we denote by PG =
⋃

i∈G Pi the collection of servers in the server groups identified by

G ⊆ [m]. By convention, P∅ = ∅.

Note that we allow overlaps between different server groups in a grouping. Also note that

P[m] =
⋃

i∈[m] Pi = N. Let YPG denote the output random variables from the server collection

PG, e.g., YP[m]
= YN . When the context is clear, we shall use the shorthand notation PG for

YPG , e.g., H(PG|XKc) means H(YPG |XKc).

We briefly review the standing assumptions and conditions of (t, r) distributed index codes

and achievable rate–capacity tuples (R, C). Since the messages are assumed to be independent

and uniformly distributed, for any two disjoint sets K, K′ ⊆ [n] we have

H(XK |XK′) = H(XK) = ∑
i∈K

ti. (4.19)

The encoding condition at server J ∈ N is

H(YJ |XJ) = 0. (4.20)

The decoding condition at receiver i stipulates

H(Xi |YN , XAi) ≤ ti · δ(ε) (4.21)

with limε→0 δ(ε) = 0 by Fano’s inequality [Cover, 2006, Theorem 2.10.1].

Also recall the touch structure defined in Definition 2.2, which will be extensively used in

this and upcoming sections.

As stated in Remark 2.1, it is not known whether the capacity region and the zero-error ca-
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pacity region of the DIC problem are equal to each other. Hence, we use the general vanishing

error decoding condition in (4.21) rather than assuming zero-error decoding.

In the following we state the main result of this section, namely, the grouping polymatroidal

(PM) bound.

Theorem 4.7 (Grouping ploymatroidal (PM) bound). Consider the DIC problem G: (i|j ∈
Ai), i ∈ [n] with link capacity tuple C. Its capacity region C (G, C) is outer bounded by

the rate region RGPM(G, C) that consists of all rate tuples R such that for any valid server

grouping P = {P1, P2, · · · , Pm},

Ri ≤ f ([m], Bi ∪ {i})− f ([m], Bi), i ∈ [n], (4.22)

for at least one set function f (G, K), for all G, G′ ⊆ [m], K, K′ ⊆ [n], such that

f (G, K) = f (G′, K), if (PG ∪ PG′) \ (PG ∩ PG′) ⊆ TK, (4.23)

f (∅, K) = f (G, ∅) = 0, (4.24)

f (G, K) ≤ ∑
J:J∈PG ,J∈TK

CJ , (4.25)

f (G, K) ≤ f (G′, K′), if K ⊆ K′, G ⊆ G′, (4.26)

f (G ∪ G′, K ∩ K′) + f (G ∩ G′, K ∪ K′) ≤ f (G, K) + f (G′, K′), (4.27)

f ([m], Bi ∪ {i})− f ([m], Bi) = f ([m], {i}), i ∈ [n], (4.28)

f (G, K) + f (G, K′) = f (G, K ∪ K′), if K ∩ K′ = ∅, PG ⊆ (N \ TK,K′). (4.29)

Proof. If a rate tuple R is achievable, then for every ε > 0 there exists a (t, r) distributed index

code satisfying (2.3). For any i ∈ [n], we have

ti = H(Xi |XAi) (4.30)

≤ H(Xi |XAi)− H(Xi |YN , XAi) + ti · δ(ε) (4.31)

= I(Xi; YN |XAi) + ti · δ(ε) (4.32)

= H(YN |XAi)− H(YN |XAi∪{i}) + ti · δ(ε), (4.33)

where (4.30) follows from the fact that the messages are independent and uniformly distributed

as specified in (4.19), and (4.31) is due to the decoding condition in (4.21). Now, given the

server grouping P = {P1, P2, · · · , Pm}, define

fε(G, K) .
=

1
r

H(PG |XKc) =
1
r

H(Y{J:J∈⋃i∈G Pi} |XKc), (4.34)

for G ⊆ [m] and K ⊆ [n]. Recall that as specified in Section 2.1, the (t, r) distributed index
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code depends on ε and thus so does the set function fε(G, K). Then,

Ri ≤
ti

r
≤ H(YN |XAi)− H(YN |XAi∪{i})

r · (1− δ(ε))
=

fε([m], Bi ∪ {i})− fε([m], Bi)

1− δ(ε)
, (4.35)

where the second inequality follows from (4.33) and the equality from the definition of fε(G, K).

We now show that the set function fε(G, K) is bounded from above for any G ⊆ [m],

K ⊆ [n] and any ε > 0. We have

fε(G, K) =
1
r

H(PG |XKc) ≤ 1
r

H(PG) ≤ ∑
J∈PG

1
r

H(YJ) ≤ ∑
J∈PG

rJ

r
≤ ∑

J∈PG

CJ . (4.36)

Also, fε(G, K) is bounded from below as fε(G, K) ≥ 0 due to the nonnegativity of the entropy

function.

To characterize the achievable rate tuple R, we need to define a set function f (G, K) that

does not depend on the decoding error threshold ε. We define such set function f (G, K) as the

limit infimum of fε(G, K):

f (G, K) .
= lim inf

ε→0
fε(G, K), (4.37)

which is real and bounded given the boundedness of fε(G, K). Now taking the limit infimum

as ε approaches zero on both sides of (4.35) yields

Ri ≤ lim inf
ε→0

fε([m], Bi ∪ {i})− fε([m], Bi)

1− δ(ε)
(4.38)

= lim inf
ε→0

( fε([m], Bi ∪ {i})− fε([m], Bi)) (4.39)

= lim inf
ε→0

fε([m], Bi ∪ {i})− lim sup
ε→0

fε([m], Bi) (4.40)

≤ lim inf
ε→0

fε([m], Bi ∪ {i})− lim inf
ε→0

fε([m], Bi) (4.41)

= f ([m], Bi ∪ {i})− f ([m], Bi). (4.42)

We have thus far established (4.22). It is also checked in Section B.4 that f (G, K) satisfies

the conditions in (4.23)–(4.29), which establishes Theorem 4.7.

Remark 4.4. The conditions (4.23)–(4.29) in Theorem 4.7 will be referred to as the Axioms

of the grouping PM bound. Axioms (4.24), (4.26), and (4.27) capture standard polymatroidal

properties of the entropy function. Axioms (4.23) and (4.25) capture the encoding conditions

at servers, as well as the link capacity constraints. Axiom (4.29) captures the conditional

message independence given by the fd-separation Kramer [1998]; Thakor et al. [2016], and

thus is referred to as the fd-separation axiom. Refer to Appendix B.5 for a brief treatment on
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how fd-separation applies to the DIC problem. The inequality (4.22) will be referred to as the

rate constraint inequality jointly satisfied by R and f (G, K), which is based on the message

independence, as well as the decoding conditions at receivers.

Remark 4.5. Axiom (4.28) captures the additional decoding conditions at the receivers (cf.

property (2.40) in Proposition 2.7). It has been found in Liu et al. [2018a] that this axiom is

strictly needed to obtain tight outer bounds on the capacity region for the secure CIC problem.

Currently, we are not aware of any instance of non-secure CIC or DIC for which Axiom (4.28)

can tighten the outer bound. However, we include this axiom for the following reason. Through

including the additional decoding conditions in the CIC problem, it was shown in Liu et al.

[2018a] that the PM bound in Proposition 2.7 is as tight as the apparently stronger bound

in which all Shannon-type inequalities are used. A similar relation exists between the most

refined version of the grouping PM bound for the DIC problem and the one obtained based on

all Shannon-type inequalities of the entropy function. See Remark 4.11 in Section 4.8.

The tightness and computational complexity of the grouping PM bound in Theorem 4.7

depends pivotally on the specific server grouping P . For a fixed problem size n, the number

of variables in the theorem is exponential in m, the size of P . To fully compute the rate region

RGPM satisfying (4.22)–(4.29) for a given DIC problem (G, C) and a given server grouping

P , one should use FME to remove all the 2m+n intermediate variables f (G, K), G ⊆ [m],

K ⊆ [n]. In general, this operation is prohibitively complex even for small m and n. For a

given C, however, it is typically tractable to establish an upper bound on the (weighted) sum-

capacity using LP subject to (4.22)–(4.29). In the next three sections, we specialize the outer

bound using a number of explicit constructions for server grouping. In general, the optimal

tightness-complexity tradeoff in choosing a server grouping remains open.

Throughout the rest of this chapter, when there is no ambiguity, we denote the outer

bound given by the grouping PM bound in Theorem 4.7 with a specific server grouping P
as RP (G, C) or simply RP . For brevity, whenever we say that one server grouping P is

tighter (looser) than another grouping P ′, we mean that the corresponding outer bound RP is

tighter (looser) than the outer bound RP ′ .

4.6 Outer Bounds Based on Server Groupings Utilizing the
Touch Structure

In this section we explicitly construct server groupings based on the touch structure of Def-

inition 2.2. Let us motivate the construction through a series of examples and definitions.

Together, they will lead to a closed-form upper bound on the sum capacity, which is implied

by Theorem 4.7 with server groupings based on a specific touch structure.
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Example 4.8. Consider the DIC problem (1|−), (2|4), (3|4), (4|3) with equal unit link ca-

pacities CJ = 1 for all J ∈ N \ {∅}. Consider two sets L = {4, 2} and K = {1, 3}, where

set L is ordered as L = {i1 = 4, i2 = 2}. For this problem, we can verify that

Ai1 = A4 = {3} ⊂ K = {1, 3}, Ai2 = A2 = {4} ⊂ K ∪ {i1} = {1, 3, 4}. (4.43)

We say that L is an augmentation set of K. Similarly, L = {2, 3} is an augmentation set of

K = {1, 4}. When K = ∅, we find a unique maximal augmentation set, called the peripheral.

The set U = {1} is the peripheral for this problem as A1 = ∅ ⊆ ∅, and Ai 6⊆ {1},
i ∈ {2, 3, 4}.

Generally, the idea is to find two disjoint subsets L, K ⊆ [n], such that any valid index

code augments the singular message decoding condition (4.21) to

H(XL |YN , XK) ≤ ∑
i∈L

ti · δ(ε).

For the peripheral set U, the decoding condition gives

H(XU |YN) ≤ ∑
i∈U

ti · δ(ε).

We formalize this through the following definitions.

Definition 4.10 (Augmentation set). For the DIC problem G: (i|j ∈ Ai), i ∈ [n] and any

two disjoint sets L, K ⊆ [n], we say L is an augmentation set of K if there exists an ordering

i1, i2, · · · , i|L| of the elements in L such that Aij ⊆ {i1, · · · , ij−1} ∪ K, j ∈ [|L|]. The empty

set ∅ is an augmentation set of any set K ⊆ [n].

Definition 4.11 (Peripheral). For the DIC problem G: (i|j ∈ Ai), i ∈ [n], we say that set

U ⊆ [n] is a peripheral if U is an augmentation set of the empty set ∅, and that for any

i ∈ Uc, we have Ai 6⊆ U.

For a given problem (i|Ai), i ∈ [n], peripheral U is unique. This can be verified by

contradiction as follows. Assume that there exist two different peripherals U, U′, and U \
U′ 6= ∅. Define u .

= |U|, U1
.
= U \ U′ and U0

.
= U ∩ U′. Then, U = U0 ∪ U1 and

U1 ∩U0 = ∅. By Definition 4.11, there exists an ordering i1, i2, · · · , iu of the elements in U
such that Aij ⊆ {i1, · · · , ij−1}, j ∈ [u]. There always exists some s ∈ [u] such that is ∈ U1

and {i1, · · · , is−1} ⊆ U0. Hence, we have Ais ⊆ {i1, · · · , is−1} ⊆ U0 ⊆ U′. We also have

is ∈ U′c since is ∈ U1 and U1 ∩U′ = ∅. Combining that Ais ⊆ U′ and that is ∈ U′c leads to

a contradiction against Definition 4.11, and thus completes the proof.

Remark 4.6. In Liu and Tuninetti [2018], a decoding chain is established based on the idea that

receiver j can mimic another receiver i and decode message i at no cost to the achievable rates if
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receiver j knows everything receiver i does. This is similar to the notion of augmentation set in

Definition 4.10. A chaining procedure, starting from a receiver with an empty side information

set, is used in Neely et al. [2013] to prove a lower bound on the broadcast rate of the CIC

problem. This is similar to the procedure of building the peripheral in Definition 4.11.

Based on Definitions 4.10 and 4.11, we define the augmentation group as follows.

Definition 4.12 (Augmentation group). For the DIC problem G: (i|j ∈ Ai), i ∈ [n] with

peripheral U, we use V = (V1, V2, · · · , Vk), referred to as an augmentation group, to denote

the tuple of k disjoint nonempty sets V1, · · · , Vk ⊆ Uc for some k ≥ 1 such that the following

conditions are satisfied:

1. for any j ∈ [k], Vj is an augmentation set of its complement set Vc
j ;

2. set W .
= [n] \U \ (⋃j∈[k] Vj) is an augmentation set of its complement set Wc;

3. there does not exist another tuple of disjoint nonempty sets V′ = (V ′1, V ′2, · · · , V ′k′) such

that it satisfies the first two conditions, and that
⋃

j′∈[k′] V ′j′ ⊂
⋃

j∈[k] Vj.

4. there does not exist another tuple of disjoint nonempty sets V′ = (V ′1, V ′2, · · · , V ′k′) such

that it satisfies the first two conditions,
⋃

j′∈[k′] V ′j′ =
⋃

j∈[k] Vj, and that k′ < k.

Note that there can be multiple augmentation groups for a given problem.

Example 4.9. Consider the DIC problem (1|−), (2|4), (3|4), (4|3) discussed in Example

4.8. We have U = {1} and there are in total 2 augmentation groups V = ({3}) and

V′ = ({4}). Note that V′′ = ({3}, {4}) does satisfy the first two conditions of Def-

inition 4.12, yet given the existence of V and V′, according to the third condition, V′′ is

not a valid augmentation group. For another example, consider the six-message problem

(1|4), (2|3), (3|2), (4|1), (5|−), (6|5). We have U = {5, 6} and in total 4 augmentation

groups shown as follows,

V1 = ({1, 2}), V2 = ({1, 3}), V3 = ({2, 4}), V4 = ({3, 4}). (4.44)

Note that V′ = ({1}, {2}) does satisfy the first two conditions of Definition 4.12, yet given

the existence of V1, according to the fourth condition, V′ is not a valid augmentation group.

A closed-form upper bound on the sum capacity, namely the augmentation group bound,

is given by the following theorem.

Theorem 4.8 (Augmentation group bound). Consider the DIC problem G: (i|j ∈ Ai), i ∈ [n]
with the link capacity tuple C and the peripheral U. Let R be any achievable rate tuple. For
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any of its valid augmentation group V = (V1, V2, · · · , Vk), we have

∑
i∈[n]

Ri ≤ ∑
J∈N

CJ + ∑
`∈[k]

∑
J∈T`

CJ , (4.45)

where T` .
= TV`,(

⋃
j∈[`+1:k] Vj)∪W = {J ∈ N : J ∩V` 6= ∅, J ∩ ((

⋃
j∈[`+1:k] Vj) ∪W) 6= ∅} and

W = [n] \U \ (⋃j∈[k] Vj).

Remark 4.7. For a given DIC problem, every augmentation group yields one performance

bound as specified in (4.45) on its sum capacity. To compute the best augmentation group

bound, one can simply compute the bound for all augmentation groups through exhaustive

search. The computational complexity of such search depends only on the problem size n and

receiver side information structure rather than the server setup.

We prove Theorem 4.8 by showing that (4.45) is implied by Theorem 4.7 with a specific

server grouping PV defined below. The proof details are given in Appendix B.6.

Definition 4.13 (PV grouping). For the DIC problem G: (i|j ∈ Ai), i ∈ [n] with an augmen-

tation group V = (V1, V2, · · · , Vk), the server grouping PV is defined as follows

PV = {TV1 , TV2 , · · · , TVk , T(
⋃

j∈[k] Vj)c}. (4.46)

In some cases, Theorem 4.8 gives a tight bound on the sum capacity, as illustrated below.

Example 4.10. Recall the 4-message DIC problem (1|−), (2|4), (3|4), (4|3) discussed in

Examples 4.8 and 4.9. The all-server distributed PM bound in Proposition 2.9 yields that

R1 + R2 + R3 + R4 ≤ 22. In comparison, given the peripheral U = {1} and the augmen-

tation group V = {{3}}, we have W = [n] \ {1} \ {3} = {2, 4}, and hence Theorem 4.8

tightens the sum-capacity upper bound to

R1 + R2 + R3 + R4 ≤ ∑
J∈N

CJ + ∑
J∈T{3},{2,4}

CJ = 15 + 6 = 21, (4.47)

which matches the lower bound presented in Example 3.11 in Chapter 3. Note that with another

augmentation group V′ = {{4}}, Theorem 4.8 yields the same tight upper bound of 21 on the

sum capacity.

Note that PV is a server grouping whose server groups are in the form of touch structure.

To generalize this further, we introduce the touch grouping and its resulting outer bound as

follows.

Definition 4.14 (Touch grouping). For a given m ≤ n and disjoint nonempty sets Li ⊆ [n],
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i ∈ [m], such that
⋃

i∈[m] Li = [n], the touch grouping Pt is defined as

Pt = {TL1 , TL2 , · · · , TLm}. (4.48)

For the special case m = n, Li = {i}, and Pi = T{i}, the touch grouping is called the

individual touch grouping and is denoted by

P∗t = {T{1}, T{2}, . . . , T{n}}. (4.49)

Note that we have PG =
⋃

i∈G TLi = TLG , where LG
.
=
⋃

i∈G Li. With the touch grouping

Pt, we obtain a special case of the general grouping PM bound, namely the touch grouping

PM bound. The expression of the touch grouping PM bound’s axioms are somewhat simplified

compared with the original axioms in Theorem 4.7.

Corollary 4.2 (Touch grouping PM bound). Consider the DIC problem G: (i|j ∈ Ai), i ∈ [n]
with link capacity tuple C. For a given touch grouping Pt = {TL1 , TL2 , · · · , TLm}, the capacity

region C (G, C) is outer bounded by the rate region RPt(G, C) that consists of all rate tuples

R such that

Ri ≤ f ([m], Bi ∪ {i})− f ([m], Bi), i ∈ [n], (4.50)

for at least one set function f (G, K) for all G, G′ ⊆ [m], K, K′ ⊆ [n] satisfying

f (G, K) = f (G′, K), if K ⊆ (LG ∩ LG′), (4.51)

f (∅, K) = f (G, ∅) = 0, (4.52)

f (G, K) ≤ ∑
J:J∈TLG ,K

CJ , (4.53)

f (G, K) ≤ f (G′, K′), if K ⊆ K′, G ⊆ G′, (4.54)

f (G ∪ G′, K ∩ K′) + f (G ∩ G′, K ∪ K′) ≤ f (G, K) + f (G′, K′), (4.55)

f ([m], Bi ∪ {i})− f ([m], Bi) = f ([m], {i}), ∀i ∈ [n]. (4.56)

Proof. It is obvious that Axioms (4.24), (4.26), (4.27), and (4.28) in Theorem 4.7 and Axioms

(4.52), (4.54), (4.55), and (4.56) above do not depend on the underlying server grouping, and

thus remain unchanged. Since PG =
⋃

j∈G TLj = TLG , Axioms (4.25) and (4.53) are the same.

Note that [n] ∈ TL for any nonempty L ⊆ [n], which indicates that the server J = [n]
containing all messages is common among all server groups in the touch grouping Pt. Hence,

with Pt, there never exists two disjoint nonempty sets K, K′ ⊆ [n] such that TLG ⊆ (N \ TK,K′)

for any nonempty G ⊆ [m]. This implies that the fd-separation axiom, Axiom (4.29), in

Theorem 4.7, can only give trivial inequalities (e.g., f (∅, K) + f (∅, K′) = f (∅, K ∪ K′)).
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Hence, in Corollary 4.2, there is no axiom corresponding to the fd-separation axiom.

It remains to prove that Axiom (4.23) in Theorem 4.7 simplifies to Axiom (4.51), which is

relegated to Appendix B.7.

Remark 4.8. The grouping PM bound of Theorem 4.7 can easily incorporate the set of active

servers NA = {J ∈ N : CJ > 0} (cf. Remark 3.9). One can simply replace N with NA and

P = {P1, · · · , Pm} with PA = {P1 ∩ NA, · · · , Pm ∩ NA}. However, notice that the axioms

of Corollary 4.2 (and those of Corollary 4.5 to be introduced in Section 4.8) are expressed in

simplified forms based on the assumption that all the servers J ∈ N are active. When NA ⊂ N,

using these simplified axioms might result in looser outer bounds. One can avoid this issue by

using the axioms in their original unsimplified forms of Theorem 4.7 with the desired server

grouping.

Remark 4.9. Within the general class of touch grouping, it is unclear which touch grouping

can give the tightest capacity outer bound with the lowest possible computational cost. Since

PV grouping has an explicit construction, one may first try this grouping and compare the

obtained performance bound with an achievable coding scheme. If the results match, no further

action is required. Otherwise, the finest touch grouping P∗t = {T{1}, T{2}, . . . , T{n}} can be

tried, which results in the tightest outer bound on the capacity region among all possible touch

groupings. See Section 4.8 for the hierarchy of server groupings in terms of their tightness.

4.7 Outer Bounds Based on Server Groupings Utilizing fd-
separation

One limitation of the touch grouping PM bound is the missing fd-separation axiom (also see the

discussion in the proof of Corollary 4.2). To show the usefulness of the fd-separation axiom,

we present a list of problems with discussion, leading to a construction of server grouping

based on fd-separation.

Definition 4.15 (Isolated vertex and disjoint cycles). For the DIC problem (i|j ∈ Ai), i ∈ [n]
with side information graph G, a vertex v ∈ V(G) is said to be isolated if it has no incoming

edges. That is, there does not exist any edge e = (v′, v) ∈ E(G) for some v′ ∈ V(G). Two

cycles K, K′ ⊆ V(G) in G are said to be disjoint if K ∩ K′ = ∅.

Example 4.11. Consider the following six DIC problems with n = 4 and equal link capacities
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CJ = 1, J ∈ N \ {∅},

(1|−), (2|4), (3|2), (4|3);
(1|−), (2|4), (3|2), (4|1, 3);

(1|−), (2|1, 4), (3|1, 2), (4|1, 3);
(1|4), (2|3), (3|2), (4|1, 3);
(1|4), (2|3), (3|2), (4|1, 2, 3);
(1|4), (2|3), (3|1, 2), (4|1, 2),

(4.57)

whose side information graphs are shown in Figure 4.9. For the problems shown in Fig-

ures 4.9(a), 4.9(b), and 4.9(c), the touch grouping PM bound RPt yields ∑i∈[4] Ri ≤ 19.5.

With P = {P1, N \ P1}, where P1 = {J ∈ N : |J \ {1}| ≤ 1}, a tighter upper bound

of 19 can be obtained by the grouping PM bound RGPM for these three problems, matching

their sum capacity. For the problems shown in Figures 4.9(d), 4.9(e), and 4.9(f), the touch

grouping PM bound RPt yields ∑i∈[4] Ri ≤ 24. With P ′ = {P′1, P′2, N \ P′1 \ P′2}, where

P′1 = {{1}, {2}, {3}, {4}}, P′2 = {J ∈ N : |J| = 2, J ∈ T{1,4},{2,3}}, a tighter upper bound

of 23.5 can be obtained by the grouping PM bound for these three problems, matching their

sum capacity. As we can see, there is a common pattern among the problems of Figures 4.9(a),

4.9(b), and 4.9(c). That is, there is an isolated vertex, vertex 1. Also, in their capacity-achieving

server grouping P , P1 only contains servers that have no more than one message apart from

message 1. There also exists a common pattern among the problems of Figures 4.9(d), 4.9(e),

and 4.9(f). That is, there are two disjoint cycles, cycle {1, 4} and cycle {2, 3}. Also, in their

capacity-achieving server grouping P ′, P′2 only contains servers that have one message from

each disjoint cycle.

Remark 4.10. For the problems in Figures 4.9(a), 4.9(b), and 4.9(c) with the capacity-achieving

P , the following constraints are given by Axiom (4.29) (the fd-separation axiom)

f ({1}, {j}) + f ({1}, {2, 3, 4} \ {j}) = f ({1}, {2, 3, 4}), j ∈ {2, 3, 4}.

If the constraints above were to be removed from Theorem 4.7, then the upper bounds would

become looser than 19. Similarly, for the problems in Figures 4.9(d), 4.9(e), and 4.9(f) with

the capacity-achieving P ′, the following two constraints are given by Axiom (4.29)

f ({1, 2}, {1}) + f ({1, 2}, {4}) = f ({1, 2}, {1, 4}),
f ({1, 2}, {2}) + f ({1, 2}, {3}) = f ({1, 2}, {2, 3}).

If the constraints above were to be removed from Theorem 4.7, then the upper bounds would

become looser than 23.5.
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Figure 4.9: The side information graphs for the six 4-message problems given in (4.57). In Figures
(a), (b) and (c), there is one isolated vertex, vertex 1, which has no incoming edges. In Figures (d), (e),
and (f), there is a pair of disjoint cycles, {1, 4} and {2, 3}.

The following definition generalizes the server grouping construction discussed in Exam-

ple 4.11 to exploit fd-separation.

Definition 4.16 (fd grouping). Consider the DIC problem G: (i|j ∈ Ai), i ∈ [n], whose side

information graph G contains k ≥ 0 mutually disjoint cycles, denoted by Kj ⊆ [n], j ∈ [k],
Kj ∩ Kj′ = ∅ for any j, j′ ∈ [k], j 6= j′, and |K0| ≥ 0 isolated vertices, v ∈ K0 ⊆ [n]. The

fd grouping, denoted by Pfd, with m = (2k − 1− k) + 2 = 2k − k + 1 groups is defined as

follows. The first server group is given by

P1 = {J ∈ N : | J \ K0 | ≤ 1}. (4.58)

For ` = 2, · · · , m− 1, the server groups are

PG̃`
= {J ∈ N : | J \ K0 | = |G̃` |, J ∈

⋂
j∈G̃`

TKj}, (4.59)

where G̃` ⊆ [k], |G̃`| ≥ 2. Note that there are (2k − 1− k) such groups. Finally, the last
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server group Pm is defined as

Pm = N \ (
⋃

G̃`⊆[k]:|G̃`|≥2

PG̃) \ P1. (4.60)

With Pfd, we have the following corollary, namely the fd grouping PM bound, from The-

orem 4.7. As the fd grouping does not result in any simplified expression compared to the

grouping PM bound in Theorem 4.7, we do not repeat the rate constraint inequality (4.22) and

Axioms (4.23)-(4.29) below.

Corollary 4.3 (fd grouping PM bound). Consider the DIC problem G: (i|j ∈ Ai), i ∈ [n]
with link capacity tuple C. Its capacity region C (G, C) satisfies

C (G, C) ⊆ RPfd(G, C),

where RPfd(G, C) denotes the outer bound given by the grouping PM bound with any valid fd
grouping Pfd.

The proof is trivial and omitted.

Note that the fd grouping and the fd grouping PM bound can both easily incorporate the

set of active servers NA.

We give an example showing the efficacy of the fd grouping PM bound when there are

both disjoint cycles and isolated vertices in the side information graph.

Example 4.12. Consider the 5-message DIC problem (1|−), (2|3), (3|2), (4|5), (5|4) with

equal link capacities CJ = 1, J ∈ N \ {∅}. The side information graph of the problem

consists of two disjoint cycles K1 = {2, 3} and K2 = {4, 5}, as well as one isolated vertex 1,

and thus K0 = {1}. For easier notation, set

Q1 = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}}, (4.61)

Q2 = {{2, 4}, {2, 5}, {3, 4}, {3, 5}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}}, (4.62)

and Q3 = N \ Q1 \ Q2. We have m = 22 − 2 + 1 = 3, and the fd grouping as Pfd =

{P1, P{1,2}, P3}, where P1 = Q1, P{1,2} = Q2, and P3 = Q3. The fd grouping PM bound with

Pfd yields R1 + R2 + R3 + R4 + R5 ≤ 47 2
3 , which is tight and matches the DCC lower bound

in Theorem 3.8 on the sum capacity. For the latter, we use seven decoding message set tuples

D1, D2, · · · , D7 as follows.

In D1, we set D1 = {1} and Di = {1, i}, i ∈ {2, 3, 4, 5}.
In D2, we set D1 = {1}, Di = [n] \ Ai, i ∈ {2, 3}, and Di = {1, i}, i ∈ {4, 5}.
In D3, we set D1 = {1, 4, 5}, Di = [n] \ Ai, i ∈ {2, 3}, and Di = {1, i}, i ∈ {4, 5}.
In D4, we set D1 = {1}, Di = {1, i}, i ∈ {2, 3}, and Di = [n] \ Ai, i ∈ {4, 5}.
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In D5, we set D1 = {1, 2, 3}, Di = {1, i}, i ∈ {2, 3}, and Di = [n] \ Ai, i ∈ {4, 5}.
In D6, we set D1 = {1}, Di = [n] \ Ai, i ∈ {2, 3, 4, 5}.
In D7, we set Di = [n] \ Ai, i ∈ [n].

We also use the following three decoding server groups P1, P2, P3. In P1, we set Pi = Q1,

i ∈ [n]. In P2, we set Pi = Q2, i ∈ [n], and in P3, we set Pi = Q3, i ∈ [n]. Hence, there are in

total 7 ∗ 3 = 21 decoding configurations, (Pj, Dk), j ∈ [3], k ∈ [7]. We set Ri(P, D), i ∈ [n],
CJ(P, D), J ∈ N, and SK(P, D), K ⊆ [n], to zero for all other (P, D) configurations. Notice

that there is an interesting correspondence between the server groups in Pfd used in the outer

bound and the decoding server groups used in the inner bound. Whether such correspondence

has its roots in some deeper structural properties of the problem remains to be studied in future.

4.8 A Hierarchy of Server Groupings

In some DIC problems, it is more advantageous to use “finer” server groupings than what we

have introduced so far. As alluded before in Remark 4.9, there is a natural hierarchy of server

groupings in terms of tightness of the resulting outer bound. We need the following definition

to formalize this.

Definition 4.17 (Grouping refinement and aggregation). For any two valid server groupings

Q = {Q1, Q2, · · · , Q`} and P = {P1, · · · , Pm}. We say that P is a refinement ofQ and that

Q is an aggregation of P , if for every i ∈ [`], Qi = PG for some G ⊆ [m].

In words, every server group in Q is the union of some server groups in P . We have the

following relationship between the outer bounds RP and RQ.

Proposition 4.3. If P is a refinement of Q, or equivalently, Q is an aggregation of P , then

RP is no looser than RQ, i.e.,

RP ⊆ RQ.

The proof is presented in Appendix B.8. Note that Proposition 4.3 clarifies the relationship

between the individual touch grouping and any other touch grouping.

Definition 4.18 (Intersecting refinement of groupings). For two valid server groupings P and

Q,

P ∧Q = {P ∩Q : P ∈ P , Q ∈ Q} (4.63)

is the intersecting refinement of both groupings.
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Example 4.13. Consider the 5-message DIC problem (1|2), (2|1), (3|5), (4|3), (5|4) with

link capacities

CJ = 1, J ∈ NA = {{1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5},
{3, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}}

and CJ = 0 otherwise. The touch grouping PM bound with

Pt = {T{1} ∩ NA, T{2,3,4,5} ∩ NA}, (4.64)

and the fd grouping PM bound Pfd = {P1, P2 = NA \ P1}, where

P1 = {{1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}}, (4.65)

both yield an upper bound of 14.5 on the sum capacity. With the intersecting refinement

grouping,

Pt ∧ Pfd = {T{1} ∩ P1, T{1} ∩ P2, T{2,3,4,5} ∩ P1, T{2,3,4,5} ∩ P2}, (4.66)

a tighter upper bound of 14 is obtained, which indeed matches the sum capacity of this problem.

For the latter, we use Theorem 3.7 with (P, D), where Pi = NA, i ∈ [n], and D denotes the

natural decoding message set tuples generated according to Algorithm 2.

Based on Proposition 4.3, we can establish the tightest grouping PM bound by using the

“finest” server grouping P∗ = {{J} : J ∈ N \ {∅}} with m = 2n − 1, referred to as the

single-server grouping, which consists of all single nonempty servers and is a refinement of

every other valid server grouping.

We present the following corollary, namely the single-server grouping PM bound, without

repeating (4.22)-(4.29).

Corollary 4.4 (Single-server grouping PM bound). Consider the DIC problem G: (i|j ∈ Ai),

i ∈ [n] with link capacity tuple C. Its capacity region C (G, C) satisfies

C (G, C) ⊆ RP∗(G, C),

where RP∗(G, C) denotes the outer bound given by the grouping PM bound with the single-

server grouping P∗.

Remark 4.11. In a similar fashion as in Liu et al. [2018a], it can be shown that the single-

server grouping PM bound RP∗ is as tight as the apparently stronger outer bound in which all

Shannon-type inequalities of the entropy function for the DIC problem are used.
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If all servers are active, the computational complexity of RP∗ is prohibitive even for small

n as the number of the intermediate variables f (G, K), G ⊆ [m], K ⊆ [n] in Corollary 4.4 is

2|N\{∅}|+n = 22n−1+n, which is doubly exponential to n.

Finally, based on Proposition 4.3 we can establish the loosest grouping PM bound by using

the “coarsest” server grouping P∗ = {N} with m = 1, referred to as the all-server grouping,

which consists of a single all-server group and is an aggregation of every other valid server

grouping. With P∗, the grouping PM bound in Theorem 4.7 simplifies to RP∗ , namely the

all-server grouping PM bound.

Corollary 4.5 (All-server grouping PM bound). Consider the DIC problem G: (i|j ∈ Ai),

i ∈ [n] with link capacity tuple C. Its capacity region C (G, C) satisfies

C (G, C) ⊆ RP∗(G, C),

where RP∗(G, C) consists of all rate tuples R such that

Ri ≤ f∗(Bi ∪ {i})− f∗(Bi), i ∈ [n], (4.67)

for at least one set function f∗(K), K ⊆ [n], satisfying

f∗(∅) = 0, (4.68)

f∗(K) ≤ ∑
J:J∈TK

CJ , (4.69)

f∗(K) ≤ f∗(K′), K ⊆ K′, (4.70)

f∗(K ∩ K′) + f∗(K ∪ K′) ≤ f∗(K) + f∗(K′), (4.71)

f∗(Bi ∪ {i})− f∗(Bi) = f∗({i}), i ∈ [n]. (4.72)

Proof. As G ⊆ [1], G can be either ∅ or {1}. Also, f (∅, K) = 0 for any K ⊆ [n]. Therefore,

it suffices to use a single set function f∗(K) = f ({1}, K), K ⊆ [n] in the axioms and the

rate constraint inequality in Corollary 4.5. With all-server grouping P∗ = {N}, m = 1, we

have (PG ∪ PG′) \ (PG ∩ PG′) ⊆ TK only for G = G′ or K = ∅, and thus Axiom (4.23) in

Theorem 4.7 becomes trivial. Also, there never exists two disjoint nonempty sets K, K′ ⊆ [n]
such that P{1} = N ⊆ (N \ TK,K′). This means that Axiom (4.29) can only give trivial

inequalities with the all-server grouping. In summary, in Corollary 4.5, there are no constraints

corresponding to Axioms (4.23) and (4.29) in Theorem 4.7.

Even though the all-server grouping PM bound RP∗ on the capacity region is the loosest

bound one can get from the grouping PM bound, it is already no looser than the all-server

distributed PM bound in Proposition 2.9 introduced in Sadeghi et al. [2016].
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Proposition 4.4. For any DIC problem G: (i|j ∈ Ai), i ∈ [n], with link capacity tuple C, it

holds that RP∗(G, C) ⊆ RADPM(G, C).

The proof is presented in Appendix B.9.

The computational complexity of the all-server grouping PM bound RP∗ will be the lowest

among all the bounds from the grouping PM bound. And even performing FME to compute

the outer bound on the entire capacity region for a general C is possible for small to moderate

n as the total number of variables is only 2n + 2n − 1 + n in Corollary 4.5, accounting for 2n

f∗(K), K ⊆ [n] variables, 2n− 1 link capacity variables CJ , J ∈ N \ {∅}, and n rate variables

Ri, i ∈ [n].

Example 4.14. We first revisit the problem (1|−), (2|4), (3|4), (4|3) discussed in Examples

4.10. A looser upper bound of 22 on the sum capacity is given by the all-server grouping PM

bound RP∗ in comparison to the tight bound established earlier. However, RP∗ can sometimes

yield tight bounds. For example, consider the problem (1|4), (2|1, 4), (3|1, 2, 4), (4|1, 2, 3)
with equal link capacities CJ = 1, J ∈ N \ {∅}. The all-server grouping PM bound RP∗
yields the tight upper bound of 22 on the sum capacity, which matches the lower bound in

Corollary 3.2 with Pi = N and Di = [n] \ Ai, i ∈ [n].

4.9 Summary of the Speical Forms of the Grouping PM Bound

Different server groupings and their corresponding performance bounds presented in Sections

4.6-4.8 are summarized in Table 4.1.

4.10 Numerical Results for the Grouping PM Bound

We numerically evaluate lower and upper bounds on the sum capacity for all 218 non-isomorphic

4-message DIC problems with equal link capacities, CJ = 1, J ∈ N \ {∅}. For brevity, each

problem in this section is represented with a problem number and the corresponding receiver

side information can be found in [Liu et al., 2020c, Appendix J]. The upper bounds on the sum

capacity are computed using the special cases of the grouping PM bound proposed in Sections

4.6-4.8. The lower bound are given by the DCC scheme, computed using a fixed decoding

configuration in Theorem 3.7. For both upper and lower bounds, we use LP to maximize the

sum-rate R1 + R2 + R3 + R4. It turns out that the lower bounds match the upper bounds, thus

establishing the sum capacity, for all 218 problems.

The results are summarized in Table 4.2. On the right column, each tuple denotes a list

of problem numbers, followed by their sum-capacity in bold face. For example, (16, 30, 60,

102; 19) means that problems 16, · · · , 102 have the same sum-capacity of 19. The left column

shows special cases of the grouping PM bound that are used to yield the tight upper bounds on



114 Performance Bounds

Table 4.1: Special cases of the grouping PM bound and their indicative computational complexities.

Server groupings Entropic variables References Total # of
variables

The touch grouping
Pt = {TL1 , . . . , TLm} with

m ≤ n groups:
f (G, K), G ⊆ [m], K ⊆ [n]

1
r H(YTLG

|XKc) Cor. 4.2 2m+n +
2n − 1 + n

The individual touch grouping
P∗t = {T{1}, . . . , T{n}} with

m = n groups:
f (G, K), G, K ⊆ [n]

1
r H(YTG |XKc)

(4.49),
Rmk.
4.9

22n + 2n −
1 + n

The fd grouping Pfd
constructed according to

(4.58)-(4.60) with
m = 2k − k + 1 groups, where
k is the number of pairwisely

disjoint cycles:
f (G, K), G ⊆ [m], K ⊆ [n]

1
r H(YPG |XKc)

Cor. 4.3,
Exm.
4.11,
4.12

22k−k+1+n +
2n − 1 + n

The intersecting refined
grouping P ∧Q = {P ∩Q :

P ∈ P , Q ∈ Q} with m`
groups, where

m = |P|, ` = |Q|:
f (G, K), G ⊆ [m`], K ⊆ [n]

1
r H(Y(P∩Q)G

|XKc)

Def.
4.17,
4.18,
Prop.
4.3,

Exm.
4.13

2m`+n +
2n − 1 + n

The single-server grouping
P∗ = {{J} : J ∈ N \ {∅}}

with m = 2n − 1:
f (G, K), G ⊆ [2n − 1], K ⊆ [n]

1
r H(YPG |XKc) Cor. 4.4 22n−1+n +

2n − 1 + n

The all-server grouping
P∗ = {N} with m = 1 server

group: g(K), K ⊆ [n]

1
r H(YN |XKc)

Cor. 4.5,
Exm.
4.14

2n + 2n −
1 + n

the sum-capacity. It turns out that the all-server grouping PM bound RP∗ in Corollary 4.5 with

m = 1 group can solve 145 out of 218 problems with minimum computational complexity. For

the 63 problems shown in the middle row in Table 4.2, tight upper bounds on the sum capacity

can be obtained by the touch grouping PM bound RPt with PV defined in (4.46). Notice that

for these aforementioned 63 + 145 = 208 problems, except for the 6 problems (149, 176,

179, 200, 203, 212; 26) with sum capacity of 26, they are also solvable by the augmentation

group bound in Theorem 4.8. For the remaining 10 problems, the touch grouping PM bound

RPt gives loose results, and the fd grouping PM bound RPfd is necessary to yield tight upper
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bounds. A subset of these problems were discussed in Example 4.11 and shown in Figure 4.9

and they all involve either isolated vertices or disjoint cycles in their side information graph.

For the lower bounds on the sum capacity for all 218 problems, we used (P, D) in The-

orem 3.7 where Pi = N, i ∈ [n], and D = D, the natural decoding configuration generated

according to Algorithm 2.

Table 4.2: Sum capacity for all 218 non-isomorphic 4-message DIC problems with equal link capacities
CJ = 1, J ∈ N \ {∅}.

Upper bounds (Problem numbers; sum capacity)

The all-server grouping
PM bound RP∗ in

Corollary 4.5

(1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 17, 19, 20, 22, 25, 26,
33, 35, 38, 39, 40, 41, 49, 63, 65, 67, 69, 70, 100; 15), (47;
18.6667), (43, 78, 83, 85, 130, 132; 20), (42, 44, 45, 71, 72,
73, 74, 75, 76, 77, 79, 80, 82, 84, 103, 104, 105, 106, 107,

108, 109, 110, 111, 113, 116, 117, 118, 120, 122, 123, 124,
125, 126, 127, 128, 131, 133, 142, 143, 144, 145, 147, 151,
152, 153, 154, 158, 159, 161, 162, 163, 164, 165, 166, 167,
168, 169, 174, 177, 182, 183, 184, 185, 186, 187, 201; 22),
(114, 121, 129, 146, 150, 155, 156, 157, 160, 170, 171, 175,
178, 180, 181, 188, 189, 190, 191, 192, 194, 195, 196, 197,
198, 202, 204, 206, 208, 210, 216; 24), (207; 26), (193, 205,

209, 211, 213, 214, 215, 217; 28), (218; 32)

The touch grouping PM
bound RPt in Corollary
4.2 with PV in (4.46)

(4, 9, 18, 21, 23, 24, 34, 36, 48, 55, 64, 66, 68, 86, 95, 99,
138; 19), (14, 27, 28, 29, 31, 32, 37, 50, 51, 52, 53, 54, 56,

57, 58, 59, 61, 62, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 101,
134, 136, 137, 139, 140, 141, 173; 21), (93, 135, 172, 199;

25), (149, 176, 179, 200, 203, 212; 26)
The fd grouping PM

bound RPfd in Corollary
4.3

(16, 30, 60, 102; 19), (46; 23.3333), (81, 112, 115, 119, 148;
23.5)

4.11 Chapter Summary

In this chapter, we proposed a number of information-theoretic performance bounds for the

CIC and DIC problems. For the CIC problem, we generalized the alignment chain model

Maleki et al. [2014] to acyclic chain models, which capture concatenated set-level acyclic

structures implied by the interfering message sets at receivers. Based on the acyclic chains, we

developed iterative performance bounds on the broadcast rate of the CIC problem and illus-

trated their usefulness via a number of concrete examples. For the DIC problem, we began with

deriving performance bounds based on certain simplified versions of the acyclic chain models.

Whether there exist some stronger (tighter) DIC performance bounds based on the non-reduced
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form of the acyclic chain models remains unclear at the current stage. We provided nontrivial

generalization of the polymatroidal (PM) bound Blasiak et al. [2011] for the CIC problem to

the DIC scenario. More specifically, we proposed the grouping PM bound based on the PM

axioms of the entropy function and flexible utilization of server groupings. Through employing

server groupings of different granularity, a natural tradeoff between the tightness and compu-

tational complexity of the bound can be exploited. In particular, we introduced a number of

useful explicit constructions for server grouping and specialized the grouping PM bound based

on these groupings. We also rigorously proved the hierarchy of server groupings in terms of

the tightness of their corresponding bounds.



Chapter 5

Security and Privacy

In this chapter, we study secure and private variants of the centralized index coding (CIC)

problem.

In Section 5.1, we consider the CIC problem with security constraints on the legitimate

receivers themselves. Instead of assuming the existence of an eavesdropper as in Dau et al.

[2012]; Ong et al. [2016c, 2018]; Mojahedian et al. [2017]; Liu et al. [2018a], we impose secu-

rity requirements on the legitimate receivers. That is, each receiver must decode the legitimate

message it requests and, at the same time, cannot learn any single message from a certain

subset of prohibited messages. Similar problem setup was first investigated in [Dau et al.,

2012, Section IV-E] and later studied in Narayanan et al. [2020]. On the achievability side,

we extend the fractional local partial clique covering scheme Arbabjolfaei and Kim [2014]

(cf. Proposition 2.2) to meet such security constraints. On the converse side, we develop two

information-theoretic performance bounds for the secure CIC problem. The structure of the

performance bounds enables us to further develop two necessary conditions for a given CIC

problem to be securely feasible (i.e., to have nonzero rates for every message).

In Section 5.2, we consider a data publishing problem under a multi-terminal guessing

framework with side information, which is inspired by the CIC problem, but with a significant

twist to place emphasis on privacy. Instead of trying to maximize the communication rate, in

this new framework the server’s goal is to balance the data privacy and utility performance

in the broadcast, both of which are measured based on the success rate of correctly guessing

either the messages themselves or an arbitrary random function thereof. Such framework has

applications in various real-world scenarios where sensitive data needs to be broadcasted/pub-

lished in the presence of an adversary, e.g., field data broadcasting from a paddock aggregator

in the presence of a malicious agent in precision agriculture. We first derive two lower bounds

on the privacy leakage given the message distribution and utility constraints. We then propose a

greedy algorithm as the privacy-preserving mechanism, which is inspired by the agglomerative

clustering method used in the information bottleneck Slonim and Tishby [2000] and privacy

funnel problems Makhdoumi et al. [2014].

117
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5.1 Index Coding with Security Constraints on Receivers

We refer to the centralized index coding problem with security constraints on legitimate re-

ceivers simply as the secure index coding problem. The system model of such problem is

the same as that of the CIC problem as defined in Section 2.1 with an extra security con-

straint defined as follows. Throughout the section, we assume zero-error decoding instead of

vanishing-error decoding.

We assume weak security constraints against the receivers. That is, for each receiver i ∈
[n], there is a set of prohibited messages Pi ⊆ Bi, which the receiver is prohibited from

learning. More specifically, receiver i should not be able to decode any information about each

individual message j ∈ Pi given the side information xAi and the received codeword y.1 A

(t, r) = ((ti, i ∈ [n]), r) secure index code is defined by

• An encoder at the centralized server, φ : ∏i∈[n]{0, 1}ti → {0, 1}r, which maps the

messages x[n] to an r-bit sequence y;

• n decoders, one for each receiver i ∈ [n], such that ψi : {0, 1}r ×∏k∈Ai
{0, 1}tk →

{0, 1}ti maps the received sequence y and the side information xAi to x̂i.

To summarize, we say a rate tuple R = (Ri, i ∈ [n]) is securely achievable if there exists

a (t, r) secure index code satisfying

Rate: Ri ≤
ti

r
, ∀i ∈ [n], (5.1)

Message: H(XS |XS′)

= H(XS) = ∑
i∈S

ti, ∀S, S′ ⊆ [n], S ∩ S′ = ∅, (5.2)

Codeword: H(Y) ≤ r, (5.3)

Encoding: H(Y |X[n]) = 0, (5.4)

Decoding: H(Xi |Y, XAi) = 0, ∀i ∈ [n], (5.5)

Security: I(Xj; Y |XAi) = 0, ∀j ∈ Pi, i ∈ [n], (5.6)

where (5.1) is the definition of Ri, i ∈ [n], (5.2) follows from the assumption that the mes-

sages are independent and uniformly distributed, (5.3) is due to the length of the codeword

being r, (5.4) follows from the fact that y is a function of x[n], (5.5) is stipulated by the de-

coding requirement at receivers: P{(X̂1, . . . , X̂n) 6= (X1, . . . , Xn)} = 0, together with Fano’s

inequality, and (5.6) is stipulated by the security constraints on the receivers.

1In contrast, a strong security constraint would require that receiver i cannot learn any information about the
prohibited message set xPi , rather just individual messages in that set, given the side information and received
codeword. That is, I(XPi ; Y|XAi ) = 0. Such constraint is overly strong when imposed on legitimate receivers as it
enforces that Rj = H(Xj) = 0 for any j ∈ Pi, i ∈ [n].
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Any instance of the secure index coding problem can be represented by a sequence (i|Ai, Pi),

i ∈ [n] specifying the side information availability and security constraints at receivers. For

example, for a 3-message secure index coding problem with A1 = ∅, A2 = {3}, A3 = {2},
and P1 = {2, 3}, P2 = P3 = ∅, we write

(1|∅, {2, 3}), (2|{3}, ∅), (3|{2}, ∅). (5.7)

Recall that the side information availability at receivers can also be represented by the side

information graph G as defined in Section 2.1. The secure index coding problem (i|Ai, Pi),

i ∈ [n] can also be represented by the tuple (A, P), where A .
= (Ai, i ∈ [n]) and P .

= (Pi, i ∈
[n]), or equivalently the tuple (G, P).

For the secure index coding problem (G, P), its capacity region C (G, P) is the closure of

the set of all rate tuples R that are securely achievable. The symmetric capacity is defined as

Csym(G, P) .
= max{R : (R, · · · , R) ∈ C (G, P)}. (5.8)

The broadcast rate β(G, P) is defined as the reciprocal of the symmetric capacity as

β(G, P) .
=

1
Csym(G, P)

. (5.9)

5.1.1 A Secure Linear Coding Scheme

We first investigate the achievability aspect of the secure index coding problem. Note that a

secure variant of the composite coding scheme has been studied in Liu et al. [2018a], estab-

lishing an inner bound on the secure capacity region. Like other random-coding based coding

schemes, the secure composite coding scheme yields achievability results (i.e., achievable rate

regions), yet does not directly lead to specific code design. To design a practical linear cod-

ing scheme for secure index coding, we extend the fractional local partial clique covering

(FLPCC) coding scheme from Arbabjolfaei and Kim [2014], originally developed for the non-

secure CIC problem. The FLPCC scheme was reviewed in Section 2.3.1, and its corresponding

achievability bound RFLPCC(G) was presented in Proposition 2.2.

In the following, we describe our extended secure fractional local partial clique covering

(S-FLPCC) scheme for the secure index coding problem (G, P). Similar to the FLPCC scheme,

the S-FLPCC scheme utilizes time sharing and rate splitting among a number of subproblems

of G, and applies an MDS code at the subproblem level, while each subproblem also uses an

MDS code. The main difference with the FLPCC scheme is that for the S-FLPCC scheme, we

consider only the subproblems that satisfy relevant security constraints.

More specifically, for each subproblem G|L for some message set L ⊆ [n] assigned

with a nonzero fraction of the channel capacity 0 < λL ≤ 1, we use a systematic (|L| +
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βMDS(G|L), |L|) MDS code such that every receiver i ∈ L can decode sub-message xi,L at rate
λL

βMDS(G|L) (cf. Proposition 2.1).

For each subproblem G|L, due to the nature of MDS codes, every receiver i ∈ L will

be able to decode all the sub-messages in L at rate λL
βMDS(G|L) from the corresponding parity

symbols. Hence, we require that L ∩ Pi = ∅, since otherwise receiver i will be able to obtain

some information about the messages in L ∩ Pi, which violates the security constraint (5.6).

On the other hand, any receiver i /∈ L acts like an eavesdropper to the subproblem G|L
if L ∩ Pi 6= ∅. It has been shown in Ong et al. [2016c] that for G|L, there exists some

systematic (|L| + βMDS(G|L), |L|) MDS code over a large enough finite field that is secure

against an eavesdropper who knows less than |L| − βMDS(G|L)− 1 messages within G|L as its

side information (see [Ong et al., 2016c, Theorem 1] and its proof for more details). Therefore,

to make sure that receiver i /∈ L with L ∩ Pi 6= ∅ cannot learn any single message from the

parity symbols of G|L, we simply require that |Ai ∩ L| < |L| − βMDS(G|L).
Referring to our system model, sub-messages xi,L, i ∈ L, λL > 0 are independent of each

other. Hence, by combining MDS code symbols from different subproblems a receiver can-

not gain any extra information than considering the MDS code symbols for each subproblem

separately. Therefore, the general security constraint in (5.6) can be satisfied as long as the

aforementioned security constraints for each subproblem G|L are satisfied.

We present the achievability bound corresponding to the S-FLPCC scheme below.

Theorem 5.1 (Secure fractional local partial clique covering (S-FLPCC) bound). Consider the

secure index coding problem (G, P). Its capacity region C (G, P) is inner bounded by the rate

region RS−FLPCC(G, P) that consists of all rate tuples R such that

Ri ≤ ∑
L⊆[n]:i∈L

λL

βMDS(G|L)
, (5.10)

for some λL, L ⊆ [n] satisfying

λL ∈ [0, 1], ∀L ⊆ [n], (5.11)

∑
L⊆[n]:L 6⊆Ai

λL ≤ 1, ∀i ∈ [n], (5.12)

Pi ∩ L = ∅, ∀L ⊆ [n], λL > 0, i ∈ L, (5.13)

Pi ∩ L = ∅ or |Ai ∩ L| < |L| − βMDS(G |L), ∀L ⊆ [n], λL > 0, i /∈ L. (5.14)

Remark 5.1. Note that (5.10)-(5.12) together form the same achievable rate region for the

FLPCC scheme for non-secure index coding in Proposition 2.2. The security constraints

against receivers are enforced by (5.13) and (5.14).

The S-FLPCC can give tight result for some problem, as illustrated by the following exam-
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ple. For simplicity, we compute the securely achievable symmetric rate rather than the whole

rate region.

Example 5.1. Consider the following 9-message secure index coding problem (i|Ai, Pi), i ∈
[n] with Pi = Bi for any i ∈ [9],

(1|{1}c, ∅), (2|{2}c, ∅), (3|{4, 5, 6, 8, 9}, {1, 2, 7}),
(4|{5, 6, 7, 8}, {1, 2, 3, 9}), (5|{3, 4, 7, 8, 9}, {1, 2, 6}), (6|{2, 3, 4, 5, 7, 9}, {1, 8}),

(7|{7}c, ∅), (8|{8}c, ∅), (9|{9}c, ∅).

The symmetric rate R = 1
4 can be securely achieved by assigning λL = 1

4 to the subproblems

G|L for L ∈ {{1, 2, 8}, {2, 6, 7, 9}, {3, 9}, {4, 5}}, which is optimal for this problem (see

Example 5.3 in Section 5.1.2 for the matching converse result). For each subproblem G|L, we

have βMDS(G|L) = 1 (i.e., the induced subgraph G|L is actually a clique). One can check that

the security constraints (5.13) and (5.14) are met for each subproblem. For example, consider

L = {2, 6, 7, 9}. For any i ∈ L, Pi ∩ L = ∅ and thus (5.13) is satisfied for this L. The receivers

i ∈ Lc = {1, 3, 4, 5, 8} can be divided into two groups. For i ∈ {1, 8}, we have Pi = ∅ and

thus Pi ∩ L = ∅. For i ∈ {3, 4, 5}, we have |Ai ∩ L| = 2 < |L| − βMDS(G|L) = 3.

Therefore, (5.14) is also satisfied for this L.

5.1.2 Performance Bounds and Necessary Conditions for Feasibility

In this section, we introduce two performance bounds for the secure index coding problem. We

also investigate the feasibility of the secure index coding problem. By saying a secure index

coding problem to be feasible we mean that at least one rate tuple that is nonzero for every

message is securely achievable. Subsequently, a secure index coding problem is infeasible if

every securely achievable rate tuple has at least one zero rate element. A simple sufficient

condition for a secure index coding problem to be feasible is that the achievable rate region

RS−FLPCC in Theorem 5.1 contains at least one rate tuple that is nonzero for every message.

In this section, we focus on developing necessary conditions for feasibility.

5.1.2.1 An Outer Bound on the Secure Capacity Region

Theorem 5.2 (Secure polymatroidal (S-PM) bound). Consider the secure index coding prob-

lem (G, P). Its capacity region C (G, P) is outer bounded by the rate region RS−PM(G, P) that

consists of all rate tuples R such that

Ri ≤ g(Bi ∪ {i})− g(Bi), ∀i ∈ [n], (5.15)
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for at least one set function g : 2[n] → [0, 1] such that

g(∅) = 0, (5.16)

g([n]) ≤ 1, (5.17)

g(K) ≤ g(K′), if K ⊆ K′, (5.18)

g(K ∩ K′) + g(K ∪ K′) ≤ g(K) + g(K′), (5.19)

g(Bi ∪ {i})− g(Bi) = g({i}), ∀i ∈ [n], (5.20)

g(Bi) = g(Bi \ {j}), ∀j ∈ Pi, i ∈ [n]. (5.21)

Proof. Define the set function g : 2[n] → [0, 1] as in (B.4) in Section B.1, which is repeated

below as

g(S) .
=

1
r

H(Y |XSc), ∀S ⊆ [n]. (5.22)

Properties (5.15)-(5.20) can be derived in the same manner as (2.35)-(2.40) in Proposition 2.7.

Proof details can be found in [Arbabjolfaei and Kim, 2018, Section 5.2]. To show (5.21), for

any i ∈ [n], j ∈ Pi, we use (5.2), (5.5), (5.22), as well as the security constraints specified in

(5.6), to obtain

rg(Bi) = H(Y |XAi∪{i})

= H(Xi |Y, XAi) + H(Y |XAi)− H(Xi |XAi)

= H(Y |XAi)− I(Xj; Y |XAi)− H(Xi |XAi)

= H(Y |XAi∪{j})− H(Xi |XAi∪{j})

= H(Y |XAi∪{i}∪{j})− H(Xi |Y, XAi∪{j})

= rg(Bi \ {j}), (5.23)

where the second and second last equalities are simply due to the chain rule.

Similar to the PM bound Blasiak et al. [2011] in Proposition 2.7 and the grouping PM

bound in Theorem 4.7, the S-PM bound presented above can be solved using optimization

tools such as Fourier-Motzkin Elimination (FME) and Linear Programming (LP). While the

S-PM is useful by itself, in below, we will further develop a series of converse results utilizing

the set function g defined aboved in (5.22). Indeed, the results to be presented in the next two

subsections hold for any set function g satisfying the properties (5.15)-(5.21).
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5.1.2.2 A Partition of N Based on the Security Constraints

The security property (5.21) is the only difference between the S-PM bound and the normal

PM bound for the non-secure CIC problem, which can be seen as a direct consequence of the

security constraint (5.6). It enforces the value of the set function g defined in (5.22) to be equal

for certain arguments. For the toy example in (5.7), B1 = P1 = {2, 3}. Thus, by (5.21), we

have g({2, 3}) = g({2}) = g({3}).
Moreover, combining properties (5.18) and (5.19) of g with (5.21) may result in g to be

equal for even more arguments. In the above example, since g({2, 3}) = g({2}), by (5.19)

we have g({1, 2, 3}) ≤ g({1, 2}) + g({2, 3}) − g({2}) = g({1, 2}), and by (5.18) we

have g({1, 2, 3}) ≥ g({1, 2}). Thus g({1, 2, 3}) = g({1, 2}). Similarly, g({1, 2, 3}) =

g({1, 3}).
Based on the above ideas, we formally define a partition on the set N = 2[n], namely the

g-partition, denoted by N = {N1, N2, · · · , Nγ}.

Definition 5.1 (g-partition). Given a secure index coding problem (G, P), its g-partition N
can be constructed using the following steps:

1. For any receiver i ∈ [n] whose Pi is nonempty, for any T ⊆ Bc
i , form N(i, T) ∈ N as

N(i, T) = {T ∪ Bi \ {j} : j ∈ Pi} ∪ {T ∪ Bi}.

Note that N(i, T) is a subset of N. All elements S ∈ N that are not in any subset N(i, T)
are placed in Nremaining, i.e.,

Nremaining = N \ (∪T⊆Bc
i ,i∈[n]:Pi 6=∅N(i, T)).

2. As long as there exist two subsets N(i, T), N(i′, T′) such that N(i, T)∩N(i′, T′) 6= ∅,

we merge these two subsets into one new subset. We keep merging overlapping subsets

until all subsets in N are disjoint, then we index the elements of N as N1, N2, · · · , Nγ

in an arbitrary order, except for Nγ = Nremaining.

For a given secure index coding problem, one can verify that its g-partition is unique. We

call any component within the g-partition except for the last one a g-subset. The values of the

set function g with arguments from one g-subset are always equal, enforced by (5.18), (5.19),

and (5.21).

Lemma 5.1. Consider the secure index coding problem (G, P) with g-partition N = {N1,

N2, · · · , Nγ}. For any g-subset Nk, k ∈ [γ− 1], we have

g(S) = g(S′), ∀S, S′ ∈ Nk.
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Proof. Step 2 in Definition 5.1 is simply merging subsets that have at least one common ele-

ment. Therefore, it suffices to show that for any receiver i ∈ [n] whose Pi is nonempty, any

T ⊆ Bc
i , the initialized N(i, T) in Step 1 satisfies that

g(S) = g(S′), ∀S, S′ ∈ N(i, T). (5.24)

Consider any such N(i, T). For any j ∈ Pi, we have

g(T ∪ Bi) ≤ g(T ∪ Bi \ {j}) + g(Bi)− g(Bi \ {j})
= g(T ∪ Bi \ {j}), (5.25)

where the inequality follows from the submodularity condition in (5.19) and the equality fol-

lows from (5.21). On the other hand, by the monotonicity condition in (5.18), we have

g(T ∪ Bi) ≥ g(T ∪ Bi \ {j}). (5.26)

Combining (5.25) and (5.26) yields g(T ∪ Bi) = g(T ∪ Bi \ {j}), which implies (5.24) and

thus concludes the proof.

Let gNk denote the value of the set function g of any set S that belongs to the g-subset Nk

for some k ∈ [γ− 1], within a given N = {N1, N2, · · · , Nγ}. That is,

gNk

.
= g(S), ∀S ∈ Nk. (5.27)

We state our first necessary condition for a given secure index coding problem to be feasible

based on its g-partition.

Theorem 5.3. Consider the secure index coding problem (G, P) with g-partition as N =

{N1, N2 · · · , Nγ}. For any k ∈ [γ − 1], if there exist some message sets S, S′ ∈ Nk and

receiver i ∈ [n] such that S′ ∪ {i} ⊆ S and S′ ⊆ Bi, then the problem is infeasible.

Proof. Consider any valid (t, r) secure index code and any securely achievable rate tuple R.

For any k ∈ [γ− 1], suppose that there exist some S, S′ ∈ Nk and i ∈ [n] such that S′ ∪ {i} ⊆
S and S′ ⊆ Bi. We have

g(S′) = g(S) ≥ g(S′, i) ≥ g(Bi ∪ {i})− g(Bi) + g(S′) ≥ Ri + g(S′), (5.28)

where the equality follows from Lemma 5.1 with the fact that S and S′ belong to the same

g-subset Nk, the first inequality follows from the fact that S′ ∪ {i} ⊆ S and (5.18), the second

inequality follows from the fact that S′ ⊆ Bi and (5.19), and the third inequality follows from

(5.15). Clearly, (5.28) implies Ri = 0 and thus the problem is infeasible.
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Remark 5.2. One common scenario where a problem is infeasible is that there exit two re-

ceivers i 6= j ∈ [n] such that Ai ⊆ Aj ∪ {j} and i ∈ Pj. For example, see [Narayanan

et al., 2018, Proposition 2]. In this case, receiver j, after decoding its requested message j,
knows more messages than receiver i and thus can always mimic the behaviour of receiver

i to decode message i. This violates the security constraint i ∈ Pj and thus, the problem is

infeasible. We can show that such scenario is captured by Theorem 5.3 as a special case. Since

i ∈ Pj ⊆ Bj, there exists a g-subset Nk for some k ∈ [γ− 1] withinN such that S = Bj ∈ Nk

and S′ = Bj \ {i} ∈ Nk. First, as i ∈ Bj, we have

S′ ∪ {i} = (Bj \ {i}) ∪ {i} = Bj ⊆ Bj = S.

Second, since Ai ⊆ Aj ∪ {j}, we have Bi ∪ {i} = Ac
i ⊇ (Aj ∪ {j})c = Bj, which indicates

that

S′ = Bj \ {i} ⊆ Bi.

Therefore, according to Theorem 5.3, the problem is infeasible.

Example 5.2. Consider the 5-message secure index coding problem

(1|{2, 4, 5}, ∅), (2|{1, 5}, {4}), (3|∅, {1, 2, 5}), (4|{2}, {1}), (5|{1, 2}, ∅).

By Definition 5.1, the g-partition of the problem can be written asN = {N1, · · · , Nγ} where

γ = 6, and

N1 = {{3}, {3, 4}}, N2 = {{1, 2, 4, 5} \ {j} : j ∈ {1, 2, 5}},
N3 = {{1, 3}, {1, 3, 4}}, N4 = {{2, 3}, {2, 3, 4}}
N5 = {{1, 2, 3}, {1, 2, 3, 4}, {3, 5}, {1, 3, 5}, {2, 3, 5},
{1, 2, 3, 5}, {3, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, [5]},

and N6 = N \ (∪k∈[5]Nk). Consider message sets {1, 3, 5}, {1, 3, 4, 5} ∈ N5 and receiver

4 ∈ [5], we have {1, 3, 5} ∪ {4} ⊆ {1, 3, 4, 5} and {1, 3, 5} ⊆ B4. Thus, by Theorem 5.3 the

problem is infeasible.

5.1.2.3 A Lower Bound on the Secure Broadcast Rate

The MAIS lower bound on the broadcast rate βMAIS(G) Bar-Yossef et al. [2011] in Proposition

2.5 can be trivially extended to the secure index coding problem as βMAIS(G, P) = βMAIS(G).
We present a slightly stronger statement in the following lemma.

Lemma 5.2. Consider the secure index coding problem (G, P). For any set function g :
2[n] → [0, 1] satisfying the properties (5.15)-(5.21), any message set S ⊆ [n], and any securely
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achievable symmetric rate R, we have

g(S) ≥ R · βMAIS(G |S).

Proof. Assume u = βMAIS(G|S). Then there exists some set U = {i1, i2, · · · , iu} ⊆ S whose

induced subgraph G|U is acyclic. Hence, without loss of generality (see (2.12)), we have

{i1, i2, · · · , ip−1} ⊆ Bip , ∀p ∈ [u]. (5.29)

Therefore, we have

g(S) ≥ g({i1, i2, · · · , iu})
≥ g(i1, i2, · · · , iu−1) + Riu

≥ g(i1, i2, · · · , iu−2) + Riu−1 + Riu

...

≥ ∑
p∈[u]

Rip = R · βMAIS(G |S),

where the first inequality follows from (5.18), the other inequalities follow from (5.15) and

(5.19) together with (5.29), and the equality simply follows from the definition of u.

Based upon the above lemma, we propose a new performance bound, namely, the secure

maximum acyclic induced subgraph (S-MAIS) lower bound as follows.

Theorem 5.4 (Secure maximum acyclic induced subgraph (S-MAIS) bound). Consider the

secure index coding problem (G, P) with g-partition N = {N1, N2, · · · , Nγ}. Its broadcast

rate β(G, P) is lower bounded by βS−MAIS(G, P), which is constructed by the following steps:

1. For any subset Nk, k ∈ [γ], initialize ρNk as

ρNk = max
S∈Nk

βMAIS(G |S).

2. As long as there exist two g-subsets Nk, N`, k 6= ` ∈ [γ− 1] such that there exist some

sets S ∈ Nk, S′ ∈ N` satisfying that S′ ⊆ S, and that

βMAIS(G |{j∈S\S′ :S′⊆Bj}) + ρN`
> ρNk ,

update ρNk ← βMAIS(G|{j∈S\S′ :S′⊆Bj}) + ρN`
.

3. If no such Nk, N` exist, set βS−MAIS(G, P) = maxk∈[γ] ρNk and terminate the algorithm.
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Proof. We show that βS−MAIS(G, P) ≤ β(G, P), which is equivalent to showing that 1 ≥
R · βS−MAIS(G, P) = maxk∈[γ] ρNk for any valid (t, r) secure index code and any securely

achievable symmetric rate R.

If maxk∈[γ] ρNk = ρNγ , as ρNγ remains unchanged since its initialization, we have

R · βS−MAIS(G, P) = R · ρNγ = R ·max
S∈Nγ

βMAIS(G |S)

≤ R · βMAIS(G) ≤ 1.

It remains to show that 1 ≥ R · βS−MAIS(G, P) when βS−MAIS(G, P) = maxk∈[γ] ρNk =

ρNk for some k ∈ [γ− 1]. Note that g(S) ≤ 1, ∀S ⊆ [n] according to (5.17) and (5.18). We

show that 1 ≥ R · βS−MAIS(G, P) by showing a slightly stronger statement that

gNk = g(S) ≥ R · ρNk , ∀S ∈ Nk, k ∈ [γ− 1]. (5.30)

Recall that gNk has been defined in (5.27).

By induction, it suffices to show that

1. for the initialized ρNk = maxS∈Nk βMAIS(G|S), k ∈ [γ− 1], (5.30) holds;

2. for any Nk, N`, k 6= ` ∈ [γ − 1] satisfying the conditions in Step 2 in Theorem 5.4,

the updated ρNk = βMAIS(G|{j∈S\S′ :S′⊆Bj}) + ρN`
still satisfies (5.30), provided that

gN`
≥ R · ρN`

.

Consider the initialized ρNk = maxS∈Nk βMAIS(G|S), k ∈ [γ− 1]. By Lemmas 5.1 and

5.2, we have

gNk ≥ R · βMAIS(G |S), ∀S ∈ Nk,

which directly leads to (5.30).

Consider any Nk, N`, k 6= ` ∈ [γ− 1] and S ∈ Nk, S′ ∈ N` satisfying the conditions in

Step 2 in Theorem 5.4. We have the updated ρNk as ρNk = βMAIS(G|{j∈S\S′ :S′⊆Bj}) + ρN`
. Set

s = βMAIS(G |{j∈S\S′ :S′⊆Bj}). (5.31)

Then, by (2.12), there exists some set {j1, j2, · · · , js} ⊆ {j ∈ S \ S′ : S′ ⊆ Bj} whose induced

subgraph is acyclic satisfying that

{j1, · · · , jp−1} ⊆ Bjp , ∀p ∈ [s]. (5.32)
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Note that we also have

S′ ⊆ Bjp , ∀p ∈ [s], (5.33)

since any jp is an element of the set {j ∈ S \ S′ : S′ ⊆ Bj}. Combining (5.32) and (5.33) we

have

S′ ∪ {j1, · · · , jp−1} ⊆ Bjp , ∀p ∈ [s]. (5.34)

Hence, we have

gNk ≥ g(S′ ∪ {j ∈ S \ S′ : S′ ∈ Bj})
≥ g(S′ ∪ {j1, j2, · · · , js})
≥ g(S′ ∪ {j1, j2, · · · , js−1}) + Rjs

≥ g(S′ ∪ {j1, j2, · · · , js−2}) + Rjs−1 + Rjs

...

≥ g(S′) + ∑
p∈[s]

Rjp

= gN`
+ R · βMAIS(G |{j∈S\S′ :S′⊆Bj})

≥ R · (ρN`
+ βMAIS(G |{j∈S\S′ :S′⊆Bj})) = R · ρNk ,

where the first and second inequalities follow from (5.18), the inequalities except for the first

two and the last one follow from (5.15) and (5.19) together with (5.34), the first equality follows

from (5.31), the last inequality follows from the assumption that gN`
≥ R · ρN`

, and, finally, the

last equality follows from the fact that the updated ρNk = ρN`
+ βMAIS(G|{j∈S\S′ :S′⊆Bj}).

Based on the g-partition in Definition 5.1 and the S-MAIS bound in Theorem 5.4, we state

our second necessary condition for feasibility of secure index coding below.

Theorem 5.5. Consider the secure index coding problem (G, P) with g-partition as N =

{N1, N2, · · · , Nγ}. The problem is infeasible if there exists some k ∈ [γ− 1] such that

ρNk > min
S∈Nk
|S|,

where ρNk , k ∈ [γ− 1] are iteratively defined by Steps 1-3 in Theorem 5.4.

Proof. Suppose for some k ∈ [γ− 1], we have ρNk > minS∈Nk |S|. We show that the problem

is infeasible by contradiction.

Assume that the problem is feasible. Then there exists some ((t, t, . . . , t), r) secure index

code such that some symmetric rate R > 0 is securely achievable. For any message j ∈ [n]
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and any subset of its interfering message set B ⊆ Bj, setting A = (B ∪ {j})c, we have

t
r
=

H(Xj)

r

=
1
r
(H(Xj |XA)− H(Xj |Y, XA))

=
1
r
(I(Xj; Y |XA))

=
1
r
(H(Y |XA)− H(Y |XA∪{j}))

= g(B ∪ {j})− g(B), (5.35)

where the first equality follows from that message xj is uniformly distributed and of length t
specified in (5.2), the second equality follows from the message independence also specified in

(5.2) and the decoding condition in (5.5) together with Aj = (Bj ∪ {j})c ⊆ (B ∪ {j})c = A,

the third and fourth equalities simply follow from the definition of mutual information, and the

last equality follows from the definition of the set function g in (5.22). If we set B = ∅ in

(5.35), by (5.16) we have

t
r
= g({j}). (5.36)

Recall that for some k ∈ [γ− 1], we have ρNk > minS∈Nk |S|. There exists some S0 ∈ Nk

such that |S0| = minS∈Nk |S|. Then, we have

g(S0) ≤ ∑
i∈S0

g({i}) = ∑
i∈S0

t
r
=

t
r
·min

s∈Nk
|S|, (5.37)

where the inequality follows from repeated application of (5.19), and the first equality follows

from (5.36).

One can also prove that

gNk ≥
t
r
· ρNk , ∀S ∈ Nk, k ∈ [γ− 1], (5.38)

in the similar manner as proving (5.30) in the proof of Theorem 5.4. Therefore,

t
r
·min

S∈Nk
|S| ≥ g(S0)

= gNk ≥
t
r
· ρNk >

t
r
·min

S∈Nk
|S|, (5.39)

where the first, second, and the last inequality follow from (5.37), (5.38), and the assumption

that ρNk > minS∈Nk |S|, respectively. Clearly, (5.39) leads to a contradiction, and therefore
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the problem must be infeasible.

The following two examples demonstrate the efficacy of Theorems 5.4 and 5.5 in providing

tight bounds as well as identifying infeasible secure index coding problems.

Example 5.3. Revisit the 9-message secure index coding problem in Example 5.1. While the

normal MAIS lower bound gives β(G, P) ≥ βMAIS(G, P) = βMAIS(G) = 3, the S-MAIS

lower bound in Theorem 5.4 could give a strictly tighter result. More specifically, consider the

two g-subsets Nk, N`, k 6= ` ∈ [γ] such that S = {1, 2, 3, 4} ∈ Nk and S′ = {1, 2} ∈ N`.

Since we have {1, 2, 6} = Bi = Pi for receiver i = 5, by (5.21), we have

g({1, 2}) = g({1, 2, 6}) = g({1, 6}),

which indicates that the message subset {1, 6} is also in the g-subset N`. It can be verified that

maxS̃∈Nk
βMAIS(G|S̃) = βMAIS(G|{1,2,3,4}) = 3, and thus we initialize ρNk as ρNk = 3. It can

also be verified that maxS̃∈N`
βMAIS(G|S̃) = βMAIS(G|{1,6}) = 2, and thus we initialize ρN`

as ρN`
= 2. However, we have

βMAIS(G |{j∈S\S′ :S′⊆Bj}) + ρN`
= βMAIS(G |{j∈{3,4}:{1,2}⊆Bj}) + ρN`

= βMAIS(G |{3,4}) + ρN`
= 2 + 2 = 4 > 3 = ρNk .

Therefore, according to Step 2 in Theorem 5.4, we update ρNk from 3 to 4. We keep repeating

such search-and-update procedure untill we reach the termination condition in Step 3. It can

be verified that we cannot obtain any result larger than 4, and thus we have

β(G, P) ≥ βS−MAIS(G, P) = 4 > 3 = βMAIS(G, P).

Therefore, any securely achievable symmetric rate satisfies that R ≤ 1/4, which matches the

result in Example 5.1 and thus establishes the symmetric capacity Csym(G, P) to be 1/4.

Example 5.4. Revisit the 5-message secure index coding problem in Example 5.2, which

is infeasible according to Theorem 5.3. One can also see that the problem is infeasible by

Theorem 5.5 since for N5 ∈ N , ρN5 = 4, and thus

min
S∈N5
|S| = |{3, 5}| = 2 < 4 = ρN5 .

Remark 5.3. While all our examples discussed in this section have a small or moderate prob-

lem size n, Theorems 5.3-5.5 can also be relatively easily applied to large secure index coding

problems (e.g., n ≥ 12). In contrast, the S-PM bound in Theorem 5.2 has a relatively high

computational complexity similar to the PM bound for the CIC problem, and thus can be com-

putationally impractical when n is large. Nevertheless, the S-PM bound is more general than
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Theorems 5.3-5.5: it always gives no looser converse result than the S-MAIS bound in Theo-

rem 5.4, and when the necessary condition in Theorem 5.3 or 5.5 implies infeasibility for the

problem, the S-PM bound will directly enforce the corresponding rate Ri to be zero.

5.2 Privacy-Utility Tradeoff in a Guessing Framework Inspired
by Index Coding

In this section, we study the tradeoff in privacy and utility in a single-trial multi-terminal guess-

ing (estimation) framework using a system model that is inspired by index coding. Instead of

maximizing the communication rate, in this new framework the sender’s goal is to balance

the privacy and utility performance in the broadcast, both measured based on the success rate

of correctly guessing either the messages themselves or an arbitrary random function thereof.

More specifically, we consider multiple independent sources (messages) available at a data cu-

rator2 and assume that there are multiple legitimate users (receivers), as well as one adversary

in the system. Each party (a user or the adversary) knows some sources a priori as side infor-

mation. The data curator broadcasts (discloses) a distorted function of the sources to the users,

which is also overheard by the adversary.

For the adversary, we adopt the maximal leakage introduced in Issa et al. [2020] as the

privacy metric. It measures the worst-case information leakage in terms of the gain of the ad-

versary in maximum a posteriori estimation of any target function of the unknown sources after

and before observing the disclosed data. For the legitimate users, we define our utility metric

such that it also reflects the improvement in users’ guessing ability of the sources themselves.

That is, as opposed to the adversary, we assume that the legitimate users are interested in the

sources themselves. Quite often in practice different sources are of different levels of priority

to a user. We capture this by dividing the unknown sources of each legitimate user into two

subsets. Some essential sources are required to be perfectly reconstructed by the user. That

is, the correct guessing probability of such sources after observing the disclosed data is non-

negotiable and must be 1. The remaining sources are less critical, for which the user requires

the guessing gain about each such source to be larger than a certain negotiable threshold. The

privacy-utility tradeoff is cast as a constrained optimization problem, where the objective is to

minimize the privacy leakage to the adversary, conditioned that the requirements on the utility

of the unknown sources for the legitimate users are satisfied.

Given such system setting, we derive fundamental performance lower bounds on the max-

imal leakage to the adversary, which are inspired by the notion of confusion graph Alon et al.

[2008] and the polymatroidal (PM) bound Blasiak et al. [2011]; Arbabjolfaei et al. [2013] (cf.

2Note that in this section we assume a general discrete finite-alphabet distribution for each source, rather than the
uniform distribution normally assumed for the index coding problem. We still require the sources to be independent
of each other.
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Proposition 2.7) for the centralized index coding (CIC) problem. We also detail a greedy pri-

vacy enhancing mechanism, which is inspired by the agglomerative clustering algorithms in

the information bottleneck Slonim and Tishby [2000] and privacy funnel Makhdoumi et al.

[2014] problems.

Recall that for any discrete random variable Z with probability distribution PZ, we denote

its alphabet by Z with realizations z ∈ Z . We denote an estimation of Z by Ẑ, whose alphabet

is also Z .

5.2.1 System Model and Problem Formulation

In this section, we provide a more detailed description on our multi-terminal guessing frame-

work.

Assume that a data curator observes n independent discrete random sources X1, X2, . . . , Xn.

We assume a general distribution PXi for each source. Without loss of generality, we assume

every source has full support. For brevity, when we say source i, we mean source Xi. For any

S ⊆ [n], set XS = ∏i∈S Xi. The data curator broadcasts a distorted version of X[n], denoted

by Y, generated according to the privacy mechanism PY|X[n]
, to a number of legitimate users,

which is also overheard by a single adversary.

Both the legitimate users and the adversary attempt to guess (estimate) a certain parameter

V of interest about the sources in a single trial. Both the privacy and utility are defined in

terms of a guessing gain r defined as follows. Consider any party (a user or the adversary) that

wishes to guess V with the side information Z. Note that V and Z are independent of each

other due to source independence. The party aims to maximize the correct guessing probability

of V upon observing Y (i.e., the party employs the maximum a posteriori estimator). For each

(y, z) ∈ Y × Z , we define the ratio between such maximized guessing probability after and

before observing a y ∈ Y given z ∈ Z as

r(V → y|z) .
=

max
PV̂|Y=y,Z=z

E
[
PV̂|Y=y,Z=z(V|y, z)

]
max
PV̂|Z=z

E
[
PV̂|Z=z(V|z)

] (5.40)

=
max

v
PV|Y,Z(v|y, z)

max
v

PV|Z(v|z)
. (5.41)

Adversary: We assume the adversary has side information XP for some P ⊆ [n], and is

interested in a (possibly randomized) discrete function U of the sources XQ it does not know,

where Q .
= Pc. That is, we have the Markov chain U−XQ− (Y, XP). Quite often in practice,

this function is chosen by the adversary, and is unknown to the data curator. Therefore, we

consider a worst-case privacy leakage measure, a conditional version of the maximal leakage

from Issa et al. [2020], as our privacy metric.
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Definition 5.2 (Maximal leakage, Issa et al. [2020]). Given a finite discrete joint distribution

PX[n],Y, the maximal leakage from XQ to Y given XP is defined as

Lmax(XQ→Y |XP)
.
= sup

U:U−XQ−(Y,XP)

L(U→Y |XP), (5.42)

where

L(U → Y |XP)
.
= log EPY,XP

[
r(U → Y |XP)

]
. (5.43)

Remark 5.4. Note that the maximal leakage in Definition 5.2 assumes a different Markov

chain model from [Issa et al., 2020, Section III-E]: for our problem, the Markov chain model

studied in Issa et al. [2020] always reduces to U − X[n] −Y regardless of Q.

When there is no ambiguity, we refer to Lmax(XQ → Y|XP) simply as Lmax. A com-

putable expression of the maximal leakage in Definition 5.2 is presented as

Lmax = log ∑
y,xP

max
xQ

PY,XP|XQ
(y, xP |xQ), (5.44)

which can be obtained following a similar approach to Issa et al. [2020]. Note that the right

hand side of (5.44) is equal to the Sibson mutual information of order ∞ Sibson [1969]; Verdú

[2015].

Legitimate Users: There are m legitimate users. User i ∈ [m] knows some sources XAi

a priori as side information for some Ai ⊆ [n], and is interested in all the remaining sources

XAc
i
. More specifically, for each user i, the sources XAc

i
are divided into two groups of different

levels of priority:

• Source XWi for some Wi ⊆ Ac
i are indispensable to the user, and thus must be correctly

guessed by user i with probability of 1 (i.e., perfect decoding).

• The rest of the sources, XGi , where Gi
.
= Ac

i \Wi, are less essential, yet still useful/in-

teresting. Thus, user i requires the guessing ability gain upon observing Y to be larger

than a certain threshold di.

These result in the following two kinds of utility constraints. For any i ∈ [m], we have

H(XWi |Y, XAi) = 0, ∀i ∈ [m], (5.45)

D(XGi → Y |XAi) ≥ di, ∀i ∈ [m], (5.46)

where D(XGi → Y|XAi) is defined as

D(XGi → Y |XAi)
.
= EPY,XAi

[
log r(XGi→Y |XAi)

]
. (5.47)
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Note that for constraint (5.46), each legitimate user i is interested in obtaining the source

XGi rather than a function/feature of XGi . We simplify the notation D(XGi → Y|XAi) to Di

when there is no ambiguity.

Remark 5.5. Note the subtle difference between Di and

L(XGi → Y |XAi) = log EPY,XAi

[
r(XGi → Y |XAi)

]
,

L defined in (5.43). The latter is lower bounded by the former due to Jensen’s inequality. From

the data curator’s viewpoint, requesting Di to be above a certain threshold is more stringent

than requesting L(XGi → Y|XAi) to be above that threshold. We use Di rather than L(XGi →
Y|XAi) as our utility measure as it leads to a simple closed-form result characterizing Lmax in

terms of Di (cf. Lemma 5.4).

Remark 5.6. The two types of utility constraints in (5.45) and (5.46) can be unified to be rep-

resented in terms of the same function D: The perfect decoding constraint (5.45) is equivalent

to requiring that

D(XWi → Y |XAi) = EPY,XAi

[
log

1
max

xWi

PXWi
(xWi)

]
= H∞(XWi), (5.48)

where H∞(XWi) denotes the min-entropy (i.e., Rényi entropy of order ∞ Rényi [1961]) of

XWi . One can show that for any i ∈ [m], Di ≤ H∞(XGi). Consequently, to avoid an invalid

system model, we always require that 0 ≤ di ≤ H∞(XGi).

Privacy-Utility Tradeoff: We denote such system by the 5-tuple (PX[n] , A, W, d, P), where

A .
= (Ai, i ∈ [m]), W .

= (Wi, i ∈ [m]), and d .
= (di, i ∈ [m]). Note that Gi is determined by

Wi and Ai, and Q is determined by P.

To design the privacy mechanism PY|X[n]
, we need to consider the fundamental tradeoff

between the privacy and utility. Any data distortion that reduces the information leakage to

the adversary can decrease the utility obtained by the users. Such tradeoff is formulated by the

following constrained optimization problem.

inf
PY|X[n]

∈
PY|X[n]

(PX[n]
,A,W,d,P)

Lmax(XQ → Y |XP), (5.49)

where PY|X[n]
(PX[n] , A, W, d, P) denotes the collection of randomized mappings PY|X[n]

that

satisfy (5.45) and (5.46) for the system (PX[n] , A, W, d, P).
Due to the non-convexity of (5.49), instead of providing an explicit solution, we derive
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performance bounds and achievability results to characterize Lmax by taking inspiration from

index coding.

5.2.2 Performance Bounds on the Privacy Leakage

We derive two information-theoretic lower bounds on the privacy leakage. One is based on the

utility constraint (5.45) only, while the other is obtained based on both (5.45) and (5.46).

5.2.2.1 Lower Bound Based on the Confusion Graph

The utility constraint (5.45) indicates that for user i, any different realizations xWi 6= x′Wi
∈

XWi must be distinguishable based on the released y ∈ Y , as well as the user’s side information

xAi ∈ XAi . To describe such distinguishability, we recall the notion of confusion graph for

index coding Alon et al. [2008].

Definition 5.3 (Confusion graph, Alon et al. [2008]). Any two realizations of the n sources

x1
[n], x2

[n] ∈ X[n] are confusable if there exists some user i ∈ [m] such that x1
Wi
6= x2

Wi
and

x1
Ai

= x2
Ai

. A confusion graph Γ is an undirected graph with |X[n]| vertices such that every

vertex corresponds to a realization x[n] ∈ X[n] and an edge connects two vertices if and only if

their corresponding realizations are confusable.

See Figure 5.1 for an example of the confusion graph.

To ensure (5.45), a group of realizations of X[n] can be mapped to the same y with nonzero

probability only if they are pairwisely not confusable. To show such statement, consider any

two confusable realizations x1
[n], x2

[n] such that for some user i, x1
Wi
6= x2

Wi
and x1

Ai
= x2

Ai
. If

x1
[n], x2

[n] are mapped to the same y with nonzero probability, then upon observing this y, user i
will not be able to tell whether its requested sources XWi give x1

Wi
or x2

Wi
according to its side

information (as x1
Ai

and x2
Ai

are simply the same). More rigorously, for any source set S ⊆ [n],
define

Y(xS)
.
= {y ∈ Y : PY|XS

(y|xS) > 0}, ∀xS ∈ XS,

XS(y)
.
= {xS ∈ XS : PY|XS

(y|xS) > 0}, ∀y ∈ Y .

Then, we have the following lemma. We omit the proof as it can be simply done by contradic-

tion.

Lemma 5.3. Given a PY|X[n]
satisfying (5.45), for any two confusable x1

[n], x2
[n] ∈ X[n], we

have Y(x1
[n]) ∩ Y(x2

[n]) = ∅.

Given a source set S ⊆ [n] and a specific realization xS ∈ XS, we define Γ(xS) as the

subgraph of Γ induced by all the vertices x[n] such that x[n] = (xS, xSc) for some xSc ∈ XSc .
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(0, 0, 0) (0, 0, 1)

(0, 1, 0)
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Figure 5.1: The confusion graph Γ when there are three binary sources, W = ({1}, {2}, {3}), and
A = (∅, {3}, {2}). For example, the two vertices corresponding to realizations x1

[n] = (0, 0, 0) and

x2
[n] = (0, 0, 1) are confusable and thus connected in Γ, because at user i = 3, we have x1

W3
= 0 6=

x2
W3

= 1 and x1
A3

= x2
A3

= 0.

Notice that for any x1
S 6= x2

S ∈ XS and x1
Sc 6= x2

Sc ∈ XSc , (x1
S, x1

Sc) and (x1
S, x2

Sc) are confusable

if and only if (x2
S, x1

Sc) and (x2
S, x2

Sc) are confusable. Hence, given the source set S ⊆ [n], the

subgraphs Γ(xS), xS ∈ XS are isomorphic to each other, and thus we simply denote any such

subgraph by Γ(S).

We present our first lower bound on the privacy leakage as follows.

Theorem 5.6. For the problem (5.49) with confusion graph Γ:

Lmax ≥ log ω(Γ(P)), (5.50)

where ω(·) is the clique number (size of the largest clique) of a graph.

Proof. Consider any xP ∈ XP. There exists some realizations x1
Q, x2

Q, . . . , xω(Γ(xP))
Q ∈ XQ

whose corresponding vertices in the subgraph Γ(xP) form a clique, which indicates that the

realizations (xP, x1
Q), (xP, x2

Q), . . . , (xP, xω(Γ(xP))
Q ) also form a clique in Γ. That is, the real-

izations (xP, x1
Q), . . . , (xP, xω(Γ(xP))

Q ) are pairwisely confusable. Then by Lemma 5.3, for any

k 6= k′ ∈ [ω(Γ(xP))], we have

Y((xP, xk
Q)) ∩ Y((xP, xk′

Q)) = ∅. (5.51)
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Therefore, we have

∑
y

max
xQ

PY|X[n]
(y|xP, xQ) ≥ ∑

k∈[ω(Γ(xP))]
∑

y∈Y(xP,xk
Q)

max
xQ

PY|X[n]
(y|xP, xQ)

≥ ∑
k∈[ω(Γ(xP))]

∑
y∈Y(xP,xk

Q)

PY|X[n]
(y|xP, xk

Q)

= ∑
k∈[ω(Γ(xP))]

1 = ω(Γ(xP)) = ω(Γ(P)), (5.52)

where the first inequality follows from (5.51). Hence, we have

Lmax = log ∑
xP

PXP(xP) ∑
y∈Y

max
xQ

PY|X[n]
(y|xP, xQ)

≥ log ∑
xP

PXP(xP) ·ω(Γ(P)) = log ω(Γ(P)),

where the first equality follows from the source independence, and the inequality follows from

(5.52).

5.2.2.2 Lower Bound Based on Polymatroidal Functions

We introduce a key lemma that serves as the baseline in the lower bound to be developed in

this subsection.

Lemma 5.4. For the problem (5.49), we have

Lmax ≥ max{I(XQ; Y |XP), max
i∈[m]:Gi⊆Q

∆i}, (5.53)

where ∆i
.
= Di + H(XWi∩Q) + I(XAi∩Q; Y|XP).

Proof. Recall that the maximal leakage Lmax is equal to the Sibson mutual information of

order ∞ Sibson [1969]; Verdú [2015], denoted by IS
∞, and hence we have

Lmax(XQ → Y |XP) = IS
∞(XQ; Y, XP) ≥ I(XQ; Y, XP) = I(XQ; Y |XP),

where the inequality follows from [Verdú, 2015, Theorem 2], and the last equality follows from

the source independence.

It remains to show Lmax ≥ ∆i for any user i ∈ [m] with Gi ⊆ Q. For brevity, we drop the

subscript i remembering that W, A, G stand for Wi, Ai, Gi, respectively. Set

WP = P ∩W, WQ = Q ∩W,
AP = P ∩ A, AQ = Q ∩ A.
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Since G ⊆ Q, we have P ∩ G = ∅, Q ∩ G = G, and thus P = WP ∪ AP, and Q =

WQ ∪ AQ ∪ G. We have

Lmax(XQ → Y |XP)

≥ ∑
y,xP

PY,XP(y, xP) log max
xQ

PY,XP|XQ
(y, xP|xQ)

PY,XP(y, xP)
(5.54)

= ∑
y,xP

PY,XP(y, xP) log
(

max
xWQ ,xAQ

(
PY,XP|XWQ ,XAQ

(y, xP|xWQ , xAQ)

PY,XP(y, xP)

·max
xG

PY,XP|XQ
(y, xP|xQ)

PY,XP|XWQ ,XAQ
(y, xP|xWQ , xAQ)

)
)

= ∑
y,xP

PY,XP(y, xP) log
(

max
xWQ ,xAQ

(
PY,XP|XWQ ,XAQ

(y, xP|xWQ , xAQ)

PY,XP(y, xP)

·max
xG

PY,XA|XG
(y, xA|xG)

PY,XA(y, xA)
)
)

(5.55)

≥ ∑
y,xP,xAQ

PY,XP,XAQ
(y, xP, xAQ)

(
log max

xWQ

PY,XP|XWQ ,XAQ
(y, xP|xWQ , xAQ)

PY,XP(y, xP)

+ log max
xG

PY,XA|XG
(y, xA|xG)

PY,XA(y, xA)

)
(5.56)

= I(Y, XP; XWQ , XAQ) + ∑
y,xA

PY,XA(y, xA) log max
xG

PY,XA|XG
(y, xA|xG)

PY,XA(y, xA)
(5.57)

≥ I(Y, XP; XWQ , XAQ) + Di (5.58)

= I(Y; XAQ |XP) + H(XWQ) + Di = ∆i, (5.59)

where

• (5.54) follows from Jensen’s inequality;

• (5.55) follows from the fact that for any y ∈ Y , xW∪A ∈ XW∪A,

max
xG

PY,XP|XQ
(y, xP|xQ)

PY,XP|XWQ ,XAQ
(y, xP|xWQ , xAQ)

= max
xG

PY,XA∪G(y, xA∪G) ·PXW |Y,XA∪G
(xW |y, xA∪G)

PXG(xG) ·PY,XA(y, xA) ·PXW |Y,XA
(xW |y, xA)

(a)
= max

xG

PY,XA|XG
(y, xA|xG)

PY,XA(y, xA)
,

where (a) follows from the Markov chain XW − (Y, XA)− XG as a result of the utility

constraint (5.45);
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• (5.56) follows from replacing maximum over xAQ with expectation over PXAQ |Y,XP
, and

Jensen’s inequality;

• (5.57) follows from the fact that XWQ is a deterministic function of (Y, XP, XAQ) ac-

cording to (5.45);

• (5.58) follows from the fact that

∑
y,xA

PY,XA(y, xA) log max
xG

PY,XA|XG
(y, xA|xG)

PY,XA(y, xA)

≥ ∑
y,xA

PY,XA(y, xA) log
max

xG
PY,XA,XG(y, xA, xG)

max
xG

PXG(xG) · PY,XA(y, xA)

= EPY,XAi

[
log r(XGi → Y |XAi)

]
= Di;

• (5.59) follows from the source independence, as well as (5.45).

This concludes the proof.

For a given system (PX[n] , A, W, d, P), H(XWi∩Q) has a fixed value and Di is lower

bounded by di according to (5.46). Hence, the only terms in (5.53) that still depend on PY|X[n]

are the mutual information I(XP; Y|XQ) and I(XAi∩Q; Y|XP). We further bound these mutual

information terms below.

We draw inspiration from the polymatroidal (PM) bound Blasiak et al. [2011] in Proposi-

tion 2.7 for the CIC problem.

Lemma 5.5. Consider the system (PX[n] , A, W, d, P). For any disjoint V, Z ⊆ [n], we have

I(XV ; Y |XZ) = g(Zc)− g(Zc ∩Vc), (5.60)

for some polymatroidal set function g(S), S ⊆ [n] such that for any i ∈ [n], W ⊆ Wi,

G ⊆Wc ∩ Ac
i ,

H(XW) = g(G ∪W)− g(G), (5.61)

and

g(∅) = 0, (5.62)

g(S′) ≥ g(S), if S ⊆ S′, (5.63)

g(S′) + g(S) ≥ g(S′ ∪ S) + g(S′ ∩ S). (5.64)
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Proof. Define g(S) .
= H(Y|XSc)−H(Y|X[n]), ∀S ⊆ [n]. We have I(XV ; Y|XZ) = g(Zc)−

g(Zc ∩Vc). It remains to show that this g(S) satisfies (5.61)-(5.64).

For (5.61), consider any i ∈ [n], W ⊆ Wi, G ⊆ Wc ∩ Ac
i . Set A = [n] \W \ G, and one

can verify that Ai ⊆ A. Hence,

H(XW) = H(XW |XA)− H(XW |Y, XA) (5.65)

= H(Y |XA)− H(Y |XW , XA)

= g(W, G)− g(G),

where (5.65) is due to source independence, (5.45), and Ai ⊆ A.

For (5.62), we have g(∅) = H(Y|X[n])− H(Y|X[n]) = 0.

For (5.63), for any S ⊆ S′ ⊆ [n], S′c ⊆ Sc, and thus

g(S′) = H(Y |XS′c) ≥ H(Y |XSc) = g(S).

For (5.64), consider any S, S′ ⊆ [n]. Set Sc ∩ S′c = S0, Sc \ S0 = S1, and S′c \ S0 = S2.

We have

g(S′) + g(S)

= H(Y,XS0∪S2)+H(Y,XS0∪S1)−H(XS0∪S2)−H(XS0∪S1)

≥ H(Y, XS0)+H(Y, XS0∪S1∪S2)−H(XS0)−H(XS0∪S1∪S2)

= g(S ∪ S′) + g(S ∩ S′),

where the inequality follows from the submodularity of the entropy function, as well as source

independence.

The above bound can be solved using optimization tools such as LP or FME similar to the

PM bound in Proposition 2.7 and the grouping polymatroidal (GPM) bound in Theorem 4.7.

In the system (PX[n] , A, W, d, P), for any disjoint V, Z ⊆ [n], let

Λ(V, Z) .
= min

g satisfying (5.61)-(5.64)
{g(Zc)− g(Zc ∩Vc)}.

Combining Lemmas 5.4 and 5.5 gives the following result.

Theorem 5.7. For the problem (5.49), we have

Lmax ≥ max{Λ(Q, P), max
i∈[m]:Gi⊆Q

(
di + H(XWi∩Q) + Λ(Ai ∩Q, P)

)
}.

Remark 5.7. In the index coding problem, we usually assume uniformly distributed indepen-

dent sources and a deterministic mapping PY|X[n]
. In contrast, Theorems 5.6 and 5.7 generally
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hold for any discrete independent source distribution and make no assumption on the privacy

mechanism.

In general, Theorems 5.6 and 5.7 can outperform each other. See the numerical tests in

Section 5.2.4 for more discussions about the comparison between the two performance bounds.

5.2.3 Privacy-Preserving Mechanism Design

We develop a greedy algorithm to provide a solution for the problem (5.49). The algorithm is

based on the agglomerative clustering method, which has been used in the information bottle-

neck Slonim and Tishby [2000] and the privacy funnel problems Makhdoumi et al. [2014].

Consider a given system (PX[n] , A, W, d, P). To design the privacy-preserving mechanism

PY|X[n]
, we start from the one-to-one deterministic mapping withY = X[n] and PY|X[n]

(y|x[n]) =
1 if and only if y = x[n]3 and then iteratively merge some elements of Y to make the privacy

leakage smaller (in other words, we “blur" the revealed information), while still ensuring the

utility for the users at an acceptable level, i.e., satisfying (5.45) and (5.46). In particular, to

ensure (5.45), we again utilize the notion of confusion graph Alon et al. [2008] introduced in

Section 5.2.2.1. See Figure 5.2 for an example about how the merging operation is restricted

in order to satisfy (5.45).

Based on the merging idea discussed above, we propose an agglomerative clustering al-

gorithm in Algorithm 4. Let Yy1,y2 be the resulting Y from merging any y1, y2 ∈ Y . Let Θ
denote the collection of {y1, y2} such that merging them does not violate (5.45) and (5.46) and

strictly reduces the privacy leakage to the adversary:

Θ .
=
{
{y1, y2} ∈ Y × Y : y1 6= y2, any two

x[n], x′[n] ∈ X[n](y1) ∪ X[n](y2) are not confusable,

D(XGi → Yy1,y2 |XAi ) ≥ di, ∀i ∈ [m],

Lmax(XQ → Yy1,y2 |XP) < Lmax(XQ → Y |XP)
}

.

(5.66)

The algorithm terminates if Θ becomes an empty set.

Remark 5.8. In order to compute Algorithm 4 more efficiently, notice that in step 3 finding

arg min{y1,y2}∈Θ Lmax(XQ → Yy1,y2 |XP) is equivalent to finding

arg max
{y1,y2}∈Θ

(
2Lmax(XQ→Y|XP) − 2Lmax(XQ→Yy1,y2 |XP)

)
,

3Note that such one-to-one mapping allows every user to perfectly reconstruct every source and thus definitely
satisfies (5.45) and (5.46). Nevertheless, it also leads to the largest privacy leakage as the adversary can also
perfectly reconstruct XQ and subsequently any function U thereof it is interested in.
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Figure 5.2: The confusion graph Γ when there are three binary sources, W = ({1}, {2}, {3}), and
A = (∅, {3}, {2}) (repeated from Figure 5.1). To help with understanding, we color-code the vertices
of Γ such that to ensure (5.45), two codewords y 6= y′ ∈ Y can be possibly merged if and only if their
corresponding groups of source realizations X[n](y) and X[n](y′) all belong to the same color class.

which can be computed as

2Lmax(XQ→Y|XP) − 2Lmax(XQ→Yy1,y2 |XP)

= ∑
xP

max
xQ

PXP(xP) · PY|X[n]
(y1 |xP, xQ) + ∑

xP

max
xQ

PXP(xP) · PY|X[n]
(y2 |xP, xQ)

−∑
xP

max
xQ

PXP(xP) · PY|X[n]
(ȳ|xP, xQ)

= ∑
xP∈XP(y1)

PXP(xP) · 1 + ∑
xP∈XP(y2)

PXP(xP) · 1− ∑
xP∈XP(ȳ)

PXP(xP) · 1

= PXP(XP(y1)) + PXP(XP(y2))− PXP(XP(ȳ)).

5.2.4 Numerical Test Results

To evaluate the performance of our proposed performance bounds and privacy mechanism,

we consider 500 systems (PX[n] , A, W, d, P) randomly generated according to the following

conditions:

• n = m = 5, Wi = {i} for any user i ∈ [5], and A is generated based on a randomly

chosen graph G from the 9608 non-isomorphic 5-vertex directed graphs Arbabjolfaei

and Kim [2018] such that Ai = {j ∈ [5] : (j, i) ∈ G}.

• For any i ∈ [5], Xi = {0, 1} and Xi ∼ Bern(pi), where pi is uniformly randomly
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Algorithm 4: Agglomerative clustering algorithm for problem (5.49)

input : The system (PX[n]
, W, A, d, P).

output: Privacy-preserving mechanism PY|X[n]
.

1 Initialization: Y ← X[n], PY|X[n]
(y|x[n])← 1 iff y = x[n] and obtain Θ based on Y by (5.66);

2 repeat
3 {y∗1 , y∗2} ← arg min{y1,y2}∈Θ Lmax(XQ → Yy,y′ |XP);
4 Merge y∗1 and y∗2 into ȳ: ȳ← {y∗1 , y∗2};
5 Obtain the new Y by letting Y ← Y \ {y∗1 , y∗2} ∪ {ȳ} and

PY|X[n]
(ȳ|x[n])← PY|X[n]

(y∗1 |x[n]) + PY|X[n]
(y∗2 |x[n]) for any x[n] ∈ X[n] while keeping

the rest of PY|X[n]
unchanged;

6 Obtain the new Θ by (5.66) based on updated Y;
7 until Θ = ∅;
8 return PY|X[n]

;

chosen from the interval (0, 1);

• For any i ∈ [5], di = d̃i · H∞(XGi), where d̃i is uniformly randomly chosen from the

interval (0, 1);

• P ⊆ [5] is randomly generated assuring that |P| ≤ 2. That is, we consider a relatively

weak adversary that does not possess too many sources as side information.

For each system, we compute the lower bounds LThm.1
max and LThm.2

max by Theorems 5.6 and 5.7,

respectively. An interesting observation is that we have LThm.2
max > LThm.1

max for only 2 among

the 500 tested systems, while LThm.1
max > LThm.2

max for all the 498 remaining systems.

We also compute the maximal leakage according to the privacy-preserving mechanism

PY|X[n]
given by Algorithm 4, denoted as LAlg.1

max . Then we compute the ratio

R = LAlg.1
max / max(LThm.1

max ,LThm.2
max ).

A lower ratio R (close to 1) means that our converse and achievable results perform well and

are quite close to the optimal L∗max, while a higher ratio indicates bad performance of the

agglomerative privacy-preserving mechanism or loose converse bounds. We summarize the

values of R from 500 tests in Table 5.1, from which we can see that the proposed techniques

achieves a satisfactory level of performance for the majority of tested problems. Notably, we

have LThm.1
max = LAlg.1

max and thus R = 1 for 162 among the 500 tests.

5.3 Chapter Summary

In this chapter, we studied the security and privacy aspects of (centralized) index coding. We

formulated our secure index coding model by introducing security constraints on each receiver
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Table 5.1: Performance of the Lower Bounds versus Algorithm 4.
Ratio, R = 1 < 1.05 < 1.1 < 1.2 ≥ 1.2

Number of
Systems 162 401 429 460 40

that prevent the receiver to decode any messages in a certain prohibited message set. A linear

secure coding scheme and two performance bounds on the secure capacity have been proposed.

In addition, two necessary conditions for a given secure index coding problem to be feasible

(i.e., have at least one securely achievable rate tuple that is nonzero for every message) were

established. As for the privacy problem, we formulated a privacy-preserving data publishing

problem in a multi-terminal guessing framework inspired by index coding, where a server (data

curator) broadcasts messages to multiple legitimate receivers in the presence of an adversary.

Instead of trying to maximize the communication rate, the goal of the server is to balance the

privacy and utility performance in the system. Performance bounds on the optimal privacy

leakage were derived, and a greedy agglomerative clustering algorithm was introduced as a

practical privacy-preserving mechanism.



Chapter 6

Conclusion

In this chapter, we conclude this thesis with a brief summary on our contributions, together

with a number of open questions and intriguing future directions.

In this thesis, we studied the index coding problem in both the classical centralized setup

and the more general distributed scenario. In the centralized index coding (CIC) problem, a

central server containing n messages broadcasts to n receivers with side information over a

noiseless channel with unit capacity. In the distributed index coding (DIC) problem, all 2n

servers, each containing a different subset of the n messages in the system were taken into

account. Towards the ultimate goal of characterizing the problems’ capacity region, series of

achievable coding schemes and performance bounds have been developed. The security and

privacy aspects of the CIC problem have also been investigated.

For the achievability side, we took an information-theoretic perspective and built coding

schemes based on the classic tool of random coding. For the CIC problem, we started from

simplifying the existing random-coding-based composite coding scheme Arbabjolfaei et al.

[2013] through excluding redundant composite index rates and decoding configurations from

the expression and computation of its achievable rate region. We then extended the composite

coding scheme by employing an enhanced fractional rate splitting technique, which strictly

outperforms the standard convexification techniques based on time sharing. Following a dif-

ferent approach, the composite coding scheme was also generalized by allowing the composite

indices to be further layered. In other words, we added one more layer of random coding

into the original two-layer coding scheme. Subsequently, we developed the three-layer com-

posite coding scheme, which leads to a strictly enlarged achievable rate region. Motivated by

such advancement due to further layering of random coding, we ask the following fundamental

question on composite coding.

Open Problem I: Can we always strictly enlarge the achievable rate region by adding

more layers of random coding into the multi-layer composite coding scheme? What is the

fundamental limit on such multi-layer composite coding?

One practical drawback of the multi-layer composite coding scheme would be the high

computational complexity that increases rapidly as the number of random coding layers in-

145
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creases. Current simplification techniques for the composite coding and three-layer composite

coding would be not efficient enough to address the forbiddingly high complexity when the

number of layers is large. Therefore, it is of importance to extend and further improve the

simplification methods in a systematic manner.

Open Problem II: Find the minimal set of necessary composite indices and decoding

configurations for composite coding for a general CIC problem, and extend such result to the

multi-layer composite coding schemes.

An interesting observation is that thus far no concrete CIC instance has been identified

in the literature for which the composite coding scheme (even with enhanced convexification

method and multiple layers of random coding) can strictly outperform the general vector linear

coding schemes.

Open Problem III: Show that the linear capacity region (i.e., the closure of the set of all

achievable rate tuples given by linear coding schemes) always subsumes the achievable rate

region of composite coding (or its extensions), or provide a counterexample.

For the DIC problem, we generalized the composite coding scheme to the multi-server

scenario. More specifically, we combined the key ideas of our enhanced fractional rate splitting

with the cooperative compression method introduced in Li et al. [2018]. We also showed that

the distributed composite coding can be presented in a series of equivalent or simplified forms.

The open problems for the centralized composite coding carries over to its distributed

variant. Beyond the scope of composite coding, practical (linear) code design is an important

open problem in the DIC problem.

Open Problem IV: Design linear coding schemes that are applicable to all DIC problems

as a general purpose coding scheme and are implementable in practice with low complexity.

For the converse side of the capacity region, we introduced a number of performance

bounds that characterize the fundamental limits on the communication rates imposed by the

system model. Our performance bounds for the CIC problem were developed based on the

acyclic chain model, which are generalized versions of the alignment chain model Maleki

et al. [2014] that can capture concatenated acyclic structures among the interfering messages

at the receivers. The acyclic chain bounds are strictly tighter than the maximum acyclic in-

duced subgraph bound Bar-Yossef et al. [2011] and the internal conflict bound Maleki et al.

[2014]; Jafar [2014], and, at the same time, less computationally intensive compared with the

more general polymatroidal bounds Blasiak et al. [2011]. The proposed bounds have also been

shown to satisfy several desirable properties.

Open Problem V: Characterize the time complexity of computing the acyclic chain bounds

for a general CIC problem with n messages. And design algorithms for the computation or

approximation of the acyclic chain bounds with low complexity (e.g., polynomial-time algo-

rithms).

As for the DIC problem, we first proposed two performance bounds based on some less
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general variants of the acyclic chain model. Whether there exist more general iterative DIC

performances as counterparts to the CIC acyclic chain bounds remains unknown at the moment.

Open Problem VI: Show the general iterative performance bounds based on the acyclic

chain models for the DIC problem, which allow message sets rather than individual messages

to be components of the chains, or provide counterexamples.

Next, we proposed a general performance bound based on the polymatroidal (PM) ax-

ioms of the entropy function, which can essentially capture all Shannon-type inequalities. The

bound is referred to as the grouping PM bound as it utilizes general groupings of servers in the

system with different levels of granularity. Such flexibility allows a natural tradeoff between

computational complexity and tightness of the bound. We also specified a number of construc-

tion techniques for grouping servers and presented the corresponding specialized forms of the

grouping PM bound.

Open Problem VII: Find the minimal set of inequalities needed to characterize the group-

ing PM bound with a given server grouping.

Open Problem VIII: The correspondence between the server groups used in the match-

ing achievable and performance bounds for the problem in Example 4.12 is interesting and

worth of future investigation. With deeper understanding of the possible reasons behind such

correspondence, can we establish the capacity region for certain class of DIC problems by

proving that the grouping PM bound matches the distributed composite coding bound? Or,

can we prove that there is a constant (with respect to the system parameters) multiplicative gap

between these two bounds for a general DIC problem?

In general, Shannon-type inequalities are not sufficient to obtain tight performance bounds

on the capacity region even for the CIC problem Sun and Jafar [2015]; Baber et al. [2013];

Liu and Sadeghi [2019b]. As the CIC problem is a special case of the DIC problem, it follows

automatically that non-Shannon-type inequalities are needed for some DIC instances.

Open Problem IX: Can we construct a class of CIC or DIC problems for which non-

Shannon-type inequalities are needed? How much would non-Shannon-type inequalities im-

prove upon Shannon-type inequalities (i.e., the grouping PM bound) for these problems?

In the last part of the thesis, we studied the secure and private (centralized) index coding

problems in two different settings. In our secure index coding model, each receiver stipulates

not only a decoding requirement for its wanted message, but also a set of security constraints

prohibiting the receiver from learning any individual message that belongs to a certain prohib-

ited message set. A linear coding scheme to ensure such secure communication was proposed.

On the converse side, performance bounds on the secure capacity region were developed, based

on which we could also establish two necessary conditions for a given problem to have at least

one securely achievable rate tuple that is nonzero for every message. Further improvements on

the secure coding schemes and performance bounds remain to be investigated. Beyond that,

we would also like to list the following challenging research directions.
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Open Problem X: Characterize the sufficient and necessary conditions for a given secure

index coding to be feasible (i.e., to have at least one securely achievable rate tuple that is

nonzero for every message).

Open Problem XI: Characterize the secure capacity region under the stronger security

constraint that each receiver can learn no information about its entire prohibited message set,

where secret keys shared among subsets of receivers and the server might be needed.

We formulated a privacy-preserving data publishing problem inspired by the index coding

problem, but with a significant twist to place emphasis on privacy. We considered a multi-

terminal guessing framework where the published (broadcasted) codeword from the server

are observed by the legitimate receivers and a malicious adversary. The privacy and utility

were measured according to the success rates of correctly guessing certain parameters of inter-

est by the adversary and legitimate receivers, respectively. Performance bounds and privacy-

preserving mechanism were proposed towards characterizing the fundamental privacy-utility

tradeoff. For the performance bounds we drew inspiration from the confusion graph tech-

nique Alon et al. [2008] and the polymatroidal bound Blasiak et al. [2011]. For the privacy-

preserving mechanism we adopted the method of agglomerative clustering from Slonim and

Tishby [2000]; Makhdoumi et al. [2014].

Open Problem XII: Characterize the privacy-utility tradeoff with a communication rate

constraint for the data publishing problem in the multi-terminal guessing framework.

Open Problem XIII: Characterize the privacy-utility tradeoff with or without a communi-

cation rate constraint for the data publishing problem when the privacy and utility are measured

using different metrics other than the correctly guessing probability.
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In Appendix A, we prove certain results presented in Chapter 3.

A.1 Proof of Theorem 3.7

Analysis of error for the first-step decoding is as follows. We partition the error event according

to the collection M ⊆ Γ∗(Pi) \ 2Ai for erroneous composite indices. That is, ŵK 6= wK iff

K ∈ M. Therefore, by the union bound, we have

Pe = P{yJ = yJ(ŵK, K ∈ 2J) for all J ∈ Pi for some

(ŵK, K ∈ Γ∗(Pi)) 6= (wK, K ∈ Γ∗(Pi))}

≤ ∑
M⊆Γ∗(Pi)\2Ai

∑
(ŵK ,K∈Γ∗(Pi)):
ŵK 6=wK ,K∈M,
ŵK=wK ,K/∈M

P

 ⋂
J∈Pi ,J∈Γ∗(M)

{
yJ = yJ(ŵK, K ∈ 2J)

}
< ∑

M⊆Γ∗(Pi)\2Ai

2∑K∈M sK−∑J∈Γ∗(M)∩ Pi
rJ (A.1)

< ∑
M⊆Γ∗(Pi)\2Ai

2∑K∈M(rSK+1)−∑J∈Γ∗(M)∩ Pi
(rCJ−1)

= ∑
M⊆Γ∗(Pi)\2Ai

2r ∑K∈M SK · 2|M|+|Γ∗(M)∩ Pi |

2r ∑J∈Γ∗(M)∩ Pi
CJ

,

where (A.1) holds since for each composite index collection M, the number of erroneous tuples

is ∏K∈M(2sK − 1) < 2∑K∈M sK , and for each erroneous composite index tuple with ŵK 6= wK,

iff K ∈ M, the probability that it is mapped to the same codeword yJ as the correct composite

index tuple for all J ∈ Γ∗(M) ∩ Pi is 2−∑J∈Γ∗(M)∩ Pi
rJ . Note that only servers in Γ∗(M) can

generate composite index (indices) in the collection M and the intersection with Pi is necessary

due to receiver i’s choice of server group Pi.
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Therefore, the error probability Pe tends to zero as r → ∞, provided that

∑
K∈M

SK < ∑
J∈Γ∗(M)∩ Pi

CJ , ∀M ⊆ Γ∗(Pi) \ 2Ai , i ∈ [n].

Analysis of error for the second-step decoding is as follows. Recall that we always require

that Di ⊆ ∪J∈Pi J, ∀i ∈ [n]. We partition the error event according to message index subsets

L ⊆ Di. That is, x̂j 6= xj iff j ∈ L. Therefore, by the union bound, we have

Pe = P{wK(x̂K) = ŵK for all K ∈ Γ∗(Pi), K ⊆ Di ∪ Ai for some x̂j 6= xj, j ∈ Di}

≤ ∑
L⊆Di

∑̂
xDi :

x̂j 6=xj,j∈L
x̂j=xj,j/∈L

P


⋂

K⊆Di∪Ai ,
K∈Γ∗(Pi),
K∩L 6=∅

{wK(x̂K) = ŵK}


≤ ∑

L⊆Di

2∑j∈L tj−∑K⊆Di∪Ai ,K∈Γ∗(Pi),K∩L 6=∅ sK (A.2)

< ∑
L⊆Di

2∑j∈L(rRj+1)−∑K⊆Di∪Ai ,K∈Γ∗(Pi),K∩L 6=∅ rSK

= ∑
L⊆Di

2r(∑j∈L Rj−∑K⊆Di∪Ai ,K∈Γ∗(Pi),K∩L 6=∅ SK)+|L|,

where (A.2) holds since for each message index subset L, the number of erroneous messages

is ∏j∈L(2
tj − 1) < 2∑j∈L tj and for each erroneous message tuple with x̂j 6= xj, iff j ∈ L, the

probability that it is mapped to the same composite index wK as the correct message tuple for

all K such that K ⊆ Di ∪ Ai, K ∈ Γ∗(Pi), K ∩ L 6= ∅ is 2−∑K⊆Di∪Ai ,K∈Γ∗(Pi),K∩L 6=∅ sK .

Therefore, the error probability Pe tends to zero as r → ∞, provided that

∑
j∈L

Rj < ∑
K⊆∆i∪Ai ,K∈Γ∗(Pi),K∩L 6=∅

SK, ∀L ⊆ Di, i ∈ [n].

A.2 Proof of Proposition 3.2

We first prove the following lemma.

Lemma A.1. If P′ ⊆ P, then

Γ∗(P′) \ Γ∗(P \ P′) = Γ∗(P) \ Γ∗(P \ P′). (A.3)

Proof. As P′ ⊆ P, we have that Γ∗(P′) ⊆ Γ∗(P), and therefore, Γ∗(P′) \ Γ∗(P \ P′) ⊆
Γ∗(P) \ Γ∗(P \ P′).

Now consider an arbitrary J ∈ Γ∗(P) \ Γ∗(P \ P′). As J ∈ Γ∗(P), there must exist some
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J1 ∈ P such that J ⊆ J1. Since J 6∈ Γ∗(P \ P′), we know that J1 6∈ P \ P′. Hence, J1 ∈ P′ and

thus J ∈ Γ∗(P′). Therefore, we have J ∈ Γ∗(P′) \ Γ∗(P \ P′) and thus Γ∗(P) \ Γ∗(P \ P′) ⊆
Γ∗(P′) \ Γ∗(P \ P′).

In summary, we have Γ∗(P′) \ Γ∗(P \ P′) = Γ∗(P) \ Γ∗(P \ P′).

Now we prove Proposition 3.2 as follows.

For easier reference, we repeat (3.36) here for a given (Pi, i ∈ [n]),

∑
K∈M

SK < ∑
J∈Γ∗(M)∩ Pi

CJ ,

∀M ⊆ Γ∗(Pi) \ 2Ai , i ∈ [n]. (A.4)

According to Lemma A.1, for any Q ⊆ Pi we have

Γ∗(Q) \ Γ∗(Pi \Q) \ 2Ai = Γ∗(Pi) \ Γ∗(Pi \Q) \ 2Ai .

Therefore, for the same Pi as chosen above, (3.43) can be written as

∑
K∈Γ∗(Pi)\Γ∗(Pi\Q)\2Ai

SK < ∑
J∈Q

CJ ,

∀Q ⊆ Pi, i ∈ [n]. (A.5)

We prove that for any given inequality from the system of inequalities (A.4) there exists an

inequality in the system of inequalities (A.5) that is no looser and vice versa.

First, for any M ⊆ Γ∗(Pi) \ 2Ai in (A.4) we construct Q = Γ∗(M) ∩ Pi. Therefore, the

RHS of (A.4) and (A.5) become identical. Our claim is that M ⊆ Γ∗(Pi) \ Γ∗(Pi \ Q) \ 2Ai

or that if K ∈ M then K ∈ Γ∗(Pi) \ Γ∗(Pi \ Q) \ 2Ai . Note that we have M ⊆ Γ∗(Pi) \ 2Ai ,

therefore, if K ∈ M it is automatic that K ∈ Γ∗(Pi) \ 2Ai . So it remains to show that K /∈
Γ∗(Pi \ Q), which can be proven by contradiction as follows. For any K ∈ M, assume that

K ∈ Γ∗(Pi \ Q) = Γ∗(Pi \ Γ∗(M)), which indicates that there exists some J ∈ Pi \ Γ∗(M)

such that K ⊆ J. However, as K ∈ M and K ⊆ J, we have J ∈ Γ∗(M), which contradicts

with J ∈ Pi \ Γ∗(M). Therefore, for any K ∈ M, we must have K /∈ Γ∗(Pi \Q). In summary,

for any given M ⊆ Γ∗(Pi) \ 2Ai and the corresponding inequality from (A.4), we have proved

that there exists an inequality in (A.5) that is no looser.

To prove the other direction, for any Q ⊆ Pi we construct M = Γ∗(Pi) \ Γ∗(Pi \Q) \ 2Ai .

Therefore, the LHS of (A.4) and (A.5) become identical. Our claim is that if J ∈ Γ∗(M) ∩ Pi

then J ∈ Q or that Γ∗(M) ∩ Pi ⊆ Q. Before proving our claim, we show that with the choice

of M = Γ∗(Pi) \ Γ∗(Pi \Q) \ 2Ai , we have

M = Γ∗(M) ∩ Γ∗(Pi). (A.6)
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The direction M ⊆ Γ∗(M)∩Γ∗(Pi) is easy, as M ⊆ Γ∗(M) and M ⊆ Γ∗(Pi) by construction.

To show Γ∗(M) ∩ Γ∗(Pi) ⊆ M, for all J ∈ Γ∗(M) ∩ Γ∗(Pi), we have J ∈ Γ∗(M) and

J ∈ Γ∗(Pi). One can show a contradiction in assuming J ∈ Γ∗(Pi \Q) or J ∈ 2Ai . Therefore,

J ∈ Γ∗(Pi), J /∈ Γ∗(Pi \Q) and J /∈ 2Ai , hence J ∈ M, which completes the proof of (A.6).

Now we go back to proving the claim Γ∗(M) ∩ Pi ⊆ Q or equivalently, proving Pi \Q ⊆
Pi \ (Γ∗(M) ∩ Pi). For all J ∈ Pi \ Q, we have J ∈ Pi, which means J ∈ Γ∗(Pi). Also, J ∈
Pi \ Q means J ∈ Γ∗(Pi \ Q). Since M was constructed as M = Γ∗(Pi) \ Γ∗(Pi \ Q) \ 2Ai ,

then J ∈ Γ∗(Pi \ Q) means that J /∈ M. However, from J /∈ M, J ∈ Γ∗(Pi) and (A.6), we

conclude that J /∈ Γ∗(M), which means J /∈ Γ∗(M) ∩ Pi. Therefore, J ∈ Pi \ (Γ∗(M) ∩
Pi), which completes the proof of our claim. In summary, for any given Q ⊆ Pi and the

corresponding inequality from (A.5), we have proved that there exists an inequality in (A.4)

that is no looser.

In conclusion, we have proved that the system of inequalities (A.4) and (A.5) are identical

for a given (Pi, i ∈ [n]).
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In Appendix B, we prove certain results presented in Chapter 4.

B.1 Proof of Theorem 4.2

To prove Theorem 4.2, we take the following steps:

• We first introduce several definitions which will extensively be used throughout the

proof. In particular, we introduce a set function g : 2[n] → [0, 1] satisfying the properties

(2.35)-(2.40). Indeed, most derivations involved in the proof of Theorem 4.2 are based

on this set function g and its properties.

• Then we propose a series of lemmas establishing useful intermediate results. The lem-

mas study different modules within a general regular acyclic chain: basic tower, hori-

zontal chain, and regular tower. Roughly speaking, the lemmas provide upper bounds

on the achievable symmetric rate in terms of the set function g and the regular acyclic

chain bound Γ of the subproblems induced by the components of the module under con-

sideration;

• Combining these lemmas for different modules of a regular acyclic chain, and utilizing

the concatenation structure of the chain, we show a key lemma through mathematical

induction.

• Finally, we show that this key lemma implies Theorem 4.2.

B.1.1 A Number of Useful Definitions

First, we define an s-layer regular acyclic chain and an s-layer CIC problem.

Definition B.1 (An s-layer regular acyclic chain and an s-layer CIC problem). For any integer

s ≥ 0, an s-layer regular acyclic chain Ch and an s-layer CIC problem G are defined as follows.

1. We say a problem G is 0-layer if C(G) = ∅, i.e., G is half-rate-feasible.
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2. We say a chain Ch is 1-layer, if its components are all acyclic or half-rate-feasible.

We say a problem G is 1-layer if it has at least one valid chain and all its valid chains

Ch ∈ C(G) are 1-layer.

3. We say a chain Ch is 2-layer, if its components are all at most 1-layer, and there is at

least one component that is neither half-rate-feasible nor acyclic. We say a problem G is

2-layer if it has at least one 2-layer chain and all its valid chains Ch ∈ C(G) are at most

2-layer.

4. We say a chain Ch is 3-layer, if its components are all at most 2-layer, and there is at

least one 2-layer component. We say a problem G is 3-layer if it has at least one 3-layer

chain and all its valid chains Ch ∈ C(G) are at most 3-layer.

5. A chain or a problem that is of s-layer, for any integer s > 3, can be similarly defined.

Example B.1. Consider the 25-message CIC problem discussed in Example 4.3. The chain in

(4.5) is a 2-layer acyclic chain. This is because that its each component Vi, i ∈ [5] is a 1-layer

subproblem which is neither half-rate-feasible nor acyclic.

To prove Theorem 4.2, consider an arbitrary CIC problem G : (i|Ai), i ∈ [n].
Recall that for the CIC problem the zero-error capacity region coincides with the capac-

ity region (cf. Remark 2.1) Langberg and Effros [2011]. Therefore, throughout this section,

without loss of generality we assume zero-error decoding as

H(Xi |Y, XAi) = 0, ∀i ∈ [n]. (B.1)

Consider an arbitrary achievable rate tuple R and some (t, r) centralized index code satis-

fying

Ri ≤
ti

r
, ∀i ∈ [n]. (B.2)

and the decoding condition in (B.1). Without loss of generality, assume (B.2) holds with

equality. That is,

Ri =
ti

r
, ∀i ∈ [n]. (B.3)

Define set function g : 2[n] → [0, 1] as

g(S) .
=

1
r

H(Y |XSc), ∀S ⊆ [n]. (B.4)

For simplicity, we use i to denote {i} when there is no ambiguity, and thus g(i) simply

means g({i}). Also, for any sets S1, S2, · · · ⊆ [n], we use g(S1, S2, · · · ) to denote g(S1∪S2∪
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· · · ). For example, for n = 3, g({1, 2} ∪ {3}), g({1, 2}, {3}), g({1, 2}, 3) and g(1, 2, 3)
mean the same thing. For another example, for n = 4, S1 = {1, 2}, S2 = {3}, and S3 = {4},
the following terms mean the same thing

g(S1, S2, S3), g({1, 2}, {3}, {4}), g({1, 2}, 3, 4), g(1, 2, 3, 4),
g(S1 ∪ S2 ∪ S3), g({1, 2} ∪ {3} ∪ {4}), g({1, 2} ∪ 3∪ 4), g({1, 2, 3, 4}).

In the following, we list several properties of the set function g(S), which will be exten-

sively used later in the proofs.

We have

g(∅) = 0, (B.5)

g([n]) ≤ 1, (B.6)

g(S) ≤ g(S′), ∀S ⊆ S′ ⊆ [n], (B.7)

g(S ∩ S′) + g(S ∪ S′) ≤ g(S) + g(S′), ∀S, S′ ⊆ [n]. (B.8)

We refer to (B.7) and (B.8) as the monotonicity and submodularity of the set function g(S).
Notice that (B.5). (B.6), and (B.7) jointly ensure that 0 ≤ g(S) ≤ 1 for any S ⊆ [n].

We recall the following lemma introduced in Liu et al. [2018a], namely, the single-receiver

decoding lemma, which characterizes the key relationship between the rate tuple R and the set

function g(S).

Lemma B.1 (Single-receiver decoding lemma, Liu et al. [2018a]). For any receiver i ∈ [n],
we have

Ri + g(B) = g(B ∪ {i}), ∀B ⊆ Bi. (B.9)

Particularly, when B = ∅, g(B) = 0, and thus Ri = g(i).

So far we have introduced the set function g(S) in (B.4) and its properties in (B.5)-(B.8)

and Lemma B.11.

Based on the set function g(S), we also define the shorthand notation

g(A|B) .
= g(A, B)− g(B), (B.10)

for any A, B ⊆ [n]. Based on the properties of g(S), one can verify that g(A|B) has the

1Note that this set function g(S) in (B.4) indeed satisfies the properties (2.35)-(2.40) in the PM bound in
Proposition 2.7, which are essentially the same as the properties in (B.5)-(B.9).
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following properties,

g(A|B) ≤ g(A′ |B′), A ⊆ A′ ⊆ [n], B′ ⊆ B ⊆ [n], (B.11)

g(A|B, C) + g(B|C) = g(A, B|C), A, B, C ⊆ [n]. (B.12)

B.1.2 Lemmas and Intermediate Results

The lemma below is the key to showing Theorem 4.2, which can be proved using mathematical

induction on the number of layers, as defined in Definition B.1, of subproblem G|Q, or simply

subproblem Q. Recall that the regular acyclic chain lower bound of any subproblem Q is

denoted by Γ(Q) as defined in Theorem 4.2.

Lemma B.2. Let R be any achievable symmetric rate. For any nonempty message/receiver set

Q ⊆ [n], we have

g(Q, P) ≥ g(P) + R · Γ(Q), ∀P ⊆ BQ. (B.13)

To show Lemma B.2, we first show a more general version of the single-receiver decoding

lemma (Lemma B.1), and refer to it as the multi-receiver decoding lemma.

Lemma B.3 (Multi-receiver decoding lemma). Let R be any achievable symmetric rate. Con-

sider any two message/receiver sets K, K′ ⊆ [n] such that K′ ⊆ BK. If K is acyclic or subprob-

lem K is half-rate-feasible, then

g(K, K′) = R · Γ(K) + g(K′). (B.14)

Particularly, when K′ = ∅, g(K′) = 0, and thus g(K) = R · Γ(K).

Proof. We first show (B.14) when subproblem K is half-rate-feasible, where according to

Maleki et al. [2014]; Blasiak et al. [2013] we must have either that G|K is a complete graph

and Γ(K) = 1, or that Γ(K) = βMAIS(K) = 2. For the former where Γ(K) = 1, we have

g(K, K′) ≥ g(k, K′) = Rk + g(K′) = R · Γ(K) + g(K′),

where k is an arbitrary element of set K and the inequality follows from the monotonicity of

g(S) in (B.7), and the first equality follows from Lemma B.1 with K′ ⊆ BK ⊆ Bk. For the

latter where Γ(K) = βMAIS(K) = 2, there always exist two elements, k1, k2 ∈ K, such that

k2 ∈ Bk1 . Since that K′ ⊆ BK ⊆ Bk1 , we have {k2} ∪ K′ ⊆ Bk1 . Hence,

g(K, K′) ≥ g(k1, k2, K′) = Rk1 + Rk2 + g(K′) = R · Γ(K) + g(K′),
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where the inequality follows from the monotonicity of g(S) in (B.7), and the first equality

follows from Lemma B.1 with {k2} ∪ K′ ⊆ Bk1 and K ⊆ BK ⊆ Bk2 .

Now consider the case when K is acyclic. Given that K is acyclic and that K′ ⊆ BK, there

exists an ordering of elements in K as k1, k2, · · · , k|K| such that {k j : j ∈ [`− 1]} ∪ K′ ⊆ Bk`

for any ` ∈ [|K|] (cf. (2.12)). Hence, by Lemma B.1, we have

g(K, K′) = g(k1, k2, · · · , k|K|−2, k|K|−1, k|K|, K′)

= Rk|K| + g(k1, k2, · · · , k|K|−2, k|K|−1, K′)

= Rk|K| + Rk|K|−1
+ g(k1, k2, · · · , k|K|−2, K′)

= · · ·
= ∑

i∈K
Ri + g(K′) = R · Γ(K) + g(K′),

where the last equality is due to the fact that Γ(K) = |K| for any acyclic K.

With the help of the multi-receiver decoding lemma (Lemma B.3), we develop a series of

lemmas about the regular acyclic chain Ch as defined in Definition 4.4, which will prove useful

in showing Lemma B.2. We start with the following lemma for the basic tower.

Lemma B.4. Consider any basic tower Bj ⊆ [n]. Let R be any achievable symmetric rate. If

every component of Bj is acyclic or half-rate-feasible, we have

g(Bj, P) = g(I(j), I(j + 1), P) + R ∑
`∈[hj]

Γ(K`(j)), ∀P ⊆ BBj . (B.15)

Proof. Consider any P ⊆ BBj . For any ` ∈ [hj], we have I(j) ∪ I(j + 1) ∪ K1(j) ∪ · · · ∪
K`−1(j) ⊆ BK`(j) by Definition 4.1. Recall that for any K ⊆ K′ ⊆ [n], BK′ ⊆ BK ⊆ [n] (cf.

(2.2)). Thus we have P ⊆ BBj ⊆ BK`(j) since K`(j) ⊆ Bj. Combining these two results yields

I(j) ∪ I(j + 1) ∪ P ∪ K1(j) ∪ · · · ∪ K`−1(j) ⊆ BK`(j), ∀` ∈ [hj]. (B.16)

Given (B.16) and that every component of Bj is acyclic or half-rate-feasible, by Lemma B.3,

g(Bj, P) = g(I(j), I(j + 1), P, K1(j), K2(j), . . . , Khj(j))

= RΓ(Khj(j)) + g(I(j), I(j + 1), P, K1(j), K2(j), . . . , Khj−1(j))

= RΓ(Khj(j)) + RΓ(Khj−1(j)) + g(I(j), I(j + 1), P, K1(j), K2(j), . . . , Khj−2(j))

· · ·
= R ∑

`∈[hj]

Γ(K`(j)) + g(I(j), I(j + 1), P),
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which completes the proof.

The following lemma considers a group of message sets that are concatenatively located

on the horizontal chain of a regular acyclic chain.

Lemma B.5. Consider a group of message sets I(a), I(a + 1), . . . , I(b), I(b + 1) ⊆ [n] for

some positive integers a < b, concatenatively located on the horizontal chain of some regular

acyclic chain Ch ∈ C(G), which are all acyclic or half-rate-feasible. Let R be any achievable

symmetric rate. For any set P such that P ⊆ BI(a)∪I(a+1)∪···∪I(b)∪I(b+1), we have

∑
j∈[a:b]

g(I(j), I(j + 1), P)

≥ (b− a)g(P) + R ∑
j∈[a+1:b]

Γ(I(j)) + g(I(a), I(b + 1), P). (B.17)

Proof. Consider any P ⊆ BI(a)∪I(a+1)∪···∪I(b)∪I(b+1). Then for any j ∈ [a : b + 1], we have

I(j) ⊆ I(a + 1) ∪ · · · ∪ I(b) ∪ I(b + 1), and thus P ⊆ BI(j) by (2.2). Hence, we have

∑
j∈[a:b]

g(I(j), I(j + 1), P)

= g(I(a), I(a + 1), P) + g(I(a + 1), I(a + 2), P)

+ g(I(a + 2), I(a + 3), P) + · · ·+ g(I(b), I(b + 1), P)

≥ g(P) + RΓ(I(a + 1)) + g(I(a), I(a + 1), I(a + 2), P)

+ g(I(a + 2), I(a + 3), P) + · · ·+ g(I(b), I(b + 1), P) (B.18)

≥ 2g(P) + RΓ(I(a + 1)) + RΓ(I(a + 2)) + g(I(a), I(a + 1), I(a + 2), I(a + 3), P)

+ · · ·+ g(I(b), I(b + 1), P) (B.19)

· · · (B.20)

≥ (b− a)g(P) + RΓ(I(a + 1)) + RΓ(I(a + 2)) + · · ·+ RΓ(I(b))

+ g(I(a), I(a + 1), I(a + 2), · · · , I(b), I(b + 1), P) (B.21)

≥ (b− a)g(P) + R ∑
j∈[a+1:b]

Γ(I(j)) + g(I(a), I(b + 1), P), (B.22)

where (B.18) follows from the following derivation:

g(I(a), I(a + 1), P) + g(I(a + 1), I(a + 2), P)

≥ g(I(a + 1), P) + g(I(a), I(a + 1), I(a + 2), P)

= g(P) + RΓ(I(a + 1)) + g(I(a), I(a + 1), I(a + 2), P),

where the inequality is due to the submodularity of g(S) in (B.8) and the equality is due to
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Lemma B.3 given that for any j ∈ [a : b + 1], P ⊆ BI(j) and I(j) is acyclic or half-rate-

feasible. Inequalities (B.19)-(B.21) follow similarly. The last inequality, (B.22), is due to the

monotonicity of g(S) in (B.7).

The following lemma holds for any regular tower, whose proof involves Lemmas B.3-B.5

presented above.

Lemma B.6. Consider any regular tower Xj ⊆ [n] with central edge j whose components are

all acyclic or half-rate-feasible. Let R be any achievable symmetric rate. For any P ⊆ BXj , we

have

|Gj | · g(Xj, P) ≥ g(I(sθj,j), I(tθj,j), P) + R ∑
j′∈Gj

∑
`∈[hj′ ]

Γ(K`(j′))

+ R ∑
j′∈[sθj ,j+1:tθj ,j−1]

Γ(I(j′)) + (|Gj | − 1)g(P). (B.23)

Proof of Lemma B.6 for a specific example: To help with understanding, before present-

ing the proof of Lemma B.6, we illustrate our proof techniques by applying it to a specific

example. Consider the following regular tower Xj with the central edge j = 3,

Xj : I(1)
K1(1)←−→b I(2)

K1(2)←−→b I(3)

K3(3)
K2(3)
K1(3)←−→c I(4)

K1(4)←−→b I(5)
K1(5)←−→b I(6), (B.24)

where

• for brevity, we denote the height hj of the central edge simply as h, and for any ` ∈ [h],
the message set K`(j) as K`, s`,j as s`, t`,j as t`, and sιj,j, sθj,j, tιj,j, tθj,j as sι, sθ , tι, tθ ,

respectively;

• again for brevity, for any edge j′ ∈ [5] \ {3} = {1, 2, 4, 5} other than the central edge,

we denote K1(j′) as K(j′);

• s1 = 2, t1 = 5, s2 = sι = 3, t2 = tι = 4, s3 = sθ = 1, and t3 = tθ = 6 (one can

verifiy that Conditions 2b and 2c in Definition 4.3 are satisfied);

• every component of Xj is acyclic or half-rate-feasible.

Given the above setup, the regular tower Xj in (B.24) can be equivalently represented as

Xj : I(s3)
K(1)←−→b I(s1)

K(2)←−→b I(s2)

K3
K2
K1←−→c I(t2)

K(4)←−→b I(t1)
K(5)←−→b I(t3). (B.25)

See Figure B.1 as a visualization of this regular tower Xj.
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I(s3) I(s1) I(s2) I(t2) t(t1) I(t3)

K3

K2

K1

K(1) K(2) K(4) K(5)

Figure B.1: A visualization for the regular tower Xj in (B.25). To help with understanding, we draw
blue and purple dashed arrows. If there is a directed path formed by dashed arrows of the same color
from message set Q to P, then P ⊆ BQ.

For this specific Xj, (B.23) in Lemma B.6 reduces to

5g(Xj, P) ≥ g(I(s3), I(t3), P) + R ∑
j′∈[5]\{3}

Γ(K(j′)) + R ∑
`∈[3]

Γ(K`)

+ RΓ(I(s1)) + RΓ(I(s2)) + RΓ(I(t2)) + RΓ(I(t1)) + 4g(P). (B.26)

We show (B.26) in the following.

Define a one-to-one mapping function µ : [3]→ [3] as

1 = µ(3), 2 = µ(1), 3 = µ(2). (B.27)

Let η = µ−1 denote the inverse function of µ. Then we have

η(1) = 3, η(2) = 1, η(3) = 2. (B.28)

With such mapping function µ and η, we have

sη(1) = s3, tη(1) = t3,
sη(2) = s1, tη(2) = t1,
sη(3) = s2, tη(3) = t2,

(B.29)

Hence, for any i1 < i2 ∈ [3], sη(i1) < sη(i2) and thus I(sη(i1)) is placed on the left to I(sη(i2))

in the horizontal chain of Xj as shown in (B.25). Similarly, for any i1 < i2 ∈ [3], tη(i1) > tη(i2)
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and thus I(tη(i1)) is placed on the right to I(tη(i2)) in the horizontal chain of Xj in (B.25).

For any i ∈ [3], according to Condition 2a in Definition 4.3, P ⊆ BXj , and (2.2), we have

I(sη(i)) ∪ I(tη(i)) ∪ P ∪ K1 ∪ · · · ∪ Kη(i)−1 ⊆ BKη(i) . (B.30)

Hence, we have

RΓ(Kη(i))
(a)
= g(Kη(i), I(sη(i)), I(tη(i)), P, K1, . . . , Kη(i)−1)

− g(I(sη(i)), I(tη(i)), P, K1, . . . , Kη(i)−1)

(b)
= g(Kη(i) | I(sη(i)), I(tη(i)), P, K1, . . . , Kη(i)−1), (B.31)

where

• (a) follows from the multi-receiver decoding lemma (Lemma B.3) given (B.30) and the

fact that every component of Xj is acyclic or half-rate-feasible;

• (b) follows from (B.10).

We have

∑
`∈[3]

g(I(s`), I(t`), K1, K2, K3, P)

(c)
= ∑

i∈{1,2,3}
g(I(sη(i)), I(tη(i)), K1, K2, K3, P)

(d)
= ∑

i∈{1,2,3}

(
ρi + λi + RΓ(Kη(i))

)
, (B.32)

where

• for any i ∈ [3],

ρi
.
= g(I(sη(i)), I(tη(i)), P) + ∑

`∈{η(i′):i′∈[i−1]}
g(K` | I(sη(i)), I(tη(i)), P, K1, . . . , K`−1),

(B.33)

λi
.
= ∑

`∈[3]\{η(i′):i′∈[i]}
g(K` | I(sη(i)), I(tη(i)), P, K1, . . . , K`−1); (B.34)

• (c) follows from the fact that η is a one-to-one mapping function and thus {η(i) : i ∈
[3]} = [3];
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• (d) follows from the fact that for any i ∈ [3],

ρi + λi + RΓ(Kη(i))

(e)
= g(I(sη(i)), I(tη(i)), P) + ∑

`∈[3]\{η(i)}
g(K` | I(vi), I(tη(i)), P, K1, . . . , K`−1)

+ g(Kη(i) | I(sη(i)), I(tη(i)), P, K1, . . . , Kη(i)−1)

= g(I(sη(i)), I(tη(i)), P) + ∑
`∈[3]

g(K` | I(vi), I(tη(i)), P, K1, . . . , K`−1)

( f )
= g(I(sη(i)), I(tη(i)), P, K1, K2, K3),

where (e) follows from (B.33) and (B.34), as well as (B.31), and (f) follows from re-

peated application of (B.12).

According to the definitions of ρi, λi in (B.33) and (B.34), as well as (B.29), we have

ρ2 + λ1 + g(I(sη(1)), I(sη(2)), P) + g(I(tη(2)), I(tη(1)), P)

= g(I(sη(2)), I(sη(2)), P) + g(Kη(1) | I(sη(2)), I(tη(2)), P, K1, . . . , Kη(1)−1)

+ ∑
`∈{η(2),η(3)}

g(K` | I(sη(1)), I(tη(1)), P, K1, . . . , K`−1)

+ g(I(sη(1)), I(sη(2)), P) + g(I(tη(2)), I(tη(1)), P)

= g(I(s1), I(t1), P) + g(K3 | I(s1), I(t1), P, K1, K2)

+ g(K1 | I(s3), I(t3), P) + g(K2 | I(s3), I(t3), P, K1)

+ g(I(s3), I(s1), P) + g(I(t1), I(t3), P)

≥ ∑
`∈[3]

g(K` | I(s3), I(s1), I(t1), I(t3), P, K1, . . . , K`−1)

+ g(I(s1), I(t1), P) + g(I(s3), I(s1), P) + g(I(t1), I(t3), P) (B.35)

≥ ∑
`∈[3]

g(K` | I(s3), I(s1), I(t1), I(t3), P, K1, . . . , K`−1)

+ g(I(s3), I(s1), I(t1), I(t3), P) + g(I(s1), P) + g(I(t1), P) (B.36)

= g(I(s3), I(s1), I(t1), I(t3), P, K1, K2, K3) + g(I(s1), P) + g(I(t1), P) (B.37)

= g(I(s3), I(s1), I(t1), I(t3), P, K1, K2, K3) + 2g(P) + RΓ(I(s1)) + RΓ(I(t1)), (B.38)

where

• (B.35) follows from the property of g(A|B) in (B.11);

• (B.36) follows from applying the submodularity of g(S) in (B.8) twice;

• (B.37) follows from the property of g(A|B) in (B.12);
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• (B.38) follows from the multi-receiver decoding lemma (Lemma B.3) with the fact that

P ⊆ BXj ⊆ BI(s1) and P ⊆ BXj ⊆ BI(t1) (given by (2.2)) and that every component of

Xj is acyclic or half-rate-feasible.

Rearranging (B.38), we have

ρ2 + λ1 ≥ g(I(s3), I(s1), I(t1), I(t3), P, K1, K2, K3) + 2g(P) + RΓ(I(s1)) + RΓ(I(t1))

− g(I(sη(1)), I(sη(2)), P)− g(I(tη(2)), I(tη(1)), P). (B.39)

Similarly, one can verify that

ρ3 + λ2 ≥ g(I(s1), I(s2), I(t2), I(t1), P, K1, K2, K3) + 2g(P) + RΓ(I(s2)) + RΓ(I(t2))

− g(I(sη(2)), I(sη(3)), P)− g(I(tη(3)), I(tη(2)), P). (B.40)

Combining (B.32), (B.39), and (B.40), we have

∑
`∈[3]

g(I(s`), I(t`), K1, K2, K3, P)

= ∑
`∈[3]

RΓ(K`) + ρ1 + λ3 + (ρ2 + λ1) + (ρ3 + λ2)

≥ ∑
`∈[3]

RΓ(K`) + ρ1 + λ3 + RΓ(I(s1)) + RΓ(I(s2)) + RΓ(I(t2)) + RΓ(I(t1)) + 4g(P)

+ g(I(s3), I(s1), I(t1), I(t3), P, K1, K2, K3) + g(I(s1), I(s2), I(t2), I(t1), P, K1, K2, K3)

− g(I(s3), I(s1), P)− g(I(t1), I(t3), P)− g(I(s1), I(s2), P)− g(I(t2), I(t1), P)
(g)
≥ ∑

`∈[3]
RΓ(K`) + ρ1 + λ3 + RΓ(I(s1)) + RΓ(I(s2)) + RΓ(I(t2)) + RΓ(I(t1)) + 4g(P)

+ g(I(s1), I(t1), P, K1, K2, K3) + g(I(s2), I(t2), P, K1, K2, K3)

− g(I(s3), I(s1), P)− g(I(t1), I(t3), P)− g(I(s1), I(s2), P)− g(I(t2), I(t1), P)
(h)
= ∑

`∈[3]
RΓ(K`) + g(I(s3), I(t3), P) + RΓ(I(s1)) + RΓ(I(s2)) + RΓ(I(t2)) + RΓ(I(t1))

+ 4g(P) + g(I(s1), I(t1), P, K1, K2, K3) + g(I(s2), I(t2), P, K1, K2, K3)

− g(I(s3), I(s1), P)− g(I(t1), I(t3), P)− g(I(s1), I(s2), P)− g(I(t2), I(t1), P),
(B.41)

where (g) follows from the monotonicity of g(S) in (B.7), and (h) follows from the fact that

ρ1 = g(I(s3), I(t3), P) and λ3 = 0.

Subtracting g(I(s1), I(t1), P, K1, K2, K3) + g(I(s2), I(t2), P, K1, K2, K3) from both sides
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of (B.41), we obtain

g(I(s3), I(t3), P, K1, K2, K3)

≥ ∑
`∈[3]

RΓ(K`) + g(I(s3), I(t3), P) + RΓ(I(s1)) + RΓ(I(s2)) + RΓ(I(t2)) + RΓ(I(t1))

+ 4g(P)− g(I(s3), I(s1), P)− g(I(t1), I(t3), P)− g(I(s1), I(s2), P)− g(I(t2), I(t1), P),

which, together with the fact that g(Xj, P) ≥ g(I(s3), I(t3), P, K1, K2, K3) because of the

monotonicity of g(S) in (B.7), lead to

g(Xj, P) ≥ ∑
`∈[3]

RΓ(K`) + g(I(s3), I(t3), P) + RΓ(I(s1)) + RΓ(I(s2)) + RΓ(I(t2))

+ RΓ(I(t1)) + 4g(P)− g(I(s3), I(s1), P)− g(I(t1), I(t3), P)

− g(I(s1), I(s2), P)− g(I(t2), I(t1), P). (B.42)

Consider the leftmost basic tower B1 within the regular tower Xj, which is constitued by

the message sets I(s3), I(s1), K(1). We have

g(Xj, P) ≥ g(B1, P) = RΓ(K(1)) + g(I(s3), I(s1), P), (B.43)

where the inequality follows from the monotonicity of g(S) in (B.7), and the equality follows

from Lemma B.4 with the fact that every component of Xj is acyclic or half-rate-feasible.

Similarly, considereing the basic towers B2,B4,B5 (note that j = 3 is the central edge so

there is no basic tower B3), we have

g(Xj, P) ≥ RΓ(K(2)) + g(I(s1), I(s2), P), (B.44)

g(Xj, P) ≥ RΓ(K(4)) + g(I(t2), I(t1), P), (B.45)

g(Xj, P) ≥ RΓ(K(5)) + g(I(t1), I(t3), P). (B.46)

Summing up (B.42)-(B.46) yield

5g(Xj, P) ≥ ∑
`∈[3]

RΓ(K`) + g(I(s3), I(t3), P) + RΓ(I(s1)) + RΓ(I(s2)) + RΓ(I(t2))

+ RΓ(I(t1)) + 4g(P) + ∑
j′∈[5]\{3}

RΓ(K(j′)).

which completes the proof of (B.26).

So far we have shown that Lemma B.6 holds for the specific Xj in (B.24).

Proof of Lemma B.6: In the following we prove Lemma B.6 in general.
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Proof. For brevity, for the regular tower Xj with central edge j, we denote the height hj simply

as h, and for any ` ∈ [h], the message set K`(j) as K`, and s`,j, t`,j as s`, t`, respectively. Also

denote sιj,j, sθj,j, tιj,j, tθj,j as sι, sθ , tι, tθ , respectively. By Definition 4.3, we know that for any

`1, `2 ∈ [h], if s`1 ≤ s`2 , then t`1 ≥ t`2 .

According to Condition 2b in Defintion 4.3, there exists a bijective function µ : [h] → [h]
such that for any `1 6= `2 ∈ [h], if µ(`1) < µ(`2), then s`1 ≤ s`2 and t`1 ≥ t`2 .

For example, for the regular tower in (B.24), the funtion µ in (B.27) satisfies the above

conditon. For another example, consider the regular tower X1 in Example 4.4. We have the

following bijective function µ : [2]→ [2],

1 = µ(2), 2 = µ(1),

which satisfies the condition mentioned above.

Let η = µ−1 denote the inverse function of µ. It can be verified that

⋃
i∈[h−1]

[sη(i) : sη(i+1) − 1] = [sθ : sι − 1],

⋃
i∈[h−1]

[tη(i+1) : tη(i) − 1] = [tι : tθ − 1].

Given the bijective functions µ and η = µ−1, we have

∑
`∈[h]

g(I(s`), I(t`), K1, K2, . . . , Kh, P)

= ∑
i∈[h]

g(I(sη(i)), I(tη(i)), K1, K2, . . . , Kh, P)

(a)
= ∑

i∈[h]
(ρi + λi + RΓ(K`)), (B.47)

where for any i ∈ [h],

ρi
.
= g(I(sη(i)), I(tη(i)), P)

+ ∑
`∈{η(i′):i′∈[i−1]}

g(K` | I(sη(i)), I(tη(i)), P, K1, . . . , K`−1),

λi
.
= ∑

`∈[h]\{η(i′):i′∈[i]}
g(K` | I(sη(i)), I(tη(i)), P, K1, . . . , K`−1),
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and (a) can be verified as for any i ∈ [h] we have

ρi + λi

= g(I(sη(i)), I(tη(i)), P) + ∑
`∈[h]

g(K` | I(sη(i)), I(tη(i)), P, K1, . . . , K`−1)

− g(Kη(i) | I(sη(i)), I(tη(i)), P, K1, . . . , Kη(i)−1)

= g(I(sη(i)), I(tη(i)), P, K1, . . . , Kh)− g(Kη(i) | I(sη(i)), I(tη(i)), P, K1, . . . , Kη(i)−1)

= g(I(sη(i)), I(tη(i)), P, K1, . . . , Kh)− RΓ(Kη(i)),

where the second equality follows from repeated application of (B.12), and the third equality

follows from (B.10) and Lemma B.3.

Now consider any i ∈ [2 : h], we have

ρi + λi−1 + g(I(sη(i−1)), I(sη(i)), P) + g(I(tη(i)), I(tη(i−1)), P)

= g(I(sη(i−1)), I(sη(i)), P) + g(I(sη(i)), I(tη(i)), P) + g(I(tη(i)), I(tη(i−1)), P)

+ ∑
`∈{η(i′):i′∈[i−1]}

g(K` | I(sη(i)), I(tη(i)), P, K1, . . . , K`−1)

+ ∑
`∈[h]\{η(i′):i′∈[i−1]}

g(K` | I(sη(i−1)), I(tη(i−1)), P, K1, . . . , K`−1)

≥ g(I(sη(i−1)), I(sη(i)), P) + g(I(sη(i)), I(tη(i)), P) + g(I(tη(i)), I(tη(i−1)), P)

+ ∑
`∈{η(i′):i′∈[i−1]}

g(K` | I(sη(i−1)), I(sη(i)), I(tη(i)), I(tη(i−1)), P, K1, . . . , K`−1)

+ ∑
`∈[h]\{η(i′):i′∈[i−1]}

g(K` | I(sη(i−1)), I(sη(i)), I(tη(i)), I(tη(i−1)), P, K1, . . . , K`−1)

≥ 2g(P) + RΓ(I(sη(i))) + RΓ(I(tη(i))) + g(I(sη(i−1)), I(sη(i)), I(tη(i)), I(tη(i−1)), P)

+ ∑
`∈[h]

g(K` | I(sη(i−1)), I(sη(i)), I(tη(i)), I(tη(i−1)), P, K1, . . . , K`−1)

= 2g(P) + RΓ(I(sη(i))) + RΓ(I(tη(i)))

+ g(I(sη(i−1)), I(sη(i)), I(tη(i)), I(tη(i−1)), P, K1, . . . , Kh), (B.48)

where the first inequality follows from (B.11), the second inequality follows from the submod-

ularity of g(S) as well as Lemma B.3, and the last equality follows from repeated application

of (B.12).
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By (B.47) and (B.48), we have

∑
`∈[h]

g(I(s`), I(t`), P, K1, K2, . . . , Kh)

+ ∑
i∈[2:h]

(
g(I(sη(i−1)), I(sη(i)), P) + g(I(tη(i)), I(tη(i−1)), P)

)
= R ∑

`∈[h]
Γ(K`) + ∑

i∈[h]
(ρi + λi)

+ ∑
i∈[2:h]

(
g(I(sη(i−1)), I(sη(i)), P) + g(I(tη(i)), I(tη(i−1)), P)

)
≥ R ∑

`∈[h]
Γ(K`) + ρ1 + λh + ∑

i∈[2:h]

(
2g(P) + RΓ(I(sη(i))) + RΓ(I(tη(i)))

)
+ ∑

i∈[2:h]
g(I(sη(i−1)), I(sη(i)), I(tη(i)), I(tη(i−1)), P, K1, . . . , Kh)

= R ∑
`∈[h]

Γ(K`) + g(I(sη(1)), I(tη(1)), P) + 0

+ ∑
i∈[2:h]

(
2g(P) + RΓ(I(sη(i))) + RΓ(I(tη(i)))

)
+ ∑

i∈[2:h]
g(I(sη(i−1)), I(sη(i)), I(tη(i)), I(tη(i−1)), P, K1, . . . , Kh)

≥ R ∑
`∈[h]

Γ(K`) + g(I(sη(1)), I(tη(1)), P) + ∑
i∈[2:h]

(
2g(P) + RΓ(I(sη(i))) + RΓ(I(tη(i)))

)
+ ∑

`∈[h−1]
g(I(s`), I(t`), P, K1, . . . , Kh), (B.49)

where (B.49) can be verified as

∑
i∈[2:h]

g(I(sη(i−1)), I(sη(i)), I(tη(i)), I(tη(i−1)), P, K1, . . . , Kh)

≥ ∑
i∈[2:µ(h)]

g(I(sη(i−1)), I(tη(i−1)), P, K1, . . . , Kh) + ∑
i∈[µ(h)+1:h]

g(I(sη(i)), I(tη(i)), P, K1, . . . , Kh)

= ∑
i∈[1:µ(h)−1]

g(I(sη(i)), I(tη(i)), P, K1, . . . , Kh) + ∑
i∈[µ(h)+1:h]

g(I(sη(i)), I(tη(i)), P, K1, . . . , Kh)

= ∑
i∈[h]\{µ(h)}

g(I(sη(i)), I(tη(i)), P, K1, . . . , Kh)

= ∑
`∈[h−1]

g(I(s`), I(t`), P, K1, . . . , Kh),

where the inequality follows from (B.11).
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Subtracting ∑`∈[h−1] g(I(s`), I(t`), P, K1, . . . , Kh) on both sides of (B.49), we have

g(I(sh), I(th), P, K1, . . . , Kh) + ∑
i∈[2:h]

(
g(I(sη(i−1)), I(sη(i)), P) + g(I(tη(i)), I(tη(i−1)), P)

)
≥ R ∑

`∈[h]
Γ(K`) + g(I(sη(1)), I(tη(1)), P) + ∑

i∈[2:h]

(
2g(P) + RΓ(I(sη(i))) + RΓ(I(tη(i)))

)
,

which, together with that g(Xj, P) ≥ g(I(sh), I(th), P, K1, K2, . . . , Kh) by the monotonicity

of g(S) in (B.7), lead to

g(Xj, P) ≥ R ∑
`∈[h]

Γ(K`) + g(I(sη(1)), I(tη(1)), P)

+ ∑
i∈[2:h]

(
2g(P) + RΓ(I(sη(i))) + RΓ(I(tη(i)))

)
− ∑

i∈[2:h]

(
g(I(sη(i−1)), I(sη(i)), P) + g(I(tη(i)), I(tη(i−1)), P)

)
. (B.50)

Consider any i ∈ [2 : h]. According to Definition 4.3, for any j′ ∈ [sη(i−1) : sη(i) −
1] ∪ [tη(i) : tη(i−1) − 1], message sets I(j′), I(j′ + 1), K1(j′), . . . , Khj′ (j′) form a basic tower,

denoted as Bj′ . And thus we have

∑
j′∈[sη(i−1) :sη(i)−1]∪[tη(i) :tη(i−1)−1]

g(Xj, P) ≥ ∑
j′∈[sη(i−1) :sη(i)−1]∪[tη(i) :tη(i−1)−1]

g(Bj′ , P)

≥ ∑
j′∈[sη(i−1) :sη(i)−1]∪[tη(i) :tη(i−1)−1]

g(I(j′), I(j′ + 1), P)

+ R ∑
j′∈[sη(i−1) :sη(i)−1]∪[tη(i) :tη(i−1)−1]

∑
`∈[hj′ ]

Γ(K`(j′)).

where the first inequality follows from the monotonicity of g(S) in (B.7), and the second

inequality follows from Lemma B.4. Simplifying the above result using Lemma B.5 yields

(sη(i) − sη(i−1) + tη(i−1) − tη(i)) · g(Xj, P)

≥ g(I(sη(i−1)), I(sη(i)), P) + (sη(i) − sη(i−1) − 1)g(P) + R ∑
j′∈[sη(i−1)+1:sη(i)−1]

Γ(I(j′))

+ g(I(tη(i)), I(tη(i−1)), P) + (tη(i−1) − tη(i) − 1)g(P) + R ∑
j′∈[tη(i)+1:tη(i−1)−1]

Γ(I(j′))

+ R ∑
j′∈[sη(i−1) :sη(i)−1]∪[tη(i) :tη(i−1)−1]

∑
`∈[hj′ ]

Γ(K`(j′)). (B.51)
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Summing up (B.51) for all i ∈ [2 : h] and simplifying yields

(sη(h) − sη(1) + tη(1) − tη(h)) · g(Xj, P)

≥ ∑
i∈[2:h]

(
g(I(sη(i−1)), I(sη(i)), P) + g(I(tη(i)), I(tη(i−1)), P)

)
+ (sη(h) − sη(1) + tη(1) − tη(h) − 2(h− 1)) · g(P)

+ R ∑
i∈[2:h]

(
∑

j′∈[sη(i−1)+1:sη(i)−1]
Γ(I(j′)) + ∑

j′∈[tη(i)+1:tη(i−1)−1]
Γ(I(j′))

)
+ R ∑

j′∈[sη(1) :sη(h)−1]∪[tη(h) :tη(1)−1]
∑

`∈[hj′ ]

Γ(K`(j′)). (B.52)

Recall that sη(1) = sθ , tη(1) = tθ , and sη(h) = sι = j, tη(h) = tι = j + 1. Also recall that

tθ − sθ = |Gj|. Simplifying (B.52) yields

(|Gj | − 1) · g(Xj, P)

≥ ∑
i∈[2:h]

(
g(I(sη(i−1)), I(sη(i)), P) + g(I(tη(i)), I(tη(i−1)), P)

)
+ R ∑

i∈[2:h]

(
∑

j′∈[sη(i−1)+1:sη(i)−1]
Γ(I(j′)) + ∑

j′∈[tη(i)+1:tη(i−1)−1]
Γ(I(j′))

)
+ R ∑

j′∈Gj\{j}
∑

`∈[hj′ ]

Γ(K`(j′)) + (|Gj | − 1− 2(h− 1)) · g(P). (B.53)

Adding (B.50) and (B.53) and simplifying yields

|Gj | · g(Xj, P) ≥ g(I(sη(1)), I(tη(1)), P) + R ∑
`∈[h]

Γ(K`) + R ∑
j′∈Gj\{j}

∑
`∈[hj′ ]

Γ(K`(j′))

+ (|Gj | − 1)g(P) + R ∑
i∈[2:h]

(
Γ(I(sη(i))) + Γ(I(tη(i)))

)
+ R ∑

i∈[2:h]

(
∑

j′∈[sη(i−1)+1:sη(i)−1]
Γ(I(j′)) + ∑

j′∈[tη(i)+1:tη(i−1)−1]
Γ(I(j′))

)
= g(I(sθ), I(tθ), P) + R ∑

j′∈Gj

∑
`∈[hj′ ]

Γ(K`(j′)) + (|Gj | − 1)g(P)

+ R ∑
i∈[2:h]

(
∑

j′∈[sη(i−1)+1:sη(i)]

Γ(I(j′)) + ∑
j′∈[tη(i) :tη(i−1)−1]

Γ(I(j′))
)

= g(I(sθ), I(tθ), P) + R ∑
j′∈Gj

∑
`∈[hj′ ]

Γ(K`(j′)) + (|Gj | − 1)g(P)

+ R ∑
j′∈[sθ+1:tθ−1]

Γ(I(j′)),

which completes the proof of (B.23) and thus the proof of Lemma B.6.



170 Appendix B

B.1.3 Proof of Lemma B.2 utilizing Lemmas B.3-B.6

So far we have introduced Lemmas B.3-B.6, with the help of which we can prove Lemma B.2

using mathematical induction. We first show the induction base that (B.13) holds when the

subproblem Q is at most 1-layer in the following.

Proof. When Q is 0-layer, i.e., Q is half-rate-feasible, (B.13) directly follows from Lemma

B.3.

When Q is 1-layer, consider any P ⊆ BQ. Assume that the regular acyclic chain Ch ∈
C(Q), as defined in Definition 4.4, satisfies that Γ(Q) = Γ(Ch). Since Q is a 1-layer prob-

lem, Ch must be 1-layer and its components must be acyclic or half-rate-feasible. For easier

reference, we repeat (4.6) as

Ch : I(1)

Kh1
(1)
···

K1(1)←−−−→ I(2)

Kh2 (2)···
K1(2)←−−−→ · · ·

Khm (m)
···

K1(m)←−−−→ I(m + 1). (B.54)

Recall that Ch can be seen as a concatenation of the regular towers Xj, j ∈ M, and the

basic towers Bj′ , j′ ∈ M′ = [m] \ (⋃j∈M Gj). By Lemmas B.4 and (B.6), as well as the

monotonicity of g(S) in (B.7), we have

∑
j∈M

(
R ∑

j′∈Gj

∑
`∈[hj′ ]

Γ(K`(j′)) + g(I(sθj,j), I(tθj,j), P)

+ R ∑
j′∈[sθj ,j+1:tθj ,j−1]

Γ(I(j′)) + (|Gj | − 1)g(P)
)

+ ∑
j′∈M′

(R ∑
`∈[hj′ ]

Γ(K`(j′)) + g(I(j′), I(j′ + 1), P))

≤ ∑
j∈M

(|Gj | · g(Q, P)) + ∑
j′∈M′

g(Q, P). (B.55)

For the RHS of (B.55), we have

RHS = g(Q, P)( ∑
j∈M
|Gj | + |[m] \ (

⋃
j∈M

Gj)|)

= m · g(Q, P), (B.56)

where the last equality is due to the fact that for any j1 6= j2 ∈ [m], Gj1 ∩ Gj2 = ∅ by

Definition 4.4.

Since that any basic tower Bj′ , j′ ∈ M′ can be seen as a special regular tower with sθj′ ,j′ =
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j′, tθj′ ,j′ = j′ + 1, we can rearrange the LHS of (B.55) as follows,

LHS = R ∑
j∈[m]

∑
`∈[hj]

Γ(K`(j)) + R ∑
j∈M

∑
j′∈[sθj ,j+1:tθj ,j−1]

Γ(I(j′)) + g(P) · ∑
j∈M

(|Gj | − 1)

+ ∑
j∈M∪M′

g(I(sθj,j), I(tθj,j), P), (B.57)

The set M ∪M′ denotes the collection of central edges of the regular towers Xj, j ∈ M
and the basic towers Bj′ , j′ ∈ M′. As these towers are concatenated, if we order the elements

of M ∪M′ as j1 < j2 < · · · < j|M∪M′|, we have

sθj1 ,j1 = 1, (B.58)

tθj|M∪M′ | ,j|M∪M′ | = m + 1, (B.59)

sθjv ,jv = tθjv−1 ,jv−1 , ∀v ∈ [2 : |M ∪M′ |]. (B.60)

By the submodularity and the monotonicity of g(S) in (B.7) and (B.8), and Lemma B.3

with P ⊆ BQ ⊆ BI(sθjv ,jv )
and I(sθjv ,jv) being acyclic or half-rate-feasible, for any v ∈ [2 :

|M ∪M′|],

g(I(sθj1 ,j1), I(sθjv ,jv), P) + g(I(sθjv ,jv), I(tθjv ,jv), P)

≥ g(I(sθj1 ,j1), I(tθjv ,jv), P) + R · Γ(I(sθjv ,jv)) + g(P). (B.61)

Given (B.58)-(B.60), as well as the fact that jv, v ∈ [|M ∪ M′|] is a reindexing of j,
j ∈ M ∪M′, summing up (B.61) for all v ∈ [2 : |M ∪M′|] and simplifying yields

∑
j∈M∪M′

g(I(sθj,j), I(tθj,j), P)

≥ ∑
v∈[2:|M∪M′|]

(
R · Γ(I(sθjv ,jv)) + g(P)

)
+ g(I(sθj1 ,j1), I(tθj|M∪M′ | ,j|M∪M′ |), P)

= R ∑
j′∈(⋃j∈M∪M′{sθj ,j,tθj ,j})\{1,m+1}

Γ(I(j′)) + (|M ∪M′ | − 1) · g(P) + g(I(1), I(m + 1), P)

= R ∑
j′∈⋃j∈M∪M′{sθj ,j,tθj ,j}

Γ(I(j′)) + |M ∪M′ | · g(P), (B.62)

where the last equality is due to that

g(I(1), I(m + 1), P) = g(P) + R · ∑
j′∈{1,m+1}

Γ(I(j′))

which can be shown by applying Lemma B.3 twice given that P ⊆ BQ ⊆ BI(j) for any
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j′ ∈ {1, m + 1}, that I(1) ⊆ BI(m+1) or I(m + 1) ⊆ BI(1) by Definition 4.4, and that every

component of Ch is acyclic or half-rate-feasible.

Combining (B.57) and (B.62), we can bound the LHS of (B.55) as

LHS ≥ R ∑
j∈[m]

∑
`∈[hj]

Γ(K`(j)) + R ∑
j∈M

∑
j′∈[sθj ,j+1:tθj ,j−1]

Γ(I(j′) + g(P) · ∑
j∈M

(|Gj | − 1)

+ R ∑
j′∈⋃j∈M∪M′{sθj ,j,tθj ,j}

Γ(I(j′)) + |M ∪M′ | · g(P)

= R ∑
j∈[m]

∑
`∈[hj]

Γ(K`(j)) + R ∑
j∈[m+1]

Γ(I(j))) + m · g(P)

= m · R · Γ(Ch) + m · g(P)

= m · R · Γ(Q) + m · g(P), (B.63)

where the second equality follows directly from the definition of Γ as defined in Theorem 4.2,

and the third equality follows from the assumption that Γ(Q) = Γ(Ch).

Combining (B.55), (B.56) and (B.63) completes the proof of (B.13) when Q is one-layer,

and hence concludes the proof of the induction base.

It remains to prove the inductive step that (B.13) holds when Q is s + 1-layer, given the

assumption (induction hypothesis) that

g(Q, P) ≥ g(P) + R · Γ(Q), for any Q of at most s-layer, and any P ⊆ BQ. (B.64)

Such proof can be accomplished following similar steps to the proof of the induction base,

utilizing the induction hypothesis (B.64) instead of Lemma B.3, and thus omitted to avoid

repetition.

B.1.4 Proof of Theorem 4.2 utilizing Lemma B.2

Given Lemma B.2, Theorem 4.2 can be easily shown as follows.

Proof. It suffices to show R · Γ(G) ≤ 1. Set Q = [n], P = ∅ = BQ. Since that g(S) ≤ 1,

∀S ⊆ [n], and that g(P) = g(∅) = 0 and G|Q = G|[n] = G, we have

1 ≥ g(Q, P) ≥ g(P) + R · Γ(Q) = R · Γ(Q) = R · Γ(G | [n]) = R · Γ(G),

where the second inequality follows from Lemma B.2.
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B.2 Proof of Theorem 4.4

We first introduce a few lemmas.

Lemma B.7. For any G0, G1, consider any P, Q ⊆ V(G0) such that P ⊆ BQ. Then for

G = G0 ◦ G1 where V(P ◦ G1), V(Q ◦ G1) ⊆ V(G), we have V(P ◦ G1) ⊆ BV(Q◦G1).

Proof. By the definition of the common interfering message set in (2.1) and Definition 2.1,

for any P, Q ⊆ V(G0), P ⊆ BQ, we know that there is no edge going from any node in P to

any node in Q in the directed graph G0, and hence there is no edge going from any node in

V(P ◦ G1) to any node in V(Q ◦ G1) in the directed graph G = G0 ◦ G1, which indicates that

V(P ◦ G1) ⊆ BV(Q◦G1).

Lemma B.8. For any G0, G1, if G0 is acyclic or half-rate-feasible, then

Γ(G0 ◦ G1) ≥ Γ(G0) · Γ(G1). (B.65)

Proof. The proof for (B.65) when G0 is half-rate-feasible is relatively straightforward and thus

omitted. Consider the case when G0 is acyclic. Let n0 = |V(G0)|, and there exists an ordering

of elements in V(G0), denoted as v1, v2, · · · , vn0 such that v1 ∪ v2 ∪ · · · ∪ vi−1 ⊆ Bvi for any

i ∈ [n0] (cf. (2.12)). Hence, by Lemma B.7, we have

V({vj : j ∈ [i− 1]} ◦ G1) ⊆ BV({vi}◦G1), ∀i ∈ [n0]. (B.66)

Given (B.66), repeatedly applying Theorem 4.3 yields

Γ(G0 ◦ G1)

≥ Γ({v1, · · · , vn0−1} ◦ G1) + Γ(vn0 ◦ G1)

≥ Γ({v1, · · · , vn0−2} ◦ G1) + Γ(vn0−1 ◦ G1) + Γ(vn0 ◦ G1)

· · ·
≥ ∑

i∈[n0]

Γ({vi} ◦ G1) = n0 · Γ(G1) = Γ(G0) · Γ(G1),

where the last equality follows from that Γ(G0) = |V(G0)| = n0 since G0 is acyclic.

With help of Lemmas B.7 and B.8, we prove Theorem 4.4 using mathematical induction

on the number of layers of the problem G0 (cf. Definition B.1). We only provide proof for the

induction base that (4.16) holds where G0 is at most 1-layer. Showing the inductive step can

be done via similar steps to the proof of the induction base, utilizing the induction hypothesis

instead of Lemma B.8.
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Proof. The proof for (4.16) when G0 is 0-layer is relatively straightforward and thus omitted.

When G0 is 1-layer, assume that the regular acyclic chain Ch ∈ C(G0):

I(1)

Kh1
(1)
···

K2(1)
K1(1)←−−−→ I(2)

Kh2 (2)···
K2(2)
K1(2)←−−−→ · · ·

Khm (m)
···

K2(m)
K1(m)←−−−→ I(m + 1),

satisfies that Γ(G0) = Γ(Ch). As G0 is a 1-layer problem, Ch must be 1-layer with components

being acyclic or half-rate-feasible. By Lemma B.7, we can construct ChG1 ∈ C(G0 ◦ G1) as:

I(1) ◦ G1

Kh1
(1)◦G1
···

K1(1)◦G1←−−−−−→s · · ·
Khm (m)◦G1···
K1(m)◦G1←−−−−−→s I(m + 1) ◦ G1.

By Theorem 4.2 we have

Γ(ChG1)

=
1
m
( ∑

j∈[m]
∑

`∈[hj]

Γ(K`(j) ◦ G1) + ∑
j∈[m+1]

Γ(I(j) ◦ G1))

≥ Γ(G1) ·
1
m
( ∑

j∈[m]
∑

`∈[hj]

Γ(K`(j)) + ∑
j∈[m+1]

Γ(I(j)))

= Γ(G1) · Γ(Ch)

= Γ(G1) · Γ(G0), (B.67)

where the inequality is due to Lemma B.8 given the fact that every component of Ch is acyclic

or half-rate-feasible. Since ChG1 ∈ C(G0 ◦ G1), we have

Γ(G0 ◦ G1) = max
Ch′∈C(G0◦G1)

Γ(Ch′) ≥ Γ(ChG1). (B.68)

Combining (B.67) and (B.68) leads to (4.16).
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B.3 Proof of Theorem 4.6

For easier reference, we repeat (4.18) in Theorem 4.6 below,

R ≤ 1
1 + m + ∑j∈[m] hj

(
∑

j∈M∪M′
∑

J∈N:J∩T1(j) 6=∅,J∩T2(j) 6=∅
CJ

+ ∑
j∈M

∑
`∈[2:hj]

( ∑
j′∈[s`,j :s`−1,j−1]

∑
J∈N:J∩T3(j′) 6=∅,

J∩T4(j,`,j′) 6=∅

CJ + ∑
j′∈[t`−1,j :t`,j−1]

∑
J∈N:J∩T3(j′) 6=∅,

J∩T5(j,`,j′) 6=∅

CJ)
)
,

(B.69)

where

T1(j) = {i(shj,j), i(thj,j), k1(j), . . . , khj(j)},
T2(j) = {i(shj,j), i(m + 1), k1(j), . . . , khj(j)},
T3(j′) = {i(j′), i(j′ + 1), k1(j′), . . . , khj′ (j′)},
T4(j, `, j′) = {i(j′), i(s`−1,j), k1(j′), . . . , khj′ (j′)},
T5(j, `, j′) = {i(j′), i(t`,j), k1(j′), . . . , khj′ (j′)}.

Consider an arbitrary DIC problem G : (i|Ai), i ∈ [n] with link capacity tuple C. Consider

an arbitrary achievable rate tuple R.

It can be verified that there exists some two-argument set function f : 2[n] × 2[n] → [0, 1]
that satisfies the following properties:

f (∅; S) = f (L; ∅) = 0, ∀L, S ⊆ [n], (B.70)

f ([n]; S) = f (S; S), ∀S ⊆ [n], (B.71)

f (L; S) ≤ ∑
J∈N:J∩L 6=∅,J∩S 6=∅

CJ , ∀L, S ⊆ [n] (B.72)

f (L; S) ≤ f (L′; S′), ∀L ⊆ L′ ⊆ [n], S ⊆ S′ ⊆ [n], (B.73)

f (L ∩ L′; S ∪ S′) + f (L ∪ L′; S ∩ S′)

≤ f (L; S) + f (L′; S′), ∀L, L′, S, S′ ⊆ [n], (B.74)

Ri ≤ f ([n]; {i}) = f ([n]; B ∪ {i})− f ([n]; B), ∀B ⊆ Bi, i ∈ [n]. (B.75)

For more details about the above properties, see Theorem 4.7 and Corollary 4.2 in Sections

4.5 and 4.6, as well as their corresponding proofs.

When there is no ambiguity, we may slightly abuse the notation and write f (L; S) as

f (L; i, i ∈ S), f (k, k ∈ L; S), or f (k, k ∈ L; i, i ∈ S). For example, for n = 3, f ({1, 2}; {2, 3}),
f ({1, 2}; 2, 3), f (1, 2; {2, 3}) and f (1, 2; 2, 3) mean the same thing.
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We have the following lemmas.

Lemma B.9. Consider the singleton basic tower Bs
j constituted by the messages i(j), i(j +

1), k1(j), k2(j), . . . , khj(j), we have

f ([n]; i(j), i(j + 1)) + ∑
`∈[hj]

f ([n]; k`(j))

≤ f ([n]; i(j), i(j + 1), k1(j), k2(j), . . . , khj(j)). (B.76)

Lemma B.9 above can be shown via repeated application of (B.75) given the fact that

{i(j), i(j + 1), k1(j), . . . , k`−1(j)} ⊆ Bk` , ∀` ∈ [hj] according to Definition 4.5.

Lemma B.10. Consider any singleton ordered acyclic chain Chs,o ∈ Cs,o(G) of length m. For

any a, b, c, d ∈ [m], we have

f (i(a), i(b), k1(d), . . . , khd(d); i(a), i(c), k1(d), . . . , khd(d)) + f ([n]; i(a), i(b), i(c))

≥ f ([n]; i(a), i(b), k1(d), . . . , khd(d)) + f ([n]; i(a), i(c)). (B.77)

Proof. We have

f (i(a), i(b), k1(d), . . . , khd(d); i(a), i(c), k1(d), . . . , khd(d)) + f ([n]; i(a), i(b), i(c))

≥ f (i(a), i(b), k1(d), . . . , khd(d); i(a), i(b), i(c), k1(d), . . . , khd(d)) + f ([n]; i(a), i(c))

≥ f (i(a), i(b), k1(d), . . . , khd(d); i(a), i(b), k1(d), . . . , khd(d)) + f ([n]; i(a), i(c))

= f ([n]; i(a), i(b), k1(d), . . . , khd(d)) + f ([n]; i(a), i(c)),

where the first and second inequalities are due to the submodularity and monotonicity of

f (L; S) in (B.74) and (B.73), respectively, and the equality follows from property (B.71).

Lemma B.11. Consider a group of messages i(a), i(a + 1), . . . , i(b), i(b + 1) ⊆ [n] for some

positive integers a < b ∈ [m], concatenatively located on the horizontal chain of some single-

ton ordered acyclic chain Chs,o ∈ Cs,o(G) of length m. We have

∑
j∈[a:b]

f ([n]; i(j), i(j + 1)) ≥ ∑
j∈[a+1:b]

f ([n]; i(j)) + ∑
j∈[a:b]

f ([n]; i(j), i(j + 1), i(b + 1))

+ f ([n]; i(a), i(b + 1))− ∑
j∈[a:b]

f ([n]; i(j), i(b + 1)). (B.78)

Proof. Due to the fact that when j = b, f ([n]; i(j), i(b+ 1)) = f ([n]; i(j), i(j+ 1), i(b+ 1)),
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it suffices to show that

∑
j∈[a:b]

f ([n]; i(j), i(j + 1)) ≥ ∑
j∈[a+1:b]

f ([n]; i(j)) + ∑
j∈[a:b−1]

f ([n]; i(j), i(j + 1), i(b + 1))

+ f ([n]; i(a), i(b + 1))− ∑
j∈[a:b−1]

f ([n]; i(j), i(b + 1)). (B.79)

For any j ∈ [a : b− 1], by the submodularity of f (L; S) in (B.74) and property (B.75), we

have

f ([n]; i(b + 1), i(j + 1)) + f ([n]; i(j + 1), i(j))

≥ f ([n]; i(b + 1), i(j)) + f ([n]; i(b + 1), i(j + 1), i(j))− f ([n]; i(b + 1), i(j)). (B.80)

Summing up (B.80) for all j ∈ [a : b − 1] and simplifying the result yields (B.79), and

thus completes the proof.

So far we have introduced Lemmas B.9-B.11. Based upon these results, we further intro-

duce the following lemma.

Lemma B.12. Consider the singleton ordered tower X s,o
j of central edge j, we have

∑
j′∈Gj

∑
`∈[hj′ ]

f ([n]; k`(j′)) + f ([n]; i(shj,j), i(thj,j)) + ∑
`∈[shj ,j

+1:thj ,j
−1]

f ([n]; i(`))

≤ f ([n]; k1(j), . . . , khj(j), i(shj,j), i(thj,j)) + ∑
`∈[2:hj]

∑
j′∈[s`,j :s`−1,j−1]

∑
J∈N:J∩T3(j′) 6=∅,

J∩T4(j,`,j′) 6=∅

CJ

+ ∑
`∈[2:hj]

∑
j′∈[t`−1,j :t`,j−1]

∑
J∈N:J∩T3(j′) 6=∅,

J∩T5(j,`,j′) 6=∅

CJ . (B.81)

Proof. Within the singleton ordered acyclic tower X s,o
j , any edge j′ ∈ Gj \ {j} corresponds to

a singleton basic tower Bs
j′ . Thus by Lemma B.9 we have

∑
j′∈Gj\{j}

(
∑

`∈[hj′ ]

f ([n]; k`(j′)) + f ([n]; i(j′), i(j′ + 1))
)

≤ ∑
j′∈Gj\{j}

f ([n]; i(j′), i(j′ + 1), k1(j′), . . . , khj′ (j′)). (B.82)
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Consider the core of central edge j. Consider any ` ∈ [2 : hj]. We have

f ([n]; k1(j), . . . , k`−1(j), i(s`,j), i(t`,j))− f ([n]; i(s`,j), i(t`,j))

+ f ([n]; i(s`,j), i(t`,j), i(s`−1,j), i(t`−1,j))

≥ f ([n]; k1(j), . . . , k`−1(j), i(s`−1,j), i(t`−1,j))

= f ([n]; k1(j), . . . , k`−2(j), i(s`−1,j), i(t`−1,j)) + f ([n]; k`−1(j)), (B.83)

where the inequality follows from the submodularity and the monotonicity of f (L; S) in (B.74)

and (B.73), and the equality follows from property (B.75) together with the fact that Bk`−1(j) ⊇
{k1(j), . . . , k`−2(j), i(s`−1,j), i(t`−1,j)} by Definition 4.7. Summing up (B.83) for all ` ∈ [2 :
hj] and removing redundant terms yields

f ([n]; k1(j), . . . , khj−1(j), i(shj,j), i(thj,j)) + ∑
`∈[2:hj]

f ([n]; i(s`,j), i(t`,j), i(s`−1,j), i(t`−1,j))

≥ ∑
`∈[hj]

f ([n]; i(s`,j), i(t`,j)) + ∑
`∈[hj−1]

f ([n]; k`(j)). (B.84)

Thus, we have

∑
`∈[hj]

f ([n]; i(s`,j), i(t`,j)) + ∑
`∈[hj]

f ([n]; k`(j))

≤ ∑
`∈[2:hj]

f ([n]; i(s`,j), i(t`,j), i(s`−1,j), i(t`−1,j))

+ f ([n]; k1(j), . . . , khj−1(j), i(shj,j), i(thj,j)) + f ([n]; khj(j))

= ∑
`∈[2:hj]

f ([n]; i(s`,j), i(t`,j), i(s`−1,j), i(t`−1,j))

+ f ([n]; k1(j), . . . , khj(j), i(shj,j), i(thj,j)). (B.85)

where the inequality follows from (B.84) and the equality follows from property (B.75) with

the fact that Bkhj
(j) ⊇ {k1(j), . . . , khj−1(j), i(shj,j), i(thj,j)} by Definition 4.7.

Again consider any ` ∈ [2 : hj] and define shorthand notation Fs
` , Ft

` , and F` as follows,

Fs
`

.
= ∑

j′∈[s`,j :s`−1,j−1]
∑

`′∈[hj′ ]

f ([n]; k`′(j′)) + f ([n]; i(s`,j), i(s`−1,j)),

Ft
`

.
= ∑

j′∈[t`−1,j :t`,j−1]
∑

`′∈[hj′ ]

f ([n]; k`′(j′)) + f ([n]; i(t`−1,j), i(t`,j)),

F`
.
= f ([n]; i(s`,j), i(s`−1,j)) + f ([n]; i(t`−1,j), i(t`,j)) + f ([n]; i(s`−1,j), i(t`−1,j)).

Note that the Condition 2b in Definition 4.7 indicates that for any `1 6= `2 ∈ [2 : hj], sets
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[s`1,j : s`1−1,j − 1], [s`2,j : s`2−1,j − 1], [t`1−1,j : t`1,j − 1], and [t`2−1,j : t`2,j − 1] are mutually

disjoint. Also, recall that sj,1 = j, and tj,1 = j + 1. Hence, one can verify that

∑
j′∈Gj

∑
`∈[hj′ ]

f ([n]; k`(j′)) + f ([n]; i(shj,j), i(thj,j))

= ∑
`∈[hj]

f ([n]; i(s`,j), i(t`,j)) + ∑
`∈[hj]

f ([n]; k`(j)) + ∑
`∈[2:hj]

Fs
` + ∑

`∈[2:hj]

Ft
` − ∑

`∈[2:hj]

F`.

According to the above equation, to show (B.81), it suffices to show that

∑
`∈[hj]

f ([n]; i(s`,j), i(t`,j)) + ∑
`∈[hj]

f ([n]; k`(j))

+ ∑
`∈[2:hj]

(Fs
` + Ft

` − F`) + ∑
`∈[shj ,j

+1:thj ,j
−1]

f ([n]; i(`))

≤ ∑
`∈[2:hj]

∑
j′∈[s`,j :s`−1,j−1]

∑
J∈N:J∩T3(j′) 6=∅,

J∩T4(j,`,j′) 6=∅

CJ + ∑
`∈[2:hj]

∑
j′∈[t`−1,j :t`,j−1]

∑
J∈N:J∩T3(j′) 6=∅,

J∩T5(j,`,j′) 6=∅

CJ

+ f ([n]; k1(j), . . . , khj(j), i(shj,j), i(thj,j)). (B.86)

We bound Fs
` , Ft

` , and F` in the following. First, we have

Fs
` = ∑

j′∈[s`,j :s`−1,j−1]
( ∑
`′∈[hj′ ]

f ([n]; k`′(j′)) + f ([n]; i(j′), i(j′ + 1)))

− ∑
j′∈[s`,j :s`−1,j−1]

f ([n]; i(j′), i(j′ + 1)) + f ([n]; i(s`,j), i(s`−1,j))

≤ ∑
j′∈[s`,j :s`−1,j−1]

f ([n]; i(j′), i(j′ + 1), k1(j′), . . . , khj′ (j′))

− ∑
j′∈[s`,j :s`−1,j−1]

f ([n]; i(j′), i(j′ + 1)) + f ([n]; i(s`,j), i(s`−1,j))

≤ ∑
j′∈[s`,j :s`−1,j−1]

f ([n]; i(j′), i(j′ + 1), k1(j′), . . . , khj′ (j′))

+ ∑
j′∈[s`,j :s`−1,j−1]

f ([n]; i(j′), i(s`−1,j))− ∑
j′∈[s`,j+1:s`−1,j−1]

f ([n]; i(j′))

− ∑
j′∈[s`,j :s`−1,j−1]

f ([n]; i(j′), i(j′ + 1), i(s`−1,j))

≤ ∑
j′∈[s`,j :s`−1,j−1]

f (T3(j′); T4(j, `, j′))− ∑
j′∈[s`,j+1:s`−1,j−1]

f ([n]; i(j′)), (B.87)

where the first inequality follows from Lemma B.9, the second inequality follows from Lemma

B.11 with a = s`,j, b = s`−1,j − 1, and the third inequality follows from Lemma B.10 with

a = d = j′, b = j′ + 1, and c = s`−1,j for any j′ ∈ [s`,j + 1 : s`−1,j − 1].
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Similarly, one can show that

Ft
` ≤ ∑

j′∈[t`−1,j :t`,j−1]
f (T3(j′); T5(j, `, j′))− ∑

j′∈[t`−1,j+1:t`,j−1]
f ([n]; i(j′)). (B.88)

By the submodularlity of f (L; S) in (B.74) and property (B.75), we have

F` ≥ f ([n]; i(s`−1,j)) + f ([n]; i(t`−1,j)) + f ([n]; i(s`,j), i(s`−1,j), i(t`−1,j), i(t`,j)). (B.89)

Combining (B.87)-(B.89) and rearranging, we have

Fs
` + Ft

` − F` + ∑
j′∈[s`,j+1:s`−1,j]

f ([n]; i(j′)) + ∑
j′∈[t`−1,j :t`,j−1]

f ([n]; i(j′))

≤ ∑
j′∈[s`,j :s`−1,j−1]

f (T3(j′); T4(j, `, j′)) + ∑
j′∈[t`−1,j :t`,j−1]

f (T3(j′); T5(j, `, j′))

− f ([n]; i(s`,j), i(s`−1,j), i(t`−1,j), i(t`,j)). (B.90)

Summing up (B.90) for all ` ∈ [2 : hj] yields

∑
`∈[2:hj]

(Fs
` + Ft

` − F`) + ∑
`∈[shj ,j

+1:thj ,j
−1]

f ([n]; i(`))

≤ ∑
`∈[2:hj]

∑
j′∈[s`,j :s`−1,j−1]

f (T3(j′); T4(j, `, j′))

+ ∑
`∈[2:hj]

∑
j′∈[t`−1,j :t`,j−1]

f (T3(j′); T5(j, `, j′))

− ∑
`∈[2:hj]

f ([n]; i(s`,j), i(s`−1,j), i(t`−1,j), i(t`,j)). (B.91)
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Finally, (B.86) can be shown as follows,

∑
`∈[hj]

f ([n]; i(s`,j), i(t`,j)) + ∑
`∈[hj]

f ([n]; k`(j))

+ ∑
`∈[2:hj]

(Fs
` + Ft

` − F`) + ∑
`∈[shj ,j

+1:thj ,j
−1]

f ([n]; i(`))

≤ ∑
`∈[2:hj]

f ([n]; i(s`,j), i(t`,j), i(s`−1,j), i(t`−1,j)) + f ([n]; k1(j), . . . , khj(j), i(shj,j), i(thj,j))

+ ∑
`∈[2:hj]

∑
j′∈[s`,j :s`−1,j−1]

f (T3(j′); T4(j, `, j′)) + ∑
`∈[2:hj]

∑
j′∈[t`−1,j :t`,j−1]

f (T3(j′); T5(j, `, j′))

− ∑
`∈[2:hj]

f ([n]; i(s`,j), i(s`−1,j), i(t`−1,j), i(t`,j))

≤ f ([n]; k1(j), . . . , khj(j), i(shj,j), i(thj,j))

+ ∑
`∈[2:hj]

∑
j′∈[s`,j :s`−1,j−1]

∑
J∈N:J∩T3(j′) 6=∅,J∩T4(j,`,j′) 6=∅

CJ

+ ∑
`∈[2:hj]

∑
j′∈[t`−1,j :t`,j−1]

∑
J∈N:J∩T3(j′) 6=∅,J∩T5(j,`,j′) 6=∅

CJ ,

where the first inequality follows from (B.85) and (B.91), and the second inequality follows

from property (B.72) of f (L; S).

We show Theorem 4.6, i.e., (B.69), in the following.

Proof. Recall that the singleton ordered acyclic chain Chs,o can be seen as a horizontal con-

catenation of the singleton ordered towers X s,o
j , j ∈ M and the singleton basic towers Bs

j′ ,

j′ ∈ M′, such that the terminals of the chain i(1) and i(m + 1) form an acyclic set. By

Lemmas B.9 and B.12, we have

∑
j∈M

(
∑

j′∈Gj

∑
`∈[hj′ ]

f ([n]; k`(j′)) + f ([n]; i(shj,j), i(thj,j)) + ∑
j′∈[shj ,j

+1:thj ,j
−1]

f ([n]; i(j′))
)

+ ∑
j′∈M′

(
∑

`∈[hj′ ]

f ([n]; k`(j′)) + f ([n]; i(j′), i(j′ + 1))
)

≤ ∑
j∈M

(
f ([n]; k1(j), . . . , khj(j), i(shj,j), i(thj,j))

+ ∑
`∈[2:hj]

∑
j′∈[s`,j :s`−1,j−1]

∑
J∈N:J∩T3(j′) 6=∅,

J∩T4(j,`,j′) 6=∅

CJ + ∑
`∈[2:hj]

∑
j′∈[t`−1,j :t`,j−1]

∑
J∈N:J∩T3(j′) 6=∅,

J∩T5(j,`,j′) 6=∅

CJ
)

+ ∑
j′∈M′

f ([n]; i(j′), i(j′ + 1), k1(j′), . . . , khj′ (j′)). (B.92)
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Similar to what we have done in the proof of Thoerem 4.2 in Appendex B.1.3, we can

reindex the elements of the set M ∪ M′ as j1 < j2 < · · · < j|M∪M′|, and the following

properties hold:

shj1 ,j1 = 1, (B.93)

thj|M∪M′ | ,j|M∪M′ | = m + 1, (B.94)

shjp ,jp = thjp−1 ,jp−1 , ∀p ∈ [2 : |M ∪M′ |]. (B.95)

For any p ∈ [|M∪M′| − 1], by the submodularity of f (L; S) in (B.74) and property B.75,

we have

f ([n]; i(m + 1), i(thjp ,jp)) + f ([n]; i(thjp ,jp), i(shjp ,jp))

≥ f ([n]; i(thjp ,jp)) + f ([n]; i(m + 1), i(thjp ,jp), i(shjp ,jp))

= f ([n]; i(thjp ,jp)) + f ([n]; i(m + 1), i(shjp ,jp))

+ f ([n]; i(m + 1), i(thjp ,jp), i(shjp ,jp))− f ([n]; i(m + 1), i(shjp ,jp))). (B.96)

Given the fact that jp, p ∈ [|M ∪ M′|] is a reindexing of j, j ∈ M ∪ M′, as well as the

properties (B.93)-(B.95), summing up (B.96) for all p ∈ [|M ∪M′| − 1] yields

∑
j∈M∪M′

f ([n]; i(shj,j), i(thj,j))

≥ ∑
j′∈(⋃j∈M∪M′{shj ,j

,thj ,j
})\{1,m+1}

f ([n]; i(j′)) + f ([n]; i(m + 1), i(1))

+ ∑
p∈[|M∪M′|−1]

f ([n]; i(m + 1), i(thjp ,jp), i(shjp ,jp))

− ∑
p∈[|M∪M′|−1]

f ([n]; i(m + 1), i(shjp ,jp))

= ∑
j′∈⋃j∈M∪M′{shj ,j

,thj ,j
}

f ([n]; i(j′))

+ ∑
p∈[|M∪M′|−1]

f ([n]; i(m + 1), i(thjp ,jp), i(shjp ,jp))

− ∑
p∈[|M∪M′|−1]

f ([n]; i(m + 1), i(shjp ,jp)), (B.97)

where the equality follows from property (B.75) with the fact that i(1) ∈ Bi(m+1) or i(m +

1) ∈ Bi(1) according to Definition 4.8.
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The LHS of (B.92) can be bounded as,

LHS = ∑
j∈M

∑
j′∈Gj

∑
`∈[hj′ ]

f ([n]; k`(j′)) + ∑
j′∈M′

∑
`∈[hj′ ]

f ([n]; k`(j′))

+ ∑
j∈M

∑
j′∈[shj ,j

+1:thj ,j
−1]

f ([n]; i(j′)) + ∑
j∈M∪M′

f ([n]; i(shj,j), i(thj,j))

≥ ∑
j∈[m]

∑
`∈[hj]

f ([n]; k`(j)) + ∑
j∈M

∑
j′∈[shj ,j

+1:thj ,j
−1]

f ([n]; i(j′))

+ ∑
j′∈⋃j∈M∪M′{shj ,j

,thj ,j
}

f ([n]; i(j′)) + ∑
p∈[|M∪M′|−1]

f ([n]; i(m + 1), i(thjp ,jp), i(shjp ,jp))

− ∑
p∈[|M∪M′|−1]

f ([n]; i(m + 1), i(shjp ,jp))

≥ ∑
j∈[m]

∑
`∈[hj]

Rk`(j) + ∑
j∈[m+1]

Ri(j) + ∑
p∈[|M∪M′|−1]

f ([n]; i(m + 1), i(thjp ,jp), i(shjp ,jp))

− ∑
p∈[|M∪M′|−1]

f ([n]; i(m + 1), i(shjp ,jp))

= (1 + m + ∑
j∈[m]

hj)R + ∑
p∈[|M∪M′|]

f ([n]; i(m + 1), i(thjp ,jp), i(shjp ,jp))

− ∑
p∈[|M∪M′|]

f ([n]; i(m + 1), i(shjp ,jp))

= (1 + m + ∑
j∈[m]

hj)R + ∑
j∈M∪M′

f ([n]; i(m + 1), i(thj,j), i(shj,j))

− ∑
j∈M∪M′

f ([n]; i(m + 1), i(shj,j)), (B.98)

where the first equality follows from simply rearranging the terms of the LHS of (B.92), the

first inequality follows from (B.97), the second inequality follows from that fact that Ri ≤
f ([n]; {i}), ∀i ∈ [n] according to property (B.75), the second equality follows from (B.94),

and the third equality follows from the fact that jp, p ∈ [|M ∪ M′|] is a reindexing of j,
j ∈ M ∪M′.

For the RHS of (B.92), simply rearranging the terms we obtain

RHS = ∑
j∈M∪M′

(
f ([n]; k1(j), . . . , khj(j), i(shj,j), i(thj,j))

+ ∑
j∈M

(
∑

`∈[2:hj]
∑

j′∈[s`,j :s`−1,j−1]
∑

J∈N:J∩T3(j′) 6=∅,
J∩T4(j,`,j′) 6=∅

CJ

+ ∑
`∈[2:hj]

∑
j′∈[t`−1,j :t`,j−1]

∑
J∈N:J∩T3(j′) 6=∅,

J∩T5(j,`,j′) 6=∅

CJ
)
. (B.99)
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Given (B.92), (B.98), and (B.99), we can conclude that

(1 + m + ∑
j∈[m]

hj)R

− ∑
j∈M

(
∑

`∈[2:hj]
∑

j′∈[s`,j :s`−1,j−1]
∑

J∈N:J∩T3(j′) 6=∅,
J∩T4(j,`,j′) 6=∅

CJ + ∑
`∈[2:hj]

∑
j′∈[t`−1,j :t`,j−1]

∑
J∈N:J∩T3(j′) 6=∅,

J∩T5(j,`,j′) 6=∅

CJ
)

≤ ∑
j∈M∪M′

(
f ([n]; k1(j), . . . , khj(j), i(shj,j), i(thj,j))

− ∑
j∈M∪M′

f ([n]; i(m + 1), i(thj,j), i(shj,j)) + ∑
j∈M∪M′

f ([n]; i(m + 1), i(shj,j))

≤ ∑
j∈M∪M′

f (T1(j); T2(j))

≤ ∑
j∈M∪M′

∑
J∈N:J∩T1(j) 6=∅,J∩T2(j) 6=∅

CJ , (B.100)

where the second inequality follows from Lemma B.10 with a = shj,j, b = thj,j, c = m + 1,

and d = j for any j ∈ M∪M′, and the last inequality follows from property (B.72) of f (L; S).

Rearranging and simplifying (B.100) yields (B.69) and thus completes the proof.

B.4 Remainder of Proof of Theorem 4.7

First we present a lemma based on the encoding condition in (4.20) and the touch structure.

Lemma B.13. For any set K ⊆ [n], H(TK|XKc) = 0.

Proof. For any set K ⊆ [n], we have

H(TK |XKc) = H(Y{J:J∈N,J∩K=∅} |XKc) = H(Y{J:J⊆Kc} |XKc) ≤ ∑
J⊆Kc

H(YJ |XKc) = 0,

(B.101)

where the last equality follows from the encoding condition in (4.20).

Now we prove that the set function f (G, K) defined in (4.37) satisfies Axioms (4.23)-(4.29)

of Theorem 4.7. Toward that end, we first show that for any ε > 0, the set function fε(G, K)
defined in (4.34) satisfies the following conditions, which are counterparts of (4.23)-(4.27) and
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(4.29) (we deal with (4.28) later):

fε(G, K) = fε(G′, K), if (PG ∪ PG′) \ (PG ∩ PG′) ⊆ TK, (B.102)

fε(∅, K) = fε(G, ∅) = 0, (B.103)

fε(G, K) ≤ ∑
J:J∈PG ,J∈TK

CJ , (B.104)

fε(G, K) ≤ fε(G′, K′), if K ⊆ K′, G ⊆ G′, (B.105)

fε(G ∪ G′, K ∩ K′) + fε(G ∩ G′, K ∪ K′) ≤ fε(G, K) + fε(G′, K′), (B.106)

fε(G, K) + fε(G, K′) = fε(G, K ∪ K′), if K ∩ K′ = ∅, PG ⊆ (N \ TK,K′). (B.107)

1. We show that fε(G, K) satisfies (B.102) as follows. Note that if ((PG ∪ PG′) \ (PG ∩
PG′)) ⊆ TK, according to Lemma B.13, we have

0 = H(TK |XKc)

≥ H((PG ∪ PG′) \ (PG ∩ PG′)|XKc)

≥ H(PG \ PG′ |XKc)

≥ H(PG \ PG′ |XKc , PG′), (B.108)

0 = H(TK |XKc)

≥ H((PG ∪ PG′) \ (PG ∩ PG′)|XKc)

≥ H(PG′ \ PG |XKc)

≥ H(PG′ \ PG |XKc , PG). (B.109)

Given (B.108) and (B.109) as well as the nonnegativity of entropy, we have

H(PG \ PG′ |XKc , PG′) = 0, (B.110)

H(PG′ \ PG |XKc , PG) = 0. (B.111)

Therefore,

fε(G, K) =
1
r

H(PG |XKc)

=
1
r

H(PG, PG′ \ PG |XKc)

=
1
r

H(PG′ , PG \ PG′ |XKc)

=
1
r

H(PG′ |XKc) = fε(G′, K),

where the second and fourth equalities follow from (B.111) and (B.110), respectively.
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2. We show that fε(G, K) satisfies (B.103) as follows. It is obvious that for any G ⊆ [m],

K ⊆ [n],

fε(∅, K) =
1
r

H(P∅ |XKc) =
1
r

H(∅|XKc) = 0, (B.112)

fε(G, ∅) =
1
r

H(PG |X∅c) =
1
r

H(PG |X[n]) = 0, (B.113)

where the last equality of (B.113) is due to the encoding condition in (4.20).

3. We show that fε(G, K) satisfies (B.104) as follows. According to Lemma B.13 and the

fact that conditioning cannot increase entropy, we have

fε(G, K) =
1
r

H(PG |XKc) =
1
r

H(PG ∪ TK |XKc)

=
1
r

H(TK, PG \ TK |XKc) =
1
r

H(PG \ TK |XKc)

≤ 1
r

H(PG \ TK) ≤
1
r ∑

J:J∈PG ,J∈TK

rJ ≤ ∑
J:J∈PG ,J∈TK

CJ .

4. We show that fε(G, K) satisfies (B.105) as follows. Note that if G ⊆ G′ ⊆ [m], K ⊆
K′ ⊆ [n], then K′c ⊆ Kc. Therefore, we have

fε(G, K) =
1
r

H(PG |XKc) ≤ 1
r

H(PG |XK′c) ≤
1
r

H(PG′ |XK′c) = fε(G′, K′).

5. We show that fε(G, K) satisfies (B.106) as follows. Let us define G1 = G \ G′, G2 =

G′ \ G and G0 = G ∩ G′, so that G ∪ G′ = G0 ∪ G1 ∪ G2 is the union of three disjoint

sets and G = G0 ∪ G1 and G′ = G0 ∪ G2. Similarly, define K0 = Kc ∩ K′c, K1 =

Kc \ K′c and K2 = K′c \ Kc so that Kc ∪ K′c = K0 ∪ K1 ∪ K2, Kc = K0 ∪ K1 and

K′c = K0 ∪ K2.

Set

f1 = fε(G ∪ G′, K ∩ K′) + fε(G ∩ G′, K ∪ K′) +
1
r

H1,

where H1 = H(XK0∪K1∪K2) + H(XK0), and set

f2 = fε(G, K) + fε(G′, K′) +
1
r

H2,

where H2 = H(XK0∪K1) + H(XK0∪K2). Due to the message independence in (4.19) and

sets K0, K1, K2 being disjoint, we have H1 = H2.
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We can verify that for any server grouping P = {P1, P2, · · · , Pm}, G ⊆ [m], we have

PG∪G′ =
⋃

i∈G0∪G1∪G2

Pi = PG ∪ PG′ , (B.114)

PG∩G′ =
⋃

i∈G0

Pi ⊆ PG ∩ PG′ , (B.115)

where (B.115) is due to the possible overlapping between two different server groups,

e.g., even for two disjoint sets G1, G2 ⊆ [m], PG1 ∩ PG2 may not be ∅. If P1, · · · , Pm

happen to be disjoint server groups, we will have PG∩G′ = PG ∩ PG′ .

Therefore, we can write

r f1 = H(PG∪G′ |XK0∪K1∪K2) + H(PG∩G′ |XK0) + H1

= H(PG∪G′ , XK0∪K1∪K2) + H(PG∩G′ , XK0)

≤ H(PG ∪ PG′ , XK0∪K1∪K2) + H(PG ∩ PG′ , XK0)

≤ H(PG, XK0∪K1) + H(PG′ , XK0∪K2)

= H(PG |XK0∪K1) + H(PG′ |XK0∪K2) + H2 = r f2.

where the first inequality is due to (B.114) and (B.115) and the second inequality is due

to the submodularity of the entropy function. Finally, we have

fε(G ∪ G′, K ∩ K′) + fε(G ∩ G′, K ∪ K′) = f1 −
1
r

H1 ≤ f2 −
1
r

H2

= fε(G, K) + fε(G′, K′).

6. We show that fε(G, K) satisfies (B.107) as follows. For any K, K′ ⊆ [n] such that

K ∩ K′ = ∅, set L = [n] \ (K ∪ K′). For PG ⊆ (N \ TK,K′), according to Proposition

B.1 presented in Section B.5, we have

0 = I(XK; XK′ |PG, XL)

= H(XK |PG, XL) + H(XK′ |PG, XL)− H(XK, XK′ |PG, XL)

= H(PG, XK∪L)− H(PG, XL) + H(PG, XK′∪L)

− H(PG, XL)− H(PG, X[n]) + H(PG, XL)

= H(PG, XK∪L) + H(PG, XK′∪L)− H(PG, XL)− H(X[n]) (B.116)

= H(PG |XK∪L) + H(PG |XK′∪L)− H(PG |XL) (B.117)

= r( fε(G, K′) + fε(G, K)− fε(G, K ∪ K′)), (B.118)

where (B.116) follows from the encoding condition in (4.20), and (B.117) follows from
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the message independence in (4.19). Obviously, given r being positive, by (B.118), we

have fε(G, K′) + fε(G, K) = fε(G, K ∪ K′).

Now that we have shown that fε(G, K) satisfies (B.102)-(B.107), we use this result to show

that f (G, K) satisfies corresponding six axioms (4.23)-(4.27) and (4.29) in the following.

1. For Axiom (4.23), if ((PG ∪ PG′) \ (PG ∩ PG′)) ⊆ TK, we have

f (G, K) = lim inf
ε→0

fε(G, K) = lim inf
ε→0

fε(G′, K) = f (G′, K),

where the second equality follows from (B.102).

2. For Axiom (4.24), due to (B.103), we have

f (∅, K) = lim inf
ε→0

fε(∅, K) = 0,

f (G, ∅) = lim inf
ε→0

fε(G, ∅) = 0.

3. For Axiom (4.25), due to (B.104), we have

f (G, K) = lim inf
ε→0

fε(G, K) ≤ ∑
J:J∈PG ,J∈TK

CJ .

4. For Axiom (4.26), consider any G ⊆ G′ ⊆ [m], K ⊆ K′ ⊆ [n]. By (B.105), we have

0 ≤ lim inf
ε→0

( fε(G′, K′)− fε(G, K))

= lim inf
ε→0

fε(G′, K′)− lim sup
ε→0

f (G, K)

≤ lim inf
ε→0

fε(G′, K′)− lim inf
ε→0

f (G, K)

= f (G′, K′)− f (G, K).

5. For Axiom (4.27), consider any G, G′ ⊆ [m], K, K′ ⊆ [n]. By (B.106), we have

0 ≤ lim inf
ε→0

( fε(G′, K′) + fε(G, K)− fε(G ∪ G′, K ∩ K′)− fε(G ∩ G′, K ∪ K′))

= lim inf
ε→0

fε(G′, K′) + lim inf
ε→0

fε(G, K)

− lim sup
ε→0

f (G ∪ G′, K ∩ K′)− lim sup
ε→0

f (G ∩ G′, K ∪ K′)

≤ lim inf
ε→0

fε(G′, K′) + lim inf
ε→0

fε(G, K)

− lim inf
ε→0

f (G ∪ G′, K ∩ K′)− lim inf
ε→0

f (G ∩ G′, K ∪ K′)

= f (G′, K′) + f (G, K)− f (G ∪ G′, K ∩ K′)− f (G ∩ G′, K ∪ K′).
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6. For Axiom (4.29), consider any G ⊆ [m], K, K′ ⊆ [n] such that K ∩ K′ = ∅ and

PG ⊆ (N \ TK,K′). By (B.107), we have

f (G, K) + f (G, K′) = lim inf
ε→0

( fε(G, K) + fε(G, K′))

= lim inf
ε→0

fε(G, K ∪ K′) = f (G, K ∪ K′).

Finally for the last remaining axiom, Axiom (4.28), we use an approach similar to the one used

in the inequality leading up to (4.42). Consider any ε > 0 and i ∈ [n]. We rearrange (4.33) as

ti ≤
H(YN |XAi)− H(YN |XAi∪{i})

1− δ(ε)
. (B.119)

We have

r fε([m], {i}) = H(YN |X{i}c)− H(YN |X[n]) (B.120)

= I(Xi; YN |XAi∪Bi)

= H(Xi |XAi∪Bi)− H(Xi |YN , XAi∪Bi)

≤ H(Xi)

= ti (B.121)

≤ H(YN |XAi)− H(YN |XAi∪{i})

1− δ(ε)
(B.122)

=
r fε([m], Bi ∪ {i})− r fε([m], Bi)

1− δ(ε)
(B.123)

where (B.120) follows from the encoding condition in (4.20), (B.121) follows from the fact that

the messages are uniformly distributed as specified in (4.19), (B.122) follows from (B.119),

and (B.123) follows from the definition of fε(G, K). Dividing both sides of (B.123) by r and

then taking the limit infimum as ε approaches zero, we have

f ([m], {i}) ≤ lim inf
ε→0

fε([m], Bi ∪ {i})− fε([m], Bi)

1− δ(ε)

= lim inf
ε→0

( fε([m], Bi ∪ {i})− fε([m], Bi))

= lim inf
ε→0

fε([m], Bi ∪ {i})− lim sup
ε→0

fε([m], Bi)

≤ lim inf
ε→0

fε([m], Bi ∪ {i})− lim inf
ε→0

fε([m], Bi)

= f ([m], Bi ∪ {i})− f ([m], Bi). (B.124)
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On the other hand, by Axiom (4.27) we have

f ([m], {i}) ≥ f ([m], Bi ∪ {i})− f ([m], Bi). (B.125)

Combining (B.124) and (B.125) leads to Axiom (4.28).

This concludes the proof of Theorem 4.7.

B.5 Functional Dependence Graph and fd-separation for Dis-
tributed Index Coding

We review the functional dependence graph (FDG), which was first introduced in Kramer

[1998] and then further developed in Thakor et al. [2016]. We first restate the general definition

of FDG and then specialize it to the distributed index coding functional dependence graph

(DIC-FDG) based on the DIC problem setup.

Within this section, we use G = (V , E) to denote a directed graph with vertex set V =

{V1, V2, · · · } and directed edge set E = {e1, e2, · · · }. We use tail(e) and head(e) to denote

the tail and the head of the directed edge e, ∀e ∈ E , respectively. For any Vj, Vk ∈ V , j < k,

we say that vertices Vj, Vk ∈ V are connected if there exist vertices in V , Vj, Vj+1, . . . , Vk,

and edges in E , ej, . . . , ek−1, such that for any i ∈ [j : k − 1], we have either tail(ei) =

Vi, head(ei) = Vi+1 or tail(ei) = Vi+1, head(ei) = Vi. We call such vertex sequence

Vj, Vj+1, . . . , Vk a path between Vj and Vk. Correspondingly, we say that Vj and Vk are discon-

nected if such intermediate vertices and edges do not exist (i.e., there is no path between Vj

and Vk). Note that we ignore the direction of the edges when determining whether two vertices

are connected or not.

Definition B.2 (Functional dependence graph (FDG)). Let V = {V1, V2, . . . } be a set of

random variables. A directed graph G = (V , E) is called a functional dependence graph

(FDG) for V if and only if

H(Vi |Vj : (Vj, Vi) ∈ E) = 0, ∀Vi ∈ V . (B.126)

Definition B.3 (Distributed index coding functional dependence graph (DIC-FDG)). For a

given DIC problem, its distributed index coding functional dependence graph (DIC-FDG) is a

directed graph G = (V , E) defined as follows.

• The set of vertices V = X[n] ∪YN .

• For any V, V ′ ∈ V , (V, V ′) ∈ E if and only if it satisfies one of the following conditions:

1. V = Xi, V ′ = YJ , J ∈ N, i ∈ J, i.e., (V, V ′) denotes message availability at server

J;
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X1 X2 X3 X4

Y{1} . . . Y{1,2} . . . Y{1,2,3} . . . Y[n]

Figure B.2: The DIC-FDG for the 4-message problem: (1|−), (2|4), (3|2), (4|3), with all 24 − 1 =

15 servers. For simplicity, only four output variables, Y{1}, Y{1,2}, Y{1,2,3}, and Y{1,2,3,4}, and their
corresponding links are shown. To avoid clutter, whenever there exist directed edges in both directions
between any two vertices, we simply draw an edge with arrows at both ends between the vertices,
instead of drawing two separate directed edges. Note that the edges defined in item 2 of Definition B.3
are shown as blue, while all the other edges defined in items 1 and 3 are shown in black.

2. V = Xi, V ′ = Xj, j ∈ [n], i ∈ Aj, i.e., (V, V ′) denotes side information availabil-

ity at receiver j;

3. V = YJ , V ′ = Xi, J ∈ N, i ∈ [n], i.e., (V, V ′) denotes a broadcast link from

server J to receiver i;

Note that the encoding conditions H(YJ |XJ) = 0 are captured in the DIC-FDG due to the

existence of edges as defined in item 1 above. The decoding conditions H(Xi|YN , XAi) = 0
are captured due to the existence of edges as defined in items 2 and 3.2 Hence, it can be verified

that for any DIC-FDG G = (V , E) we have

H(Vi |Vj : (Vj, Vi) ∈ E) = 0, ∀Vi ∈ V .

Therefore, the DIC-FDG defined in Definition B.3 is indeed an FDG satisfying Definition B.2.

Example B.2. See Figure B.2 for the DIC-FDG for the DIC problem: (1|−), (2|4), (3|2), (4|3).

Now we review the fd-separation criterion, also from Thakor et al. [2016]; Kramer [1998],

which leads to the conditional message independence utilized in Axiom (4.29) of Theorem

4.7 in Section 4.5. Similar to the DIC-FDG, the fd-separation presented here has also been

specialized to the distributed index coding scenario.

2Note that for the DIC-FDG, we assume zero-error decoding conditions at receivers for simplicity. However,
as the fd-separation and Proposition B.1 (to be defined shortly) depend only on the message independence and the
encoding conditions at servers, they hold in the general case of vanishing decoding error probability.
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X1 X2 X3 X4

Y{1,2} Y{1,3} Y{1,4}

X1 X2 X3 X4

Y{1,2} Y{1,3} Y{1,4}

Figure B.3: The ancestral graph GAn(U∪W∪Z) is shown on the left. And the remaining of
GAn(U∪W∪Z) after removing all edges outgoing from vertices in U is shown on the right, where X2

becomes disconnected from both X3 and X4.

Definition B.4 (Ancestral graph). Consider the DIC-FDG G = (V , E) of a given DIC prob-

lem. For any subset A ⊆ V , let An(A) be the set of all vertices in V \ A such that for every

vertex V ∈ An(A), there is a directed path from V to some vertex V ′ in A in the subgraph

G̃ = G \ {e ∈ E : ∃i ∈ [n], head(e) = Xi}. The ancestral graph with respect to A, denoted

by GAn(A), is a vertex-induced subgraph of G consisting of vertices (A∪An(A)) and edges

e ∈ E such that head(e), tail(e) ∈ A ∪An(A).

Definition B.5 (fd-separation). Let G = (V , E) be the DIC-FDG of a given DIC problem,

and let U ,W ,Z be three nonempty disjoint subsets of V . Set U fd-separates sets W and Z
if every vertex inW is disconnected from every vertex in Z in what remains of GAn(U∪W∪Z)
after removing all edges outgoing from vertices in U .

Example B.3. Recall the 4-message DIC problem whose DIC-FDG is shown in Figure B.2.

Set U = {X{1}, Y{{1,2},{1,3},{1,4}}},W = {X{2}},Z = {X{3,4}}. It can be verified that U
fd-separatesW and Z , as illustrated by Figure B.3.

It can be verified that once the subset of vertices U fd-separates Z andW in the DIC-FDG

for a given DIC problem, then it also fd-separatesZ andW in the corresponding network FDG

[Thakor et al., 2016, Definition 11]. Therefore, according to Lemma 4 in Thakor et al. [2016],

we conclude that the random variables denoted by Z and W are conditionally independent

given the random variables denoted by U , i.e.,

I(Z ;W|U ) = 0, if U fd-separates Z andW in the DIC-FDG. (B.127)

Now we can state the following proposition.

Proposition B.1. For any DIC problem and two disjoint nonempty subsets K, K′ ⊂ [n], set

L = [n] \ (K ∪ K′). Then, we have

I(XK; XK′ |XL, YP) = 0, (B.128)
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for any subset of servers P ⊆ (N \ TK,K′).

Proof. Set U = XL ∪ YP, Z = XK, W = XK′ . Since P ⊆ N \ TK,K′ = (TK,K′ ∪ TK′,K ∪
TK,K′), according to the touch structure in Definition 2.2, we know that in the ancestral graph

GAn(U∪W∪Z), for any Xi ∈ Z , Xj ∈ W , vertices Xi and Xj are either disconnected, or

connected with at least one vertex from XL ⊆ U in the path between them.

After removing all edges outgoing from vertices in U , any connected vertices Xi ∈ Z and

Xj ∈ W become disconnected. Hence, we can conclude that the vertex set U fd-separates

Z andW in the DIC-FDG. Therefore, from (B.127), we conclude that I(XK; XK′ |XL, YP) =

I(Z ;W|U ) = 0.

B.6 Proof of Theorem 4.8

For easier reference, we repeat (4.45) here for a given DIC problem G: (i|Ai), i ∈ [n] with

peripheral set U and an augmentation group V = (V1, · · · , Vk),

∑
i∈[n]

Ri ≤ ∑
J∈N

CJ + ∑
`∈[k]

∑
J∈T`

CJ , (B.129)

where T` = TV`,(
⋃

j∈[`+1:k] Vj)∪W and W = [n] \U \ (⋃j∈[k] Vj). Note that [k + 1 : k] simply

means ∅.

In the following, we prove the proposition by showing that (B.129) is implied by the rate

constraint inequality (4.22) as well as the Axioms (4.23)-(4.29) of Theorem 4.7 with the spe-

cific server grouping PV = {TV1 , TV2 , · · · , TVk , T(
⋃

j∈[k] Vj)c} defined in Definition 4.13.

For any i ∈ [n], according to (4.22) as well as Axiom (4.27), we have

Ri ≤ f ([m], Bi ∪ {i})− f ([m], Bi)

≤ f ([m], B ∪ {i})− f ([m], B), ∀B ⊆ Bi, i ∈ [n]. (B.130)

Consider any two disjoint sets L, K ⊆ [n]. If L is an augmentation set of K, then by

Definition 4.10, there exists an ordering {i1, i2, · · · , i|L|} of the elements in L such that Aij ⊆
{i1, · · · , ij−1} ∪ K, j ∈ [|L|], which indicates that

({i1, · · · , ij−1} ∪ K)c ⊆ Bij , ∀j ∈ [|L|]. (B.131)
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Hence, according to (B.130) and (B.131), we have

∑
i∈L

Ri = ∑
j∈[|L|]

Rij ≤ f ([m], Kc)− f ([m], Kc \ {i1})

+ f ([m], Kc \ {i1})− f ([m], Kc \ {i1} \ {i2})
+ f ([m], Kc \ {i1} \ {i2})− f ([m], Kc \ {i1} \ {i2} \ {i3}) + · · ·
+ f ([m], Kc \ {i1} \ · · · \ {i|L|−1})− f ([m], Kc \ L)

= f ([m], Kc)− f ([m], Kc \ L).

By Definitions 4.11 and 4.12, U is an augmentation set of ∅, and Vj for any j ∈ [k] is an

augmentation set of Vc
j , and W is an augmentation set of Wc. Therefore, we have

∑
i∈U

Ri ≤ f ([m], ∅c)− f ([m], ∅c \U) = f ([m], [n])− f ([m], [n] \U), (B.132)

∑
i∈Vj

Ri ≤ f ([m], (Vc
j )

c)− f ([m], (Vc
j )

c \Vj) = f ([m], Vj), ∀j ∈ [k], (B.133)

∑
i∈W

Ri ≤ f ([m], (Wc)c)− f ([m], (Wc)c \W) = f ([m], W). (B.134)

As U, V1, · · · , Vk, W are disjoint to each other and [n] = U ∪ (⋃j∈[k] Vj)∪W, combining

(B.132) and (B.134), as well as (B.133) for every j ∈ [k], we have

∑
i∈[n]

Ri = ∑
i∈U

Ri + ∑
j∈[k]

∑
i∈Vj

Ri + ∑
i∈W

Ri

≤ f ([m], [n])− f ([m], [n] \U) + ∑
j∈[k]

f ([m], Vj) + f ([m], W)

≤ f ([m], [n]) + ∑
j∈[k]

f ({j}, Vj) + f ([m], W)− f ([m], (
⋃

j∈[k]
Vj) ∪W),

where the last inequality is due to Axiom (4.23) of Theorem 4.7. According to Axiom (4.25)

of Theorem 4.7, we have

f ([m], [n]) + ∑
`∈[k]

f ({`}, (
⋃

j∈[`+1:k]

Vj) ∪W) ≤ ∑
J∈N

CJ + ∑
`∈[k]

∑
J∈T`

CJ .

Therefore, to complete the proof of the proposition, it suffices to show that

f ([m], [n]) + ∑
`∈[k]

f ({`}, (
⋃

j∈[`+1:k]

Vj) ∪W)

≥ f ([m], [n]) + ∑
j∈[k]

f ({j}, Vj) + f ([m], W)− f ([m], (
⋃

j∈[k]
Vj) ∪W) (B.135)
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is implied by the rate constraint inequality (4.22) as well as Axioms (4.23)-(4.29) of Theorem

4.7 with PV from Definition 4.13.

By Axioms (4.27) and (4.26), for any ` ∈ [k], we have

f ([m], (
⋃

j∈[`:k]

Vj) ∪W) + f ({`}, (
⋃

j∈[`+1:k]

Vj) ∪W)

≥ f ([m], (
⋃

j∈[`+1:k]

Vj) ∪W) + f ({`}, V`). (B.136)

Summing both sides of (B.136) for every ` ∈ [k], we have

∑
`∈[k]

f ([m], (
⋃

j∈[`:k]

Vj) ∪W) + ∑
`∈[k]

f ({`}, (
⋃

j∈[`+1:k]

Vj) ∪W)

≥ ∑
`∈[k]

f ([m], (
⋃

j∈[`+1:k]

Vj) ∪W) + ∑
`∈[k]

f ({`}, V`)

= ∑
`∈[2:k+1]

f ([m], (
⋃

j∈[`:k]

Vj) ∪W) + ∑
`∈[k]

f ({`}, V`). (B.137)

Note that

∑
`∈[1]

f ([m], (
⋃

j∈[`:k]

Vj) ∪W) = f ([m], (
⋃

j∈[k]
Vj) ∪W)

and

∑
`∈[k+1:k+1]

f ([m], (
⋃

j∈[`:k]

Vj) ∪W) = f ([m], W).

Using the above relations, we have

f ([m], (
⋃

j∈[k]
Vj) ∪W) + ∑

`∈[k]
f ({`}, (

⋃
j∈[`+1:k]

Vj) ∪W)

= ∑
`∈[k]

f ([m], (
⋃

j∈[`:k]

Vj) ∪W)− ∑
`∈[2:k]

f ([m], (
⋃

j∈[`:k]

Vj) ∪W)

+ ∑
`∈[k]

f ({`}, (
⋃

j∈[`+1:k]

Vj) ∪W)

≥ ∑
`∈[2:k+1]

f ([m], (
⋃

j∈[`:k]

Vj) ∪W)− ∑
`∈[2:k]

f ([m], (
⋃

j∈[`:k]

Vj) ∪W) + ∑
`∈[k]

f ({`}, V`)

= f ([m], W) + ∑
`∈[k]

f ({`}, V`),

where the inequality follows from (B.137). This completes the proof of (B.135) being implied

by the rate constraint inequality (4.22) as well as Axioms (4.23)-(4.29) of Theorem 4.7 with

PV, and thus completes the proof of this proposition.
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B.7 Remainder of Proof of Corollary 4.2

Recall that as specified in Remark 4.8, the following proof is based on the assumption that all

the servers J ∈ N are active.

We finish the proof of Corollary 4.2 by showing that Axiom (4.23) in Theorem 4.7 simpli-

fies to Axiom (4.51). For easier reference, we repeat Axiom (4.23), withPt = {TL1 , TL2 , . . . , TLm},
as follows.

f (G, K) = f (G′, K), if ((TLG ∪ TLG′ ) \ (TLG ∩ TLG′ )) ⊆ TK.

We also repeat Axiom (4.51) as follows.

f (G, K) = f (G′, K), K ⊆ (LG ∩ LG′).

For brevity, set L = LG, L′ = LG′ , and also set T = (TL ∪ TL′) \ (TL ∩ TL′) = ((TLG ∪
TLG′ ) \ (TLG ∩ TLG′ )). For any K ⊆ [n], G, G′ ⊆ [m], we are going to show that K ⊆ (L∩ L′)
is the sufficient and necessary condition for T ⊆ TK. If G = G′, then both (4.23) and (4.51)

becomes trivial. Hence we only consider the case when G 6= G′, and since L1, · · · , Lm are

disjoint to each other, we have L 6= L′.
First, to show the sufficiency, we assume that K ⊆ (L∩ L′). Consider any J ∈ T, we know

that J touches either L or L′, but not both. As K ⊆ (L ∩ L′), we know that J ∩ K = ∅, which

means that J ∈ TK. Therefore, we have T ⊆ TK, which proves the sufficient condition.

Second, to show the necessity, we assume that T ⊆ TK. Since L 6= L′, without loss

of generality, assume there exists some j1 ∈ L \ L′. Now we show that K ⊆ (L ∩ L′) by

contradiction.

Assume that K \ L′ 6= ∅, then there exists some j2 ∈ K \ L′. Note that j1, j2 may be the

same index. Now set J = {j1} ∪ {j2} ∈ N. Then we have

J ∩ L 6= ∅, J ∩ L′ = ∅, J ∩ K 6= ∅. (B.138)

Hence, we have J ∈ T (since J ∈ (TL ∪ TL′), J /∈ (TL ∩ TL′)), and also J /∈ TK. This

contradicts with the assumption that T ⊆ TK. And therefore, we must have K \ L′ = ∅, i.e.,

K ⊆ L′.
Now assume that K \ L 6= ∅, then there exists some j3 ∈ K \ L. Since j3 ∈ K \ L and

K ⊆ L′, for {j3} ∈ N, we have

{j3} ∩ L = ∅, {j3} ∩ L′ 6= ∅, {j3} ∩ K 6= ∅. (B.139)

Hence, we have {j3} ∈ T (since {j3} ∈ (TL ∪ TL′), {j3} /∈ (TL ∩ TL′)), and also {j3} /∈ TK.

This contradicts with the assumption that T ⊆ TK. And therefore, we must have K \ L = ∅,
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i.e., K ⊆ L.

Now we have both K ⊆ L′ and K ⊆ L, which means that K ⊆ (L ∩ L′) and proves

the necessary condition. Therefore, Axioms (4.23) and (4.51) are the same under the touch

grouping. This completes the proof.

B.8 Proof of Proposition 4.3

For a given DIC problem, consider two valid server groupings Q = {Q1, · · · , Q`} and P =

{P1, · · · , Pm} such that P is a refinement of Q. For any E ⊆ [`], let QE =
⋃

i∈E Qi, and for

any G ⊆ [m], let PG =
⋃

i∈G Pi.

According to Definition 4.17, for any i ∈ [`], there exists some set G ⊆ [m] such that

PG = Qi. Define the mapping function G that maps any set E ⊆ [`] to a corresponding set

G(E) ⊆ [m] as follows.

G(E) =
⋃
i∈E

⋃
G⊆[m]:PG=Qi

G. (B.140)

Then for any E ⊆ [`], we have

PG(E) =
⋃
i∈E

⋃
G⊆[m]:PG=Qi

PG =
⋃
i∈E

Qi = QE. (B.141)

It can also be verified that the mapping function G has following properties.

G(∅) = ∅. (B.142)

G(E) ⊆ G(E′), ∀E ⊆ E′ ⊆ [`]. (B.143)

G(E ∪ E′) = G(E) ∪ G(E′), ∀E, E′ ⊆ [`]. (B.144)

G(E ∩ E′) ⊆ G(E) ∩ G(E′), ∀E, E′ ⊆ [`]. (B.145)

Consider any rate tuple R = (Ri, i ∈ [n]) in RP . Then there exists some f (G, K), G ⊆
[m], K ⊆ [n] such that R and f (G, K) satisfy Axioms (4.23)-(4.29), as well as (4.22), with

server grouping P . Construct fQ(E, K) = f (G(E), K), E ⊆ [`], K ⊆ [n]. We now show that

the rate tuple R is also in RQ by showing that R and fQ(E, K) satisfy Axioms (4.23)-(4.29),

as well as (4.22) with server grouping Q.

For Axiom (4.23), consider any E, E′ ⊆ [`], K ⊆ [n] such that (QE ∪ QE′) \ (QE ∩
QE′) ⊆ TK, we have

(PG(E) ∪ PG(E′)) \ (PG(E) ∩ PG(E′)) = (QE ∪QE′) \ (QE ∩QE′) ⊆ TK,

where the first equality is due to (B.141). As f (G, K) satisfies Axiom (4.23) with server
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groupingP , we have f (G(E), K) = f (G(E′), K). Therefore, by the construction of fQ(E, K),
we have fQ(E, K) = f (G(E), K) = f (G(E′), K) = fQ(E′, K).

For Axiom (4.24), it is clear that for any E ⊆ [`], K ⊆ [n], due to (B.142) as well as

f (G, K) satisfying Axiom (4.24), we have fQ(∅, K) = f (G(∅), K) = f (∅, K) = 0 and

fQ(E, ∅) = f (G(E), ∅) = 0.

For Axiom (4.25), for any E ⊆ [`], K ⊆ [n], due to (B.141) as well as f (G, K) satisfying

Axiom (4.25), we have

fQ(E, K) = f (G(E), K) ≤ ∑
J:J∈PG(E),J∈TK

CJ = ∑
J:J∈QE,J∈TK

CJ .

For Axiom (4.26), for any E ⊆ E′ ⊆ [`], K ⊆ K′ ⊆ [n], we have

fQ(E, K) = f (G(E), K) ≤ f (G(E′), K′) = fQ(E′, K′),

where the inequality is due to (B.143) and f (G, K) satisfying Axiom (4.26).

For Axiom (4.27), for any E, E′ ⊆ [`], K, K′ ⊆ [n], we have

fQ(E ∪ E′, K ∩ K′) + fQ(E ∩ E′, K ∪ K′)

= f (G(E ∪ E′), K ∩ K′) + f (G(E ∩ E′), K ∪ K′)

≤ f (G(E) ∪ G(E′), K ∩ K′) + f (G(E) ∩ G(E′), K ∪ K′)

≤ f (G(E), K) + f (G(E′), K′)

= fQ(E, K) + fQ(E′, K′),

where the first inequality is due to (B.144) and (B.145) and f (G, K) satisfying Axiom (4.26).

The second inequality is due to f (G, K) satisfying Axiom (4.27).

For Axiom (4.28), for any K ⊆ [n], according to (B.141), we have

(P[m] ∪ PG([`])) \ (P[m] ∩ PG([`])) = (P[m] ∪Q[`]) \ (P[m] ∩Q[`])

= (N ∪ N) \ (N ∩ N) = ∅ ⊆ TK.

Therefore, for any i ∈ [n], as f (G, K) satisfies Axioms (4.23) and (4.28), we have

fQ([`], Bi ∪ {i})− fQ([`], Bi) = f (G([`]), Bi ∪ {i})− f (G([`]), Bi)

= f ([m], Bi ∪ {i})− f ([m], Bi) (B.146)

= f ([m], {i}) = f (G([`]), {i}) = fQ([`], {i}).

For Axiom (4.29), for any E ⊆ [`], K, K′ ⊆ [n] such that QE ⊆ (N \ TK,K′), according to

(B.141), we have PG(E) = QE ⊆ (N \ TK,K′). As f (G, K) satisfies Axiom (4.29) with server
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grouping P , we have

fQ(E, K) + fQ(E, K′) = f (G(E), K) + f (G(E), K′)

= f (G(E), K ∪ K′) = fQ(E, K ∪ K′).

Finally, given (B.146) and the fact that f (G, K) and R jointly satisfy (4.22), for any i ∈ [n],
we have

fQ([`], Bi ∪ {i})− fQ([`], Bi) = f ([m], Bi ∪ {i})− f ([m], Bi) ≥ Ri,

which finishes the proof that fQ(E, K) and R jointly satisfy (4.22).

So far we have shown that for any R in rate region RP , it must be also in RQ. Therefore,

RP ⊆ RQ.

B.9 Proof of Proposition 4.4

We show that RP∗(G, C) ⊆ RADPM(G, C) as follows.

Consider any rate tuple R ∈ RP∗(G, C). Then, there exists a set function f∗(K), K ⊆
[n] such that f∗(K) satisfies Axioms (4.68)-(4.72) and R and f∗(K) jointly satisfy (4.67).

Construct fL(S), S ⊆ L ⊆ [n] as fL(S) = f∗(S).
It can be verified with relative ease that fL(S) satisfies all the axioms for Proposition 2.9

(Axioms (2.45)-(2.48)). So it remains to show that R and fL(S) jointly satisfy (2.44) as fol-

lows.

For any L ⊆ [n] and i ∈ L, we have

Ri ≤ f∗(Bi ∪ {i})− f∗(Bi)

≤ f∗((Bi ∪ {i}) ∩ L)− f∗(Bi ∩ L)

= fL((Bi ∪ {i}) ∩ L)− fL(Bi ∩ L).

where the first inequality is due to (4.67), and the second inequality is due to the fact that

Bi ∪ ((Bi ∪ {i})∩ L) = Bi ∪ {i}, Bi ∩ ((Bi ∪ {i})∩ L) = Bi ∩ L and that f∗(K) satisfies the

submodularity axiom, Axiom (4.71).

Therefore, we can conclude that R ∈ RADPM(G, C) and thus RP∗(G, C) ⊆ RADPM(G, C).
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