5 research outputs found

    Reconstruction of smartphone images for low resolution iris recognition

    Get PDF
    As iris systems evolve towards a more relaxed acquisition, low image resolution will be a predominant issue. In this paper we evaluate a super-resolution method to reconstruct iris images based on Eigen-transformation of local image patches. Each patch is reconstructed separately, allowing better quality of enhanced images by preserving local information. We employ a database of 560 images captured in visible spectrum with two smartphones. The presented approach is superior to bilinear or bicubic interpolation, specially at lower resolutions. We also carry out recognition experiments with six iris matchers, showing that better performance can be obtained at low-resolutions with the proposed eigen-patch reconstruction, with fusion of only two systems pushing the EER to below 5-8% for down-sampling factors up to a size of only 13×13.peer-reviewe

    Reconstruction of smartphone images for low resolution iris recognition

    Full text link

    Information fusion in low-resolution iris videos using Principal Components Transform

    No full text

    A generic computer platform for efficient iris recognition

    Get PDF
    This document presents the work carried out for the purposes of completing the Engineering Doctorate (EngD) program at the Institute for System Level Integration (iSLI), which was a partnership between the universities of Edinburgh, Glasgow, Heriot-Watt and Strathclyde. The EngD is normally undertaken with an industrial sponsor, but due to a set of unforeseen circumstances this was not the case for this work. However, the work was still undertaken to the same standards as would be expected by an industrial sponsor. An individual’s biometrics include fingerprints, palm-prints, retinal, iris and speech patterns. Even the way people move and sign their name has been shown to be uniquely associated with that individual. This work focuses on the recognition of an individual’s iris patterns. The results reported in the literature are often presented in such a manner that direct comparison between methods is difficult. There is also minimal code resource and no tool available to help simplify the process of developing iris recognition algorithms, so individual developers are required to write the necessary software almost every time. Finally, segmentation performance is currently only measurable using manual evaluation, which is time consuming and prone to human error. This thesis presents a completely novel generic platform for the purposes of developing, testing and evaluating iris recognition algorithms which is designed to simplify the process of developing and testing iris recognition algorithms. Existing open-source algorithms are integrated into the generic platform and are evaluated using the results it produces. Three iris recognition segmentation algorithms and one normalisation algorithm are proposed. Three of the algorithms increased true match recognition performance by between two and 45 percentage points when compared to the available open-source algorithms and methods found in the literature. A matching algorithm was developed that significantly speeds up the process of analysing the results of encoding. Lastly, this work also proposes a method of automatically evaluating the performance of segmentation algorithms, so minimising the need for manual evaluation
    corecore