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Abstract—As iris systems evolve towards a more relaxed
acquisition, low image resolution will be a predominant issue. In
this paper we evaluate a super-resolution method to reconstruct
iris images based on Eigen-transformation of local image patches.
Each patch is reconstructed separately, allowing better quality of
enhanced images by preserving local information. We employ a
database of 560 images captured in visible spectrum with two
smartphones. The presented approach is superior to bilinear or
bicubic interpolation, specially at lower resolutions. We also carry
out recognition experiments with six iris matchers, showing that
better performance can be obtained at low-resolutions with the
proposed eigen-patch reconstruction, with fusion of only two
systems pushing the EER to below 5-8% for down-sampling
factors up to a size of only 13×13.

I. INTRODUCTION

Among all biometric techniques, iris recognition is re-
garded as one of the most reliable and accurate identification
system available [1]. In recent years, there has been an increas-
ing pressure towards allowing acquisition ‘at a distance’ and
‘on the move’ by means of relaxed acquisition conditions [2].
It poses additional problems to the quality of acquired iris im-
ages, with the lack of pixel resolution being the most evident.
Here, we address the problem of up-sampling, or increasing
the size of a low-resolution image, due to for example a long
acquisition distance to the object of interest. Low resolution
is also an issue when bandwidth or storage limitations exist,
such as in remote surveillance systems, personal devices or
smartcards. In these cases, images are usually compressed e.g.
via JPEG2000 [3], but image dimensions are kept constant.
Nevertheless, image quality losses due to compression are not
within the scope of this paper.

Super-resolution (SR) techniques aim to reconstruct the
missing high resolution (HR) image Y given a low resolution
(LR) image X . The LR image is modeled as the corresponding
HR image manipulated by blurring (B), warping (W ) and
down-sampling (D) as X = DBWY+n (n represents additive
noise). For simplicity, some works omit the warp matrix and
noise, leading to X = DBY . Two main SR approaches
exist: reconstruction- and learning-based [4]. In reconstruction-
based, sub-pixel shifts among multiple LR images are fused
to obtain a HR image, therefore several LR images are
needed as input. Alternatively, in learning-based approaches,
the relationship between LR and HR images of a training
database is modeled, and reconstruction can be done with
only one LR image as input. Learning approaches generally
outperform reconstruction methods and achieve higher mag-
nification factors. Recently, SR techniques have been applied

to biometric systems. Since Baker and Kanade first suggested
SR algorithms specifically for faces [5], there has been a lot
of research in face super-resolution (also called hallucination)
[6]. Learning approaches have been also used with other
biometrics including iris [7], [8], [9], [10]. However, one major
limitation is that they try to develop a prototype iris using
combination of complete images. Eigen-patches is a strategy
which models a local patch using collocated patches from a
dictionary, instead of using the whole image. Each patch is
hallucinated separately, providing better quality reconstructed
prototypes with better local detail and lower distortions. Local
methods are also generally superior in recovering texture than
global methods.

Here, we apply an iris super-resolution technique based
on PCA Eigen-transformation of local image patches inspired
by the system of [11] for face images. A PCA Eigen-
transformation is conducted in each patch of the input LR
image. The HR patch is then reconstructed as a linear com-
bination of collocated HR patches of the training database.
This way, every patch has its own optimal reconstruction
coefficients, allowing to preserve local image information.
Prior to the hallucination process, iris images are aligned
with respect to the pupil center, since alignment is critical
for the performance of SR systems. In our experiments, we
use the Visible Spectrum Smartphone Iris (VSSIRIS) database
[12], captured with two smartphones. We also conduct ver-
ification experiments with six different iris matchers. The
presented hallucination method is superior to bilinear and bicu-
bic interpolation, showing more resiliency to down-sampling.
Regarding the recognition rates, better performance can be
obtained at low-resolutions with the proposed eigen-patch re-
construction method w.r.t. bilinear or bicubic interpolation. It is
also observed that recognition performance is not significantly
degraded with any matcher until a down-sampling factor of
1/8 (image size of 39×39). In addition, by fusion of just two
matchers, performance at low resolutions can be improved as
well, with EER pushed to below 5-8% for any given down-
sampling factor (which in our experiments includes iris images
of up a size of only 13×13). This means for example that
storage or data transmission requirements can be reduced,
two important features for biometric technologies to achieve
massive adoption [2].

II. EIGEN-PATCH IRIS HALLUCINATION

The structure of the hallucination method is shown in
Figure 1. It is based on the eigen-patch hallucination method
for face images of [11], adapted for iris images at [13].
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Fig. 1. Structure of the eigen-patch iris hallucination system.

Given an input low resolution (LR) iris image X , the
system first separates the image into N overlapping patches
{x} = {x1, x2, · · · , xN}. Two super sets of basis patches are
computed for each LR patch xi, using collocated patches of
a training database of high resolution images {H̄}. One of
the super sets,

{
h1
i , h

2
i , · · · , hM

i

}
, is obtained from collocated

high-resolution (HR) patches of the training database. By
degradation (low-pass filtering and down-sampling) a low
resolution database {L̄} is obtained from {H̄}, and the other
super set,

{
l1i , l

2
i , · · · , lMi

}
, is obtained similarly, but for {L̄}.

M is the size (number of images) of the training set. A PCA
Eigen-transformation is then conducted in each input LR patch
xi using the collocated patches

{
l1i , l

2
i , · · · , lMi

}
of the LR

facial training images to obtain the optimal reconstruction
weights ci =

{
c1i , c

2
i , · · · , cMi

}
of each patch (see Figure 2).

By allowing each LR patch of the input image to have its own
optimal reconstruction weights, the HR patch will be closer
to the input LR patch, therefore more local information can
be preserved and less reconstruction artifacts appear. Once the
reconstruction weights ci of each patch are obtained, the HR
patches are rendered using the collocated patches of the HR
images of the training set

{
H
}

. The reconstruction coefficients
of the input image X using the LR patches is carried on
to weight the HR basis set, which yields the preliminary
reconstructed HR iris image Y

′
, after averaging the overlap-

ping regions. Additional details of this Eigen-transformation
procedure can be obtained in [11].
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Fig. 2. Eigen-patch hallucination step.

A re-projection step is further applied to Y
′

to reduce
artifacts and make the output image Y more similar to the
input image X . The image Y

′
is re-projected to X via Y

t+1
=

Y
t − τU

(
B
(
DBY

t −X
))

where U is the upsampling

matrix. The process stops when |Y t+1 −Y
t| is smaller than a

threshold (10−5 in our experiments). We also use τ=0.02.

III. IRIS RECOGNITION SYSTEMS

We conduct iris matching experiments using six different
systems based on 1D log-Gabor filters (LG) [14], SIFT op-
erator (SIFT) [15], local intensity variations in iris textures
(CR) [16], Discrete-Cosine Transform (DCT) [17], cumulative-
sum-based grey change analysis (KO) [18], and Gabor spatial
filters (QSW) [19]. In LG, CR, DCT, KO and QSW, the iris
region is first unwrapped to a normalized rectangle using the
Daugman’s rubber sheet model [20]. Normalization produces
a 2D array of 20×240, heigth×width, (LG) and 64×512
(others), with horizontal dimensions of angular resolution
and vertical dimensions of radial resolution. Feature encoding
is implemented according to the different feature extraction
methods, leading to fixed-length templates with are matched
using distance measures. Rotation is accounted for by shifting
the grid of the 2D array of the query image in counter- and
clock-wise direction and selecting the lowest distance, which
corresponds to the best match between the two templates.
In the SIFT matcher, SIFT key points are directly extracted
from the iris region (without unwrapping), and the recognition
metric is the number of matched key points, normalized by the
average number of detected keypoints in the two images under
comparison. The LG implementation is from Libor Masek
code [14]; the SIFT method uses a free toolkit for feature
extraction and matching1, with the adaptations described in
[21] (particularly, it includes a post-processing step to remove
spurious matching points using geometric constraints); and the
remaining algorithms are from the University of Salzburg Iris
Toolkit software package (USIT) [22].

Apple iPhone 5S

Nokia Lumia 1020

Fig. 3. Sample images from VSSIRIS database (taken from [12]).

IV. DATABASE AND EXPERIMENTAL PROTOCOL

We use the Visible Spectrum Smartphone Iris (VSSIRIS)
database [12], which consists of images from 28 subjects
(56 eyes) captured using the rear camera of two different
smartphones (Apple iPhone 5S and Nokia Lumia 1020).
Images from the iPhone 5S have 3264×2448 pixels, while
images from the Lumia 1020 have 3072×1728 pixels. Images
have been obtained in unconstrained conditions under mixed
illumination consisting of natural sunlight and artificial room

1http://vision.ucla.edu/ vedaldi/code/sift/assets/sift/index.html
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Fig. 4. Hallucination results with different down-sampling factors (left: PSNR values, right: SSIM values).

light. Each eye has 5 samples per smartphone, thus totalling
5×56=280 images per device (560 in total). Acquisition
is done without flash, in a single session and with semi-
cooperative subjects. Figure 3 shows some example images.
Iris segmentation data is also available, which has been used
as input for our experiments. All images of the database have
been resized via bicubic interpolation to have the same sclera
radius (we choose as target radius the average sclera radius
R=145 of the whole database, given by the groundtruth). Then,
images are aligned by extracting a square region of 319×319
around the sclera center (corresponding to about 1.1×R). Two
sample images can be seen in Figure 5, bottom.

Aligned and normalized HR iris images are then down-
sampled via bicubic interpolation by a factor of 2n (i.e. the
image is resized to 1/(2n) of the original HR size), and down-
sampled images are used as input LR images, from which
hallucinated HR images are computed. Given an input LR
image, we use all available images from the remaining eyes
(of both smartphones) to train the eigen-patch hallucination
method (leave-one-out strategy). Training images are mirrored
in the horizontal direction to duplicate the size of the training
dataset, thus having 55 eyes × 10 samples × 2 = 1100 images
for training. We also extract the normalized (unwrapped) iris
region (size 20×240) from both the hallucinated HR and the
reference HR images, according to the algorithm of Section III.
In addition, we perform verification experiments with the men-
tioned iris matchers. Experiments are done separately for each
smartphone. We consider each eye as a different user. Genuine
matches are obtained by comparing each image of an eye to
the remaining images of the same eye, avoiding symmetric
matches. Impostor matches are obtained by comparing the 1st

image of an eye to the 2nd image of the remaining eyes. With
this procedure, we obtain 56 × 10 = 560 genuine and 56 ×
55 = 3,018 impostor scores per smartphone.

V. RESULTS

Performance of the hallucination algorithm is measured by
computing the PSNR (in dBs) and SSIM values between the
hallucinated HR image and the corresponding HR reference
image, with results given in Figure 4. We also compare our
method with bicubic and bilinear interpolation. Figure 5 shows
the hallucinated images (only for a selection of down-sampling
factors for the sake of space).

As can be observed from Figure 4, the eigen-patch halluci-
nation method outperforms bilinear and bicubic interpolations,

with a higher difference for bigger down-sampling factors.
The advantage of eigen-patch hallucination is more evident
when the resolution of the LR image becomes very low. This
can be also appreciated in the examples of Figure 5, where
the blurring of bilinear and bicubic interpolations at very low
resolutions is clearly evident. The only exception is the SSIM
measure on the full iris image, where the three interpolation
methods show similar performance. It is also worth noting
that the biggest drop in PSNR and SSIM values is observed
for small down-sampling factors (1/4 to 1/8), but further down-
sampling results in smaller drops (again, there is one exception
with the SSIM measure on unwrapped iris images, but PSNR
on the same images does show the mentioned behavior).

We now report verification experiments using hallucinated
HR images. We consider two different scenarios: 1) enrolment
samples taken from original HR input images, and query
samples from hallucinated HR images; and 2) both enrolment
and query samples taken from hallucinated HR images. The
first case simulates a controlled enrolment scenario with good
quality images, while the second case simulates a totally
uncontrolled scenario (albeit for simplicity, enrolment and
query samples have similar resolution in our experiments).
Results are given in Figures 6 and 7. Several experimental
findings can be put forward as result:

• Verification performance using the proposed halluci-
nation method is similar to bilinear and bicubic inter-
polations for small down-sampling factors, but with
some matchers (SIFT, CR, DCT) better performance
is obtained with our hallucination method at very
low resolutions. With the LG matcher, the difference
in performance is already evident with just a down-
sampling of 1/2. Interestingly, with the QSW matcher,
bilinear and bicubic interpolations are better at low
resolution, indicating that the artifacts introduced by
the eigen-patch method due to the division of the
image in patches may be jeopardizing performance
(observe the ‘tessellation’ effect at very low resolu-
tions in Figure 5). On the other hand, with the KO
matcher, no particular interpolation method stands out.

• The performance of scenarios 1 and 2 is pretty similar
up to a certain down-sampling factor but for some
matchers, performance of scenario 2 is much better
than scenario 1 at very low resolutions (specially SIFT
and DCT matchers, but also CR, LG and QSW).
When the size of input LR images is very low, the
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quality of hallucinated HR images is fairly different
than the quality of original HR images (see Figure 5).
As a result, it is better to match hallucinated HR
images among themselves (scenario 2) than matching
an hallucinated HR image against an original HR
image (scenario 1). On the other hand, the KO matcher
is shown to be insensitive to this phenomenon.

• Performance with any given matcher is fairly constant
up to a factor of 1/8, which corresponds to an im-
age size of 39×39. This suggests that the size of
both query and test images can be kept very low
without sacrificing performance, which is relevant for
instance with devices having low storage capabilities
or with low speed communication channels (recall
that original HR images have a size of 319×319).
The best performing matcher (SIFT) does not show
a significant degradation until a down-sampling factor
of 1/14 (image size 23×23).

• The best absolute performance is obtained by the SIFT
and LG matchers with eigen-patch interpolation. The
SIFT matcher has an EER smaller than 1% until a
down-sampling factor of 1/14 (scenario 2), then the
EER increases up to 10-11%. The LG matcher, on the
other hand, has an EER of 7-8% for any given down-
sampling factor. Performance of the other matchers is
always above 10% EER, although their performance is
pretty constant for any down-sampling given factor, at
least in scenario 2 (the DCT and CR matchers shows
some tendency to a worse EER in lower resolutions).

We then carry out fusion experiments using linear logis-
tic regression. Given N matchers which output the scores
(s1j , s2j , ...sNj) for an input trial j, a linear fusion is: fj =
a0 + a1 · s1j + a2 · s2j + ... + aN · sNj . The weights
a0, a1, ...aN are trained via logistic regression as described in
[23]. We use this trained fusion approach because it has shown

better performance than simple fusion rules (like the mean
or the sum rule) in our previous works. Results are given in
Figures 8 and 9. For the sake of time and page space, we have
only tested fusion combinations of two matchers, reporting
here the combinations where there is a clear improvement in
performance due to the fusion. The following observations can
be done from these results:

• The matcher with the best absolute EER (SIFT) can
be further supported by others to improve EER at low
resolutions (see LG+SIFT, SIFT+KO, SIFT+QSW).
In particular, the fusion of the two best systems (LG
and SIFT) pushes the EER to below 5-8% (scenario
2) for any down-sampling factor. This is not to say
that the best combination always involves the best
individual systems. In this case, the two matchers
are based on different features, so it is expected a
high complementarity between them. In particular, LG
works with the unwrapped iris image by applying a
1D Log-Gabor filter to the whole image, while SIFT
uses the original iris image to compute orientation
histograms around selected key points only.

• The DCT matcher also appears to be well comple-
mented by other matchers (CR, KO and QSW). As
with SIFT, DCT is a matcher that has tendency to
a worse EER as resolution decreases. When DCT is
fused with the mentioned matchers, such tendency is
reduced (scenario 1) or even disappeared (scenario 2).

VI. CONCLUSION

Variability in resolution will be a common situation as
iris recognition evolves towards more relaxed acquisition con-
ditions or is applied to forensic scenarios [24]. Here, we
apply a iris super-resolution technique based on PCA Eigen-
transformation of local image patches [11] to increase the reso-
lution of iris images. Experiments are conducted on a database
of images in visible spectrum captured with two smartphones.
Experimental results show that the eigen-patch approach is
superior to traditional bilinear or bicubic interpolations, being
more resilient as image resolution decreases. We also carry out
iris matching experiments on the reconstructed images with
six different matchers according to state-of-the art techniques.
Two operational scenarios are considered, one where original
high-resolution images are matched against hallucinated high-
resolution images (controlled enrolment), and another sce-
nario where only hallucinated images are used (uncontrolled
scenario). Experiments show that at low resolutions, better
performance can be obtained with the proposed eigen-patch
reconstruction method w.r.t. bilinear or bicubic interpolation.
In addition, recognition performance with any matcher is not
degraded significantly until image is down-sampled by 1/8
or higher factors, while one of the matchers (SIFT) does
not show significant degradation until a down-sampling of
1/14. This allows to use images of reduced size, which is of
importance under low storage or data transmission capabilities.
We also carry out fusion experiments, with results showing that
by appropriate combination of matchers, performance at low
resolutions can be improved as well, with EER of the best
combination of two matchers pushed to below 5-8% EER for
any given down-sampling factor (which in our experiments
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Fig. 6. iPhone 5S: Verification results (EER) of the two scenarios considered with different down-sampling factors.
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Fig. 7. Nokia Lumia: Verification results (EER) of the two scenarios considered with different down-sampling factors.

includes iris images of up to a down-sampling factor of 1/22,
or an image size of only 13×13).

Future work includes improving the hallucination method
by Manifold Learning approaches [25], which model non-
linear relations between low and high resolution images,
through which we expect to cope with artifacts appearing
at low resolutions due to division of the image in patches.
Another direction is increasing the number of systems involved
in the fusion, as well as the use of training sets smaller than
the one used here. Lastly, we plan to analyze sensitivity of the
proposed method to misalignment of the eye, since alignment
is very critical to proper hallucination output.
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SCENARIO 1 (Original HR image vs. downsampled LR image)

SCENARIO 2 (Downsampled LR image vs. downsampled LR image)

Fig. 9. Nokia Lumia: Fusion results (EER) of the two scenarios considered with different down-sampling factors (eigen-patch reconstruction only).
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