3 research outputs found

    Information fusion algorithms for state estimation in multi-sensor systems with correlated missing measurements

    Get PDF
    In this paper, centralized and distributed fusion estimation problems in linear discrete-time stochastic systems with missing observations coming from multiple sensors are addressed. At each sensor, the Bernoulli random variables describing the phenomenon of missing observations are assumed to be correlated at instants that differ m units of time. By using an innovation approach, recursive linear filtering and fixed-point smoothing algorithms for the centralized fusion problem are derived in the least-squares sense. The distributed fusion estimation problem is addressed based on the distributed fusion criterion weighted by matrices in the linear minimum variance sense. For each sensor subsystem, local least-squares linear filtering and fixed-point smoothing estimators are given and the estimation error cross-covariance matrices between any two sensors are derived to obtain the distributed fusion estimators. The performance of the proposed estimators is illustrated by numerical simulation examples where scalar and two-dimensional signals are estimated from missing observations coming from two sensors, and the estimation accuracy is analyzed for different missing probabilities and different values of m.Ministerio de Ciencia e Innovación (Programa FPU and Grant No. MTM2011-24718

    Covariance-Based Estimation from Multisensor Delayed Measurements with Random Parameter Matrices and Correlated Noises

    Get PDF
    The optimal least-squares linear estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems subject to randomly delayed measurements with different delay rates. For each sensor, a different binary sequence is used to model the delay process. The measured outputs are perturbed by both random parameter matrices and one-step autocorrelated and cross correlated noises. Using an innovation approach, computationally simple recursive algorithms are obtained for the prediction, filtering, and smoothing problems, without requiring full knowledge of the state-space model generating the signal process, but only the information provided by the delay probabilities and the mean and covariance functions of the processes (signal, random parameter matrices, and noises) involved in the observation model. The accuracy of the estimators is measured by their error covariance matrices, which allow us to analyze the estimator performance in a numerical simulation example that illustrates the feasibility of the proposed algorithms

    Networked Fusion Filtering from Outputs with Stochastic Uncertainties and Correlated Random Transmission Delays

    Get PDF
    This paper is concerned with the distributed and centralized fusion filtering problems in sensor networked systems with random one-step delays in transmissions. The delays are described by Bernoulli variables correlated at consecutive sampling times, with different characteristics at each sensor. The measured outputs are subject to uncertainties modeled by random parameter matrices, thus providing a unified framework to describe a wide variety of network-induced phenomena; moreover, the additive noises are assumed to be one-step autocorrelated and cross-correlated. Under these conditions, without requiring the knowledge of the signal evolution model, but using only the first and second order moments of the processes involved in the observation model, recursive algorithms for the optimal linear distributed and centralized filters under the least-squares criterion are derived by an innovation approach. Firstly, local estimators based on the measurements received from each sensor are obtained and, after that, the distributed fusion filter is generated as the least-squares matrix-weighted linear combination of the local estimators. Also, a recursive algorithm for the optimal linear centralized filter is proposed. In order to compare the estimators performance, recursive formulas for the error covariance matrices are derived in all the algorithms. The effects of the delays in the filters accuracy are analyzed in a numerical example which also illustrates how some usual network-induced uncertainties can be dealt with using the current observation model described by random matrices
    corecore