3,523 research outputs found

    Augmented Symbolic Execution for Information Flow in Hardware Designs

    Full text link
    We present SEIF, a methodology that combines static analysis with symbolic execution to verify and explicate information flow paths in a hardware design. SEIF begins with a statically built model of the information flow through a design and uses guided symbolic execution to recognize and eliminate non-flows with high precision or to find corresponding paths through the design state for true flows. We evaluate SEIF on two open-source CPUs, an AES core, and the AKER access control module. SEIF can exhaustively explore 10-12 clock cycles deep in 4-6 seconds on average, and can automatically account for 86-90% of the paths in the statically built model. Additionally, SEIF can be used to find multiple violating paths for security properties, providing a new angle for security verification

    SoCCAR: Detecting System-on-Chip Security Violations Under Asynchronous Resets

    Get PDF
    Modern SoC designs include several reset domains that enable asynchronous partial resets while obviating complete system boot. Unfortunately, asynchronous resets can introduce security vulnerabilities that are difficult to detect through traditional validation. In this paper, we address this problem through a new security validation framework, SoCCCAR, that accounts for asynchronous resets. The framework involves (1) efficient extraction of reset-controlled events while avoiding combinatorial explosion, and (2) concolic testing for systematic exploration of the extracted design space. Our experiments demonstrate that SoCCAR can achieve almost perfect detection accuracy and verification time of a few seconds on realistic SoC designs

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Apollo guidance, navigation and control - Design survey of the Apollo inertial subsystem

    Get PDF
    Design, development, and testing of inertial guidance and navigation systems for Apollo projec

    Design of electronic systems for automotive sensor conditioning

    Get PDF
    This thesis deals with the development of sensor systems for automotive, mainly targeting the exploitation of the new generation of Micro Electro-Mechanical Sensors (MEMS), which achieve a dramatic reduction of area and power consumption but at the same time require more complexity in the sensor conditioning interface. Several issues concerning the development of automotive ASICs are presented, together with an overview of automotive electronics market and its main sensor applications. The state of the art for sensor interfaces design (the generic sensor interface concept), consists in sharing the same electronics among similar sensor applications, thus saving cost and time-to-market but also implementing a sub-optimal system with area and power overheads. A Platform Based Design methodology is proposed to overcome the limitations of generic sensor interfaces, by keeping the platform generality at the highest design layers and pursuing the maximum optimization and performances in the platform customization for a specific sensor. A complete design flow is presented (up to the ASIC implementation for gyro sensor conditioning), together with examples regarding IP development for reuse and low power optimization of third party designs. A further evolution of Platform Based Design has been achieved by means of implementation into silicon of the ISIF (Intelligent Sensor InterFace) platform. ISIF is a highly programmable mixed-signal chip which allows a substantial reduction of design space exploration time, as it can implement in a short time a wide class of sensor conditioning architectures. Thus it lets the designers evaluate directly on silicon the impact of different architectural choices, as well as perform feasibility studies, sensor evaluations and accurate estimation of the resulting dedicated ASIC performances. Several case studies regarding fast prototyping possibilities with ISIF are presented: a magneto-resistive position sensor, a biosensor (which produces pA currents in presence of surface chemical reactions) and two capacitive inertial sensors, a gyro and a low-g YZ accelerometer. The accelerometer interface has also been implemented in miniboards of about 3 cm2 (with ISIF and sensor dies bonded together) and a series of automatic trimming and characterization procedures have been developed in order to evaluate sensor and interface behaviour over the automotive temperature range, providing a valuable feedback for the implementation of a dedicated accelerometer interface

    DESIGN AND CHARACTERIZATION OF LOW-POWER LOW-NOISE ALLDIGITAL SERIAL LINK FOR POINT-TO-POINT COMMUNICATION IN SOC

    Get PDF
    The fully-digital implementation of serial links has recently emerged as a viable alternative to their classical analogue counterpart. Indeed, reducing the analogue content in favour of expanding the digital content becomes more attractive due to the ability to achieve less power consumption, less sensitivity to the noise and better scalability across multiple technologies and platforms with inconsiderable modifications. In addition, describing the circuit in hardware description languages gives it a high flexibility to program all design parameters in a very short time compared with the analogue designs which need to be re-designed at transistor level for any parameter change. This can radically reduce cost and time-to-market by saving a significant amount of development time. However, beside these considerable advantages, the fully-digital architecture poses several design challenges

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
    • …
    corecore