146,146 research outputs found

    Numerical Evidence that the Perturbation Expansion for a Non-Hermitian PT\mathcal{PT}-Symmetric Hamiltonian is Stieltjes

    Full text link
    Recently, several studies of non-Hermitian Hamiltonians having PT\mathcal{PT} symmetry have been conducted. Most striking about these complex Hamiltonians is how closely their properties resemble those of conventional Hermitian Hamiltonians. This paper presents further evidence of the similarity of these Hamiltonians to Hermitian Hamiltonians by examining the summation of the divergent weak-coupling perturbation series for the ground-state energy of the PT\mathcal{PT}-symmetric Hamiltonian H=p2+1/4x2+iλx3H=p^2+{1/4}x^2+i\lambda x^3 recently studied by Bender and Dunne. For this purpose the first 193 (nonzero) coefficients of the Rayleigh-Schr\"odinger perturbation series in powers of λ2\lambda^2 for the ground-state energy were calculated. Pad\'e-summation and Pad\'e-prediction techniques recently described by Weniger are applied to this perturbation series. The qualitative features of the results obtained in this way are indistinguishable from those obtained in the case of the perturbation series for the quartic anharmonic oscillator, which is known to be a Stieltjes series.Comment: 20 pages, 0 figure

    Finding Near-Optimal Independent Sets at Scale

    Full text link
    The independent set problem is NP-hard and particularly difficult to solve in large sparse graphs. In this work, we develop an advanced evolutionary algorithm, which incorporates kernelization techniques to compute large independent sets in huge sparse networks. A recent exact algorithm has shown that large networks can be solved exactly by employing a branch-and-reduce technique that recursively kernelizes the graph and performs branching. However, one major drawback of their algorithm is that, for huge graphs, branching still can take exponential time. To avoid this problem, we recursively choose vertices that are likely to be in a large independent set (using an evolutionary approach), then further kernelize the graph. We show that identifying and removing vertices likely to be in large independent sets opens up the reduction space---which not only speeds up the computation of large independent sets drastically, but also enables us to compute high-quality independent sets on much larger instances than previously reported in the literature.Comment: 17 pages, 1 figure, 8 tables. arXiv admin note: text overlap with arXiv:1502.0168

    Persistent homology for 3D reconstruction evaluation

    Get PDF
    Space or voxel carving is a non-invasive technique that is used to produce a 3D volume and can be used in particular for the reconstruction of a 3D human model from images captured from a set of cameras placed around the subject. In [1], the authors present a technique to quantitatively evaluate spatially carved volumetric representations of humans using a synthetic dataset of typical sports motion in a tennis court scenario, with regard to the number of cameras used. In this paper, we compute persistent homology over the sequence of chain complexes obtained from the 3D outcomes with increasing number of cameras. This allows us to analyze the topological evolution of the reconstruction process, something which as far as we are aware has not been investigated to date

    A "Piano Movers" Problem Reformulated

    Get PDF
    It has long been known that cylindrical algebraic decompositions (CADs) can in theory be used for robot motion planning. However, in practice even the simplest examples can be too complicated to tackle. We consider in detail a "Piano Mover's Problem" which considers moving an infinitesimally thin piano (or ladder) through a right-angled corridor. Producing a CAD for the original formulation of this problem is still infeasible after 25 years of improvements in both CAD theory and computer hardware. We review some alternative formulations in the literature which use differing levels of geometric analysis before input to a CAD algorithm. Simpler formulations allow CAD to easily address the question of the existence of a path. We provide a new formulation for which both a CAD can be constructed and from which an actual path could be determined if one exists, and analyse the CADs produced using this approach for variations of the problem. This emphasises the importance of the precise formulation of such problems for CAD. We analyse the formulations and their CADs considering a variety of heuristics and general criteria, leading to conclusions about tackling other problems of this form.Comment: 8 pages. Copyright IEEE 201
    corecore