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Abstract. Space or voxel carving is a non-invasive technique that is
used to produce a 3D volume and can be used in particular for the re-
construction of a 3D human model from images captured from a set of
cameras placed around the subject. In [1], the authors present a tech-
nique to quantitatively evaluate spatially carved volumetric representa-
tions of humans using a synthetic dataset of typical sports motion in
a tennis court scenario, with regard to the number of cameras used. In
this paper, we compute persistent homology over the sequence of chain
complexes obtained from the 3D outcomes with increasing number of
cameras. This allows us to analyze the topological evolution of the re-
construction process, something which as far as we are aware has not
been investigated to date.
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1 Introduction

Topological properties provide the kind of information of a space that can be use-
ful in a recognition process. Homology is a topological invariant, i.e., a property
of an object which does not change under continuous (elastic) transformations
of the object. Roughly speaking, homology characterizes “holes” in any dimen-
sion (e.g. connected components, tunnels and cavities in a 3D space). Homology
computation can be carried out over a combinatorial structure called cell com-
plez, which is built up by basic elements (cells) of different dimensions (vertices,
edges, faces, etc.). One can take advantage of the combinatorial nature of a
digital image (as a set of voxels) to compute homology by taking as input the
(algebraic) cubical complex associated to the image. Persistent homology studies
homology classes and their life-times (persistence) in the belief that significant
topological attributes must have a long life-time in a filtration. In this paper, we
compute persistent homology via the Incremental and Decremental Algorithms
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for computing AT-models (see [5]), which allow to combine an incremental with
a decremental technique in the case of a non-increasing filtration. In the fol-
lowing Section, we describe the context in which we apply persistent homology
computation. Section 3 is devoted to recall basic tools used in our computations.
Section 4 describes the application of persistent homology to the evaluation of
the voxel carving process. We draw some conclusions and ideas for future work
in the last Section.

2 Voxel Carving Approach

Space carving is a well-known method for constructing three-dimensional models
of objects from a set of images. The process involves capturing a series of im-
ages of an object, and, by analysis of these images, deriving a description of the
shape of the object. In particular, space (or voxel) carving aproaches [2,3,9, 11]
are non-invasive techniques that allow the reconstruction of a 3D human model
from the images captured from a set of cameras placed around the subject. In
each image, firstly, the region of interest (subject silhouette) is segmented from
the background; then a virtual box is drawn around the subject’s position in
3D space; using extracted silhouettes from each image, inconsistent voxels are
eliminated from the defined volume, iterating through each of the cameras [9]. In
[1], the authors present a technique to quantitatively evaluate spatially carved
volumetric representations of humans using a synthetic dataset of typical sports
motion in a tennis court scenario. Such a quantification is based on the compu-
tation of Normalised Mean Square Error (NMSE) of a groundtruth volumentric
reconstruction against any reconstruction from an inferior camera setup. The
aim of such an evaluation is to somehow quantify the accuracy of the 3D volume
produced by the voxel carving process with regard to the number of cameras
used. This investigation was motivated by the fact that very little work has been
done to date on evaluating the quality of space carving results. In this paper, we
intend to give a different insight into the voxel carving work by homologically
characterising the sequence of reconstruction volumes. This may be interesting
as the surfaces produced (at least, with a few cameras) are quite noisy with
many holes, which could be good data for extracting interesting homology in-
formation. Given the nature of the carvings, we believe that a homology-based
approach is a more appropriate quantification than the relatively simple NMSE-
based approach used previously.

3 Homology Computations on a Set of Voxels

A cell complez is a general topological structure by which a space is decomposed
into basic elements (cells) of different dimensions, which are glued together by
their boundaries (see a formal definition of CW-complex in [8]). Due to the
nature of our input data, we focus on a special type of cell complex: cubical
complez. A cubical complex Q in R?, is given by a finite collection of p-cubes
such that a O-cube is a vertex, a 1-cube is an edge, a 2-cube is a filled square (we
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Fig. 1. Voxel carving approach for 3D reconstruction. Process with 4 cameras around
the subject and an overhead camera.

call it, simply, a square) and a 3-cube is a filled cube (resp. a cube); together
with all their faces and such that the intersection between two of them is either
empty or a face of each of them.

We consider Z/2 as the ground ring for algebraic computations. The cubical
chain complex associated to the cubical complex @ is the collection C(Q) =

{Ch(Q),0p}p where:

(a) each Cp(Q) is the corresponding chain group generated by the p-cubes of @,
over Z/2;

(b) the boundary operator 9, : Cp(Q) — Cp_1(Q) connects two immediate
dimensions. The boundary of a p-cube is the formal sum (mod 2) of all its
facets (proper faces of maximal dimension). It is extended to p-chains by
linearity.

Roughly speaking, the homology groups of a cubical chain complex will be
a chain group whose elements are equivalence classes of cycles, such that if
one cycle can be obtained from another by continuous deformation through the
object, then they are homologous (or equivalent). For example, two vertices are
homologous if there exists a path through the object between them. Formally, a
p-cycleis a p-chain a such that 9,(a) = 0. If @ = 9),41b for some p+1-chain b then
a is called a p-boundary. We say that two p-cycles a and b are homologous if there
exists a (p+ 1)-chain ¢ such that a = b+ J,41c. Define the p-th homology group
to be the quotient group of p-cycles mod p-boundaries denoted by H,(Q). Each
element [a] of Hp(Q) is a quotient class obtained by adding each p-boundary
to a given p-cycle a called a representative cycle of the homology class [a]. The
homology of @ is the chain group H(Q) = {H,(Q)},. See [10] for further details.

3.1 Incremental-Decremental Algorithms for Computing Persistent
Homology

We focus on homology computation methods based on the concept of AT-model
[7]. Given a cell complex, Incremental Algorithm for computing AT-models [7]



4 Persistent Homology for 3D Reconstruction Evaluation

computes homology information of the cell complex by an incremental technique,
considering the addition of a cell each time. Once homology of an object has been
computed, the same algorithm can be used again to update homology informa-
tion if new cells are added to the existing complex; Decremental Algorithm for
computing AT-models [6] can be used for the same aim, in the case that some
cells are deleted.

Given a cubical complex @, an algebraic-topological model (AT-model [7])
for @ is a set of data (Q, H, f, g, ¢), such that:

— (@ is the cubical complex itself.

— H is a subset of Q that characterizes the homology of @ by containing a
p-cube for each p-homology class, for all p. In 3D, H can only have points,
edges and squares: each point of H represents a connected component of @,
each edge represents a “tunnel” and each square represents a “void” (i.e. a
connected component of the background inaccessible from the outside).

— f is a chain map from C(Q) to C(H). This map provides the equivalence
relation between cycles (that is, if two cycles, a and b, are equivalent, then
f(a) = f(b)). Moreover, fg(c) =c for any c € H.

— g is a chain map from C(H) to C(Q). For each cube ¢ in H, g(c) is a repre-
sentative cycle of a homology class.

— ¢ is a map from C(Q) to C(Q) that is a chain homotopy (see [10]) from g f
to the identity homomorphism on C(). This map can be seen as a kind of
boundary inverse. For example, if ¢ is a vertex, then ¢(c) is the path from ¢
to the vertex v € H homologous to c.
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Fig. 2. An example of execution of Incremental Algorithm for computing AT-models.
a) The input cubical complex (only the labels of the vertices are shown). b) The cubes
in H'. ¢) The table with the information of f’, ¢’ and ¢’.

In [5], the authors revisit the algorithm for computing AT-models using an
incremental technique that appears in [7] (we will refer to it as the Incremental
Algorithm) with the aim of setting its equivalence with persistent homology
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computation algorithm [4,12]. Given a cubical complex @ associated to a 3D
digital image, consider a full ordering of its cubes {c!, ..., "} such that if ¢’ is a
face of ¢/, then i < j; take a nested sequence of subcomplexes ) = Q° C Q' --- C
Q" (a filtration over @) such that Q" = {c!,...,c'} (notice that all the proper
faces of ¢! are in Q“~!). Under these conditions, Incremental Algorithm can be
applied to compute persistent homology over the filtration.

See Fig. 2 as a simple example of execution of the Incremental Algorithm for
computing AT-models.
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Fig. 3. An example of execution of Decremental Algorithm for computing AT-models.

a) The output cubical complex (only the labels of the vertices are shown) after deleting

some cubes from Fig. 2.a. b) The cubes in H'. c) The table with the information of f’,
/ /

g and ¢'.

Now, let (Q, H, f, g, ¢) be an AT-model for a cubical complex @ computed by
the Incremental Algorithm. Let ¢™ be a maximal cube of (). Then an AT-model
for @' = Q\ {cm}, (Q,H',f',¢,¢'), can be constructed by the Decremental
Algorithm given in [5], where it was redefined (with respect to the one of [6])
with the aim of extending the concept of persistent homology for objects with a
filtration that is not necessarily increasing.

See Fig. 3 as an example of execution of Decremental Algorithm for comput-
ing AT-models. In this example, the input is an AT-model for a cubical complex,
(Q, H, f,g,¢), representing a 2D image (Fig. 3a) and a list of cubes to eliminate
from Q: {c1,...c,} (the cubes to be eliminated from @ correspond to the cubes
to be deleted in Fig.2.a to obtain Fig. 3.a) in decreasing dimension. It has to
be satisfied that @ \ {c1,...c,} is again a cubical complex. The output of the
algorithm is the set (Q', H', f',¢',¢’) for @' = Q \ {c1,...,¢cn}, in a table form
(see Fig. 3 on the right).

Now, let § = Q° & Q' < -+ < Q" be a zg-zag filtration, that is, a
sequence of cell complexes such that every two consecutive complexes differ by
a single cell ¢, i.e. either Q" = Q~* U {c} or Q° = Q*~*\ {c}. Then, one can
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compute persistent homology over the filtration by combining the application of
Incremental and Decremental Algorithms depending on whether a cell ¢ is added
or deleted each time.
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Fig.4. 3D Reconstructions using a) 4 cameras and b) 10 cameras. Representative
cycles of homology are highlighted in both cases. ¢) Barcode associated to the whole
sequence of 3D reconstructions with increasing number of cameras (from 1 to 50).

4 Persistent Homology for 3D Reconstruction Evaluation

We are concerned with the application of persistent homology computation to
provide topological evaluation of the 3D reconstruction process by the voxel carv-
ing technique. The new insight could significantly enrich the evaluation made in
[1] by means of NMSE quantification. For this aim, we must consider the se-
quence of different 3D models, obtained by voxel carving under increasing num-
ber of cameras, as a whole object on which we have to set up a filtration over
which to compute persistent homology. This way, in particular, we can get an
estimation of the minimum number of cameras needed in order to obtain a topo-
logically correct 3D model (which in general has only one connected component
and no tunnels or voids).

We denote by Ry the cubical complex associated to the 3D reconstruction
obatined using k cameras. Starting from the first reconsturcion Ry, we can use
Incremental Algorithm to compute its homology. Notice that Ryy; may be ob-
tained from Ry by removing some voxels (cubes, together with all their faces
in the cubical complex). This fact makes this context good for making use of
the Decremental Algorithm for getting homology computations through increas-
ing number of cameras. Both, Incremental and Decremental Algorithms provide
all the pairs of cells responsible for the creation/destruction of homology classes
along the process, what allows to follow the evolution of these classes with respect
to time, that is, the number of cameras used. Actually, to compute persistent
homology of the whole sequence of 3D models, { Ry}, the zigzag filtration is
given by the sequence {Rk}‘;C itself with the inclusion, between Ry and R, of
a sequence of complexes {R}" };,=1..n, given by the addition or deletion of a cell,
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Fig. 5. 3D Reconstructions using a) 4 cameras, b) 15 cameras and c) 24 cameras.
Representative cycles of homology are highlighted. Below, barcode associated to the
whole sequence of 3D reconstructions from 1 to 50 cameras.

each time. Compute, then, a big barcode for visualizing the hole computation in
order to easily analyze the stability of the elements of homology.

We have used for computation five different frames extracted from a 3D
video sequence with a voxel resolution of 4 cm, that is, the spacing between
each voxel is 4 cm in the OX, OY and OZ directions. This means 15, 625 voxels
per cubic metre. We have appreciated, as it was expected, that simpler poses of
the subject produce simpler barcodes while more complex poses give place to
more interesting homological information. Fig. 4 shows that the carving process,
in a case of simple pose, stabilizes at 10 cameras (with a unique connected
component), while below that point, 3 different tunnels have been living for
some time. That means that, in order to produce a topologically correct model,
at least 10 cameras are needed. Fig. 5 reflects a more complex case. Notice the
more complex barcode associated (in which 2 connected components, 16 tunnels
and 2 cavities are represented) and, especially, the fact that a 1-homology class
is created at time k& = 15, that persists until £ = 23. So stabilization of one
connected component as final state, occurs much later than in the former case.

We are working also on other approachs:

— To compute persistent homology of the sequence of 3D difference complexes
{ Dy, }, with respect to the groundtruth model, where Dy, = R\ Roo. Now the
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barcode for the whole sequence will provide different information about the
whole process that might complement the one given by the reconstructions
themselves.

— To compute persistent homology of the sequence of 3D complexes generated
by the convex deficiencies of each 3D reconstruction.

5 Conclusions and Future Work

Persistent homology computation provides an interesting new insight into the 3D
model reconstruction process explained in this paper. There are lots of ideas and
experimentation still to be investigated. Different kinds of complexes, associated
to each reconstruction Ry, can be considered to compute persistent homology.
We also must study the dependence of the observations to the resolution of the
input data. An alternative approach could be to compute some homology-based
features extracted from each reconstruction Ry and to compare this against a
groundtruth model. These features should be measurable so that a distance with
respect to the groundtruth model could be computed. These parameters could be
extracted from the comparison of weighted histograms of connected components
(for 0-homology study) or minimal-legth (in some sense) representative cycles of
1-homology.
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