26 research outputs found

    Generating graphs packed with paths: Estimation of linear approximations and differentials:Estimation of linear approximations and differentials

    Get PDF
    When designing a new symmetric-key primitive, the designer must show resistance to known attacks. Perhaps most prominent amongst these are linear and differential cryptanalysis. However, it is notoriously difficult to accurately demonstrate e.g. a block cipher’s resistance to these attacks, and thus most designers resort to deriving bounds on the linear correlations and differential probabilities of their design. On the other side of the spectrum, the cryptanalyst is interested in accurately assessing the strength of a linear or differential attack. While several tools have been developed to search for optimal linear and differential trails, e.g. MILP and SAT based methods, only few approaches specifically try to find as many trails of a single approximation or differential as possible. This can result in an overestimate of a cipher’s resistance to linear and differential attacks, as was for example the case for PRESENT. In this work, we present a new algorithm for linear and differential trail search. The algorithm represents the problem of estimating approximations and differentials as the problem of finding many long paths through a multistage graph. We demonstrate that this approach allows us to find a very large number of good trails for each approximation or differential. Moreover, we show how the algorithm can be used to efficiently estimate the key dependent correlation distribution of a linear approximation, facilitating advanced linear attacks. We apply the algorithm to 17 different ciphers, and present new and improved results on several of these

    Generating Graphs Packed with Paths

    Get PDF
    When designing a new symmetric-key primitive, the designer must show resistance to known attacks. Perhaps most prominent amongst these are linear and differential cryptanalysis. However, it is notoriously difficult to accurately demonstrate e.g. a block cipher\u27s resistance to these attacks, and thus most designers resort to deriving bounds on the linear correlations and differential probabilities of their design. On the other side of the spectrum, the cryptanalyst is interested in accurately assessing the strength of a linear or differential attack. While several tools have been developed to search for optimal linear and differential trails, e.g. MILP and SAT based methods, only few approaches specifically try to find as many trails of a single approximation or differential as possible. This can result in an overestimate of a cipher\u27s resistance to linear and differential attacks, as was for example the case for PRESENT. In this work, we present a new algorithm for linear and differential trail search. The algorithm represents the problem of estimating approximations and differentials as the problem of finding many long paths through a multistage graph. We demonstrate that this approach allows us to find a very large number of good trails for each approximation or differential. Moreover, we show how the algorithm can be used to efficiently estimate the key dependent correlation distribution of a linear approximation, facilitating advanced linear attacks. We apply the algorithm to 17 different ciphers, and present new and improved results on several of these

    Optimal Forgeries Against Polynomial-Based MACs and GCM

    Get PDF
    Polynomial-based authentication algorithms, such as GCM and Poly1305, have seen widespread adoption in practice. Due to their importance, a significant amount of attention has been given to understanding and improving both proofs and attacks against such schemes. At EUROCRYPT 2005, Bernstein published the best known analysis of the schemes when instantiated with PRPs, thereby establishing the most lenient limits on the amount of data the schemes can process per key. A long line of work, initiated by Handschuh and Preneel at CRYPTO 2008, finds the best known attacks, advancing our understanding of the fragility of the schemes. Yet surprisingly, no known attacks perform as well as the predicted worst-case attacks allowed by Bernstein\u27s analysis, nor has there been any advancement in proofs improving Bernstein\u27s bounds, and the gap between attacks and analysis is significant. We settle the issue by finding a novel attack against polynomial-based authentication algorithms using PRPs, and combine it with new analysis, to show that Bernstein\u27s bound, and our attacks, are optimal

    Automatic Search of Bit-Based Division Property for ARX Ciphers and Word-Based Division Property

    Get PDF
    Division property is a generalized integral property proposed by Todo at Eurocrypt 2015. Previous tools for automatic searching are mainly based on the Mixed Integer Linear Programming (MILP) method and trace the division property propagation at the bit level. In this paper, we propose automatic tools to detect ARX ciphers\u27 division property at the bit level and some specific ciphers\u27 division property at the word level. For ARX ciphers, we construct the automatic searching tool relying on Boolean Satisfiability Problem (SAT) instead of MILP, since SAT method is more suitable in the search of ARX ciphers\u27 differential/linear characteristics. The propagation of division property is translated into a system of logical equations in Conjunctive Normal Form (CNF). Some logical equations can be dynamically adjusted according to different initial division properties and stopping rule, while the others corresponding to r-round propagations remain the same. Moreover, our approach can efficiently identify some optimized distinguishers with lower data complexity. As a result, we obtain a 17-round distinguisher for SHACAL-2, which gains four more rounds than previous work, and an 8-round distinguisher for LEA, which covers one more round than the former one. For word-based division property, we develop the automatic search based on Satisfiability Modulo Theories (SMT), which is a generalization of SAT. We model division property propagations of basic operations and S-boxes by logical formulas, and turn the searching problem into an SMT problem. With some available solvers, we achieve some new distinguishers. For CLEFIA, 10-round distinguishers are obtained, which cover one more round than the previous work. For the internal block cipher of Whirlpool, the data complexities of 4/5-round distinguishers are improved. For Rijndael-192 and Rijndael-256, 6-round distinguishers are presented, which attain two more rounds than the published ones. Besides, the integral attacks for CLEFIA are improved by one round with the newly obtained distinguishers

    CLAASP: a Cryptographic Library for the Automated Analysis of Symmetric Primitives

    Get PDF
    This paper introduces CLAASP, a Cryptographic Library for the Automated Analysis of Symmetric Primitives. The library is designed to be modular, extendable, easy to use, generic, efficient and fully automated. It is an extensive toolbox gathering state-of-the-art techniques aimed at simplifying the manual tasks of symmetric primitive designers and analysts. CLAASP is built on top of Sagemath and is open-source under the GPLv3 license. The central input of CLAASP is the description of a cryptographic primitive as a list of connected components in the form of a directed acyclic graph. From this representation, the library can automatically: (1) generate the Python or C code of the primitive evaluation function, (2) execute a wide range of statistical and avalanche tests on the primitive, (3) generate SAT, SMT, CP and MILP models to search, for example, differential and linear trails, (4) measure algebraic properties of the primitive, (5) test neural-based distinguishers. In this work, we also present a comprehensive survey and comparison of other software libraries aiming at similar goals as CLAASP

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    New Differential Cryptanalysis Results for the Lightweight Block Cipher BORON

    Get PDF
    BORON is a 64-bit lightweight block cipher based on the substitution-permutation network that supports an 80-bit (BORON-80) and 128-bit (BORON-128) secret key. In this paper, we revisit the use of differential cryptanalysis on BORON in the single-key model. Using an SAT/SMT approach, we look for differentials that consist of multiple differential characteristics with the same input and output differences. Each characteristic that conforms to a given differential improves its overall probability. We also implemented the same search using Matsui\u27s algorithm for verification and performance comparison purposes. We identified high-probability differentials which were then used in key recovery attacks against BORON-80/128. We first show that the previous differential cryptanalysis attack against 9-round of BORON was at most an 8.5 round attack due to the omission of the final block XOR layer. Then, we used 8-round differentials with a probability of 2−58.1562^{-58.156} and 2−62.4152^{-62.415} in key recovery attacks against 9 and 10 rounds of BORON-80 and BORON-128 with time/data/memory complexities of {263.63/262/2552^{63.63}/2^{62}/2^{55} and 2100.28/264/2712^{100.28}/2^{64}/2^{71}} respectively. Our key recovery framework provides a more accurate estimate of the attack complexity as compared to previous work. The attacks proposed in this paper are the best differential attacks against BORON-80/128 in the single-key model to date

    Finding Three-Subset Division Property for Ciphers with Complex Linear Layers (Full Version)

    Get PDF
    Conventional bit-based division property (CBDP) and bit- based division property using three subsets (BDPT) introduced by Todo et al. at FSE 2016 are the most effective techniques for finding integral characteristics of symmetric ciphers. At ASIACRYPT 2019, Wang et al. proposed the idea of modeling the propagation of BDPT, and recently Liu et al. described a model set method that characterized the BDPT propagation. However, the linear layers of the block ciphers which are analyzed using the above two methods of BDPT propagation are restricted to simple bit permutation. Thus the feasibility of the MILP method of BDPT propagation to analyze ciphers with complex linear layers is not settled. In this paper, we focus on constructing an automatic search algorithm that can accurately characterize BDPT propagation for ciphers with complex linear layers. We first introduce BDPT propagation rule for the binary diffusion layer and model that propagation in MILP efficiently. The solutions to these inequalities are exact BDPT trails of the binary diffusion layer. Next, we propose a new algorithm that models Key-Xor operation in BDPT based on MILP technique. Based on these ideas, we construct an automatic search algorithm that accurately characterizes the BDPT propagation and we prove the correctness of our search algorithm. We demonstrate our model for the block ciphers with non-binary diffusion layers by decomposing the non-binary linear layer trivially by the COPY and XOR operations. Therefore, we apply our method to search integral distinguishers based on BDPT of SIMON, SIMON(102), PRINCE, MANTIS, PRIDE, and KLEIN block ciphers. For PRINCE and MANTIS, we find (2 + 2) and (3 + 3) round integral distinguishers respectively which are longest to date. We also improve the previous best integral distinguishers of PRIDE and KLEIN. For SIMON, SIMON(102), the integral distinguishers found by our method are consistent with the existing longest distinguishers

    New Methods for Bounding the Length of Impossible Differentials of SPN Block Ciphers

    Get PDF
    Impossible differential (ID) cryptanalysis is one of the most important cryptanalytic approaches for block ciphers. How to evaluate the security of Substitution-Permutation Network (SPN) block ciphers against ID is a valuable problem. In this paper, a series of methods for bounding the length of IDs of SPN block ciphers are proposed. From the perspective of overall structure, we propose a general framework and three implementation strategies. The three implementation strategies are compared and analyzed in terms of efficiency and accuracy. From the perspective of implementation technologies, we give the methods for determining representative set, partition table and ladder and integrating them into searching models. Moreover, the rotation-equivalence ID sets of ciphers are explored to reduce the number of models need to be considered. Thus, the ID bounds of SPN block ciphers can be effectively evaluated. As applications, we show that 9-round PRESENT, 8-round GIFT-64, 12-round GIFT-128, 5-round AES, 6-round Rijndael-160, 7-round Rijndael-192, 7-round Rijndael-224, 7-round Rijndael-256 and 10-round Midori64 do not have any ID under the sole assumption that the round keys are uniformly random. The results of PRESENT, GIFT-128, Rijndael-160, Rijndael-192, Rijndael-224, Rijndael-256 and Midori64 are obtained for the first time. Moreover, the ID bounds of AES, Rijndael-160, Rijndael-192, Rijndael-224 and Rijndael-256 are infimum

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license
    corecore