398,155 research outputs found

    A magnetic stimulation examination of orthographic neighborhood effects in visual word recognition

    Get PDF
    The split-fovea theory proposes that visual word recognition is mediated by the splitting of the foveal image, with letters to the left of fixation projected to the right hemisphere (RH) and letters to the right of fixation projected to the left hemisphere (LH). We applied repetitive transcranial magnetic stimulation (rTMS) over the left and right occipital cortex during a lexical decision task to investigate the extent to which word recognition processes could be accounted for according to the split-fovea theory. Unilateral rTMS significantly impaired lexical decision latencies to centrally presented words, supporting the suggestion that foveal representation of words is split between the cerebral hemispheres rather than bilateral. Behaviorally, we showed that words that have many orthographic neighbors sharing the same initial letters ("lead neighbors") facilitated lexical decision more than words with few lead neighbors. This effect did not apply to end neighbors (orthographic neighbors sharing the same final letters). Crucially, rTMS over the RH impaired lead-, but not end-neighborhood facilitation. The results support the split-fovea theory, where the RH has primacy in representing lead neighbors of a written word

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Direct Probing of Dispersion Quality of ZrO2 Nanoparticles Coated by Polyelectrolyte at Different Concentrated Suspensions.

    Get PDF
    This study reports useful application of the electrokinetic sonic amplitude (ESA) technique in combination with rheometry and electron microscopy techniques for direct probing the stability of low and high-concentrated zirconia (ZrO2) nanosuspensions in the presence of an alkali-free anionic polyelectrolyte dispersant Dolapix CE64. A comparative study of the electrokinetic characteristics and the rheological behavior of concentrated ZrO2 nanosuspensions has been done. Good agreement was obtained from relationship between the electrokinetic characteristics (zeta potential, ESA signal), viscosity, and its pH dependence for each concentrated ZrO2 nanosuspension with different dispersant concentration in the range of 0.9-1.5 mass%. A nanoscale colloidal hypothesis is proposed to illustrate that the addition of different amounts of dispersant influences on both the stability and the electrokinetic and rheological properties of concentrated ZrO2 nanosuspensions. It is found that an optimum amount of 1.4 mass% dispersant at the inherent pH (>9.2) can be attached fully onto the nanoparticles with sufficient electrosteric dispersion effects, suitable for casting applications. Supplementary scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) analyses followed by colorization effect were taken to verify the visible interaction between dispersant and nanoparticles surfaces. SEM and HR-TEM images proved the existence of visible coverage of dispersant on the surface of individual nanoparticles and showed that thin polyelectrolyte layers were physically bound onto the particles' surfaces. This study will be of interest to materials scientists and engineers who are dealing with dispersion technology, nanoparticle surface treatments, functionalization, characterization, and application of bio/nanoparticle suspensions at various concentrations using different types of polymers

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Interactions, structure and properties in poly(lactic acid)/thermoplastic polymer blends

    Get PDF
    Blends were prepared from poly(lactic acid) (PLA) and three thermoplastics, polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA). Rheological and mechanical properties, structure and component interactions were determined by various methods. The results showed that the structure and properties of the blends cover a relatively wide range. All three blends have heterogeneous structure, but the size of the dispersed particles differs by an order of magnitude indicating dissimilar interactions for the corresponding pairs. Properties change accordingly, the blend containing the smallest dispersed particles has the largest tensile strength, while PLA/PS blends with the coarsest structure have the smallest. The latter blends are also very brittle. Component interactions were estimated by four different methods, the determination of the size of the dispersed particles, the calculation of the Flory-Huggins interaction parameter from solvent absorption, from solubility parameters, and by the quantitative evaluation of the composition dependence of tensile strength. All approaches led to the same result indicating strong interaction for the PLA/PMMA pair and weak for PLA and PS. A general correlation was established between interactions and the mechanical properties of the blends

    Tracing the Ingredients for a Habitable Earth from Interstellar Space through Planet Formation

    Get PDF
    We use the C/N ratio as a monitor of the delivery of key ingredients of life to nascent terrestrial worlds. Total elemental C and N contents, and their ratio, are examined for the interstellar medium, comets, chondritic meteorites and terrestrial planets; we include an updated estimate for the Bulk Silicate Earth (C/N = 49.0 +/- 9.3). Using a kinetic model of disk chemistry, and the sublimation/condensation temperatures of primitive molecules, we suggest that organic ices and macro-molecular (refractory or carbonaceous dust) organic material are the likely initial C and N carriers. Chemical reactions in the disk can produce nebular C/N ratios of ~1-12, comparable to those of comets and the low end estimated for planetesimals. An increase of the C/N ratio is traced between volatile-rich pristine bodies and larger volatile-depleted objects subjected to thermal/accretional metamorphism. The C/N ratios of the dominant materials accreted to terrestrial planets should therefore be higher than those seen in carbonaceous chondrites or comets. During planetary formation, we explore scenarios leading to further volatile loss and associated C/N variations owing to core formation and atmospheric escape. Key processes include relative enrichment of nitrogen in the atmosphere and preferential sequestration of carbon by the core. The high C/N BSE ratio therefore is best satisfied by accretion of thermally processed objects followed by large-scale atmospheric loss. These two effects must be more profound if volatile sequestration in the core is effective. The stochastic nature of these processes hints that the surface/atmospheric abundances of biosphere-essential materials will likely be variable.Comment: Accepted by PNAS per http://www.pnas.org/content/early/2015/07/01/1500954112.abstract?sid=9fd8abea-9d33-46d8-b755-217d10b1c24

    What May Visualization Processes Optimize?

    Full text link
    In this paper, we present an abstract model of visualization and inference processes and describe an information-theoretic measure for optimizing such processes. In order to obtain such an abstraction, we first examined six classes of workflows in data analysis and visualization, and identified four levels of typical visualization components, namely disseminative, observational, analytical and model-developmental visualization. We noticed a common phenomenon at different levels of visualization, that is, the transformation of data spaces (referred to as alphabets) usually corresponds to the reduction of maximal entropy along a workflow. Based on this observation, we establish an information-theoretic measure of cost-benefit ratio that may be used as a cost function for optimizing a data visualization process. To demonstrate the validity of this measure, we examined a number of successful visualization processes in the literature, and showed that the information-theoretic measure can mathematically explain the advantages of such processes over possible alternatives.Comment: 10 page
    • …
    corecore