53,906 research outputs found

    Foraging behaviour alters with social environment in a juvenile songbird

    Get PDF
    Early independence from parents is a critical period where social information acquired vertically may become outdated, or conflict with new information. However, across natural populations, it is unclear if newly independent young persist in using information from parents, or if group-level effects of conformity override previous behaviours. Here, we test if wild juvenile hihi (Notiomystis cincta, a New Zealand passerine) retain a foraging behaviour from parents, or if they change in response to the behaviour of peers. We provided feeding stations to parents during chick-rearing to seed alternative access routes, and then tracked their offspring's behaviour. Once independent, juveniles formed mixed-treatment social groups, where they did not retain preferences from their time with parents. Instead, juvenile groups converged over time to use one access route­ per group, and juveniles that moved between groups switched to copy the locally favoured option. Juvenile hihi did not copy specific individuals, even if they were more familiar with the preceding bird. Our study shows that early social experiences with parents affect initial foraging decisions, but social environments encountered later on can update transmission of arbitrary behaviours. This suggests that conformity may be widespread in animal groups, with potential cultural, ecological and evolutionary consequences.Peer reviewe

    Footprints of information foragers: Behaviour semantics of visual exploration

    Get PDF
    Social navigation exploits the knowledge and experience of peer users of information resources. A wide variety of visual–spatial approaches become increasingly popular as a means to optimize information access as well as to foster and sustain a virtual community among geographically distributed users. An information landscape is among the most appealing design options of representing and communicating the essence of distributed information resources to users. A fundamental and challenging issue is how an information landscape can be designed such that it will not only preserve the essence of the underlying information structure, but also accommodate the diversity of individual users. The majority of research in social navigation has been focusing on how to extract useful information from what is in common between users' profiles, their interests and preferences. In this article, we explore the role of modelling sequential behaviour patterns of users in augmenting social navigation in thematic landscapes. In particular, we compare and analyse the trails of individual users in thematic spaces along with their cognitive ability measures. We are interested in whether such trails can provide useful guidance for social navigation if they are embedded in a visual–spatial environment. Furthermore, we are interested in whether such information can help users to learn from each other, for example, from the ones who have been successful in retrieving documents. In this article, we first describe how users' trails in sessions of an experimental study of visual information retrieval can be characterized by Hidden Markov Models. Trails of users with the most successful retrieval performance are used to estimate parameters of such models. Optimal virtual trails generated from the models are visualized and animated as if they were actual trails of individual users in order to highlight behavioural patterns that may foster social navigation. The findings of the research will provide direct input to the design of social navigation systems as well as to enrich theories of social navigation in a wider context. These findings will lead to the further development and consolidation of a tightly coupled paradigm of spatial, semantic and social navigation

    Adaptive Lévy processes and area-restricted search in human foraging

    Get PDF
    A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions

    Adventures in Time and Space: What Shapes Behavioural Decisions in Drosophila melanogaster?

    Get PDF
    Variation in behaviour can be observed both between individuals, based on their condition and experience as well as between populations due to sources of heterogeneity in the environment. These behavioural differences have evolved as a result of natural and sexual selection where different strategies may be favoured depending on the costs and benefits associated with those behaviours. In this thesis I examine two sources of heterogeneity within the environment and their behavioural consequences: how spatial complexity mediates sexual selection over time, and how inter and intraspecific signals and individual condition influence social oviposition behaviour. By increasing spatial complexity, we were able to manipulate male-female interaction rate which in turn influenced courtship behaviour and male-induced harm, the consequence of this was an increase in female fecundity especially in the later days of the assay and no change in offspring fitness. These results supported the idea that spatial complexity is able to mediate sexual selection through decreased harm to females. Oviposition decisions are of high consequence to an individual’s fitness and can be shaped by many environmental conditions. Instead of expending energy to evaluate all their different costs and benefits of the conditions of potential oviposition sites females can chose to rely on the signals left by others, in this case it would be beneficial for females to identify signals most like themselves. While we found females oviposited with individuals of the same species and diet, when given the option they showed more interest in and laid more eggs on media that previously held virgin males, bringing into question many assumptions of copying behaviour. In Drosophila melanogaster the only control females have over their offspring is who they mate with and where they oviposit their eggs, thus, these two factors can have a long-lasting impact on individual fitness for future generations. It is also important to consider how the standard lab environment may be shaping these behaviours, and the consequences this has for the evolutionary trajectory of lab populations

    Volumetric spatial behaviour in rats reveals the anisotropic organisation of navigation

    Get PDF
    We investigated how access to the vertical dimension influences the natural exploratory and foraging behaviour of rats. Using high-accuracy three-dimensional tracking of position in two- and three-dimensional environments, we sought to determine (i) how rats navigated through the environments with respect to gravity, (ii) where rats chose to form their home bases in volumetric space, and (iii) how they navigated to and from these home bases. To evaluate how horizontal biases may affect these behaviours, we compared a 3D maze where animals preferred to move horizontally to a different 3D configuration where all axes were equally energetically costly to traverse. Additionally, we compared home base formation in two-dimensional arenas with and without walls to the three-dimensional climbing mazes. We report that many behaviours exhibited by rats in horizontal spaces naturally extend to fully volumetric ones, such as home base formation and foraging excursions. We also provide further evidence for the strong differentiation of the horizontal and vertical axes: rats showed a horizontal movement bias, they formed home bases mainly in the bottom layers of both mazes and they generally solved the vertical component of return trajectories before and faster than the horizontal component. We explain the bias towards horizontal movements in terms of energy conservation, while the locations of home bases are explained from an information gathering view as a method for correcting self-localisation

    Foraging Behavior of Tetramorium Caespitum in an Urban Environment: the Effect of Food Quality on Foraging

    Get PDF
    Animals\u27 foraging strategies are directly related to their fitness. Proposed models of optimal foraging assume that animals strategize in terms of maximizing benefits over the cost of acquiring resources. Ants are social insects that are comparable in biomass to humans inhabiting the plant. As such, it is crucial to understand the foraging strategies of such an influential member of the ecosystem. With the ever-increasing rate of urbanization and human encroachment, it is even more important to consider the foraging patterns of species inhabiting urban areas. In this study we investigate optimal foraging strategies in the pavement ant, Tetramorium caespitum. Specifically, our study examined if pavement ant colonies would alter their foraging behavior so as to maximize benefits and minimize costs. To do this, we exposed the ants to food of two varying nutritional qualities to test how they allocated foragers across these two resources.Food quantity, distance to the food source and terrain were the same in both types of resources. Across a two day period, we saw that T. caespitum colonies increased ant recruitment when food quality increased and decreased ant recruitment when food quality decreased. Our control treatments where food quality did not change also did not see a change in ant recruitment. This study shows that species that live in urban areas, such as T. caespitum, can adapt to forage optimally. Studies like this can be used to make predictions about survival of species that are newly associated with urban environments

    Predictable hydrodynamic conditions explain temporal variations in the density of benthic foraging seabirds in a tidal stream environment

    Get PDF
    VC International Council for the Exploration of the Sea 2016. James J. Waggitt was funded by a NERC Case studentship supported by OpenHydro Ltd and Marine Scotland Science (NE/J500148/1). Shore-based surveys were funded by a NERC (NE/J004340/1) and a Scottish National Heritage (SNH) grant. FVCOM was funded by a NERC grant (NE/J004316/1). The bathymetry data used in hydrodynamic models (HI 1122 Sanday Sound to Westray Firth) was collected by the Maritime and Coastguard Agency (MCA) as part of the UK Civil Hydrography Programme. We wish to thank Christina Bristow, Matthew Finn and Jennifer Norris at the European Marine Energy Centre (EMEC); Ian Davies at Marine Scotland Science; Gail Davoren, Shaun Fraser, Pauline Goulet, Alex Robbins and Helen Wade for invaluable discussions; Thomas Cornulier, Alex Douglas, James Grecian and Samantha Patrick for their help with statistical analysis; and Jenny Campbell and the Cockram family for assistance during fieldwork.Peer reviewedPublisher PD
    corecore