109,169 research outputs found

    A perceptual comparison of empirical and predictive region-of-interest video

    Get PDF
    When viewing multimedia presentations, a user only attends to a relatively small part of the video display at any one point in time. By shifting allocation of bandwidth from peripheral areas to those locations where a user’s gaze is more likely to rest, attentive displays can be produced. Attentive displays aim to reduce resource requirements while minimizing negative user perception—understood in this paper as not only a user’s ability to assimilate and understand information but also his/her subjective satisfaction with the video content. This paper introduces and discusses a perceptual comparison between two region-of-interest display (RoID) adaptation techniques. A RoID is an attentive display where bandwidth has been preallocated around measured or highly probable areas of user gaze. In this paper, video content was manipulated using two sources of data: empirical measured data (captured using eye-tracking technology) and predictive data (calculated from the physical characteristics of the video data). Results show that display adaptation causes significant variation in users’ understanding of specific multimedia content. Interestingly, RoID adaptation and the type of video being presented both affect user perception of video quality. Moreover, the use of frame rates less than 15 frames per second, for any video adaptation technique, caused a significant reduction in user perceived quality, suggesting that although users are aware of video quality reduction, it does impact level of information assimilation and understanding. Results also highlight that user level of enjoyment is significantly affected by the type of video yet is not as affected by the quality or type of video adaptation—an interesting implication in the field of entertainment

    Towards Flight Trials for an Autonomous UAV Emergency Landing using Machine Vision

    Get PDF
    This paper presents the evolution and status of a number of research programs focussed on developing an automated fixed wing UAV landing system. Results obtained in each of the three main areas of research as vision-based site identification, path and trajectory planning and multi-criteria decision making are presented. The results obtained provide a baseline for further refinements and constitute the starting point for the implementation of a prototype system ready for flight testing

    Airborne photogrammetry and LIDAR for DSM extraction and 3D change detection over an urban area : a comparative study

    Get PDF
    A digital surface model (DSM) extracted from stereoscopic aerial images, acquired in March 2000, is compared with a DSM derived from airborne light detection and ranging (lidar) data collected in July 2009. Three densely built-up study areas in the city centre of Ghent, Belgium, are selected, each covering approximately 0.4 km(2). The surface models, generated from the two different 3D acquisition methods, are compared qualitatively and quantitatively as to what extent they are suitable in modelling an urban environment, in particular for the 3D reconstruction of buildings. Then the data sets, which are acquired at two different epochs t(1) and t(2), are investigated as to what extent 3D (building) changes can be detected and modelled over the time interval. A difference model, generated by pixel-wise subtracting of both DSMs, indicates changes in elevation. Filters are proposed to differentiate 'real' building changes from false alarms provoked by model noise, outliers, vegetation, etc. A final 3D building change model maps all destructed and newly constructed buildings within the time interval t(2) - t(1). Based on the change model, the surface and volume of the building changes can be quantified

    Accounting for the Specious Present: A Defense of Enactivism

    Get PDF
    I argue that conscious visual experience is essentially a non-representational demonstration of a skill. The explication and defense of this position depends on both phenomenological and empirical considerations. The central phenomenological claim is this: as a matter of human psychology, it is impossible to produce a conscious visual experience of a mind-independent object that is sufficiently like typical cases, without including concomitant proprioceptive sensations of the sort of extra-neural behavior that allows us to there and then competently detect such objects. I then argue that this view, which is a version of enactivism, best explains the temporality of conscious experience—what is often called the specious present

    Visual Feature Attribution using Wasserstein GANs

    Full text link
    Attributing the pixels of an input image to a certain category is an important and well-studied problem in computer vision, with applications ranging from weakly supervised localisation to understanding hidden effects in the data. In recent years, approaches based on interpreting a previously trained neural network classifier have become the de facto state-of-the-art and are commonly used on medical as well as natural image datasets. In this paper, we discuss a limitation of these approaches which may lead to only a subset of the category specific features being detected. To address this problem we develop a novel feature attribution technique based on Wasserstein Generative Adversarial Networks (WGAN), which does not suffer from this limitation. We show that our proposed method performs substantially better than the state-of-the-art for visual attribution on a synthetic dataset and on real 3D neuroimaging data from patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). For AD patients the method produces compellingly realistic disease effect maps which are very close to the observed effects.Comment: Accepted to CVPR 201
    • 

    corecore