189 research outputs found

    Spreading Information in Complex Networks: An Overview and Some Modified Methods

    Get PDF
    The knowledge of node’s ability and importance in spreading information in a complex network is important for developing efficient methods either to decelerate spreading in the case of diseases or to accelerate spreading in the case of information flow, which would benefit the whole population. Some systems are highly affected by a small fraction of influential nodes. Number of fast and efficient spreaders in a network is much less compared to the number of ordinary members. Information about the influential spreaders is significant in the planning for the control of propagation of critical pieces of information in a social or information network. Identifying important members who act as the fastest and efficient spreaders is the focal theme of a large number of research papers. Researchers have identified approximately 10 different methods for this purpose. Degree centrality, closeness centrality, betweenness centrality, k‐core decomposition, mixed degree decomposition, improved k‐shell decomposition, etc., are some of these methods. In this expository article, we review all previous works done in the field of identifying potential spreaders in a network

    A Survey on Centrality Metrics and Their Implications in Network Resilience

    Full text link
    Centrality metrics have been used in various networks, such as communication, social, biological, geographic, or contact networks. In particular, they have been used in order to study and analyze targeted attack behaviors and investigated their effect on network resilience. Although a rich volume of centrality metrics has been developed for decades, a limited set of centrality metrics have been commonly in use. This paper aims to introduce various existing centrality metrics and discuss their applicabilities and performance based on the results obtained from extensive simulation experiments to encourage their use in solving various computing and engineering problems in networks.Comment: Main paper: 36 pages, 2 figures. Appendix 23 pages,45 figure

    A hybrid influence method based on information entropy to identify the key nodes

    Get PDF
    Identifying the key nodes in complicated networks is an essential topic. A number of methods have been developed in recent years to solve this issue more effectively. Multi-attribute ranking is a widely used and efficient method to increase the accuracy of identifying the key nodes. Using k-shell iteration information and propagation threshold differences, we thoroughly analyze the node’s position attribute and the propagation attribute to offer a hybrid influence method based on information entropy. The two attributes will be weighted using the information entropy weighting method, and then the nodes’ influence ranking will be calculated. Correlation experiments in nine different networks were carried out based on the Susceptible–Infected–Recovered (SIR) model. Among these, we use the imprecision function, Kendall’s correlation coefficient, and the complementary cumulative distribution function to validate the suggested method. The experimental results demonstrate that our suggested method outperforms previous node ranking methods in terms of monotonicity, relevance, and accuracy and performs well to achieve a more accurate ranking of nodes in the network
    corecore