544 research outputs found

    High-Performance Polyvinyl Chloride Gel Artificial Muscle Actuator with Graphene Oxide and Plasticizer

    Get PDF
    A transparent and electroactive plasticized polyvinyl chloride (PVC) gel was investigated to use as a soft actuator for artificial muscle applications. PVC gels were prepared with varying plasticizer (dibutyl adipate, DBA) content. The prepared PVC gels were characterized using Fourier-transform infrared spectroscopy, thermogravimetric analysis, and dynamic mechanical analysis. The DBA content in the PVC gel was shown to have an inverse relationship with both the storage and loss modulus. The electromechanical performance of PVC gels was demonstrated for both single-layer and stacked multi-layer actuators. When voltage was applied to a single-layer actuator and then increased, the maximum displacement of PVC gels (for PVC/DBA ratios of 1:4, 1:6, and 1:8) was increased from 105.19, 123.67, and 135.55 µm (at 0.5 kV) to 140.93, 157.13, and 172.94 µm (at 1.0 kV) to 145.03, 191.34, and 212.84 µm (at 1.5 kV), respectively. The effects of graphene oxide (GO) addition in the PVC gel were also investigated. The inclusion of GO (0.1 wt.%) provided an approximate 20% enhancement of displacement and 41% increase in force production, and a 36% increase in power output for the PVC/GO gel over traditional plasticizer only PVC gel. The proposed PVC/GO gel actuator may have promising applications in artificial muscle, small mechanical devices, optics, and various opto-electro-mechanical devices due to its low-profile, transparency, and electrical response characteristics

    PVC gel based artificial muscles: Characterizations and actuation modular constructions

    Get PDF
    Polymer materials based artificial muscles have the properties of being soft, lightweight, and flexible which are similar to the nature muscular actuators. In our previous study, we have developed a contraction type artificial muscle based on plasticized poly vinyl chloride (PVC) gel and meshed electrodes. And we have improved the characteristics to make it close to the level of natural muscle. It has many positive characteristics, such as stable actuation in the air, high output, notable response rate, and low power consumption. So a wide application is expected. However, for practical applications, it is necessary to consider some specific criteria, such as performance criteria and structural criteria. In this study, we introduced the most updated properties of PVC gel artificial muscles and proposed three types of mechanical actuation modular constructions for making the PVC gel artificial muscle as a robust actuation device for robotics and mechatronics. And we tested a prototype to examine the effectiveness of the proposed modules. Finally, an analytical model for the static characteristics of PVC gel artificial muscles at different applied voltages was derived and showed good agreement with experimental results measured by a prototype of modules. (C) 2015 Elsevier B.V. All rights reserved.ArticleSENSORS AND ACTUATORS A-PHYSICAL. 233:246-258 (2015)journal articl

    Advanced Materials in 3D/4D Printing Technology

    Get PDF
    This reprint contains a collection of state-of-the-art reviews and original research articles from leaders in the field of 3D/4D printing. It focuses on 3D/4D printing materials with novel and/or advanced functionalities, novel applications of 3DP material, and material synthesis and characterization techniques

    Advances in Assistive Electronic Device Solutions for Urology

    Get PDF
    Recent technology advances have led urology to become one of the leading specialities to utilise novel electronic systems to manage urological ailments. Contemporary bladder management strategies such as urinary catheters can provide a solution but leave the user mentally and physically debilitated. The unique properties of modern electronic devices, i.e., flexibility, stretchability, and biocompatibility, have allowed a plethora of new technologies to emerge. Many novel electronic device solutions in urology have been developed for treating impaired bladder disorders. These disorders include overactive bladder (OAB), underactive bladder (UAB) and other-urinary-affecting disorders (OUAD). This paper reviews common causes and conservative treatment strategies for OAB, UAB and OUAD, discussing the challenges and drawbacks of such treatments. Subsequently, this paper gives insight into clinically approved and research-based electronic advances in urology. Advances in this area cover bladder-stimulation and -monitoring devices, robot-assistive surgery, and bladder and sphincter prosthesis. This study aims to introduce the latest advances in electronic solutions for urology, comparing their advantages and disadvantages, and concluding with open problems for future urological device solutions

    Large scale processing of dielectric electroactive polymers

    Get PDF
    • …
    corecore