6,124 research outputs found

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    FPGA Implementation of an Adaptive Noise Canceller for Robust Speech Enhancement Interfaces

    Get PDF
    This paper describes the design and implementation results of an adaptive Noise Canceller useful for the construction of Robust Speech Enhancement Interfaces. The algorithm being used has very good performance for real time applications. Its main disadvantage is the requirement of calculating several operations of division, having a high computational cost. Besides that, the accuracy of the algorithm is critical in fixed-point representation due to the wide range of the upper and lower bounds of the variables implied in the algorithm. To solve this problem, the accuracy is studied and according to the results obtained a specific word-length has been adopted for each variable. The algorithm has been implemented for Altera and Xilinx FPGAs using high level synthesis tools. The results for a fixed format of 40 bits for all the variables and for a specific word-length for each variable are analyzed and discussed

    FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

    Full text link
    FPGA technology can offer significantly hi\-gher performance at much lower power consumption than is available from CPUs and GPUs in many computational problems. Unfortunately, programming for FPGA (using ha\-rdware description languages, HDL) is a difficult and not-trivial task and is not intuitive for C/C++/Java programmers. To bring the gap between programming effectiveness and difficulty the High Level Synthesis (HLS) approach is promoting by main FPGA vendors. Nowadays, time-intensive calculations are mainly performed on GPU/CPU architectures, but can also be successfully performed using HLS approach. In the paper we implement a bandwidth selection algorithm for kernel density estimation (KDE) using HLS and show techniques which were used to optimize the final FPGA implementation. We are also going to show that FPGA speedups, comparing to highly optimized CPU and GPU implementations, are quite substantial. Moreover, power consumption for FPGA devices is usually much less than typical power consumption of the present CPUs and GPUs.Comment: 23 pages, 6 figures, extended version of initial pape

    Normalizing or not normalizing? An open question for floating-point arithmetic in embedded systems

    Get PDF
    Emerging embedded applications lack of a specific standard when they require floating-point arithmetic. In this situation they use the IEEE-754 standard or ad hoc variations of it. However, this standard was not designed for this purpose. This paper aims to open a debate to define a new extension of the standard to cover embedded applications. In this work, we only focus on the impact of not performing normalization. We show how eliminating the condition of normalized numbers, implementation costs can be dramatically reduced, at the expense of a moderate loss of accuracy. Several architectures to implement addition and multiplication for non-normalized numbers are proposed and analyzed. We show that a combined architecture (adder-multiplier) can halve the area and power consumption of its counterpart IEEE-754 architecture. This saving comes at the cost of reducing an average of about 10 dBs the Signal-to-Noise Ratio for the tested algorithms. We think these results should encourage researchers to perform further investigation in this issue.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Automatic floating-point to fixed-point conversion for DSP code generation

    Get PDF
    • 

    corecore