165 research outputs found

    Application of Finite Element Analysis in Dentistry

    Get PDF

    Explore the Dynamic Characteristics of Dental Structures: Modelling, Remodelling, Implantology and Optimisation

    Get PDF
    The properties of a structure can be both narrowly and broadly described. The mechanical properties, as a narrow sense of property, are those that are quantitative and can be directly measured through experiments. They can be used as a metric to compare the benefits of one material versus another. Examples include Young’s modulus, tensile strength, natural frequency, viscosity, etc. Those with a broader definition, can be hardly measured directly. This thesis aims to study the dynamic properties of dental complex through experiments, clinical trials and computational simulations, thereby bridging some gaps between the numerical study and clinical application. The natural frequency and mode shapes, of human maxilla model with different levels of integrities and properties of the periodontal ligament (PDL), are obtained through the complex modal analysis. It is shown that the comprehensiveness of a computational model significantly affects the characterisation of dynamic behaviours, with decreasing natural frequencies and changed mode shapes as a result of the models with higher extents of integrity and preciseness. It is also found that the PDL plays a very important role in quantifying natural frequencies. Meanwhile, damping properties and the heterogeneity of materials also have an influence on the dynamic properties of dental structures. The understanding of dynamic properties enables to further investigate how it can influence the response when applying an external stimulus. In a parallel preliminary clinical trial, 13 patients requiring bilateral maxillary premolar extractions were recruited and applied with mechanical vibrations of approximately 20 g and 50 Hz, using a split mouth design. It is found that both the space closure and canine distalisation of the vibration group are significantly faster and higher than those of the control group (p<0.05). The pressure within the PDL is computationally calculated to be higher with the vibration group for maxillary teeth for both linguo-buccal and mesial-distal directions. A further increased PDL response can be observed if increasing the frequency until reaching a local natural frequency. The vibration of 50 Hz or higher is thus approved to be a potential stimulus accelerating orthodontic treatment. The pivotal role of soft tissue the PDL is further studied by quantitatively establishing pressure thresholds regulating orthodontic tooth movement (OTM). The centre of resistance and moment to force ratio are also examined via simulation. Distally-directed tipping and translational forces, ranging from 7.5 g to 300 g, are exerted onto maxillary teeth. The hydrostatic stress is quantified from nonlinear finite element analysis (FEA) and compared with normal capillary and systolic blood pressure for driving the tissue remodelling. Localised and volume-averaged hydrostatic stress are introduced to describe OTM. By comparing with clinical results in past literature, the volume average of hydrostatic stress in PDL was proved to describe the process of OTM more indicatively. Global measurement of hydrostatic pressure in the PDL better characterised OTM, implying that OTM occurs only when the majority of PDL volume is critically stressed. The FEA results provide new insights into relevant orthodontic biomechanics and help establish optimal orthodontic force for a specific patient. Implant-supported fixed partial denture (FPD) with cantilever extension can transfer excessive load to the bone surrounding implants and stress/strain concentration which potentially leads to bone resorption. The immediate biomechanical response and long-term bone remodelling outcomes are examined. It is indicated that during the chewing cycles, the regions near implant necks and apexes experience high von Mises stress (VMS) and equivalent strain (EQS) than the middle regions in all configurations, with or without the cantilever. The patient-specific dynamic loading data and CT based mandibular model allow us to model the biomechanical responses more realistically. The results provide the data for clinical assessment of implant configuration to improve longevity and reliability of the implant-supported FPD restoration. On the other hand, the results show that the three-implant supported and distally cantilevered FPDs see noticeable and continuous bone apposition, mainly adjacent to the cervical and apical regions. The bridged and mesially cantilevered FPDs show bone resorption or no visible bone formation in some areas. Caution should be taken when selecting the FPD with cantilever due to the risk of overloading bone resorption. The position of FPD pontics plays a critical role in mechanobiological functionality and bone remodelling. As an important loading condition of dental biomechanics, the accurate assignment of masticatory loads has long been demanded. Methods involving different principles have been applied to acquire or assess the muscular co-activation during normal or unhealthy stomatognathic functioning. Their accuracy and capability of direct quantification, especially when using alone, are however questioned. We establish a clinically validated Sequential Kriging Optimisation (SKO) model, coupled with the FEM and in vivo occlusal records, to further the understanding of muscular functionality following a fibula free flap (FFF) surgery. The results, within the limitations of the current study, indicates the statistical advantage of agreeing occlusal measurements and hence the reliability of using the SKO model over the traditionally adopted optimality criteria. It is therefore speculated that mastication is not optimally controlled to a definite degree. It is also found that the maximum muscular capacity slightly decreases whereas the actual muscle forces fluctuate over the 28-month period

    Biomechanical Effects of Different Load Cases with an Implant-Supported Full Bridge on Four Implants in an Edentulous Mandible: A Three-Dimensional Finite Element Analysis (3D-FEA)

    Get PDF
    The long-term success and predictability of implant-supported restorations largely depends on the biomechanical forces (stresses) acting on implants and the surrounding alveolar bone in the mandible. The aim of our study was to investigate the biomechanical behavior of an edentulous mandible with an implant-supported full bridge on four implants under simulated masticatory forces, in the context of different loading schemes, using a three-dimensional finite element analysis (3D-FEA). A patient-specific 3D finite element model was constructed using pre- and post-implantation computer tomography (CT) images of a patient undergoing implant treatment. Simplified masticatory forces set at 300 N were exerted vertically on the denture in four different simulated load cases (LC1–LC4). Two sets of simulations for different implants and denture materials (S1: titanium and titanium; S2: titanium and cobalt-chromium, respectively) were made. Stress outputs were taken as maximum (Pmax) and minimum principal stress (Pmin) and equivalent stress (Peqv) values. The highest peak Pmax values were observed for LC2 (where the modelled masticatory force excluded the cantilevers of the denture extending behind the terminal implants), both regarding the cortical bone (S1 Pmax: 89.57 MPa, S2 Pmax: 102.98 MPa) and trabecular bone (S1 Pmax: 3.03 MPa, S2 Pmax: 2.62 MPa). Overall, LC1—where masticatory forces covered the entire mesio−distal surface of the denture, including the cantilever—was the most advantageous. Peak Pmax values in the cortical bone and the trabecular bone were 14.97–15.87% and 87.96–94.54% higher in the case of S2, respectively. To ensure the long-term maintenance and longevity of treatment for implant-supported restorations in the mandible, efforts to establish the stresses of the surrounding bone in the physiological range, with the most even stress distribution possible, have paramount importance

    Patient-specific finite element models of the human mandible:Lack of consensus on current set-ups

    Get PDF
    The use of finite element analysis (FEA) has increased rapidly over the last decennia and has become a popular tool to design implants, osteosynthesis plates and prostheses. With increasing computer capacity and the availability of software applications, it has become easier to employ the FEA. However, there seems to be no consensus on the input variables that should be applied to representative FEA models of the human mandible. This review aims to find a consensus on how to define the representative input factors for a FEA model of the human mandible. A literature search carried out in the PubMed and Embase database resulted in 137 matches. Seven papers were included in this current study. Within the search results, only a few FEA models had been validated. The material properties and FEA approaches varied considerably, and the available validations are not strong enough for a general consensus. Further validations are required, preferably using the same measuring workflow to obtain insight into the broad array of mandibular variations. A lot of work is still required to establish validated FEA settings and to prevent assumptions when it comes to FEA applications
    • 

    corecore