1,303 research outputs found

    Eye movement and pupil size constriction under discomfort glare.

    Get PDF
    PURPOSE: Involuntary physiological responses offer an alternative means to psychophysical procedures for objectively evaluating discomfort glare. This study examined eye movement and pupil size responses to glare discomfort using new approaches to analysis: relative pupil size and speed of eye movement. METHODS: Participants evaluated glare discomfort using the standard de Boer rating scale under various conditions manipulated to influence glare discomfort. Eye movement was recorded using an electro-oculogram (EOG), and pupil size was recorded using Tobii glasses. Ten young (mean age: 24.5 years old) and 10 senior (mean age: 61 years old) participants were recruited for this experiment. RESULTS: Subjective evaluation of glare discomfort was highly correlated with eye movement (multiple correlation coefficient [R(2)] of >0.94, P < 0.001) and pupil constriction (R(2) = 0.38, P < 0.001). Severe glare discomfort increased the speed of eye movement and caused larger pupil constriction. Larger variations of eye movement were found among seniors. CONCLUSIONS: The two physiological responses studied here to characterize discomfort glare under various lighting conditions had significant correlation with the subjective evaluation. The correlation between discomfort glare and physiological responses suggests an objective way to characterize and evaluate discomfort glare that may overcome the problems of conventional subjective evaluation. It also offers an explanation as to why long-term exposure to discomfort glare leads to visual fatigue and eyestrain

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 187

    Get PDF
    This supplement to Aerospace Medicine and Biology lists 247 reports, articles and other documents announced during November 1978 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space. References describing similar effects of biological organisms of lower order are also included. Emphasis is placed on applied research, but reference to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the bibliography consists of a bibliographic citation accompanied in most cases by an abstract

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 133)

    Get PDF
    This special bibliography lists 276 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in September 1974

    Daylight: What Makes a Difference

    Get PDF
    Light is necessary for vision; it enables us to sense and perceive our surroundings and in many direct and indirect ways, via eye and skin, affects our physiological and psychological health. The use of light in built environments has comfort, behavioural, economic and environmental consequences. Daylight has many particular benefits including excellent visual performance, permitting good eyesight, effective entrainment of the circadian system as well as a number of acute non-image forming effects and the important role of vitamin D production. Some human responses to daylight seem to be well defined whilst others require more research to be adequately understood. This paper presents an overview of current knowledge on how the characteristics of daylight play a role in fulfilling these and other functions often better than electric lighting as conventionally delivered

    Non-visual Effects of Road Lighting CCT on Driver's Mood, Alertness, Fatigue and Reaction Time: A Comprehensive Neuroergonomic Evaluation Study

    Full text link
    Good nighttime road lighting is critical for driving safety. To improve the quality of nighttime road lighting, this study used the triangulation method by fusing "EEG evaluation + subjective evaluation + behavioral evaluation" to qualitatively and quantitatively investigate the response characteristics of different correlated color temperature (CCT) (3500K, 4500K, 5500K, 6500K) on drivers' non-visual indicators (mood, alertness, fatigue and reaction time) under specific driving conditions (monotonous driving; waiting for red light and traffic jam; car-following task). The results showed that the CCT and Task interaction effect is mainly related to individual alertness and reaction time. Individual subjective emotional experience, subjective visual comfort and psychological security are more responsive to changes in CCT than individual mental fatigue and visual fatigue. The subjective and objective evaluation results demonstrated that the EEG evaluation indices used in this study could objectively reflect the response characteristics of various non-visual indicators. The findings also revealed that moderate CCT (4500K) appears to be the most beneficial to drivers in maintaining an ideal state of mind and body during nighttime driving, which is manifested as: good mood experience; it helps drivers maintain a relatively stable level of alterness and to respond quickly to external stimuli; both mental and visual fatigue were relatively low. This study extends nighttime road lighting design research from the perspective of non-visual effects by using comprehensive neuroergonomic evaluation methods, and it provides a theoretical and empirical basis for the future development of a humanized urban road lighting design evaluation system.Comment: 38 pages, 15 figures, 103 conference

    Assessing the Effects of Illuminance and Correlated Color Temperature on Emotional Responses and Lighting Preferences Using Virtual Reality

    Full text link
    This paper presents a novel approach to assessing human lighting adjustment behavior and preference in diverse lighting conditions through the evaluation of emotional feedback and behavioral data using VR. Participants (n= 27) were exposed to different lighting (n=17) conditions with different levels of illuminance and correlated color temperature (CCT) with a randomized order in a virtual office environment. Results from this study significantly advanced our understanding of preferred lighting conditions in virtual reality environments, influenced by a variety of factors such as illuminance, color temperature, order of presentation, and participant demographics. Through a comprehensive analysis of user adjustment profiles, we obtained insightful data that can guide the optimization of lighting design across various settings

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 355)

    Get PDF
    This bibliography lists 147 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during October, 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance
    • …
    corecore