14,971 research outputs found

    Toward future 'mixed reality' learning spaces for STEAM education

    Get PDF
    Digital technology is becoming more integrated and part of modern society. As this begins to happen, technologies including augmented reality, virtual reality, 3d printing and user supplied mobile devices (collectively referred to as mixed reality) are often being touted as likely to become more a part of the classroom and learning environment. In the discipline areas of STEAM education, experts are expected to be at the forefront of technology and how it might fit into their classroom. This is especially important because increasingly, educators are finding themselves surrounded by new learners that expect to be engaged with participatory, interactive, sensory-rich, experimental activities with greater opportunities for student input and creativity. This paper will explore learner and academic perspectives on mixed reality case studies in 3d spatial design (multimedia and architecture), paramedic science and information technology, through the use of existing data as well as additional one-on-one interviews around the use of mixed reality in the classroom. Results show that mixed reality can provide engagement, critical thinking and problem solving benefits for students in line with this new generation of learners, but also demonstrates that more work needs to be done to refine mixed reality solutions for the classroom

    Diagrammatic Reasoning and Modelling in the Imagination: The Secret Weapons of the Scientific Revolution

    Get PDF
    Just before the Scientific Revolution, there was a "Mathematical Revolution", heavily based on geometrical and machine diagrams. The "faculty of imagination" (now called scientific visualization) was developed to allow 3D understanding of planetary motion, human anatomy and the workings of machines. 1543 saw the publication of the heavily geometrical work of Copernicus and Vesalius, as well as the first Italian translation of Euclid

    The Effect of Augmented Reality Treatment on Learning, Cognitive Load, and Spatial Visualization Abilities

    Get PDF
    This study investigated the effects of Augmented Reality (AR) on learning, cognitive load and spatial abilities. More specifically, it measured learning gains, perceived cognitive load, and the role spatial abilities play with students engaged in an astronomy lesson about lunar phases. Research participants were 182 students from a public university in southeastern United States, and were recruited from psychology research pool. Participants were randomly assigned to two groups: (a) Augmented Reality and Text Astronomy Treatment (ARTAT); and (b) Images and Text Astronomy Treatment (ITAT). Upon entering the experimental classroom, participants were given (a) Paper Folding Test to measure their spatial abilities; (b) the Lunar Phases Concept Inventory (LPCI) pre-test; (c) lesson on Lunar Phases; (d) NASA-TLX to measure participants’ cognitive load; and (e) LPCI post-test. Statistical analysis found (a) no statistical difference for learning gains between the ARTAT and ITAT groups; (b) statistically significant difference for cognitive load; and (c) no significant difference for spatial abilities scores

    A Comparative Analysis of Spatial Visualization Ability and Drafting Models for Industrial and Technology Education Students

    Get PDF
    The article presents the comparative study on the drafting models and spatial visualization ability of industrial and technology education students in the U.S. It discusses how the study was conducted which examined the issue based on technical drawings and with regards to the impacts of model types. The results reportedly revealed three-dimensional models are effective for promoting learning, however more studies have to be conducted

    Putting the Stars within Reach Using NASA 3D Data-Based Models

    Get PDF
    This study investigated the quantifiable effects of data-based 3D models and prints on spatial reasoning skills and interest in science, technology, engineering, and mathematics (STEM) fields, for n = 100 youths aged 9-12 (99 female and 1 non-binary), primarily from traditionally underrepresented groups in STEM. In a pre-post design, participants engaged in workshops using data-based astrophysical 3D models delivered via computer-based interactions, virtual reality, and 3D prints. Multivariate ANOVAs yielded significantly increased STEM interest but were not significant for increasing spatial ability. The results are discussed in terms of the need to extend exposure and science communications to STEM activities to female youths that are younger than middle school aged

    Self-adapting structuring and representation of space

    Get PDF
    The objective of this report is to propose a syntactic formalism for space representation. Beside the well known advantages of hierarchical data structure, the underlying approach has the additional strength of self-adapting to a spatial structure at hand. The formalism is called puzzletree because its generation results in a number of blocks which in a certain order -- like a puzzle - reconstruct the original space. The strength of the approach does not lie only in providing a compact representation of space (e.g. high compression), but also in attaining an ideal basis for further knowledge-based modeling and recognition of objects. The approach may be applied to any higher-dimensioned space (e.g. images, volumes). The report concentrates on the principles of puzzletrees by explaining the underlying heuristic for their generation with respect to 2D spaces, i.e. images, but also schemes their application to volume data. Furthermore, the paper outlines the use of puzzletrees to facilitate higher-level operations like image segmentation or object recognition. Finally, results are shown and a comparison to conventional region quadtrees is done

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    • …
    corecore