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Abstract 

 

Using 3D Printing for the Instruction of Petrophysical Properties 

 

Elizabeth Ann Dees, M.A. 

The University of Texas at Austin, 2014 

 

Co-Supervisors:  Maša Prodanović and David T. Allen 

With the recent increase in natural gas production, the demand for college educated 

petroleum engineers has increased.  A greater number of high school graduates are now 

applying to petroleum engineering degree programs, however, the admission requirements 

to petroleum engineering schools are becoming increasingly stricter.  Secondary educators 

have a greater challenge to better prepare students to compete for these positions and there 

is a need to introduce petrophysical concepts to students in the most effective manner.  One 

petrophysical concept is porosity of rock.  In this report, background information on rock 

formation and porosity of rocks is provided along with a brief summary on how 3D printers 

operate.  But primarily, a lesson plan is presented to teach rock porosity in a novel way 

using 3D printed enlargements of porous rock from x-ray microtomography images of 

packed sand. 

The hypothesis was that students will gain greater understanding of petrophysical 

properties when using 3D prints of rocks.  The porosity lesson with a lab using the 3D 

printed rocks was taught to a treatment group of 20 upcoming 6th graders.  A porosity lesson 

without the use of 3D printed rocks was didactically taught to a control group of 14 

additional 6th graders.  Because of time limitations, not all of the students from the 
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treatment group were able to experience all elements of the lab.  However, every student 

in the control group received instruction and practice on how to calculate porosity of rock.  

The treatment group showed greater gain in learning the abstract concept about porosity 

that rocks of similar structure will have equivalent porosity regardless of grain size.  

However, the control group indicated greater gain learning the fundamental concepts of the 

definition of porosity, how to calculate porosity, and at being able to transfer their 

knowledge of percent porosity to a general problem about percentages.  Despite the limited 

sample size and other sources of error, using 3D printed enlargements of rock was found 

to enhance students’ abilities to visualize abstract petrophysical properties.  However, 

benefits from didactic instruction of fundamental concepts of petrophysical properties were 

found as well. 
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Chapter 1:  Introduction 

Students today require a deep understanding of science, technology, engineering, 

and math in order to be able to successfully function in an increasingly complex world.  As 

a result, more is required of educators in order to facilitate the needs of today’s students.  

Orion and Trend, editors of the Journal of Geoscience Education state that “the educational 

process requires teachers to unravel and mediate the meaning of learning and to tailor their 

teaching to that which will best exploit the learning characteristics of the students.  One of 

the main challenges of science education is to develop thinking skills among learners in 

order to strengthen their scientific understanding: this should be an empowering and 

liberating process for both students and teachers.  Steps towards the achievement of this 

goal include the identification of the meaning of learning and the development of 

appropriate curriculum materials and teaching strategies that address learning 

characteristics across various populations of learners” (Orion and Trend, 2009).  To this 

end, educators must not only possess in-depth knowledge of disciplines, but we must also 

be open to utilizing newly available technologies in order to deliver instruction. 

A recent resurgence of oil & gas development particularly in the state of Texas (Fig. 

1) has increased  the number of students seeking degrees in petroleum engineering, while 

the capacity of degree programs are remaining relatively unchanged.  Thus the admission 

requirements of many schools including the University of Texas (UT) petroleum 

engineering program are becoming increasingly stricter.  It is interesting to note that in 

2004 the number of applicants to UT whose first choice of major was petroleum 

engineering was lower than the number of students admitted to the petroleum engineering 

program.  There are several factors that impact the final admit counts including second 

choice majors, major changes by the student, and impacted majors.  Since the school of 
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engineering has many impacted majors, there were 24 additional students admitted to 

petroleum engineering who either were not able to get into other engineering majors or 

who listed petroleum engineering as their second choice and were cascaded into the major 

by the end of the admissions cycle and ultimately accepted their admission into the 

petroleum engineering major.  From 2004 to 2013, the number of applications increased 

from 114 to 987. (Fig. 2). 

 

Figure 1: Average drilling rig count in Texas (Railroad Commission of Texas, 2014) 
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Figure 2: Number of students applying to the department of petroleum engineering 

  at the University of Texas at Austin compared to the number accepted. 

  (Office of Admissions, University of Texas, Austin, 2014) 

 

Thus, K-12 educators have an increased responsibility to ensure their students have 

the tools available to them to compete with those seeking post high school study in the field 

of petroleum engineering which include skills related to both geology and classical 

engineering.  Geophysical skills students require to compete include:  “(1) geology-related 
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spatial visualization, (2) understanding absolute geologic time, including the concepts of 

physical and temporal correlation of stratigraphic units, (3) actualistic thinking, or the 

ability to interpret ancient environments through comparison with modern ones, (4) 

geological field strategies and techniques, and (5) scientific reasoning” (Almquist et al., 

2011).  The purpose of this report is to focus on the development of this first skill – 

improving geology-related spatial visualization. 

Teaching and improving spatial reasoning can be difficult particularly as it relates 

to what is unseen below ground.  For example, it is common for students to have 

misconceptions about how groundwater is stored and how it moves (Schwartz et al., 2011).  

It has, however been established that through the study of geology, a student’s spatial 

ability can be improved (Titus and Horsman, 2009).  This is particularly true when lessons 

integrate hands-on modeling exercises (Drennan and Evans, 2011).  Modeling also plays 

an important role in engineering. “The creation and use of representations is a central aspect 

of modeling, and students who are learning to model often use a variety of representations 

to express, test, revise, and communicate their own thinking. Consequently, model 

development often depends on representational fluency and the ability to translate between 

and within different representational forms (Moore et al., 2013).  “Explicit learning 

experiences about models and the modeling process need to be embedded into the 

engineering curriculum, specifically in the teaching of engineering design. Teaching 

modeling will improve student use and understanding of modeling as an important and 

pervasive engineering tool” (Carberry and McKenna, 2014). 

Many efforts in geology education try to help students visualize things that are too 

big to see or conceptualize.  This work is concerned with helping student to visualize things 

that are too small for them to see, yet play a crucial role in geological processes, specifically 

the elements of geology that determine the transport of water and the filtration of water.  
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This is accomplished through the creation of geological models imbedding microstructure 

details into a larger conceptual picture using newly available technology, namely three-

dimensional printers. 
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Chapter 2:  Review of the Literature 

HISTORICAL APPLICATIONS OF INSTRUCTIONAL MODELS 

Models have traditionally been utilized in classrooms to assist students’ 

visualization of abstract concepts or to assist visualization of items too small to be visible 

with the unaided eye.  Before the development of computers, these models were concrete 

and tangible – 3-dimensional items that could be held and manipulated.  From the 1930’s 

through the 1950’s many different types of physical models were promoted for use in 

classrooms.  There were electrical models used to teach vibration theory (Kemler and 

Freberg, 1943).  Rubber models were used to teach the principles of elasticity (Durelli, 

1950).  Airplane models were created with Tinker Toys (Larson, 1959).  There were 

various types of “loaded models” with a variety of applications (Gilkey, 1935).  The use 

and development of models was so common that model factories were developed in 

universities created for the purpose of building models for the engineering colleges 

(Gwiazdowski, 1930).  Papers have been written on the use and construction of models 

(Hartenberg, 1950).  In the 1930’s, there were even conferences held for the express 

purpose of sharing and demonstrating the latest models created for technical education 

(Plummer, 1935). 

INSTRUCTIONAL MODELS IN THE COMPUTER ERA 

With the advent of computers, the modeling of geological structures has been 

greatly enhanced.  The list of applications is extensive.  Global Positioning Systems, 

Geographic Information Systems, and total station laser surveying (Almquist et al., 2011) 

are among the tools that have been used.  There are countless computer simulations where 

individuals control various parameters in order to construct geological scenarios to model 

various structures and geophysical activity (Fraser et al., 2007).  There are many websites 



 7 

dedicated to archiving the many various geological software available.  One such website 

is maintained at North Dakota State University.  Not only does it contain links to a 

multitude of geological software, but it also contains links to other sites that maintain such 

lists (Saini-Eidukat, 2014).  Computer technologies not only have improved the capabilities 

of geologists, but they have also enhanced student learning. 

Computer applications are used in a wide variety of engineering disciplines.  One 

such scaffolded software environment is ChemProV which is used by beginning chemical 

engineering students.  Its purpose is to assist students in solving material balance problems 

by providing dynamically-generated feedback on syntactic and semantic correctness of 

students’ evolving disciplinary diagrams and mathematical equations with a goal of 

improving engineering students’ problem-solving abilities. After a recent study using 

ChemProV, researchers concluded that the software “can serve as a valuable aid in helping 

students learn engineering problem-solving skills. Its software design approach can be used 

as a model for designing educationally-effective software environments for other 

engineering disciplines” (Hundhausen et al., 2011). 

Computer simulation-based learning improves motivation as well as their 

performance.  Recent use of computer simulation-based learning in a Machining 

Technology course by mechanical engineering students found that “the students perceived 

their psychological needs to be satisfied and had high levels of self-determined 

motivation.”  These students also had higher mean performance test scores.  The 

researchers concluded that “students perceived their basic psychological needs to be met 

and that simulation-based learning can potentially enhance self-determined motivation as 

well as improve learning in general” (Koh et al., 2010).   

Another study of computer applications in a stochastic groundwater modeling 

course followed students for one week in an effort to strengthen groundwater education.  
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In addition to learning key vocabulary, the educational objectives of this course were to 

“explain spatial correlation, produce realizations of groundwater flow, and critique 

deterministic groundwater models.”  These goals were accomplished through guided, 

hands-on computer exercises provided by Processing Modflow for Windows (PMWIN).  

The study found “students reported significant improvement in their ability to perform a 

majority of the educational objectives” (Mays, 2010). 

One additional example of using computers in an educational setting is seen in a 

classroom for optical mineralogy.  The course requires students to “integrate a complex 

theory with microscope manipulations and image interpretation.”  To facilitate instruction, 

digital photomicrographs were uploaded to individual student Tablet PCs that not only 

allowed students to view the images up close, but also allowed digital annotations.  The 

results of this study found student visualization of the minerals improved (Hoisch et al., 

2010).  These various classroom examples of computer modeling suggests that providing 

models and simulations to students can improve engagement and enhance learning. 

PHYSICAL INSTRUCTIONAL MODELS IN THE 21ST CENTURY 

Despite the prevalent use of computers, there are still recent applications of hands-

on manipulatives.  It has been said that “quality, multimodal instruction will help to clarify 

students’ misconceptions and assist them in constructing accurate mental models” 

(Schwartz et al., 2011).  Additionally, “activities rich in object-visualization could provide 

an opportunity to motivate and empower a population – object visualizers – who may have 

disliked prior science courses” (Kastens, 2010).  Therefore, even though current electronic 

devices provide very accurate and realistic representations, there remains a need for 

physical hands-on manipulatives. 
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A recent study introduces an interesting instructional method to model complex 

Earth systems.  “Students are provided with a mechanism for explicitly following matter 

as it moves through the environment, and describe this movement pictorially in box-and-

arrow diagrams.  This approach raises awareness of the underlying causes for the dynamic 

nature of systems, and encourages reasoning, thoroughness, and transferability of skills.  

Preliminary data suggest that this method is effective with post-secondary students” as well 

and the methods are encouraged to be adapted to other courses (Clark et al., 2009).  Even 

though this process does not utilize manipulatives, it does demonstrate a use of 

representations that are not generated using computers. 

There is one unique and interesting study of the use of a physical underground mine 

mapping simulation to build geospatial skills.  “A physical (non-virtual) underground mine 

mapping simulation in a building on the Adams State College campus in Alamosa, 

Colorado, provides an excellent cost-effective and efficient learning tool to prepare 

students for actual field mapping, while improving spatial thinking using a physical hands-

on setting. In this simulation, students act as mine geologists, completing simulated mine 

mapping work tasks. Mapping and interpretive skills are enhanced in an adaptable, flexible, 

and easily implemented simulation that is software independent. The mine simulation is 

well received by students as an effective training and learning tool” (Benson, 2010).  This 

application of geological instruction seems very intriguing yet very massive. 

One additional example of using tactile objects to teach space science to grade 

school students is for the benefit of students with visual impairments.  Eleven students at a 

week-long residential summer camp received “Earth and planetary science lessons on 

rotation/revolution, silhouettes of objects from different views, contour maps, impact 

craters, asteroids, and topographic features of Mars.  The materials are recommended for 
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use with sighted students as well as those with visual impairments because of their 

concrete, tactile nature” (Rule, 2011). 

Our research is centered on the teaching of the concepts of porosity and 

permeability of rocks in a concrete manner.  The American Society of Civil Engineers has 

published a book of classroom demonstrations for water concepts.  The editors Hilton and 

Neupauer provide a chapter on teaching groundwater concepts through 9 interactive 

lessons.  One lesson in the groundwater chapter is titled “Porosity” and is taught using 

Grape-Nuts cereal and milk to demonstrate that “aquifers are not like underground rivers 

but more like a cereal bowl” (Hilton and Neupauer, 2013).  The lesson is concrete and 

simple to implement.  However, due to the loose nature of the cereal, a student could lose 

sight of the idea that the aquifer is contained in rock and that the pore spaces are very small.  

In this work, porosity is demonstrated utilizing a product that more closely resembles actual 

rock. 

USES OF THREE-DIMENSIONAL PRINTERS 

One of the greatest technological advances thus far in this century is the creation of 

three-dimensional printers.  A new phase has emerged – “Internet of 3D Printed Products.”  

Via 3D printers connected to the internet, “we are looking at not only intangible services, 

but tangible goods will be delivered as well to our computers over the Internet. We will be 

able to receive or create goods in digital form, and we will be able to 3D print them and 

turn them into physical objects.”  There are also a variety of applications of 3D printed 

material.  This includes but is not limited to “3D printing of specialized robot parts, 3D 

printing of transplanted jaws, 3D printing helping grow new bones with scaffolding, and 

3D printing drugs, and newer models for training of engineers.”  This particular study also 

recognizes “3D printing of tactile aids for visually impaired” (Kaur, 2012). 
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Another application of using 3D printers in the instruction of geosciences has been 

for the creation of terrain models.  Before 3D print technology was available, construction 

of physical models involved expensive, labor-intensive sculpting or molding.  Using data 

from “topographical maps, radar data, altimetry, and digital terrain models,” terrain models 

can be created within hours at a lower cost.  Printing terrain models can allow a person to 

visualize distant places they may never visit especially terrains of lunar and planetary 

surfaces.  There are even greater benefits to the visually impaired making space sciences 

accessible to more (Horowitz and Schultz, 2014).  Interestingly enough, we were unable to 

find evidence of 3D printing being used to create models of petroleum reservoirs. 

In this work, 3D printers are used to enlarge common objects, namely rocks, in a 

similar fashion that a 2D image would be enlarged, in order to gain understanding of their 

structure and properties.  In doing so, not only will a student be able to visualize geological 

processes, but they can also perform simplified experiments with rock models that 

previously were only possible with time consuming and expensive equipment.  Most soils 

and sandstones have grains with diameter on the order of 62.5 to 1000 micrometers.  As a 

result, their intergranular pore spaces are commonly 0 to 100 micrometers in diameter 

(Peters, 2012).  Diagenetic processes in sandstones (compaction, partial dissolution, and 

recrystallization) during burial can further reduce the pore space sizes.  Thus high 

resolution imaging is required to understand the microstructure.  X-ray microtomography 

has revolutionized our understanding of the three-dimensional rock pore spaces by 

allowing non-destructive imaging (Flannery et al., 1987).  Recent advances in these 

imaging practices have been reported by Wildenschild and Sheppard (2013).  The level of 

detail obtained is great, however it takes fairly specialized knowledge to translate the 

image’s geometries to so-called STL files required by 3D printers (Szilvási-Nagy and 

Mátyási, 2003).  
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Chapter 3:  Petrophysics 

The source of most of the information contained in this chapter comes from Ekwere 

J. Peters’ Advanced Petrophysics textbook.  Petrophysics is the study of physical properties 

and behavior of rocks, including how fluids move through rocks.  This study is of particular 

importance to petroleum and geosystems engineers because the majority of the fluids in 

the rock are either water or hydrocarbons.  Despite Hubbert’s prediction that the production 

of oil has reached its peak (Hubbert, 1956), strong demand continues for petroleum 

products in the United States.  World use of oil may be declining, but the consumption of 

natural gas appears to be on the rise (Fig. 3).  It is the job of the petroleum and geosystems 

engineers to locate and extract these fluids from the rock; therefore, their professions 

remain very important to our society. 

 

 
 

Figure 3: History of energy consumption in the United States (U. S. Energy 

Information Administration, 2013). 
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ROCKS 

There are three basic types of rocks:  sedimentary, metamorphic, and igneous rocks.  

The most common form of sedimentary rocks include sandstones and carbonate rocks.  

Their name describes how they are formed.  For instance, sediment in water settles to the 

bottom of lakes and oceans.  Sedimentary rocks can also be formed land and wind might 

be the sediment carrier.  As more and more sediments are deposited, the layers below get 

compacted and cemented, and their resident water migrates out.  High pressures and 

temperatures at depth ultimately form rocks.  We see sedimentary rocks form in layers on 

the Earth’s crust over time.  Often these sedimentary rock layers are visible above ground 

in canyons or in outcrops of various formations after uplift or erosion (Fig. 4).  Petroleum 

is formed when dead organisms (e.g. plankton) are buried with the sediments and exposed 

to great pressures and temperatures (Fig. 5). 

 

 
Figure 4: Sedimentary rock layers at Canyonlands National Park (Herbert, 2014). 
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Figure 5: Plankton sediment forming layers of sedimentary rock (Bratton, 2003). 

 

Sedimentary rock can be transformed into metamorphic rock due to high heat and 

pressure causing physical and chemical changes.  Examples of metamorphic rock include 

quartzite and marble.  Igneous rocks are formed by cooling of volcanic lava or magma.  

Granite is an example of an igneous rock.  Of the three, sedimentary rock is typically where 

hydrocarbons exists. 

Because sedimentary rock is found closer to earth’s surface and typically has not 

been subject to high heat or pressures, there is less compaction of the grains of the rock.  

Therefore, sedimentary rock is often more porous than other types of rocks allowing for a 

greater percent of empty space in the rock for fluids.  Additionally, much of the sediment 
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that creates sedimentary rock is organic material.  This organic material, primarily diatoms, 

commonly called plankton, is the building blocks for hydrocarbons.  Therefore, it is within 

sedimentary rock that we find the majority of our fossil fuels. 

Fossil fuels reservoirs are formed from the organic material found in sedimentary 

rock.  The settled diatoms decompose into hydrocarbon fluids, primarily oil and natural 

gas.  The density of oil and gas is less than the rock and water trapped in the rock.  

Therefore, if the rock is both porous and permeable, the oil and gas will seep upward 

towards the surface of the Earth.  If the oil and gas reach rock that is not permeable, it will 

collect in a subsurface reservoir (Fig. 6). 

 

 

Figure 6: Formation of an oil and gas reservoir (Shepherd, 2002). 

 

Permeability refers to the ability of rock to transmit fluids, and it depends on 

porosity as well as sizes and connectivity of pore spaces.  Porosity refers to the percent of 

pore space within a rock.  The lesson developed in this work deals with the measurement 

of porosity.   
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POROSITY 

Porosity is the ratio of the volume of the pore space compared to the total volume 

of the rock.  Often the pores of a rock are isolated and not connected.  If so, the effective 

porosity will be less than the total porosity of the rock.  The effective porosity of rock is 

more important in controlling flow than the total porosity. 

The porosity of sandstone, a type of sedimentary rock, is affected by packing 

sorting, and cementation.  Packing refers to the arrangement of the grains in the rock and 

effects pore space connectivity.  The square packing in Figure 7 has a greater percent of 

pore space (47.6%) than the hexagonal packing’s pore space (39.5%). 

 

 

 

Figure 7: Idealized packing arrangements of sand grains in sandstone (Wolfram Math 

World, 2014). 

 47.6 39.5 

Sorting refers to the variability of grain sizes within a rock.  If a rock has a variety 

of grain sizes, smaller grains will fill in the pore space around the larger grains.  Therefore, 

rocks with a variety of grain sizes will have less porosity than rock with uniform grain sizes 

(Fig. 8). 
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Figure 8: Example sorting arrangements of sand grains in sandstone (The Open 

University 2014). 

 

 Cementation also affects the porosity of sandstone.  Cementation occurs when 

cement precipitates from water and fills the pore space (Fig. 9).  Cement is usually made 

of quartz or carbonates. 

 

 

Figure 9: Cementation in sandstone (Nelson, 2014). 

 

 Porosity of sub-terrain rock can be measured both directly on a rock sample in a 

laboratory or indirectly on location at the well site.  One method to measure the porosity 

directly is to find the mass of a clean and dry rock and compare it to the mass of the rock 
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when it is saturated with fluid.  Then calculate the volumes of each by dividing their mass 

by their density.  The porosity is the difference in the volumes divided by the volume of 

the sample.  This process can take time that is not always available for classroom labs. 

There are various porosity calculating devices that inject a sample with fluids to 

achieve saturation.  Various fluids are also used for this analysis.  For some of these fluids, 

it is not possible to expel them from the rock sample once injected into the pores.  Other 

fluids can be caustic, causing the sample to become more porous the longer the fluid 

remains in the rock.  In both of these cases, the sample would not be suitable for further 

study.  All of these methods calculate effective porosity as opposed to total porosity.  To 

calculate total porosity, the sample would have to be crushed and compacted.  The volume 

of the crushed sample would be compared to the volume of the sample in its original state.  

This process would depend on the crushed particle size, however. 

 An additional way to measure the porosity of a rock sample is to use X-ray 

computed tomography (CT) imaging.  The grayscale colors of voxels (volume elements, 

the 3D equivalent of 2D pixels) in the image are normalized on a scale of 0 to 1 with 0 

representing white and 1 representing black.  Typically, there is enough separation between 

greyscales corresponding to pores and rock to separate them.  This process is called 

segmentation. 

 Porosity can also be measured at the well site indirectly using logs.  A log of the 

well is produced using sound or electromagnetic waves.  A logging tool is placed in the 

well bore at the depth of the target formation.  The tool contains transmitters and receivers.  

Waves emitted from the transmitter echo back to the receiver from the formation.  The time 

the sound takes to return to the receiver from the transmitter is noted.  Sound waves are 

typically used to measure elastic properties of rock.  For porosity, a neutron source is used 
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more often.  If using sonic logs for porosity, then the porosity and sonic transit time are 

related as 

∆𝑡 = 𝜙Δ𝑡𝑓𝑙𝑢𝑖𝑑 + (1 − 𝜙)Δ𝑡𝑠𝑜𝑙𝑖𝑑 

where 𝜙 is the total porosity, ∆𝑡 is the measured interval travel-time, Δ𝑡𝑓𝑙𝑢𝑖𝑑 is the interval 

travel-time of the saturating fluid, and Δ𝑡𝑠𝑜𝑙𝑖𝑑 is the interval travel-time of the rock matrix.  

This estimation equation is called Wyllie’s equation (Wyllie et al., 1956).  Therefore, it 

follows that a greater echo time will indicate a formation with a greater porosity (Peters, 

2012). 
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Chapter 4:  3D Printers and STL Files 

Three-dimensional printers create objects by adding one layer at a time, and are 

thus also referred to as additive manufacturing.  The creation of the first 3D printer is 

credited to Charles W. Hull of 3D Systems Corp. in 1984.    There are a variety of 

technologies used to print in 3D.  The most common technology is thermoplastic extrusion 

3D printing (Barnatt, 2013).   

The “ink” for thermoplastic extrusion printers is a polycarbonate plastic filament 

stored on a spool on the printer (Fig. 10).  The plastic is threaded to the print head.  The 

print head is heated and extrudes molten plastic to a build platform.  Here the plastic cools 

quickly as it creates the solid print.  The printer prints one layer at a time much the same 

way paper printer operates printing one row at a time.  After printing a layer, the print head 

moves up to print the next layer (Barnatt, 2013). 

 

 

Figure 10: Airwolf 3D printer (Airwolf, 2013) 
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 Sterolithography (STL) files are necessary to print an object on a 3D printer.  The 

code defines a set of connected triangles in 3D space that represent the surface of the object 

to be printed.  The vertices of these triangles can be calculated using Lorensen’s and Cline’s 

marching cubes algorithm.  This algorithm was devised in 1987 to assist in creating 3D 

images from a series 2D medical images such as those in magnetic resonance imaging 

(MRI). 

 An STL file begins with an image of the object to be printed.  The gradient shades 

of the colors of each voxel in the image of the object are assigned values.  It is decided 

which color voxels are considered inside the solid and which represent outside the solid.  

The fifteen marching cubes are shown in Figure 11 below.  Each of the 8 vertices in a 

marching cube represents 8 connected voxels in the image.  Triangles divide the space in 

the marching cube between the inside voxels and the outside voxels.  This process is 

repeated for all cubes of 8 voxels in the image beginning with the first row of the bottom 

layer of the image and continuing through the image to the last row of the top layer of the 

image.  The combined triangles will form the isosurface of the object to be printed.  When 

the printer knows where the surface of the object begins and ends, it knows where to print 

and where not to print.  The printer simply prints from one surface of the object to the other 

(Lorensen and Cline, 1987). 
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Figure 11: Marching cubes algorithm: possible configurations of triangles. 

(Lorensen and Cline, 1987). 

 

 There are many problems that can occur in developing STL files.  Requirements of 

the triangles are that they must all be closed and every edge must be shared by exactly two 

triangles.  Also every vertex must align with other vertices of other triangles.  The vertices 

must not intersect another triangle on its edge.  Triangles are also not allowed to intersect 

or overlap.  Unwanted faces can occur from randomly placing triangles that are either 

inside or outside the solid.  The algorithm will at times leave gaps in the surface.  Also the 
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algorithm can develop ill-defined surfaces.  This can occur with lower resolutions in the 

original image.  However, when the resolution is increased, the number of voxels increases 

creating more triangles in the surface.  This can lead to more complications in creating 

excessively large files that some computers cannot facilitate.  When the surface is created 

correctly, it will be represented by a smooth mesh of triangles.  When there are errors in 

the STL files, there is mesh repair software such as MeshFix or MeshLab that seeks to 

average the distance between non-matched vertices and match them up (MeshRepair.org, 

2012). 

 X-ray microtomography images of detailed rock microstructure can serve as input 

to construct STL files and this has been done for the creation of 3D prints used in this work.  

X-ray microtomography was first introduced in the late 1980’s.  X-ray microtomography 

is nondestructive and can create images with great accuracy and high resolution 

comparable to that of a light microscope (Flannery et al., 1987).  Since then, the field has 

literally exploded.  Imaging systems are now commonly available and have revolutionized 

research of processes on micron length scale in rocks.  Recent advances in x-ray 

microtomography are now allowing understanding porous media flow and transport 

(Wildenschild and Sheppard, 2013). 

The design of a microtomography system begins with a source of collinear  x-rays 

(Fig 12).  X-rays, as well as visible light rays, are waves of electromagnetic energy carried 

by photon particles.  X-rays have a shorter wavelength but higher energy level than the 

visible light rays that human eyes can see.  As such, x-rays can pass through objects.  It is 

preferable that these x-rays be monochromatic, that is x-rays of a single wavelength.  This 

helps to improve the resolution of the image.  The x-rays of the microtomography system 

are directed at the sample to be imaged which sits on a rotatable stage.  The sample absorbs 

some of the x-ray photons creating distinctions between the waves which represent the 
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spatial differences in the density, and thus structure, of the sample.  The remaining x-ray 

photons travel to a face plate consisting of lithographically fabricated phosphor plugs 

spaced approximately 2.5 μm apart.  The phosphor plugs capture the optical photons 

converting the x-rays to visible light rays.  A conventional lens system magnifies the image 

of the optical photons onto a charged-coupled detector (CCD).    A CCD is a grid of 

capacitors that convert incoming photons into electron charges.  Each capacitor represents 

a different pixel and each electron charge represents a different color hue.  This data is 

recorded in multiple stacked planes.  Three-dimensional images are reconstructed from this 

data which is stored in multiple stacked planes.   

 

 

Figure 12: Illustration of an x-ray microtomography device (Flannery et al., 1987) 

 

Creating products using 3D prints offers many advantages to traditional 

manufacturing processes.  3D printers offer shopping convenience.  A product’s print file 

can be downloaded via the internet and then printed at home on a 3D printer instead of 

traveling to a store or ordering products over the internet or by phone.  The products can 

even be personalized and customized to you your own preferences (Barnatt, 2013). 
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 Even though this technology has existed for 30 years, there are still disadvantages 

of their use.  These printers have not always been very accessible, efficient, or fast enough 

for home use.  Their price varies based on the printing resolution, size of the object to be 

printed, and the quality of filament material.  3ders.org report prices ranging from $249 for 

a very basic printer to $846,000 for a more sophisticated model.  The polycarbonate 

filament is also quite pricy for everyday home applications.  Prices of filament range from 

$18.96 to $175.20 per kilogram depending on the material, size, color, and quantity 

purchased (3ders.org, 2014).  For reference, MakerBot claims one kilogram of filament 

will print 699.3 cm3 or 392 standard size chess pieces with 5% infill.  This could create 12 

complete chess sets.  MakerBot’s filament cost $48 per 1 kilogram spool (MakerBot, 

2012).  Therefore each chess set would cost $4 each without a board.  Considering that 

Amazon.com sells an inexpensive Pressman toy chess set for $7.96 with a board, 

MakerBot’s chess set appears relatively affordable (Amazon, 2014).  However, not all 

applications are as cost effective.  But as with all new technologies, prices may drop as the 

industry gains efficiency of scale. 

There are many applications of 3D prints.  Their main advantage is arguably not 

printing objects that are already easily mass produced (such as chess sets), but printing 

customized objects and replacements for parts that possibly do not exist on the market.  

One of the most significant applications is how it has revolutionized modern medicine.  

Biomedical engineers are creating customized body parts.  We also find 3D prints being 

used to make jewelry, art, and fashion.  Architects and engineers now have the ability to 

quickly and efficiently create models, prototypes, and iterations of their designs.  Candies 

are even being printed using chocolate and other sugars (Barnatt, 2013).  However, there 

have been very limited applications found for 3D print applications in education.    

Segerman promotes the use of 3D printing for visualizing mathematics.  Examples he 
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proposes are printing 3D graphs such as a hyperbolic paraboloids or non-Euclidean 

surfaces such as inverted tori or Möbius strips (Segerman, 2012).  But the majority of 

educational applications have been in engineering, robotics, and computer science 

classrooms to teach students how to use a 3D printer and how to create STL files for design 

purposes (Martin, et al., 2014). 
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Chapter 5:  Methods 

In this work, the use of 3D prints was used to develop a lab to teach porosity of 

rock.  The hypothesis was that students will gain greater understanding of petrophysical 

properties when using 3D prints of rocks during instruction than without the 3D prints.  

The goals were that students would come to know the meaning of porosity, know how to 

compute porosity, and to understand a deeper concept of porosity that similar structured 

rocks will have the same porosity regardless of grain size.  Prior to conducting the research, 

approval was obtained from the Institutional Review Board at the University of Texas at 

Austin.  Both parental consent and the students assent were obtained.  The lesson plan is 

presented in Appendix A.  There is also an instructional presentation provided in Appendix 

B. 

3D rocks were printed in the shape of a cylinder in order to emulate a core sample 

(Fig. 13).  The print is an enlargement of the microtomography image of a sand packing 

(Fig. 14).  This image was manipulated using ImageJ/Fiji software (Fiji, 2014) and the STL 

file was corrected using MeshFix (Dice Holdings, Inc., 2014).  The STL file to create this 

print can be found online at the digital rocks portal https://pep.tacc.utexas.edu/projects/5/ 

(Unconsolidated sand project). A similar print for any other lithology could be produced 

using any number of other STL files posted on the mentioned digital rocks portal.  Two 

magnifications of the 3D prints and customized containers to hold the prints were created 

(Fig. 15).  The containers were used to calculate the volume of the pore space filled with 

water.  Because the prints are made of polycarbonate, a petrochemical, their density is less 

than water and will float.  It is important that the print fit tightly in the container to use 

friction to hold the print in place and to gain an accurate measurement of the water 

https://pep.tacc.utexas.edu/projects/5/
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displaced.  In the absence of customized containers, beakers can be used as long as the 

diameter of the print is the same as the internal diameter of the beaker. 

 
Figure 13: Snapshot of an STL surface for a cylindrical subsample with diameter and 

length both 180 voxels (Prodanović, 2014) 

 

 

Figure 14: Cross-section of a volumetric segmented file (of unconsolidated sand, 

sand is in white, pore space is in black) used to create STL files for 3D 

printing of rock (Prodanović, 2014) 
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Figure 15: Photographs of 3D printed rocks used in our porosity lab 

(Dees, 2014) 

 

The lab was designed for a 6th grader.  In Texas, it is in 6th grade that students study 

the layers of Earth and learn about the different forms of rock and the rock cycle.  These 

topics are not discussed again unless a student takes Earth & Space Science as a senior in 

high school.  However, every year from kindergarten through 6th grade, some aspect of 

rocks are a part of the Texas science curriculum (Texas Education Agency (TEA), 2010).  

Therefore, this 3D printed rock lesson can be adapted to a variety ages to suit educational 

needs.  The true power of this lesson is the visualization of the structure of rock made 

possible with a printed enlargement of rock (Fig. 16). 
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Figure 16: 6th grade students interacting with our lab materials (Dees, 2014) 

 

The lesson creates a lab for groups of 3 to 4 students, ideally 4, where all students 

in the group assume different roles:  a geologist, a petroleum engineer, a mathematician, 

and a statistician.  The responsibilities of the geologist involve examining the rocks.  They 

will take measurements of the 3D printed rock.  We provided the geologist with a wash 

bottle so they can pour water over the rock to witness the water seep into the actual pore 

space of the rock.  The geologist will also use a field lens or magnifying glass to compare 

the structure of the actual rock sample with that of the 3D printed rock. 

The petroleum engineer is responsible for conducting the experiment.  This 

involves determining the water displaced by the rock in order to calculate the pore space 

of the rock.  In addition to the 3D rock and its customized container, the engineer also 

needs a graduated cylinder filled with water that is at least the volume of the pore space.  

The engineer will note the initial volume of the water in the graduated cylinder.  The 
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student will then simply place the 3D printed rock in the container, pour water over the 

rock just to the top of the rock and tapping out air bubbles, and then note the volume of 

water in the graduated cylinder once more. 

The mathematician is responsible for all calculations for the group.  This can be 

done with a calculator or without a calculator.    The statistician will record all the data on 

the data collection sheet.  The job of the statistician is also to report the calculated porosity 

of their sample to the whole class data collection sheet. 

There are also some general rules for the lab.  If a group has only three members, 

the mathematician will also serve as the statistician.  As groups complete the lab at one 

station, they will rotate to the next.  As they rotate, the group members should also rotate 

their roles with a goal of students working at least four stations so that they can all assume 

each of the roles.  The most important rule is that each group member is to be responsible 

to each other to make sure all are aware of and agree with everyone’s discoveries. 

 There are several learning theories employed in the porosity lab.  Within each lab 

group, a community of learners is created.  A goal is to establish a student-centered learning 

environment where “everyone is involved in the collective and individual effort to 

understand” (Bielaczyc and Collins, 1999).  The lab was designed so that each group acts 

as a practice field which is separate from the “real” field.  A practice field offers “contexts 

in which learners, as opposed to legitimate participants, can practice the kinds of activities 

that they will encounter outside of school” (Barab and Duffy, 2012).  Elements typically 

included in practice field include: 

1. Learning by doing. 
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2. Realistic problems typical of what would be found outside of school. 

3. Teachers aiding as a problem-solving expert in addition to being a 

content expert. 

4. Opportunity for reflection and to correct misconceptions. 

5. Working with ill-defined problems in order for student to take 

ownership of the process. 

6. Collaboration with others. 

7. Relevant problems that challenge and engage the students. 

A realistic situation was created to learn porosity by students assuming occupations found 

in industry while doing our lab in a group setting with teacher support.  At the end of the 

lesson, students had the opportunity to analyze the results of all groups in order to notice 

that all porosities calculated were relatively the same regardless of the size of the sample.  

This helped students to correct their misconceptions that one would be greater than the 

other.  This captures the definition of a practice field with the lab. 

A didactic lesson was also created for a control group of students.  The Power Point 

presentation for this control group is included in Appendix C.  In this lesson, every student 

was taught the definition of porosity and every student had the opportunity to practice 

calculating porosity twice.  They also were shown two different sized enlargements of the 

same sandstone shown on slide 19 of Appendix C.  Using this slide, the class discussed 

how both samples would have the same porosity regardless of their size because their 

structures were identical.   The prescribed presentation was longer than the enacted due to 

time constraints.  The formal instruction ended with slide 20 which gave an overview of 
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the oil & gas industry.  A demonstration was then provided involving two student 

volunteers to show how injection and production wells function (Fig. 17).  This was 

followed by (slide 29) post-assessment. 

 

 

Figure 17: Injection and production well demonstration (Dees, 2014). 

 

The lab was conducted on the campus of the University of Texas at Austin (UT) 

with incoming 6th graders from Manor ISD participating in Breakthrough Austin’s summer 

program.  Breakthrough is a not-for-profit organization serving low-income students from 

upcoming 6th graders through college with a goal to help them become the first college 

graduates in their families.  Their philosophy is “built on the belief that there are no quick 

fixes and that early, long-lasting interventions can make the difference between dropping 

out of high school or going to college” (Breakthrough Austin, 2014). 
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There is an extensive process involved to have the opportunity to participate with 

Breakthrough.  Staff from Breakthrough first conduct orientations on school campuses to 

raise awareness about their program.  Students must complete an application along with 

essays about why they want to go to college and why they want to participate with 

Breakthrough.  The students along with their parents must attend an interview as well as 

meet Breakthrough’s admissions criteria.  Typically, neither parent has completed a college 

degree in the United States.  Students must have strong grades, however, Breakthrough 

does not target gifted and talented students.  Students must also not have any behavior 

problems (Breakthrough Austin, 2014). 

On the day of the lesson presentation, Friday, July 25, 2014, Breakthrough brought 

4 classes of rising 6th graders to UT.  Breakthrough reported that selection into each of the 

four classes was based on random assignment.  Two of these four classes attended the 

porosity lab and Breakthrough randomly selected these two classes.  The first group served 

as the control group and the second group who came an hour later were the treatment group.  

The order was not random – it was what was convenient to the additional helpers, students 

from the University of Texas at Austin’s Petroleum & Geosystems Department, that came 

to assist during the treatment lab. 

Prior to the beginning of instruction for both groups, all students were notified 

about the research study and gave them the option to participate or not.  Those that chose 

to participate signed assent forms.  A pre-assessment of the first four questions from the 

question bank found in Appendix E was given.  Students were instructed to write “pre” at 

the top of a piece of paper to record their responses but not to put their name on their paper 

in order to maintain their anonymity.  They were also reminded not to collaborate with 

their neighbor and to give their best answer.  The option “I don’t know” was offered as the 

last choice of every problem.  They kept their pre-assessment until the end of the 



 35 

instruction.  They then took a post-assessment on the back of their pre-quiz labeling the 

back of the paper “post”.  Again they were instructed to not write their name on their paper.  

After the conclusion of the post-assessment, their papers were collected, stapled together, 

and labeled either control group or treatment group. 
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Chapter 6:  Results and Data Analysis 

The porosities calculated by the treatment group are summarized in Table 1 below.  

At station 1, students used the larger 3D printed rock and station 2 used the smaller 3D 

printed rock.  It is interesting that when using smaller dimensions, the groups were more 

consistent in their calculations than those that used the larger print.  One explanation could 

be that there is less room for error when using lower values.  However with the limited 

sample of only 6 groups, it is not wise to draw conclusions.  These results however were 

strong enough evidence for 60% of students to understand that porosity is not dependent 

upon grain size.  Sixty percent of the control group answered correctly on the test question 

concerning this fact. 

 

% Porosities 

Whole Class Data Collection Sheet 

Group Number 
Station Number 

1 2 

1 68  

2  56.6 

3 50.5  

4  56.6 

5 54.5  

6  56 

Table 1: Porosities calculated by treatment group. 
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Answers to all of the assessment questions are summarized in Table 2. 

 

Assessment Results 

Fluids Playing Hide and Seek Below Ground 

Breakthrough Austin - Manor 6th Grade Program Engineering Day 

University of Texas at Austin 

Friday, July 25, 2014 

Question 

Number 
Response 

Control Group 

14 Students 

Treatment Group 

20 Students 

Pre- 

Assessment 

Post- 

Assessment 

Pre- 

Assessment 

Post- 

Assessment 

Number % Number % Number % Number % 

1 

A 1 7 12 86 0 0 11 55 

B 0 0 1 7 1 5 7 35 

C 1 7 1 7 0 0 2 10 

D 0 0 0 0 1 5 0 0 

E 12 86 0 0 17 85 0 0 

No Ans. 0 0 0 0 1 5 0 0 

2 

A 11 79 6 43 11 55 6 30 

B 0 0 4 29 1 5 2 10 

C 3 21 3 21 6 30 12 60 

D 0 0 0 0 2 10 0 0 

E 0 0 1 7 0 0 0 0 

3 

A 8 57 5 36 8 40 4 20 

B 4 29 3 21 0 0 5 25 

C 0 0 5 36 9 45 8 40 

D 1 7 0 0 1 5 1 5 

E 1 7 1 7 2 10 2 10 

4 

A 0 0 2 14 1 5 2 10 

B 2 14 9 64 2 10 7 35 

C 0 0 0 0 2 10 1 5 

D 0 0 0 0 0 0 4 20 

E 11 79 3 21 15 75 6 30 

No Ans. 1 7 0 0 0 0 0 0 

 

Table 2: Assessment Results – Correct answers are shaded. 
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The first question was asked to determine if students knew the definition of 

porosity.  In the pre-assessment, one student in the control group indicated the correct 

answer where no one in the treatment group knew the answer.  Interestingly, our control 

group was significantly more successful at learning the definition of porosity than our 

treatment group.  After instruction, all but two or 86% of the control group were successful 

in answering the definition question.  Eleven out of a larger sample of 20 in our treatment 

group got question 1 correct.  It is possible this result was influenced by the student who 

shouted out his answer at the beginning of the post-assessment.  He said out loud that he 

answered B for number 1.  Seven student or 35% also answered B for number 1.  We will 

not be able to determine if these students got the answer wrong due to lack of knowledge 

or due to the influence of this one peer. 

Question 2 was a conceptual question about porosity.  Rocks that have similar 

structure will have the same porosities regardless of the size of the grains in the rock.  There 

were a few students in both the control and treatment groups that indicated they knew this 

idea before instruction.  Three students in the control group and 6 students in the treatment 

group got this question correct in the pre-assessment.  On the post-assessment, there was 

no change in number of correct responses in the control group.  However, 2 of the 3 that 

got question 2 correct on the post-assessment were not the same individuals that got 

number 2 correct on the pre-assessment.  Regardless, the control group showed little 

growth in learning this concept.  But, the treatment group did show significant 

improvement on the post-assessment.  The number of students in this group who answered 

correctly doubled. 

Question 3 was asked to identify if students knew how to calculate percentages in 

isolation and not in the context of a problem situation.  The question was also very visual.  

Our presentation to the control group was rather visual, a picturesque Power Point.  No one 
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in the control group was able to correctly answer question 3 on the pre-assessment.  Five 

from this control group or 36% were able to answer correctly on the post-assessment.  The 

treatment group showed no improvement on question 3.  In fact, the results went down by 

one student.  Nine students came into our lesson indicating that they did know how to 

calculate percent.  However, only 8 students got question 3 correct after instruction. 

Question 4 combined the ideas of questions 1 and 3.  Students were asked to 

calculate the porosity of a rock.  To do so requires a working definition of porosity and be 

able to calculate percent.  Again the control group showed the most improvement on this 

question.  Two of the 14 from the control group got the question correct on the pre-

assessment.  This number grew to 9 or 64% correct on the post-assessment.  The treatment 

group did show improvement, but not as much as the control group.  The treatment group’s 

number changed from 2 or 10% correct on the pre-assessment to 7 or 35% correct on the 

post-assessment. 

  



 40 

Chapter 7:  Conclusions 

In recent years, there has been an ongoing debate in education as to whether hands-

on, problem-based learning is a superior instructional method over traditional didactic 

instruction (Jonassen and Land, 2012).  This research does not answer these questions.  But 

it does recognize that there are benefits to both points of view.  It is interesting that the 

control group showed more improvement on three of our four questions.  These three 

questions, numbers 1, 3, and 4 do have some correlations.  The student must know the 

definition of porosity (question 1) and how to calculate percent (question 3) in order to 

calculate porosity (question 4).  It makes sense that the control group would be more 

successful than the treatment group on question 4.  The lesson practiced the computation 

of problem 4 twice with all members of the control group using different values.  Only the 

mathematician had practice at calculating porosity in the treatment group.  The statisticians 

might also glean insight to the process because they were responsible for the data collection 

sheet that contained the formulas.  Despite the fact our instructions were to share their 

findings and understandings with all group members, the reality is that if the student does 

not do the work, they are less likely to understand.  In addition, the program was a bit 

rushed since students had to make it through different labs. 

There are questions that remain for the control group’s success.  First, the obvious, 

did the student from the treatment group who said his answer out loud during the post-

assessment for question 1 unduly influence others in his group?  But beyond this, will the 

control group still know the answers to questions 1, 3, and 4 a year from now?  Or, did they 

just learn enough to pass the test?  Did they receive enough experience with the subject to 

secure this knowledge into long-term memory? 



 41 

Were the students of the control group more successful at calculating porosity 

because they gained a better understanding of the definition and how to calculate percent?  

Or, did their practice during instruction of how to calculate porosity help them to better 

understand how to calculate percent and to have a deeper understanding of the definition 

of porosity?  Further research on these questions could greatly improve the process of 

instruction. 

The real understanding the control group gained can be questioned, however.  

Sixty-four percent were successful in calculating percent porosity on the post-assessment.  

However, only 36% were able to transfer that knowledge to the general case of calculating 

percent found in question 3.  So it would seem that the control group learned how to 

calculate percent for this one specific scenario.  But it seems doubtful that they would be 

able to apply percent to a different situation.  On the other hand, often students are able to 

visualize concepts in the context of a problem situation much more effectively than in the 

case of an abstract problem such as question 3.  Here again, more research would be helpful 

in determining if the problem-based application helped students to have more success on 

question 4 than they did on problem 3 which was essentially void of context. 

The hypothesis examined in this work was supported with question 2.  It was 

proposed students would have more success if given hands-on experiences that helped 

them to visualize abstract concepts.  The students in the treatment group who were allowed 

to use the 3D prints of enlarged rock received the opportunity to see firsthand that the 

porosities of rocks with similar structure will be the same independent of their grain size.  

This is counter-intuitive.  In fact, in the post-assessment, more students of the control group 

(43%) said the rock with the enlarged diagram would have a greater porosity than that of 

the smaller image.  Therefore, it follows that use of 3D prints to enlarge rock allows 

students to gain greater comprehension of the petrophysical properties of rock.  It allows 



 42 

students the opportunity to easily visualize that that previously could not be seen or well 

understood. 

However, with such a small sample size, these results are very preliminary.  This 

research should be extended to a larger number of students.  It would also be interesting to 

adapt the lesson to a wider range of ages.  There are opportunities for grade school students 

to learn about rocks beginning as young as preschool age up to seniors in high school. 

Another source of error was collusion during the quizzes.  Before the quizzes, 

students were instructed not to consult their neighbor during the quiz.  However, there were 

still students who looked at their neighbor’s answers.  Some even very quietly talked to 

their neighbor.   

Our original lesson design was to have our treatment group conduct the lab 4 times, 

rotating through the stations, each time using a different 3D printed rock.  Each time they 

rotated, they were to assume a new role giving students an opportunity to do every element 

of the lab.  Helpers during the lab reported that students who assumed the role of 

mathematician or statistician were more likely to get the questions correct than the students 

who were the geologist or petroleum engineer.  Treatment group results may have 

improved if more time were allowed for more rotations.  Greater retention of the new 

knowledge may result if students are given the chance to learn these petrophysical process 

in such a visually rich and hands on manner.  Another option to conducting this lab would 

be to have each student do everything on their own if printing enough models is not 

prohibitively expensive. 

There are many improvements that could be made to the porosity lesson.  On the 

original data collection sheet, a place to calculate radius was not provided, nor was a 

diagram of a cylinder with the dimensions labeled.  These were items that students were 
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expected to know prior to instruction, however, they did not.  The data collection sheet has 

been amended and the revision is included in Appendix A. 

Students were required to perform mathematics that was most likely not 

developmentally appropriate.  The current mathematics Texas Essential Knowledge and 

Skills (TEKS) for 6th graders include learning to add and subtract fractions and decimals, 

multiply and divide whole numbers, to use order of operations without exponents, and to 

only find volumes of a rectangular prisms (TEA, 2006).  The lesson requires students to 

multiply decimals, use exponents, and calculate volume of a cylinder.  However, the TEKS 

are currently under revision and the proposed 6th grade mathematic skills include higher 

level skills such as multiplying and dividing positive rational numbers and using exponents.  

But, the new 6th grade TEKS do not include calculating volume of a cylinder (TEA, 2012).  

Nevertheless, the lesson can be appropriate for upcoming 6th graders when given a labeled 

diagram of a cylinder and the formula using 3.14 instead of π. 

An additional way to improve the lesson would be to include impermeable samples 

for comparison with our porous rocks.  This would allow students to compare and contrast 

porous and nonporous medium thus further strengthen their understanding of porosity.  The 

lesson could be extended to include a lab to teach permeability using the 3D printed rocks. 

The remaining question that needs to be asked is what are other applications of 

printing 3D models as an instructional aide for other educational disciplines?  In education, 

2D images are used to teach, especially when it is not possible to create a 3D representation 

with traditional technology.   A random sampling of teacher opinions was solicited.  An 

American Sign Language teacher asked for a cut away view of the ear and head to scale 

size.  Geometry teachers wanted examples of polyhedrons such as a trapezoidal prism, an 

irregular cone, conic sections, and shapes that would answer the question of why 1/3 and 

4/3 are constants used in the formulas of pyramids, cones, and spheres.  The calculus 
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teacher wanted solids of revolution.  The biology teachers wanted an enlargement of a cross 

section of a leaf and a cell showing its organelles.  The chemistry teacher requested 

representations of crystalline structures represented as a simple cubic, as a face-centered 

cubic, and as a body-centered cubic.  The physics teachers wanted representations of 

electromagnetic waves and mechanical waves.  They also wanted a cube, cylinder, and 

sphere with flux lines to teach Gaussian surfaces.  And the health science teacher wanted 

prints of organs.  These applications could potentially increase the visualization of sighted 

individuals, but consider how much greater these models could serve the visually impaired 

community.  With 3D printers, imagination is our only limitation. 
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Chapter 8:  Applications to Practice 

For the purposes of this report, we are asked to reflect on four topics and to speak 

to how they relate to our experience at the University of Texas in the UTeachEngineering 

MASEE program.  Within each topic we are to address specific questions as noted in each 

section. 

DEVELOPING ENGINEERING AWARENESS 

This section is to document how the MASEE program has prepared me to represent 

engineering careers and practices to my future students and why, as well as my specific 

plans for accomplishing this in my future classroom or other educational endeavors.  As a 

high school mathematics teacher, my motivation to earn a master’s degree in engineering 

education was not so that I could teach engineering.  But rather that I want to understand 

applications of the advanced mathematics I teach to bring relevance and meaning to my 

instruction.  A good number of high school students have no sense that the math they learn 

has any real importance to their future and will regularly ask, “Why do I need to learn 

this?”  Since beginning this program, I routinely look for applications of their math in 

engineering and will share different engineering careers that use the math.  Most often I do 

this by showing videos found on the internet to spark my students’ interest. 

This past school year, we did hold a petroleum engineering career day event at my 

high school campus.  Dr. Maša Prodanović, assistant professor of petroleum engineering 

at the University of Texas at Austin, led a presentation titled Fossils in My Gas Tank.  We 

invited students enrolled in Earth and space science, environmental science, advanced 

quantitative reasoning, and engineering courses.  Dr. Prodanović talked about energy and 

its importance to society, where we find oil and gas, and how fluids move through rock.  
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The talk was very informative and seemed to spark the interest of many who attended.  

They were very intrigued to hear from a college professor and to learn from an expert in 

her field.  I hope to offer engineering career days on an annual basis at my school and to 

expand the presentation to include a variety of different fields in engineering. 

DEVELOPING ENGINEERING HABITS OF MIND 

In this section, we are to include examples of how we have employed engineering 

habits of mind and how we will facilitate our students’ development of these habits.  I am 

a high school mathematics teacher.  In a mathematics classroom, it is difficult to 

incorporate engineering habits of mind on a regular basis.  However there are correlations 

of the engineering habits of mind to practices in mathematics (Engineering Your World, 

2013).  The mathematics standards of the Common Core begins with Standards for 

Mathematical Practice that include “processes and proficiencies” that are applicable to all 

levels of students.  These standards have many commonalities with the UTeach-

Engineering habits of mind (Common Core, 2014).  The new Texas Essential Knowledge 

and Skills will include Process Standards that will be the same for every mathematics 

course in the state of Texas.  These standards also have connections with engineering habits 

of mind (TEA, 2012).  In addition to these standards, the Education Development Center, 

Inc. (EDC) established mathematical habits of mind that have used them to organize 

mathematics curriculum (Cuoco et al., 2010).  In Table 3, I have attempted to organize the 

UTeachEngineering habits of mind and to find correlations to the EDC’s mathematical 

habits of mind and to the mathematical process standards presented by the Texas Education 

Agency and the Common Core. 
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UTeachEngineering Habits of Mind 
TEKS Mathematical Process 

Standards 

Common Core 

Standards for 

Mathematical 

Practice 

EDC 

Mathematical 

Habits of Mind 

Systems Thinking 

Systems thinking is a set of habits or 
practices in a framework based on the 

belief that the parts of a system can best 

be understood in the context of 
relationships with each other and with 

other systems, rather than in isolation. 

Emphasis is placed on a top-down 
perspective, the system environment, and 

critical interfaces. 

Apply mathematics to problems arising 

in everyday life, society, and the 

workplace. 

Look for and make 
use of structure. 

Performing 

thought 

experiments. 

System Understanding and 

Quantification 

Students learn to characterize the system 
using quantitative techniques common in 

the practice of engineering, enabling a 

deeper understanding of the system. 

Use a problem-solving model that 
incorporates analyzing given 

information, formulating a plan or 

strategy, determining a solution, 

justifying the solution, and evaluating the 

problem-solving process and the 

reasonableness of the solution. 
 

Analyze mathematical relationships to 

connect and communicate mathematical 
ideas. 

Reason abstractly 

and quantitatively. 

 

Look for and 

express regularity 
in repeated 

reasoning. 

Finding, 

articulating, and 
explaining 

patterns. 

Creativity 

Engineers think creatively within well-
defined constructs. Students experience a 

variety of design approaches using 

concept generation and selection 
techniques employed by engineers. 

Create and use representation to 

organize, record, and communicate 
mathematical ideas. 

Make sense of 
problems and 

persevere in 
solving them. 

 

Creating and using 
representations. 

 
Generalizing from 

examples 

Verification 

Engineers must verify that their selected 

concepts satisfies the design constraints, 
requirements, and customer needs. 

Display, explain, and justify 

mathematical ideas and arguments using 

precise mathematical language in written 
or oral communication. 

Model with 

mathematics. 

Expecting 
mathematics to 

make sense. 

Communication 

Students learn good communication 
skills and unique aspects of how 

engineers document and present design 

ideas and analytical results. Emphasis is 
placed on creating communication 

artifacts to ensure accurate interpretation 

by others (with an eye toward clarity, 
detail, precision of process, and 

completeness.) 

Communicate mathematical ideas, 
reasoning, and their implications using 

multiple representations, including 

symbols, diagrams, graphs, and language 
as appropriate. 

Construct viable 

arguments and 

critique the 
reasoning of 

others. 

 

Articulating 

generality in 

precise language. 

Collaboration 

Students learn the importance of working 
on multidisciplinary teams and 

understand what type of team member 

they are. Emphasis is placed on 
engineering personality types, integrated 

product teams, and examples of 
successful engineering teams. 

   

Common Engineering Tools and 

Techniques 

Students learn to use common tools and 
techniques that engineers employ to 

approach and solve problems and to 

manage projects. Approach and 
application are based on the design 

challenge at hand. 

Select tools, including real objects, 

manipulatives, paper and pencil, and 
technology as appropriate, and 

techniques, including mental math, 

estimation, and number sense as 
appropriate, to solve problems. 

Use appropriate 

tools strategically. 

 
Attend to 

precision. 

 

Table 3: Correlation of the UTeachEngineering Habits of Mind with Mathematical 

  Habits of Mind and Process Standards. 
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It could be argued that the mathematical habits of mind and the mathematics 

standards presented above could be aligned differently to the engineering habits of mind.  

However, I believe there are sound correlations nonetheless.  The only engineering habit 

of mind that is not shown in the mathematics standards is collaboration.  Even though 

collaboration is not a written standard, we find argument for collaboration in mathematics 

as early as 1974 (Bagnato, 1974) and I see its application practiced in mathematics 

classrooms on a regular basis.  Therefore, even though the standard for collaboration in 

mathematics is not written, I do believe it is an unspoken habit of mind in mathematics.  

Although I most likely will not be practicing official engineering habits of mind regularly 

in my classrooms, there are similar habits my students do experience every day in my 

classroom. 

DEVELOPING AN UNDERSTANDING OF THE DESIGN PROCESS 

In this section, we are to detail how our research or design project contributed to 

our understanding of the design process.  We are also to include ways in which we feel that 

our work was not representative of the design process as presented by UTeachEngineering.  

My research for the purposes of this report was not a design project, therefore, developing 

the porosity lab did not encompass all aspects of an engineering design process.  However, 

there are correlations of the creation of this lesson plan to the UTeachEngineering design 

process which is a circular plan as follows: 

1. Identify the need. 

2. Describe the need and characterize and analyze the system. 
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3. Generate and select a concept 

4. Embody, test, evaluate, and refine the concept. 

5. Finalize and share the design. 

6. Evolve the design. 

For this report, I was given a 3D print of an enlargement of a rock and asked to 

design a lesson plan that would be of benefit to grade school students.  I began with a study 

of rocks and petrophysics and a study of the Texas Essential Knowledge and Skills to 

determine concepts that could be taught using the 3D prints.  I determined there was a need 

for teaching the ideas of porosity and permeability.  Through this process, I identified and 

described the need.  We further narrowed down our concept selection to only porosity given 

our time constraints.  We then began exploring appropriate pedagogy to teach porosity and 

embodied the lesson in a formal lesson plan.  We then shared our lesson with the 

Breakthrough 6th grade program from Manor ISD.  After presenting the lesson, we 

evaluated what went well and what needed improvements and adjusted our lesson plan.  

The revised lesson plan is included in Appendix A of this report.  We also hope to extend 

this lesson to include permeability. 

DEVELOPING KNOWLEDGE FOR AND OF ENGINEERING TEACHING 

This section is to include specifics of how what we have learned in the MASEE 

program will affect (or has already affected) our practice in engineering education.  In the 

Advanced Quantitative Reasoning (AQR) class I teach at Vista Ridge High School, we 

have two units that students find rather challenging.  These are the study of functions and 

recursion through analyzing linear, exponential, logistic, and sinusoidal patterns.  In order 
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to attempt to create greater interest in these units, for the past two school years I have 

integrated the Fuel Efficient Vehicle Challenge from our Engineering Design Methods 

course.  I have students extend the challenge to create data tables and graphs of the speeds 

and accelerations of their cars to find quadratic and linear patterns.  In my year end survey 

to kids, many tell me this project is their favorite activity of the year.  I am continuing to 

revise and improve this lesson and hope to share it with others in the state of Texas who 

also teach this course.  I would also like to add the earthquake simulation challenge from 

our Engineering Energy Systems course of the MASEE program to AQR during our 

sinusoidal unit.  I recently attended National Instruments’ NI Week to learn about the 

equipment necessary for this project.  I also gained additional ideas on creating a new 

project using data collecting cameras to observe the growth of bacteria in a petri dish over 

time.  Similar to how STL files are created, we could count pixels to calculate the area of 

space occupied by the bacteria and develop the logistics trends evident with growth in 

restricted spaces. 

Functional relationships exist in petrophysics as well.  Specifically, correlations 

between permeability and porosity are very common.  Henry Darcy established a 

proportional relationship expressing permeability as a function of grain diameter squared.  

Darcy’s Law has been generalized as: 

𝑘 = 𝑓1(𝑠)𝑓2(𝑛)𝑑
2 

where 𝑓1(𝑠) is called the shape factor, 𝑓2(𝑛) is the porosity factor, and 𝑑 is the average 

diameter of the grains.  The expression 𝑓1(𝑠)𝑓2(𝑛) has been recognized as a single 

dimensionless coefficient 𝐶 giving us the quadratic relationship: 

𝑘 = 𝐶𝑑2 

There are possibilities to explore these relationships using our 3D printed rocks specifically 

for AQR.  See Figure 18 (Bear, 1988). 
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Figure 18: Variation of intrinsic permeability (𝑘) with grain diameter (𝑑) in granular 

porous media (Bear, 1988). 

 

In April 2014, my advising professor Maša Prodanović organized a kitchen lab 

exhibit at the Thinkery, Austin’s newest children’s museum that emphasizes STEM 

disciplines.  We created several stations to teach petrophysics to the young patrons of the 

Thinkery.  Children completed a pre- and post-assessment using question 21 found in 

Appendix D and we did find that some of the older children improve their understanding 

of rocks.  However most of the younger ones simply drew the same picture of a big blue 

cavern underground in the post-assessment that they did in the pre-assessment. 

While at the Thinkery, I was inspired to consider the possibilities of creating a two 

story transparent water well.  See Appendix E for our preliminary proposal that we plan to 
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present to the Thinkery.  We wish to install a well that would allow children to hand pump 

water from a simulation of the Edwards Aquifer and to be able to view the mechanics of 

the well.  This idea led me to reach out to the Barton Springs/Edwards Aquifer 

Conservation District (BSEACD) to gain knowledge about the best educational stance we 

would like to promote and to learn of potential sources of funding.  Robin Gary, the Senior 

Public Information and Education Coordinator of the BSEACD, was a wealth of 

information about the Edwards Aquifer and helped me to narrow the message we would 

teach which should be conservation of water and avoidance of water pollutants.  I have 

also contacted a former student of mine, Kaitlin Kyle, who is currently a student in the Fine 

Arts School at the University of Texas at Austin.  Kaitlin is creating a translucent design 

to cover the two story windows in front of our well and Edwards Aquifer to illustrate our 

structure and to give location perspective.  It is art that gives meaning to our science, 

technology, engineering, and math changing the acronym STEM to STEAM.  It was 

Harvey White who first used the phrase STEAM in 2010 to promote the creativity and 

innovation that art adds to STEM (Eger, 2010).  I am very excited about this project and 

hope to continue working with the BSEACD to hopefully see its instillation.  I have one 

additional upcoming opportunity to teach engineering.  But this one will be for the 

instruction of teachers.  At the urging of Dr. Prodanović and Dr. Olson, I applied to present 

my porosity lesson plan at the annual Conference for the Advancement of Science 

Teaching (CAST).  I was accepted and will be a presenter at CAST in November of this 

year.  I hope to add a lesson on permeability by this time.  I am looking forward to this 

conference and the future opportunities my work with UTeach will bring. 
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Appendix A 

Porosity Lesson Plan 

 

Learning Outcomes: 

1. The learner will comprehend the structure of water and fossil fuel reservoirs. 

2. The learner will understand the meaning of porosity of rock. 

3. The learner will calculate porosity of sub-terrain rock. 

Essential Questions: 

1. How are water and fossil fuels stored below the Earth’s surface? 

2. What is porosity of rock and why is it important to geologist and petroleum 

engineers? 

3. How do you calculate the porosity of rock? 

Key Vocabulary: 

 Porosity 

 Permeability 

 Sedimentary Rock 

 Igneous Rock 

Metamorphic Rock 

 

Materials: 

 At each lab station of 3-4 students: 

Number each station 

Lab Roles – provided below 

Magnified 3-D printed rock – cylindrical shape like a core sample 

Each station should have a different 3D printed rock 

Samples should include two different levels of magnification of 

each type 

A beaker or other open water tight container 

Must be the same diameter as the 3D printed rock 

An actual core sample that has a similar structure to the 3D printed rock 

  Graduated cylinder filled with water 

Capacity should be at least the same as the volume of pore space of 

the 3D printed rock 

  Ruler 

A wash bottle filled with water 

Geologist field lens or magnifying glass 

Calculator 

  Data collection sheet – provided below 

  Scratch paper 

  Writing utensils 
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Material (continued): 

 Pitcher of water 

Bucket to collect used water 

Paper towels 

Natural Sponges 

Whole class data collection sheet – provided below 

Instructional Power Point – provided in Appendix B 

For each student:  Assessment – question bank provided in Appendix D 

 

 

TEKS: 

 Kindergarten 

(7)  Earth and space. The student knows that the natural world includes earth 

materials. The student is expected to: 

(A)  observe, describe, compare, and sort rocks by size, shape, color, and 

texture; 

(C)  give examples of ways rocks, soil, and water are useful. 

1st Grade 

(7)  Earth and space. The student knows that the natural world includes rocks, soil, 

and water that can be observed in cycles, patterns, and systems. The student is 

expected to: 

(A)  observe, compare, describe, and sort components of soil by size, 

texture, and color; 

(C)  gather evidence of how rocks, soil, and water help to make useful 

products. 

 2nd Grade 

(7)  Earth and space. The student knows that the natural world includes earth 

materials. The student is expected to: 

(A)  observe and describe rocks by size, texture, and color. 

 3rd Grade 

(7)  Earth and space. The student knows that Earth consists of natural resources and 

its surface is constantly changing. The student is expected to: 

(A)  explore and record how soils are formed by weathering of rock and the 

decomposition of plant and animal remains. 

 4th Grade 

(7)  Earth and space. The students know that Earth consists of useful resources and 

its surface is constantly changing. The student is expected to: 

 (B)  observe and identify slow changes to Earth's surface caused by 

weathering, erosion, and deposition from water, wind, and ice; and 

(C)  identify and classify Earth's renewable resources, including air, plants, 

water, and animals; and nonrenewable resources, including coal, oil, and 

natural gas; and the importance of conservation. 
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 5th Grade 

(7)  Earth and space. The student knows Earth's surface is constantly changing and 

consists of useful resources. The student is expected to: 

(A)  explore the processes that led to the formation of sedimentary rocks 

and fossil fuels; 

(D)  identify fossils as evidence of past living organisms and the nature of 

the environments at the time using models. 

6th Grade 

(10)  Earth and space. The student understands the structure of Earth, the rock cycle, 

and plate tectonics. The student is expected to: 

(A)  build a model to illustrate the structural layers of Earth, including the 

inner core, outer core, mantle, crust, asthenosphere, and lithosphere; 

(B)  classify rocks as metamorphic, igneous, or sedimentary by the 

processes of their formation. 

Earth & Space Science 

(8)  Earth in space and time. The student knows that fossils provide evidence for 

geological and biological evolution. Students are expected to: 

(A)  analyze and evaluate a variety of fossil types such as transitional fossils, 

proposed transitional fossils, fossil lineages, and significant fossil deposits 

with regard to their appearance, completeness, and alignment with scientific 

explanations in light of this fossil data. 

 (12)  Solid Earth. The student knows that Earth contains energy, water, mineral, 

and rock resources and that use of these resources impacts Earth's subsystems. The 

student is expected to: 

 (B)  describe the formation of fossil fuels, including petroleum and coal. 

 

Process: 

A. Opening the Lesson – As a whole group discussion, ask students to describe their 

understanding of how water is held underground.  Show a sponge and demonstrate 

how a sponge can hold water.  Ask students if they believe rocks can also hold 

water like a sponge and ask students to raise their hand if they say yes and then 

have a show of hands of those who say no.  Then share the learning objectives and 

essential questions and explain that today, students will assume the role of 

geologists.  Ask students to recall the rock cycle.  Explain porosity and how 

sedimentary rock can be porous.  Explain how the 3D printed rock is an 

enlargement of actual rock, similar to how you would see rock when under a 

microscope.  Show all through a power point presentation.  See Appendix B. 

B. Lab Instructions – Describe what students will find at each lab station.  Groups of 

4 will assume the roles listed below.  After the lab is completed at one station, 

groups will rotate to a station with a 3D printed rock of a different size.  As they 

rotate, students should switch roles.  Groups should attempt to rotate 4 times so that 

all students will get to assume each role.  Each group member is responsible to each 

other to make sure all are aware of and all agree with their discoveries. 



 56 

C. Lab Roles 

a. Geologist – responsible for examining the rocks. 

i. Measure the diameter and height of the 3D printed rock in 

centimeters. 

ii. Use the wash bottle to pour water over the actual rock and witness 

the water seep into the rock. 

iii. Use the field lens or magnifying glass to observe the structure of the 

actual rock and compare it to the structure of the 3D printed rock. 

b. Petroleum Engineer – responsible for conducting the experiment. 

i. Place the 3D printed rock in the container. 

ii. Note the initial volume of water in the graduated cylinder. 

iii. Pour water from graduated cylinder to the top of the 3D Printed rock.  

iv. Note the final volume of water in the graduated cylinder. 

v. Empty the container after taking your measurements and shake out 

water from the 3D print and container. 

c. Mathematician – responsible for all calculations. 

i. Calculate the radius. 

ii. Calculate volume of the 3D printed rock using the formula 𝑉 =

3.14𝑟2ℎ. 

iii. Calculate the volume of the pore space by subtracting the final 

volume of the water in the graduated cylinder from the initial 

volume of the water. 

iv. Calculate the percent porosity of the 3D printed rock by dividing the 

volume of the pore space by the total volume of the 3D printed rock 

and then multiply by 100. 

% Porosity = Vol. of Pore Space ÷ Total Vol. of Rock x 100 

d. Statistician – responsible for completing the data collection sheet. 

i. Record the station number. 

ii. Record the diameter and height of the 3D printed rock in 

centimeters. 

iii. Record the calculated radius. 

iv. Record the calculated volume of the 3D printed rock in cubic 

centimeters. 

v. Record initial volume of water in the graduated cylinder. 

vi. Record the final volume of the water in the graduated cylinder. 

vii. Record the calculated volume of the pore space. 

viii. Record the calculated porosity. 

ix. Report porosity to the whole class data collection sheet. 
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D. Whole Group Summary – When all have completed the stations, collect students 

for a whole group discussion.  Examine the whole class data collection sheet and 

look for outliers, errors produced by rounding, or errors in the data.  Ask students 

to compare/contrast the porosity findings of the different stations.  We should 

observe that all porosities of 3D printed rocks with similar structures are very close 

in value.  Seek to clarify understandings or misunderstandings. 

 

 

 

Note:  The Data Collection Sheet that follows is a corrected version from that used during 

our study as discussed in our conclusions in chapter 7.  The original form did not include 

the calculation for radius.  It also did not include the diagram of a cylinder. 
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% Porosities 
Whole Class Data Collection Sheet 
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STATION No.    
Lab Roles 

Geologist – responsible for examining the rocks. 
1. Measure the diameter and height of the 3D printed rock in centimeters. 

2. Use the wash bottle to pour water over the actual rock and witness the water seep into 

the rock. 

3. Use the field lens or magnifying glass to observe the structure of the actual rock and 

compare it to the structure of the 3D printed rock. 

Petroleum Engineer – responsible for conducting the experiment. 
1. Place the 3D printed rock in the container. 

2. Note the initial volume of water in the graduated cylinder. 

3. Pour water from graduated cylinder to the top of the 3D Printed rock.  

4. Note the final volume of water in the graduated cylinder. 

5. Empty the container after taking your measurements and shake out water from the 3D 

print and container. 

Mathematician – responsible for all calculations. 
1. Calculate the radius of the 3D printed rock. 

2. Calculate volume of the 3D printed rock using the formula V=3.14r^2 h. 

3. Calculate the volume of the pore space by subtracting the final volume of the water in 

the graduated cylinder from the initial volume of the water. 

4. Calculate the percent porosity of the 3D printed rock by dividing the volume of the pore 

space by the total volume of the 3D printed rock and then multiply by 100. 

% Porosity = Vol. of Pore Space ÷ Total Vol. of Rock x 100 

Statistician – responsible for completing the data collection sheet. 
1. Record the station number. 

2. Record the diameter and height of the 3D printed rock in centimeters. 

3. Record the calculated radius of the 3D printed rock in centimeters. 

4. Record the calculated volume of the 3D printed rock in cubic centimeters. 

5. Record initial volume of water in the graduated cylinder. 

6. Record the final volume of the water in the graduated cylinder. 

7. Record the calculated volume of the pore space. 

8. Record the calculated porosity. 

9. Report porosity to the whole class data collection sheet. 

The Rules 
1. If you have only 3 in your group, the Mathematician will also serve as the Statistician. 

2. Work quickly, we want you all to go to at least 4 stations. 

3. As you rotate to a new station, you will also rotate your roles. 

4. Each group member is responsible to each other to make sure all are aware of and all 

agree with your discoveries. 
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Appendix B  

Porosity Lesson Power Point Presentation – Treatment Group 

 
Slide 1 

FLUIDS PLAYING 
HIDE AND SEEK

BELOW GROUND!
DR. PRODANOVIĆ

MRS. DEES

 

 

Slide 2 

YOU CAN BE PART OF A RESEARCH STUDY

• PLEASE SIGN THE ASSENT FORM IF YOU AGREE

• IN ENGLISH OR SPANISH

• IF NOT, DON’T WORRY, SIMPLY DON’T ANSWER THE QUIZ QUESTIONS

 

Allowing the time to sign the assent 

form or not. 

Slide 3 

QUIZ

LABEL YOUR PAPER PRE-QUIZ

DO NOT WRITE YOUR NAME ON THE PAPER

 

 

Slide 4 

HOW OLD ARE YOU?

A. 9 OR YOUNGER

B. 10

C. 11

D. 12

E. 13 OR OLDER
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Slide 5 

WHAT IS THE DEFINITION OF POROSITY?

A. THE PERCENT OF SPACE IN A ROCK THAT CAN BE FILLED WITH 

FLUIDS.

B. THE AVERAGE SIZE OF THE PORES IN A ROCK.

C. THE SPEED WITH WHICH FLUIDS MOVE THROUGH A ROCK.

D. THE MEASURE OF THE ROUNDNESS OF THE PORES IN A ROCK.

E. I DON’T KNOW

 

 

Slide 6 
WHICH SAMPLE HAS THE GREATEST PERCENT OF AREA 

OCCUPIED BY THE BLUE DISKS?
SAMPLE A SAMPLE B

A. THE PERCENT BLUE AREA OF A IS GREATER.

B. THE PERCENT BLUE AREA OF B IS GREATER.

C. THE PERCENT OF BLUE AREAS ARE THE SAME.

D. I DON’T KNOW.

 

 

Slide 7 
WHAT IS THE PERCENT OF BLACK SPACE IN THE 

SQUARE BELOW?

A. 10 %

B. 15 %

C. 40 %

D. 67 %

E. I DON’T KNOW.

 

 

Slide 8 

A ROCK SAMPLE CONTAINS 1 CM3 OF EMPTY SPACE 
AND A TOTAL VOLUME OF 4 CM3.

WHAT IS THE POROSITY OF THE ROCK?

A. 20 %

B. 25 %

C. 33 %

D. 40 %

E. I DON’T KNOW
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Slide 9 

WHERE ARE THE FLUIDS?

•WHAT IS YOUR UNDERSTANDING OF 

HOW WATER IS HELD UNDERGROUND?

•CAN ROCKS HOLD WATER LIKE A 

SPONGE?

 

 

Slide 10 
WHAT ARE WE DOING 

TODAY?
WE WOULD LIKE FOR YOU TO GAIN UNDERSTANDING OF:

• THE STRUCTURE OF WATER AND FOSSIL FUEL RESERVOIRS.

• THE MEANING OF POROSITY OF ROCK AND ITS 

IMPORTANCE TO GEOLOGIST AND PETROLEUM 

ENGINEERS.

• HOW TO CALCULATE THE POROSITY OF ROCK.

 

 

Slide 11 SEDIMENTARY ROCK & POROSITY

Sources: 

Top-Left:  Bratton, 2010 

Top-Right:  Herbert, 2014 

Bottom-Left:  Shepherd, 2002 

Bottom-Right:  Prodanović, 2014 

Plankton, sand, cement, and other 

sediment in bodies of water settle.  

Over time, layers of sediment 

become cemented together creating 

sedimentary rock.  We see the layers 

when the water recedes forming 

canyons.  Also over time, the 

plankton decomposes to form fossil 

fuels.  Because of their low 

densities, fossil fuels will migrate 

towards the Earth’s surface until 

contained by an impervious cap rock 

creating an oil and gas reservoir.  

Today in your lab, you will use 3D 

printed rocks that are an 

enlargement of actual rock so that 

you can learn the structure of 

sedimentary rocks.  Define porosity. 

Slide 12 

THE LAB RULES
• EVERYONE IN THE GROUP WILL HAVE A DIFFERENT ROLE.

• IF YOU HAVE ONLY 3 IN YOUR GROUP, THE MATHEMATICIAN WILL ALSO SERVE 

AS THE STATISTICIAN.

• WORK QUICKLY, WE WANT YOU ALL TO GO TO 2 STATIONS – ONE WITH A 

LARGE 3D PRINTED ROCK AND ONE WITH A SMALL 3D PRINTED ROCK.

• AS YOU ROTATE TO A NEW STATION, YOU WILL ALSO ROTATE YOUR ROLES.

• EACH GROUP MEMBER IS RESPONSIBLE TO EACH OTHER TO MAKE SURE ALL 

ARE AWARE OF AND AGREE WITH YOUR DISCOVERIES.
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Slide 13 
GEOLOGIST

RESPONSIBLE FOR EXAMINING THE ROCKS

• MEASURE THE DIAMETER AND HEIGHT OF THE 3D PRINTED ROCK IN 

CENTIMETERS.

• USE THE WASH BOTTLE TO POUR WATER OVER THE ACTUAL ROCK AND 

WITNESS THE WATER SEEP INTO THE ROCK.

• USE THE FIELD LENS OR MAGNIFYING GLASS TO OBSERVE THE STRUCTURE 

OF THE ACTUAL ROCK AND COMPARE IT TO THE STRUCTURE OF THE 3D 

PRINTED ROCK.

 

 

Slide 14 
PETROLEUM ENGINEER

RESPONSIBLE FOR CONDUCTING THE EXPERIMENT

• PLACE THE 3D PRINTED ROCK IN THE CONTAINER.

• NOTE THE INITIAL VOLUME OF WATER IN THE GRADUATED CYLINDER.

• POUR WATER FROM GRADUATED CYLINDER TO THE TOP OF THE 3D PRINTED 

ROCK.

• NOTE THE FINAL VOLUME OF WATER IN THE GRADUATED CYLINDER.

• EMPTY THE CONTAINER AFTER TAKING YOUR MEASUREMENTS AND SHAKE 

OUT WATER FROM THE 3D PRINT AND CONTAINER.

 

 

Slide 15 
MATHEMATICIAN

RESPONSIBLE FOR ALL CALCULATIONS

• CALCULATE TOTAL VOLUME OF THE 3D PRINTED ROCK USING THE FORMULA 𝑽 = 𝟑. 𝟏𝟒𝒓𝟐𝒉.

• CALCULATE THE VOLUME OF THE PORE SPACE BY SUBTRACTING THE FINAL VOLUME OF THE WATER IN 

THE GRADUATED CYLINDER FROM THE INITIAL VOLUME OF THE WATER.

• CALCULATE THE PERCENT POROSITY OF THE 3D PRINTED ROCK BY DIVIDING THE VOLUME OF THE PORE 

SPACE BY THE TOTAL VOLUME OF THE 3D PRINTED ROCK AND THEN MULTIPLY BY 100.

% POROSITY = VOL. OF PORE SPACE ÷ TOTAL VOL. OF ROCK X 100

 

 

Slide 16 
STATISTICIAN

RESPONSIBLE FOR COMPLETING THE DATA 
COLLECTION SHEET

• RECORD THE STATION NUMBER.

• RECORD THE DIAMETER AND HEIGHT OF THE 3D PRINTED ROCK IN CENTIMETERS.

• RECORD THE CALCULATED TOTAL VOLUME OF THE 3D PRINTED ROCK IN CUBIC CENTIMETERS.

• RECORD INITIAL VOLUME OF WATER IN THE GRADUATED CYLINDER.

• RECORD THE FINAL VOLUME OF THE WATER IN THE GRADUATED CYLINDER.

• RECORD THE CALCULATED VOLUME OF THE PORE SPACE.

• RECORD THE CALCULATED POROSITY.

• REPORT POROSITY TO THE WHOLE CLASS DATA COLLECTION SHEET.
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Slide 17 

QUESTIONS???

 

 

Slide 18 
% POROSITIES

WHOLE CLASS DATA COLLECTION SHEET

Station Number

1 2 3 4 5 6

G
ro

u
p
 N

u
m

b
e
r

1

2

3

4

5

6

 

 

Slide 19 

LET’S TRY THAT QUIZ ONE MORE TIME!

WRITE YOUR ANSWERS ON THE 

BACK OF YOUR PRE-QUIZ AND 

LABEL THIS ONE POST

 

 

Slide 20 

WHAT IS THE DEFINITION OF POROSITY?

A. THE PERCENT OF SPACE IN A ROCK THAT CAN BE FILLED WITH 

FLUIDS.

B. THE AVERAGE SIZE OF THE PORES IN A ROCK.

C. THE SPEED WITH WHICH FLUIDS MOVE THROUGH A ROCK.

D. THE MEASURE OF THE ROUNDNESS OF THE PORES IN A ROCK.

E. I DON’T KNOW
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Slide 21 
WHICH SAMPLE HAS THE GREATEST PERCENT OF AREA 

OCCUPIED BY THE BLUE DISKS?
SAMPLE A SAMPLE B

A. THE PERCENT BLUE AREA OF A IS GREATER.

B. THE PERCENT BLUE AREA OF B IS GREATER.

C. THE PERCENT OF BLUE AREAS ARE THE SAME.

D. I DON’T KNOW.

 

 

Slide 22 
WHAT IS THE PERCENT OF BLACK SPACE IN THE 

SQUARE BELOW?

A. 10 %

B. 15 %

C. 40 %

D. 67 %

E. I DON’T KNOW.

 

 

Slide 23 

A ROCK SAMPLE CONTAINS 1 CM3 OF EMPTY SPACE 
AND A TOTAL VOLUME OF 4 CM3.

WHAT IS THE POROSITY OF THE ROCK?

A. 20 %

B. 25 %

C. 33 %

D. 40 %

E. I DON’T KNOW

 

 

Slide 24 
THANK YOU FOR COMING TODAY!

WE HOPE YOU ENJOYED YOUR TIME WITH US!

YOU ROCK!

ENJOY YOUR ROCKS!
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Appendix C 

Porosity Lesson Power Point Presentation – Control Group 

 
 
Slide 1 

FLUIDS PLAYING 
HIDE AND SEEK

BELOW GROUND!
DR. PRODANOVIĆ

MRS. DEES

 

 

Slide 2 

YOU CAN BE PART OF A RESEARCH STUDY

• PLEASE SIGN THE ASSENT FORM IF YOU AGREE

• IN ENGLISH OR SPANISH

• IF NOT, DON’T WORRY, SIMPLY DON’T ANSWER THE QUIZ QUESTIONS

 

Allowing the time to sign the assent 

form or not. 

Slide 3 

QUIZ

LABEL YOUR PAPER PRE-QUIZ

DO NOT WRITE YOUR NAME ON THE PAPER

 

 

Slide 4 

HOW OLD ARE YOU?

A. 9 OR YOUNGER

B. 10

C. 11

D. 12

E. 13 OR OLDER
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Slide 5 

WHAT IS THE DEFINITION OF POROSITY?

A. THE PERCENT OF SPACE IN A ROCK THAT CAN BE FILLED WITH 

FLUIDS.

B. THE AVERAGE SIZE OF THE PORES IN A ROCK.

C. THE SPEED WITH WHICH FLUIDS MOVE THROUGH A ROCK.

D. THE MEASURE OF THE ROUNDNESS OF THE PORES IN A ROCK.

E. I DON’T KNOW

 

 

Slide 6 
WHICH SAMPLE HAS THE GREATEST PERCENT OF AREA 

OCCUPIED BY THE BLUE DISKS?
SAMPLE A SAMPLE B

A. THE PERCENT BLUE AREA OF A IS GREATER.

B. THE PERCENT BLUE AREA OF B IS GREATER.

C. THE PERCENT OF BLUE AREAS ARE THE SAME.

D. I DON’T KNOW.

 

 

Slide 7 
WHAT IS THE PERCENT OF BLACK SPACE IN THE 

SQUARE BELOW?

A. 10 %

B. 15 %

C. 40 %

D. 67 %

E. I DON’T KNOW.

 

 

Slide 8 

A ROCK SAMPLE CONTAINS 1 CM3 OF EMPTY SPACE 
AND A TOTAL VOLUME OF 4 CM3.

WHAT IS THE POROSITY OF THE ROCK?

A. 20 %

B. 25 %

C. 33 %

D. 40 %

E. I DON’T KNOW
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Slide 9 

WHERE ARE THE FLUIDS?

•WHAT IS YOUR UNDERSTANDING OF 

HOW WATER IS HELD UNDERGROUND?

•CAN ROCKS HOLD WATER LIKE A 

SPONGE?

 

 

Slide 10 
WHAT ARE WE DOING 

TODAY?
WE WOULD LIKE FOR YOU TO GAIN UNDERSTANDING OF:

• THE STRUCTURE OF WATER AND FOSSIL FUEL RESERVOIRS.

• THE MEANING OF POROSITY OF ROCK AND ITS 

IMPORTANCE TO GEOLOGIST AND PETROLEUM 

ENGINEERS.

• HOW TO CALCULATE THE POROSITY OF ROCK.

 

 

Slide 11 SEDIMENTARY ROCK & POROSITY

Sources: 

Top-Left:  Bratton, 2003 

Top-Right:  Herbert, 2014 

Bottom-Left:  Shepherd, 2002 

Plankton, sand, cement, and other 

sediment in bodies of water settle.  

Over time, layers of sediment 

become cemented together creating 

sedimentary rock.  We see the layers 

when the water recedes forming 

canyons.  Also over time, the 

plankton decomposes to form fossil 

fuels.  Because of their low 

densities, fossil fuels will migrate 

towards the Earth’s surface until 

contained by an impervious cap rock 

creating an oil and gas reservoir. 

 

Slide 12 BARTON CREEK GREENBELT…ZOOM IN!

Source:  Google Maps 

When it rains it pours, and the water 

moves through fractures and out of 

the system exceedingly fast (thereby 

causing flash-flooding); after a dry 

period, due to water/air competition 

in this heterogeneous reservoir, the 

storage matrix might be 90% full, 

but wells go dry.  
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Slide 13 BARTON CREEK GREENBELT…ZOOM IN!

 
Source:  Prodanović, 2014 

When it rains it pours, and the water 

moves through fractures and out of 

the system exceedingly fast (thereby 

causing flash-flooding); after a dry 

period, due to water/air competition 

in this heterogeneous reservoir, the 

storage matrix might be 90% full, 

but wells go dry.  

 

Slide 14 

KEEP ZOOMIN’ AND DO SOME CUTTIN’

 
Source:  Prodanović, 2014 

Core samples of sandstone (left) and 

limestone (right). 

 

Slide 15 
NEED X-RAY VISION TO KEEP ZOOMIN’

PGE Department Basement, Dr. DiCarlo’s CT Scanner

 

 

Slide 16 
POROSITY

Sandstone

vugs

fracture Micro-porous

Limestone

 
Source:  Prodanović et al., 2009 & 2014 

Porosity: 

There is empty space within rocks, 

called pores, where fluids hide. 

Porosity – The percent of pore space 

in a rock. 

To Calculate Porosity – Divide the 

volume of the Pore Space by the 

Volume of the Rock. 
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Slide 17 
EXAMPLE

•A ROCK SAMPLE CAN HOLD A VOLUME OF 5 CUBIC 

CENTIMETERS OF WATER.

• THE SAMPLE HAS A TOTAL VOLUME OF 25 CUBIC 

CENTIMETERS.

•CALCULATE THE POROSITY.

5/25 = 1/5 = 20%

 

 

Slide 18 
NOW IT’S YOUR TURN

•A ROCK SAMPLE CAN HOLD A VOLUME OF 3 CUBIC 

CENTIMETERS OF WATER.

• THE SAMPLE HAS A TOTAL VOLUME OF 12 CUBIC 

CENTIMETERS.

•CALCULATE THE POROSITY.

3/12 = 1/4 = 25%

 

 

Slide 19 

WHICH SAMPLE WOULD HAVE A GREATER POROSITY?

Source: Jordan & Kelloes, 2014 

The porosities of similarly 

structured rocks are the same 

regardless of their size.  They both 

contain the same percentage of 

empty space. 

 

Slide 20 
HOW DO OIL AND GAS GET FROM THE GROUND 

INTO PRODUCTS WE USE?

1 2 3 4 5

Source:  Energy 4 Me, 2014 
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Slide 21 
EXPLORATION: A TREASURE HUNT TO FIND

OIL AND GAS

• GEOLOGISTS STUDY 

ROCKS ON THE EARTH’S 

SURFACE 

AND UNDERGROUND

• GEOLOGISTS MAKE A MAP 

OF THE ROCKS WHERE 

THEY THINK OIL AND GAS 

MIGHT BE FOUND
Photo by John Simmons, OnTV

© The Geological Society of London www.geolsoc.org.uk  
Source:  Energy 4 Me, 2014 

 

Slide 22 
DRILLING AND PRODUCTION

• ENGINEERS USE THE 

GEOLOGY MAP TO DRILL 

A WELL UNDER THE 

EARTH’S SURFACE USING A 

“RIG”

• IF SUCCESSFUL, THE WELL 

WILL BRING A STEADY 

FLOW OF OIL AND GAS 

TO THE SURFACE

 
Source:  Energy 4 Me, 2014 

 

Slide 23 WHERE DO OIL AND 
GAS COME FROM?

Microscopic View

Gas

Oil

Water

Source Rock (Fossils)

Oil drops in grains of sand

 
Source:  Energy 4 Me, 2014 

Oil and gas aren’t found in a big 

underground lake! Engineers drill 

down through layers of sand and 

rock to reach the rock formations 

that contain oil and gas. 

Slide 24 
OIL AND GAS ARE FOUND 

ON LAND AND UNDER WATER

 
Source:  Energy 4 Me, 2014 
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Slide 25 
OILS AND GAS 

ARE OFTEN FOUND TOGETHER

• OIL IS A LIQUID

• GAS IS LIQUID IN A GASEOUS 

(INVISIBLE) STATE – LIKE AIR

• OIL AND GAS MOVE THROUGH SAND 

AS A TEAM

 
Source:  Energy 4 Me, 2014 

 

Slide 26 
EXTRACTION

• AFTER THE RIG IS REMOVED, A PUMP IS 

PLACED ON THE WELL HEAD. 

• AN ELECTRIC MOTOR DRIVES A GEAR 

BOX THAT MOVES A LEVER. 

• THE LEVER PUSHES AND PULLS, 

FORCING THE PUMP UP AND DOWN, 

AND CREATES A SUCTION THAT DRAWS 

UP THE OIL.

 
Source:  Energy 4 Me, 2014 

 

Slide 27 
REFINING

• CHEMICALS AND HEAT ARE USED 

TO REMOVE WATER AND SOLIDS

• NATURAL GAS IS SEPARATED

• CRACKING AND REARRANGING 

MOLECULES PREPARES THE 

FINISHED PRODUCTS

• OIL IS THEN STORED IN TANKS.

Photo courtesy of © BP p.l.c.

 
Source:  Energy 4 Me, 2014 

 

Slide 28 TRANSPORTATION

• CRUDE OIL AND REFINED PRODUCTS 

ARE TRANSPORTED ACROSS THE WATER 

IN BARGES AND TANKERS. 

• ON LAND CRUDE OIL AND PRODUCTS 

ARE MOVED USING PIPELINES, TRUCKS, 

AND TRAINS.

Photo above courtesy of BP

 
Source:  Energy 4 Me, 2014 
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Slide 29 

QUESTIONS???

 

 

Slide 30 

LET’S TRY THAT QUIZ ONE MORE TIME!

WRITE YOUR ANSWERS ON THE 

BACK OF YOUR PRE-QUIZ AND 

LABEL THIS ONE POST

 

 

Slide 31 

WHAT IS THE DEFINITION OF POROSITY?

A. THE PERCENT OF SPACE IN A ROCK THAT CAN BE FILLED WITH 

FLUIDS.

B. THE AVERAGE SIZE OF THE PORES IN A ROCK.

C. THE SPEED WITH WHICH FLUIDS MOVE THROUGH A ROCK.

D. THE MEASURE OF THE ROUNDNESS OF THE PORES IN A ROCK.

E. I DON’T KNOW

 

 

Slide 32 
WHICH SAMPLE HAS THE GREATEST PERCENT OF AREA 

OCCUPIED BY THE BLUE DISKS?
SAMPLE A SAMPLE B

A. THE PERCENT BLUE AREA OF A IS GREATER.

B. THE PERCENT BLUE AREA OF B IS GREATER.

C. THE PERCENT OF BLUE AREAS ARE THE SAME.

D. I DON’T KNOW.
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Slide 33 
WHAT IS THE PERCENT OF BLACK SPACE IN THE 

SQUARE BELOW?

A. 10 %

B. 15 %

C. 40 %

D. 67 %

E. I DON’T KNOW.

 

 

Slide 34 

A ROCK SAMPLE CONTAINS 1 CM3 OF EMPTY SPACE 
AND A TOTAL VOLUME OF 4 CM3.

WHAT IS THE POROSITY OF THE ROCK?

A. 20 %

B. 25 %

C. 33 %

D. 40 %

E. I DON’T KNOW

 

 

Slide 35 
THANK YOU FOR COMING TODAY!

WE HOPE YOU ENJOYED YOUR TIME WITH US!

YOU ROCK!

ENJOY YOUR ROCKS!
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Appendix D 

Porosity and Permeability Question Bank 
 

1. What is the definition of porosity? 

A. The percent of space in a rock that can be filled with fluids. 

B. The average size of the pores in a rock. 

C. The speed with which fluids move through a rock. 

D. The measure of the roundness of the pores in a rock. 

 

 

2. Which sample has the greatest percent of area occupied by the blue disk? 

 

  Sample A  Sample B 

 

  

 

 

 

 

 

 

 

 

 

A. The percent blue area of A is greater. 

B. The percent blue area of B is greater. 

C. The percent of blue areas are the same. 

 

 

3. What is the percent of black space in the square below? 

 

     

     

     

     

     

 

A. 10 % 

B. 15 % 

C. 40 % 

D. 67 % 
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4. A rock sample contains 1 cm3 of empty space and a total volume of 4 cm3.  What 

is the porosity of the rock? 

 

A. 20 % 

B. 25 % 

C. 33 % 

D. 40 % 

 

 

5. What is the definition of permeability? 

A. The percent of space in a rock that can be filled with fluids. 

B. The average size of the pores in a rock. 

C. The speed with which fluids move through a rock. 

D. The measure of the roundness of the pores in a rock. 

 

 

6. Which is most important in determining the amount of ground water, fossil fuel, 

or gas that can be stored within a rock? 

A. the rock's porosity 

B. the rock's permeability 

C. the rock's hardness 

D. the rock's geologic age 

 

 

7. The diagram below represents rocks of the same size composed of the same 

material, but with different grain sizes. Which property is always the same for the 

two samples? 

 

         Sample A     Sample B 

  
 

A. Porosity 

B. Saturation 

C. Permeability 

D. Capillarity 
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8. The diagram below represents two rocks cut with identical dimensions in the 

shape of a cube.  The circles represent the grains and the spaces between the 

circles represent the pore spaces.  Which of the below statements is true? 

 

           Sample A      Sample B 

  
 

A. The porosity of Sample A is greater than the porosity of Sample B. 

B. The porosity of Sample B is greater than the porosity of Sample A. 

C. The porosity of Sample A is equal to the porosity of Sample B. 

 

 

9. Which graph best represents the relationship between porosity and particle size 

for rock samples of uniform size, shape, and packing? 

 

A,       C. 

 

 

 

 

 

 

 

 

B.  

      D. 
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10. The diagrams below represent two identical containers filled with nonporous 

beads. 

 
Compared to the model containing larger beads, the model containing smaller 

beads has: 

A. greater permeability and greater porosity 

B. less permeability and greater porosity 

C. greater porosity and greater capillarity 

D. less permeability and greater capillarity 

 

 

11. The diagrams below represent three identical beakers filled with nonporous beads. 

 

 
 

If water is added to each beaker to the level of the line, which graph best shows 

the amount of water added to each beaker? 

 

A.      C.  

 

 

 

 

 

 

 

 

B.     D.    
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12. The diagrams below represent three identical beakers filled with nonporous beads. 

 

 
 

There is also a 4th beaker, beaker D, containing a mixture of 0.10-centimeter 

spheres and 0.70-centimeter spheres.  Compare to the porosity of the samples in 

the four beakers. 

 

A. All four samples have the same porosity. 

B. Sample A has the greatest porosity, Sample C has the least porosity, and 

samples B and D have the same porosity which is between A and C. 

C. Sample A has the least porosity, Sample C has the greatest porosity, and 

samples B and D have the same porosity which is between A and C. 

D. Samples A, B, and C have the same porosity and they are all greater than 

the porosity of Sample D. 

 

 

13. The diagrams below represent three identical beakers filled with nonporous beads. 

 

 
 

Which beaker contains material with the greatest permeability? 

A. Sample A 

B. Sample B 

C. Sample C 
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14. The diagrams below represent an investigation with core samples of various 

rocks.  The core samples were placed in four similar tubes.  Samples A, B, and C 

each contain rocks of uniform grain size, shape, and distribution.  Sample D 

contained a conglomerate consisting of a mixture of the same grain sizes found in 

the other three samples.  The investigation studied the effects that the different 

particle size has on porosity, capillarity, and permeability. Data collected is 

recorded in the table below. 

 

 
 

When water was poured into the top of each tube at the same time, which tube 

allowed the water to pass through most quickly? 

 

A. Tube A 

B. Tube B 

C. Tube C 

D. Tube D 
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15. The diagrams below represent an investigation with core samples of various 

rocks.  The core samples were placed in four similar tubes.  Samples A, B, and C 

each contain rocks of uniform grain size, shape, and distribution.  Sample D 

contained a conglomerate consisting of a mixture of the same grain sizes found in 

the other three samples.  The investigation studied the effects that the different 

particle size has on porosity, capillarity, and permeability. Data collected is 

recorded in the table below. 

 

 
 

The bottom of each tube was closed and water was slowly poured into each tube 

until the water level reached the dotted line. Which statement best describes the 

amount of water held by the tubes? 

 

A. Tubes A and D held the same amount of water and twice as much water as 

tubes B and C. 

B. Tube C held more water than any other tube and tube held D the least 

amount of water. 

C. Tubes A, B and C held the same amount of water and tube D contained 

half as much water. 

D. Tube D held more water than any other tube and tube A the least. 

 

 

Source of Questions 1-15: http://reviewearthscience.com/subjects/es/review/topic-

spec/porosity.pdf 
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16. Ellen examined a sandstone sample under a microscope and counted the grains of 

sand she found at regularly spaced points.  If the point contained void space, or 

empty space, she recorded the point as a pore.  The table below shows her 

findings. 

 

Element Frequency 

Sand 28 

Pore 12 

Total 40 

 

Which percent most likely represents the porosity of this rock sample based on 

the measurements Ellen made? 

A. 30 % 

B. 42.9 % 

C. 70 % 

 

 

17. Alyssa examined a rock sample under a microscope and counted the rock grains 

she found at regularly spaced points. If the point contained void space, she 

recorded the point as a pore. The table below shows the elements she found, and 

how often they occurred. Quartz, feldspar, and clay are minerals that are found in 

rock grains. 

Element Frequency 

Quartz 31 

Feldspar 20 

Clay 11 

Pore 8 

 

What fraction most likely represents the porosity of this rock sample based on the 

measurements Alyssa made? 

 

A. 8/31 

B. 8/62 

C. 8/70 
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18. Mario has a 500-mL beaker that is filled with various sized round beads (see the 

figure below).  He is able to pour 60 mL of water into the bead pack with no air 

bubbles trapped. What percent best represents the porosity of the bead pack? 

 

 
 

A. 8.3% 

B. 12% 

C. 14% 

D. 60% 

 

 

19. A rock sample has a porosity of 25%, and has a total volume of 24 ml. If all of the 

pores are completely filled with water, what volume of water does the rock 

contain? 

A. 1 ml 

B. 6 ml 

C. 18 ml 

D. 49 ml 

 

 

20. A rock sample has a porosity of 25%, and a total volume of 24 ml. In this case, 

however, only a fraction of the pore spaces are filled with water, and the rest are 

filled with oil.  If the fraction of water in the pore spaces is 15%, what volume of 

oil does the rock contain? 

 

 

Source of Questions 16-20: Breakthrough Austin, Summer, 2013, Example 

Math STAAR Questions 
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21. Draw a picture or describe with words what you think the Earth looks like 

underground below a water well. 

Questions to consider: 

Where does underground water come from? 

How is water stored underground? 
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Appendix E 

 

STEAM’n Up the Edwards Aquifer 

a Proposal for a Permanent Exhibit 

at the Thinkery, Austin, Texas 
 

 

Submitted by: 

 

Elizabeth Dees 

Math Teacher 

Vista Ridge High School 

Leander Independent School District 

Cedar Park, Texas 

Master of Arts in STEM Education – Engineering Candidate 

University of Texas at Austin 

 

Robin Gary 
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Austin, Texas 

 

Maša Prodanović, PHD 

Assistant Professor 

Department of Petroleum and Geosystems Engineering 

Cockrell School of Engineering 

University of Texas at Austin 

 

Hilary C. Olson, PHD 

Lecturer, Research Associate 

Department of Petroleum and Geosystems Engineering 

Cockrell School of Engineering 

University of Texas at Austin 

 

Kaitlin E. Kyle 

Student 

College of Fine Arts 

University of Texas at Austin 

 



 87 

Overview 
 

The acronym STEM (Science, Technology, Engineering, and Mathematics) is becoming 

more widely known as the standard for integration of the sciences.  However, educators 

are increasingly adding Art to STEM to produce the acronym STEAM which recognizes 

the importance that art plays in the visualization and understanding of the STEM 

disciplines.  Art helps to make STEM make sense to learners of all ages.  Our proposal to 

the Thinkery is to create a permanent exhibit highlighting the Edwards Aquifer to teach 

geosystems engineering, hydrogeology, environmental science, geology, and math 

through a two story interactive water well.  We have an artist working on developing a 

translucent visual display to serve as the lens through which the mechanics are viewed. 

 

The exhibit we are proposing will occupy less than one foot of space deep along the 

interior of the north window of the atrium at the Thinkery.  In the corner of the Currents 

exhibit room, we would like to install a hand operated water pump next to the atrium 

window.  Water will be pumped out of a water well into a trough that will run the length 

of the window wall.  The trough will be perforated to allow water to rain down to the 1st 

floor.  A clear, narrow enclosure will capture the rain water to demonstrate how water is 

infiltrated through the Edwards Aquifer and back to our water well.  We would like to 

add touch screen devices in the hallway outside the In My Family exhibit to inform 

patrons about the geology, ecology, engineering, and math of our exhibit.  The art work 

we propose will cover the two story windows with a translucent vinyl film to illustrate 

the setting. 

 

Another aspect of our research is utilizing 3D prints as instructional models for items that 

were previously impossible to create using traditional means.  We have been printing 

enlargements of rocks in order to demonstrate the pore space that exists in rocks.  We 

understand that the Thinkery has a 3D printer.  We would like for this printer to be on 

public display behind a glass enclosure in the 1st floor hallway with our water well to 

print objects each day.  Example objects that could be printed include our enlarged rocks 

or actual size replicas of the Barton Springs salamander.  These items could then be 

added to the pond in the Our Backyard exhibit for patrons to enjoy.  An explanation of 

the enlarged 3D rocks and salamanders could be added to the touch screen devices in the 

hallway.  We would love for your 3D printer to be utilized on a regular basis to 

demonstrate to the public this new technology. 

 

Along with our research in 3D prints, we are developing lessons on porosity and 

permeability of rocks.  Calculating the porosity and permeability traditionally requires 

very expensive and time consuming equipment.  Often the original sample is altered 

through the process of taking these measurements making it difficult to bring back to its 

initial state.  Using enlarged 3D prints of rocks, students can now conduct porosity and 

permeability labs to calculate these measurements and learn in a hands-on way the 



 88 

meaning of porosity and permeability.  The enlargement of the pores is the biggest help.  

We would like to share these lesson plans with the Thinkery for your use in your camps, 

special programs, or in your Kitchen Lab. 

 

We hope you find our ideas important concepts to share with the public.  In the next 

pages you will find images of our designs to assist you with our visions for the Thinkery.  

Our contact information is shared below in the event you would like to further discuss 

these ideas. 

 

 

 

 

 

 

 

Interior Windows in the Currents Exhibit to be used at the Thinkery. 

Hand water pump will be place at the right corner of image and the water trough will run 

along the window. 
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Exterior Windows in the Our Backyard Exhibit to be use at the Thinkery. 

The water pump will be on the left side of these windows.  Rain will fall over the bottom 

two rows of windows from the water trough.  Our art work will fill all 15 window panes. 
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Sketch of the Mechanics of the Water Well and Edwards Aquifer System. 

Units are in feet. 
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Artist Rendition of Visual Display on Windows that will Overlay the Mechanics 

Art by Kaitlin E. Kyle 
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