181 research outputs found

    Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    Get PDF
    Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd) nanoparticles (NPs) in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures

    Palladium (II) Oxide Nanostructures as Promising Materials for Gas Sensors

    Get PDF
    One of the most important environment monitoring problems is the detection of oxidizing gases in the ambient air. Negative impact of noxious oxidizing gases (ozone and nitrogen oxides) on human health, sensitive vegetation, and ecosystems is very serious. For this reason, palladium (II) oxide nanostructures have been employed for oxidizing gas detection. Thin and ultrathin films of palladium (II) oxide were prepared by thermal oxidation at dry oxygen of previously formed pure palladium layers on polished poly-Al2O3, SiO2/Si (100), optical quality quartz, and amorphous carbon/KCl substrates. At ozone and nitrogen dioxide detection, PdO films prepared by oxidation at T = 870 K have demonstrated good values of sensitivity, signal stability, operation speed, and reproducibility of sensor response. In comparison with other materials, palladium (II) oxide thin and ultrathin films have some advantages at gas sensor fabrication. Firstly, for oxidizing gas detection, PdO films with p-type conductivity are more perspective than the material with n-type conductivity. Secondly, at ambient conditions, palladium (II) oxide is insoluble in water and does not react with it. These facts are favorable for the fabrication of gas detectors because they make possible to minimize the air humidity influence on PdO sensor response values. Thirdly, the synthesis procedure of PdO films is rather simple and is compatible with planar processes of microelectronic industry

    Gas sensing properties of Ceo2 nanostructures

    Get PDF
    >Magister Scientiae - MScThe industrial safety requirements and environmental pollution have created a high demand to develop gas sensors to monitor combustible and toxic gases. As per specifications of World Health Organization (WHO) and Occupational Safety and Health Administration (OSHA), lengthy exposure to these gases lead to death which can be avoided with early detection. Semiconductor metal oxide (SMO) has been utilized as sensor for several decades. In recent years, there have been extensive investigations of nanoscale semiconductor gas sensor

    HEAT TRANSFER AND CHEMICAL PROCESSES IN CHEMICAL VAPOR DEPOSITION REACTOR FOR SYNTHESIS OF CARBON NANOTUBES

    Get PDF
    A small-scale model of a CVD reactor was built. Axial and radial of major species concentrations and temperature profiles were obtained with a micro gas chromatograph and a fine thermocouple. Those temperature and species concentrations revealed detailed thermal and chemical structures of the CVD reactor. The concentrations of argon plus hydrogen, methane, and C2Hx (C2H2 + C2H4 + C2H6) resulting from xylene decomposition were measured along the CVD at different temperatures. Ferrocene was added to xylene to investigate the effect of a catalyst on composition profiles. The results with ferrocene indicated an increase in CH4 and C2Hx concentrations. At 1000 C and above, the increase of C2Hx concentration is higher than that for CH4. The effect of ferrocene was very minor on the concentration of the gases. Finally composition and temperature profiles were measured and plotted for the radial direction at X=75 cm and T=1200 C. The overall rate constant for the gas-phase reaction was calculated based on the measured species concentration data using the Benson and Shaw reaction mechanism. Our study showed that the Benson and Shaw mechanism could be used in the temperature range lower than 800 C. Also the effect of hydrogen in the syntheses of CNTs, in the CVD reactor using xylene and ferrocene, was studied. Both single-step and two-step methods were applied. In the single-step method, the ferrocene was dissolved in the xylene. In the two step-method the catalyst preparation step was performed first; ferrocene powder was placed in the preheater for a certain period of time and carried by a mixture of argon and hydrogen at fixed concentration to get catalyst nanoparticles deposited on the reactor wall. Xylene then was injected to the reactor. To study the effect of hydrogen, the synthesized materials were observed by SEM and TEM. The results showed that the presence of hydrogen is essential for CNTs to be synthesized by the CVD method, and also the concentration of hydrogen in the reactor has a great effect on the quality of CNTs. The yield of CNTs in the two-step method was slightly higher than that in the one-step method

    Prevention, Detection, and Suppression of Hydrogen Explosions in Aerospace Vehicles

    Get PDF
    Prevention, detection, and suppression of hydrogen explosions in aerospace vehicle

    Modeling and simulation of ultrahigh sensitive AlGaN/AlN/GaN HEMT based hydrogen gas detector with low detection limit

    Get PDF
    Presented through this work is a steady state analytical model of the GaN HEMT based gas detector. GaN with high chemical and thermal stability provides promises for detectors in hazardous environments. However, HEMT sensor resolution must be improved to develop high precision gas sensors for automotive and space applications. The proposed model aids in systematical study of the sensor performance and prediction of sensitivities. The linear relation of threshold voltage shift at thermal equilibrium is used in predicting the sensor response. Numerical model for the reaction rates and the electrical dipole at the adsorption sites at the surface and metal/semiconductor interface have been developed and the sensor performance is analyzed for various gas concentrations. The validation of the model has been achieved through surface and interfacial charge adsorption-based gate electrode work function, Schottky barrier, 2DEG and threshold voltage deduction using MATLAB and SILVACO ATLAS TCAD. Further the applicability of gd (channel conductance) as gas sensing metric is also presented. With high ID and gd percentile sensitivities of 118.5% and 92 % for 10 ppm hydrogen concentration. The sensor shows capability for detection in sub-ppm levels by exhibiting a response of 0.043% for 0.01ppm (10 ppb) hydrogen concentration. The detection limit of the sensor (1% sensitivity) presented here is 169 ppb and the device current increases by 34.2 μA for 1ppb hydrogen concentration
    corecore