2,318 research outputs found

    Generalized backward induction: Justification for a folk algorithm

    Get PDF
    I introduce axiomatically infinite sequential games that extend Kuhn’s classical framework. Infinite games allow for (a) imperfect information, (b) an infinite horizon, and (c) infinite action sets. A generalized backward induction (GBI) procedure is defined for all such games over the roots of subgames. A strategy profile that survives backward pruning is called a backward induction solution (BIS). The main result of this paper finds that, similar to finite games of perfect information, the sets of BIS and subgame perfect equilibria (SPE) coincide for both pure strategies and for behavioral strategies that satisfy the conditions of finite support and finite crossing. Additionally, I discuss five examples of well-known games and political economy models that can be solved with GBI but not classic backward induction (BI). The contributions of this paper include (a) the axiomatization of a class of infinite games, (b) the extension of backward induction to infinite games, and (c) the proof that BIS and SPEs are identical for infinite games

    Baire spaces and infinite games

    Full text link
    It is well known that if the nonempty player of the Banach-Mazur game has a winning strategy on a space, then that space is Baire in all powers even in the box topology. The converse of this implication may be true also: We know of no consistency result to the contrary. In this paper we establish the consistency of the converse relative to the consistency of the existence of a proper class of measurable cardinals.Comment: 21 page

    Infinite games and sigma-porosity

    Get PDF
    We show a new game characterizing various types of σ-porosity for Souslin sets in terms of winning strategies. We use the game to prove and reprove some new and older inscribing theorems for σ-ideals of σ-porous type in locally compact metric spaces

    Infinite games with finite knowledge gaps

    Full text link
    Infinite games where several players seek to coordinate under imperfect information are deemed to be undecidable, unless the information is hierarchically ordered among the players. We identify a class of games for which joint winning strategies can be constructed effectively without restricting the direction of information flow. Instead, our condition requires that the players attain common knowledge about the actual state of the game over and over again along every play. We show that it is decidable whether a given game satisfies the condition, and prove tight complexity bounds for the strategy synthesis problem under ω\omega-regular winning conditions given by parity automata.Comment: 39 pages; 2nd revision; submitted to Information and Computatio

    (Mechanical) Reasoning on Infinite Extensive Games

    Get PDF
    In order to better understand reasoning involved in analyzing infinite games in extensive form, we performed experiments in the proof assistant Coq that are reported here.Comment: 11

    Degrees of Lookahead in Regular Infinite Games

    Full text link
    We study variants of regular infinite games where the strict alternation of moves between the two players is subject to modifications. The second player may postpone a move for a finite number of steps, or, in other words, exploit in his strategy some lookahead on the moves of the opponent. This captures situations in distributed systems, e.g. when buffers are present in communication or when signal transmission between components is deferred. We distinguish strategies with different degrees of lookahead, among them being the continuous and the bounded lookahead strategies. In the first case the lookahead is of finite possibly unbounded size, whereas in the second case it is of bounded size. We show that for regular infinite games the solvability by continuous strategies is decidable, and that a continuous strategy can always be reduced to one of bounded lookahead. Moreover, this lookahead is at most doubly exponential in the size of a given parity automaton recognizing the winning condition. We also show that the result fails for non-regular gamesxwhere the winning condition is given by a context-free omega-language.Comment: LMCS submissio
    • …
    corecore